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Abstract 29 

Deep learning has gained a lot of attention in the last decade for its use in 30 

computer vision. However, a barrier to use deep learning in an agricultural 31 

context is the need for large datasets. Agricultural processes are situated in 32 

uncontrolled environments, making data collection even harder than in other 33 

contexts. Factors such as plant growth, weather conditions, and illumination 34 
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are largely uncontrolled, making it hard to collect all possible variations in a 35 

dataset. This study demonstrates how synthetic generated data can aid to 36 

overcome the current barrier and it exemplifies this in the context of 37 

automating the detection and localisation of Calendula flowers. To this end, a 38 

pipeline was created that utilises photogrammetry and a flower field 39 

simulator to create synthetic data of a flower field. Next, the synthetic data is 40 

used to train a deep neural network to detect flowers and the transfer from 41 

simulation to reality (sim-to-real) is demonstrated on real data. Although the 42 

flower detector has not been trained on real data, it reaches an F1 score of up 43 

to 86% on the test sets of real data. Subsequently, a stereo vision camera 44 

system utilises this detection model to accurately determine the 3D positions 45 

of the flowers. The localisation results in an error of 6,9 ± 5,1 mm for the 46 

prediction of the flower height. In conclusion, leveraging the potential of 47 

synthetic data and sim-to-real capabilities can lower the costs of collecting 48 

large datasets in uncontrolled environments and can accelerate the 49 

development of precision agricultural applications. 50 

 51 
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1. Introduction 55 

The flower of a Calendula plant (Calendula officinalis L.) has many 56 

interesting and valuable properties. The Calendula flower can either be 57 

consumed fresh or used as a colourant in foods. Oil from the flowers, in 58 

turn, can be used in medical ointments and cosmetics. In addition, the 59 

seed oil is a coveted substance for paints and coatings (Khalid, 2012). Due 60 

to its properties and the wide habitat of the flower, the Calendula flower 61 

is of interest to farmers in large regions of the world. Currently, however, 62 

Calendula flowers are mainly harvested manually. This results in high 63 

labour costs which makes the cultivation of Calendulas economically not 64 

feasible in many countries. 65 

In the need for mechanical harvesting methods for the Calendula flower, 66 

different mechanical harvesting methods have been proposed over the past 67 

decades. Willoughby et al. (2000) proposed two different systems, both 68 

based on rotating pairs of picking fingers. Other work was performed by 69 

Veselinov et al. (2014), who harvested Calendula flowers with a virtual 70 

rotating combtype harvester. More recently, a similar mechanism is used in 71 

the work of Wang et al. (2021) on the design, simulation and test of 72 

Chrysanthemum (Dendranthema morifolium Ramat.) picking machine. 73 

Lastly, Fig. 1 shows another mechanical prototype for a Calendula harvester 74 

that has been developed by Flanders Research Institute for Agriculture, 75 

Fisheries and Food (ILVO). In contradiction to the other designs, in this 76 
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design, the combs do not rotate but move in a vertical way to pick flowers. 77 

This is a similar movement to manual flower picking. In all these works, the 78 

height of the harvester is fixed at one position and is not adjusted to the 79 

actual height of the harvested flowers. Since differences in flower height 80 

occur at various positions in a field, the studies notice a decrease in harvest 81 

efficiency in case the height of the harvester is not properly adjusted to the 82 

height of the flowers at a certain position in the field (Veselinov et al., 2014; 83 

Wang et al., 2021; Willoughby et al., 2000). 84 

a) While the machine moves in the 

direction of A, the flowers are picked by 

combs moving as indicated by arrow B. 

 

 

b) Side view of harvesting machine. 

Height adjustment of the machine 

relative to the �flower heads determines 

the harvest efficiency and quality. 

Figure 1: Harvesting machine for Calendula flowers developed by ILVO. 85 

 86 
One way to improve the harvest efficiency is by equipping these 87 

mechanical harvesters with robotic components to perceive the flowers, 88 

detect their height, and automatically adjust the height of the harvester 89 

(Bechar and Vigneault, 2016). To detect the flowers, machine vision can 90 

be utilised (Mavridou et al., 2019). In recent years, several studies have 91 
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explored the use of machine vision techniques to detect flowers (Dias et 92 

al., 2018; Wang et al., 2022), fruits (Rahnemoonfar and Sheppard, 2017; 93 

Sa et al., 2016) or weeds (Hasan et al., 2021; Picon et al., 2022). 94 

The use of deep learning for computer vision and object detection has 95 

gained a lot of attention in the last decade. Supervised deep learning 96 

technologies outperform older computer vision techniques (Kamilaris 97 

and Prenafeta-Boldú, 2018; Zhang et al., 2020). With these developments, 98 

object and keypoint detectors based on convolutional neural networks 99 

(CNN) such as YOLO (Redmon et al., 2016) and CenterNet (Zhou et al., 100 

2019) have become state of the art and are capable of detecting learned 101 

objects in real-time in challenging conditions. 102 

However, training a supervised deep learning algorithm often requires 103 

the availability of large, labeled datasets for training. This is especially 104 

true in the case of agricultural applications, where it is challenging to 105 

handle all possible variations that can occur, for example in illumination, 106 

background, arrangement of the objects, occurrence of weeds, and growth 107 

stage of the plants. Moreover, this makes data collection costly and creates 108 

a bottleneck for the application of deep learning in an agricultural context 109 

(Kamilaris and Prenafeta-Boldú, 2018; Roh et al., 2021). Public available 110 

datasets such as ImageNet (Deng et al., 2009) and MS COCO (Lin et al., 111 

2015) have been a huge contribution to the computer vision community 112 

in the development of object detection/segmentation models. Yet, these 113 

datasets are very generic and do not translate well to agricultural 114 
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applications. The lack of public datasets targeted to specific agricultural 115 

applications does not alleviate this bottleneck for most precision 116 

agricultural applications (Lu and Young, 2020). 117 

To eliminate this bottleneck, the use of synthetically created data has 118 

gained a lot of attention in the past few years (de Melo et al., 2022; 119 

Nikolenko, 2019; Tobin et al., 2017; Tremblay et al., 2018). Synthetic data 120 

generation has the advantages that it is possible to quickly generate 121 

scenes that are hard to capture in reality, is inherently accompanied by 122 

pixel-perfect labels, and makes quick iterations possible. In the case of 123 

agricultural applications, synthetic data generation makes it possible to 124 

create data with high variability. Environmental variables such as 125 

illumination, plant growth, shape, and texture can be determined 126 

arbitrarily in this process. Due to the large possible variability in an 127 

agricultural process and strong seasonal dependencies, Rizzardo et al. 128 

(2020) argue that the use of virtual environments to simulate these 129 

conditions and agricultural processes is a necessity for the development 130 

of agricultural robots. 131 

However, a challenge in using synthetic data is the transfer to the real 132 

world (sim-to-real). Generally, this is overcome by applying (structured) 133 

domain randomisation to the scene (Prakash et al., 2019; Tobin et al., 134 

2017). 135 

Synthetic image data can be generated in various ways. Rahnemoonfar 136 

and Sheppard (2017) created synthetic training data to count tomatoes 137 
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by simply generating a green/brown background and drawing random 138 

red dots on top of the background (Rahnemoonfar and Sheppard, 2017). 139 

In other work the Cut, Paste, and Learn (Dwibedi et al., 2017) approach is 140 

exploited to generate new images by combining parts of different RGB 141 

images (Picon et al., 2022; Wang et al., 2022). This method, however, is 142 

limited in the kinds of variation that can be introduced. Different 3D 143 

orientations of the individual objects and lighting effects such as shadows 144 

can not be introduced with this approach. To simulate more realistic 145 

scenes, 3D models of plants can be placed in a virtual environment such 146 

as a game engine (Qiu and Yuille, 2016). To create these 3D models of 147 

biological material, photogrammetry has been proven successful in plant 148 

reconstruction (Andújar et al., 2018). Further, L-systems offer promising 149 

results in generating realistic models of plants in different growth stages 150 

(Cieslak et al., 2022). 151 

In this work, we generate a synthetic dataset of Calendula flowers 152 

based on a few 3D models of the plants and validate its purpose for the 153 

localisation of the flowers. 154 

The contributions in this work are threefold: 155 

1. We present a pipeline to generate synthetic data of agricultural 156 

processes with the use of photogrammetry and a game engine. 157 

2. A Calendula flower detector based on a CNN is trained on synthetic 158 

data and validated on a test set of real Calendula images (sim-to-real 159 
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transfer). This flower detector, combined with stereo vision, 160 

enables the localisation of the flowers to automatically adjust the 161 

height of harvesters to increase harvest efficiency. 162 

3. Lastly, all collected and generated data is made available on Zenodo 163 

as a contribution to future research on precision agriculture 164 

(Vierbergen et al., 2022). 165 

2. Materials and methods 166 

The different steps in the generation and use of synthetic data for 167 

flower detection and localisation can be divided into three categories: 168 

synthetic data generation, training of flower detection model, and sim-to-169 

real evaluation. These subdivisions and their corresponding steps are 170 

shown in Fig. 2. To create synthetic plants, first and foremost, 3D models 171 

of the Calendula are created using photogrammetry. After decomposing 172 

the flowers and leaves into different 3D models, these are used as assets 173 

in a flower field simulator together with images of soil with weeds. By 174 

using these assets and a simulation framework in the flower field 175 

simulator, synthetic data can be generated. This synthetic dataset is 176 

subsequently used to train and immediately evaluate a deep neural 177 

network. Without any kind of transfer learning, the trained network is 178 

finally evaluated on images captured in an uncontrolled, outdoor 179 

environment. 180 
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 181 

Figure 2: Visualisation of different steps sim-to-real pipeline: synthetic data 182 
generation, detection model training and sim-to-real validation. 183 

 184 

Before discussing the synthetic data generation, section 2.1 expands 185 

on the data that has been collected for this study. Next, section 2.2 186 

describes our pipeline to generate synthetic agricultural data. The section 187 

is followed by a description of the flower detection system in section 2.3 188 

and the localisation of the flowers in section 2.4. 189 

2.1. Data collection 190 

A total of three different datasets were compiled for this study. Two 191 

datasets consist of images of real Calendula flowers captured in 192 

respectively an uncontrolled and a controlled environment. A third 193 

Synthetic data generation 

Photogrammetry Flower field 
simulator 

Detection model 
training Detection model 

inference 

Test detection 
model Crop and resize 

images 

Decomposition 
flowers and leaves 

Detection model training 

Sim2real 

Images controlled 
environment Images 

  background 

Test set 
  real images 

D models of 3 
  flowers and leaves 

Synthetic dataset 

Trained detection 
  model 

Sim2real results 

Validation set Training set 
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dataset is synthetically generated and will be discussed in the next 194 

section. 195 

2.1.1. Field data 196 

The first dataset consists of images of Calendula flowers on the field 197 

when they would be harvested. The images in this dataset are collected in 198 

an outdoor and strongly varying environment at different moments in 199 

time under different weather conditions. 200 

To compile this dataset, an Intel RealSense D415 (Intel Corporation, 201 

Santa Clara, USA) depth camera was used to collect both RGB and depth 202 

images of Calendula plants. By mounting the camera on a trolley or 203 

tractor, a fixed camera height and steady horizontal speed of about  204 

3 km h−1 were obtained. Figure 3 illustrates this setup. Images were taken 205 

at an interval of one second. By capturing images of five different fields 206 

spread over seven different moments in time, the dataset includes a wide 207 

range of variety regarding the moment of capture, location, weather 208 

conditions, and lighting. At the different locations, Orange Beauty was the 209 

most prominent cultivar, although more than 15 different cultivars are 210 

included in the dataset. The tables in Appendix A give a detailed overview 211 

of the location, moment of capture, and cultivars in the dataset. 212 
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a) 

 

 

b) 

Figure 3: Intel RealSense D415 sensor mounted on tractor (a) and trolley (b) to 213 
capture field data. 214 

 215 

By varying the height and the pitch angle of the camera, additional 216 

variation was introduced. The RGB images were stored with a resolution 217 

of 1920*1080 in JPEG format and the aligned depth images with a 218 

resolution of 1280*720 pixels. The flowers in the images were annotated 219 

with bounding boxes using makesense.ai1 software. Additionally, the 220 

heights and diameters of the flowers were measured in six different fields. 221 

2.1.2. Photo booth 222 

To create 3D models of the Calendula with photogrammetry, five 223 

plants were placed on a rotating platform in front of a white background. 224 

These plants were photographed from 100 to 150 points of view with a 225 

Canon 600D DSLR camera using a Canon EF-S 18-135 mm lens (Canon 226 

                                                        
1 https://makesense.ai 

https://makesense.ai/
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Inc., Tokyo, Japan). The photographed plants were bought at a local florist 227 

and of an unknown cultivar. Figure 4 shows the used setup and some of 228 

the resulting images. 229 

2.2. Synthetic data pipeline 230 

Our pipeline to generate synthetic data of Calendulas consists of two 231 

steps. First, photogrammetry was used to create 3D models of a Calendula. 232 

Subsequently, a flower field simulator makes use of these assets to create 233 

a virtual Calendula field of which RGB images are captured. These images 234 

represent, synthetically, a Calendula field. 235 

2.2.1. Photogrammetry 236 

With photogrammetry, it is possible to extract 3D information from 237 

RGB images and reconstruct a virtual representation of the object. By 238 

utilising the images of a Calendula as captured in section 2.1.2, 3D models 239 

of Calendulas can be created. To this end, Agisoft Metashape (v1.5.5.9097, 240 

Agisoft LLC, St. Petersburg, Russia) was used. 241 

After aligning the images in Agisoft Metashape, a mesh of the 242 

Calendula plant was generated using depth maps as a source, and with 243 

parameters for quality and face count set to ‘high’. 244 

A 3D mesh produced by Metashape consists of about 12 million 245 

surfaces, resulting in an Object file of about 1.55 GB for each model. To 246 

reduce the file size, the meshes were decimated to 50.000 surfaces. This 247 
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reduces the file size to about 6.5 MB for an individual model, as Fig. 4 248 

visualises. 249 

 250 

Figure 4: Creation of 3D models. Photographing a plant in front of a white 251 
background (a) results in RGB images (b) that can be used to create a 3D model of 252 
the plant (c). The model is subsequently decomposed in leaf and flower parts (d). 253 

 254 

As a final step, the flowers and leaves of the model were decomposed 255 

and stored in different Object files using Blender (version 2.93.1, The 256 

Blender Foundation, Amsterdam, The Netherlands). All flowers were 257 

repositioned with their centres at the origin of the coordinate system, the 258 

leaves with their bottoms. 259 

2.2.2. Flower field simulator 260 

To generate the synthetic images, the Unity Perception package was 261 

used. The open-source package, developed by Unity Technologies, 262 

extends the Unity Editor and engine components to generate annotated 263 

images for computer vision tasks (Borkman et al., 2021). By using this 264 

a) b) 

c) 

d) 



17 

framework, a scene was created which is made up of different layers, each 265 

filled with a certain object type. From bottom to top, the layers in the 266 

flower field simulator represent the background, leaves, flowers, 267 

illumination, and a camera. These layers are showed in Fig. 5. 268 

 269 

Figure 5: Simulation of a flower field in Unity to generate synthetic images. The 270 
scene consists of different layers. From bottom to top: (1) background images of 271 
weeds, (2) Calendula leaves, (3) Calendula flowers, (4) point lights, and (5) a 272 
camera. 273 

 274 

The background layer displays the soil, weeds, and shadows in the 275 

images. The layer is composed of a random selection of images from two 276 

datasets. To start with, 114 random images from the DeepWeeds dataset 277 

(Olsen et al., 2019) were selected. Since the DeepWeeds dataset is 278 

captured in Australia, 114 images were added to increase the variety and 279 

cover Belgian weeds as well.  280 
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These additional images were collected by unmanned aerial vehicle 281 

(UAV) flights above corn fields covered with weeds at Merelbeke, 282 

Belgium. These UAV flights were performed with a DJI Matrice 600 (DJI, 283 

Shenzhen, Guangdong,CHN) equipped with a Ronin MX gimbal (DJI, 284 

Shenzhen, Guangdong, China) and RGB Sony a7R III camera (42.4 MP, 285 

mirrorless) (Sony, Minato, Tokyo, Japan), with a 135 mm lens, type Carl 286 

Zeiss Batis 135 mm f2.8 (Zeiss, Oberkochen, Baden-Württemberg, 287 

Germany). To further process the images, these images were tiled into 288 

tiles of 1024 by 1024. The weeds in the images were not determined. 289 

In the background layer, a random selection of these 228 images was 290 

placed at random positions with a random rotation and small random 291 

variation in height. 292 

Above this background layer, the leaves of the Calendula were 293 

rendered. For each frame, a random selection of the seven leaf models was 294 

positioned at random places with a random rotation along all axis. The tilt 295 

angle was kept between -60° and +60° so that the flowers are not shown 296 

completely sideways or upside down. Each leaf model could occur zero, 297 

one, or multiple times in a single frame. 298 

The flowers are rendered on the third layer. With the same 299 

randomisation as in the previous layer, the flower assets are positioned 300 

randomly in this layer, adding a random variation in height. 301 
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In open fields, a wide variety of light conditions occurs. To simulate 302 

this, a layer with irregularly positioned point lights was added. By varying 303 

the number of point lights positioned in this layer and their position, the 304 

scene is irregularly illuminated. 305 

Positioned atop these layers is a Perception Camera (Borkman et al., 306 

2021), which captures an image of the scene along with its corresponding 307 

annotations. This camera is positioned at the centre of the layer with a 308 

random variation in tilt angle and height. The resolution of the Perception 309 

Camera is set to 512*512 pixels to match the input of the detection 310 

network, as described in the next section. 311 

2.3. Flower detection 312 

To detect the flowers in a given image, we made use of deep learning. 313 

The architecture of the implemented model was inspired by CenterNet, a 314 

deep neural network for object detection with an excellent performance 315 

in both speed and accuracy (Zhou et al., 2019). 316 

2.3.1. Architecture 317 

To predict the position of the centre of the flowers, we are interested 318 

in detecting the centrepoint of a flower. To this end, we implemented a 319 

network with a ResNet-18 (He et al., 2016) backbone as used in CenterNet 320 

(Zhou et al., 2019). Since a prediction of the flower size was not needed, 321 

the output head that predicts the width and height of the bounding box 322 

around the object was not implemented. The offset head was eventually 323 
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left out from the implementation since we noticed no significant 324 

improvement upon the predicted centre coordinates as obtained from the 325 

heatmap output. Figure 6 visualises the resulting network architecture. 326 

 327 

Figure 6: Visualisation of used detection network based on the CenterNet 328 
architecture. 329 

 330 

This network takes an image 𝐼 ∈ [0,255]𝑊×𝐻×3 with width 𝑊 and height 𝐻 331 

as input and generates a keypoint heatmap �̂� ∈ [0,1]
𝑊
𝑅×

𝑊
𝑅  as output, where R 332 

represents the output stride. For the experiments, the input image size was 333 

set to 512 by 512, the output resolution to 128 by 128 (output stride R = 4). 334 

It can be noticed that there is only one output class for �̂�, namely one of the 335 

flowers. 336 

Comparing different loss functions, a binary cross entropy (BCE) loss 337 

resulted in significantly higher results in both precision and recall 338 

compared to a focal loss (Lin et al., 2020). All results discussed in the 339 

following sections are obtained using the BCE loss L: 340 

𝐿 = −1
𝑁
∑ 𝑦𝑖 log(𝑦�̂�) + (1 − 𝑦𝑖) log(1 − 𝑦�̂�)𝑁
𝑖=1 , 341 
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where �̂� is the predicted heatmap and y the ground truth heatmap. 342 

The final prediction of the centre points is obtained by applying a 3x3 343 

maxpool to the heatmap (Zhou et al., 2019). 344 

2.3.2. Training and validation 345 

To make the transition from simulated to real images, the detection 346 

model was trained on 15,000 synthetically generated images (see section 347 

2.2). Validation during training was done on a fixed set of 250 synthetic 348 

images which were not included in the training set. Finally, a trained model 349 

was tested on annotated images taken in an outdoor environment (see 350 

section 2.1.1). For training, we varied three hyperparameters: learning rate 351 

(set constant), batch size and learning time (number of epochs). 352 

The training objective of the model was to minimise the BCE loss L. To 353 

have a better understanding of the actual precision and recall of the 354 

trained models, the models were evaluated on the validation set using the 355 

percentage of detected joints (PDJ) metric (Toshev and Szegedy, 2014) on 356 

the detected centrepoints with a fraction of 0.1. Hereby, the torso 357 

diameter is defined as the diameter of the bounding box of the flower. 358 

Based on the PDJ score the precision, recall and F1 scores were calculated. 359 

The model with the highest F1 score on the validation set was selected 360 

as the final model. 361 
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2.4. Flower localisation 362 

To accurately adjust the harvester to the height of the flowers, the 3D 363 

location of the flowers needs to be determined. To verify the possibility of 364 

determining the 3D location using the above-mentioned flower detector, 365 

the flower field simulator is extended with a stereo vision system. By 366 

imaging the flowers now from two different viewpoints the 3D location of 367 

the flowers can be detected. This section expands on how the camera 368 

system can be integrated into the harvesting machine, the algorithms to 369 

determine the 3D position of the flowers and the validation in a virtual 370 

world of this process. 371 

2.4.1. Stereo vision camera setup 372 

A stereo vision camera system consists of two cameras which, by 373 

combining the image information of both cameras, makes it possible to 374 

extract depth information from objects that are perceived by both 375 

cameras. In this work, we propose the usage of a stereo vision system 376 

which consists of two industrial graded RGB cameras to determine the 377 

location of the flowers. For further calculations, we based the system on 378 

cameras with a sensor size of 1/2”, a focal length of 6 mm, and a resolution 379 

of 1280*1024 pixels, although these would be cropped to a resolution of 380 

512*512 pixels to match the input of the detection network. 381 

We positioned the two cameras at 1 m above ground level and 15 cm 382 

apart in the direction of travel. With this configuration, the resulting 383 
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stereo system can capture a width of 54 cm at 45 cm above ground level, 384 

the average height of the Calendula flowers. In the direction of travel, 385 

however, the field of view is 26 cm, which is more narrow. This implies 386 

that a sufficiently high frame rate is required to capture every part of the 387 

field in the direction of travel. Since harvest will take place at a maximum 388 

of 3 km h−1 a frame rate of at least 4 fps is required. Figure 7 illustrates the 389 

described configuration of the stereo vision system. 390 

 391 

Figure 7: Side view of the stereo vision camera setup with the field of view of the 392 
stereo camera in the driving direction illustrated. 393 

 394 

2.4.2. Localisation algorithm 395 

The process of determining the 3D position of the flowers with stereo 396 

vision consists of several steps, as Fig. 8 illustrates. First of all, the flowers 397 

are detected in both the images from the left and the right camera. After 398 
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detection, the pixel coordinates of the corresponding flowers in both 399 

images are matched. This results in a centrepoint in pixel coordinates for 400 

each flower in the field of view of the stereo vision system. Triangulation 401 

of these coordinates results in a 3D position of the flowers in the 402 

coordinate system of the first stereo vision camera, which can be 403 

transformed to a world coordinate system (Szeliski, 2011). This algorithm 404 

was implemented using OpenCV (version 4.5.3) functionality in Python 405 

(version 3.9.12). 406 

 407 

Figure 8: Detection and localisation of Calendula flowers using a stereo vision 408 
camera system. 409 

 410 

2.4.3. Validation on a virtual flower field 411 

To validate the stereo vision setup, the flower field simulator in Unity 412 

has been extended with an extra camera to enable stereo vision and a 413 

checkerboard to virtually calibrate the system. Both cameras were 414 
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configured with a sensor size of 1/2”, a focal length of 6 mm, and a 415 

resolution of 512 by 512 pixels. 416 

To approach the mechanisms and use of a physical stereo system, both 417 

the internal and external camera parameters are determined by 418 

calibration in the virtual world. By capturing images from a checkerboard 419 

in different positions and orientations, the intrinsic parameters 420 

(centrepoint and focal length) of every camera were determined. The 421 

external camera parameters of the system were determined similarly, 422 

these consist of the pose of the right camera in relation to the left camera 423 

and the transformation matrix from the left camera coordinate system to 424 

the world coordinate system. To detect the checkerboard pattern and 425 

determine the camera parameters, the functionality provided by OpenCV 426 

was used. 427 

With a calibrated camera setup, flower fields are simulated and 428 

captured with both cameras after which the localisation algorithm was 429 

applied. 430 

To validate the accuracy of the predicted flower height, the prediction 431 

accuracy was determined for three different simulated fields. One with 432 

the flowers on the measured average height and two in which the average 433 

height is in- or decreased with the standard deviation. 434 



26 

3. Results 435 

The results of this work can be divided into three categories: data 436 

collection and generation, sim-to-real learning for flower detection, and 437 

the localisation of Calendula flowers with stereo vision. Each of these 438 

results is discussed in the following sections. 439 

3.1. Data collection and generation 440 

In this study, different datasets were collected and generated to create 441 

the proposed pipeline to generate synthetic agricultural data. Besides, a 442 

test set of real images was collected to evaluate the sim-to-real transition 443 

of the detection model. This section lists the results of the data collection 444 

and generation. All collected data, the 3D models of Calendula plants, and 445 

the generated synthetic dataset are published on Zenodo under CC-BY 446 

licence (Vierbergen et al., 2022). 447 

3.1.1. Field data 448 

Using the camera setup with an Intel RealSense D415 depth camera, 449 

1954 images of a Calendula field were captured. By capturing images at 450 

various moments during the flowering season, at different plots, and 451 

under different weather and light conditions, the dataset holds a wide 452 

variety. Figure 9 and figure B.11 in Appendix B show a sample of these 453 

images. 454 
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 455 

Figure 9: Top: examples of real images from the captured dataset. Bottom: images 456 
generated with the proposed synthetic data pipeline. 457 

 458 

The Calendula flowers are most clearly visible in the RGB and depth 459 

images when the camera is placed at 120 to 140 centimetres above the 460 

ground with a pitch angle between 0 and 20 degrees. More detail about 461 

the collected dataset can be found in Appendix A. 462 

Table 1 lists the measured flower count, heights, and diameters of 463 

Calendulas in different plots. A high variety in flower height is observed both 464 

between different plots and within one plot. The measured Calendula 465 

flowers are positioned at an average height of 44.6 centimetres above the 466 

ground and have an average diameter of 5.98 cm.  467 
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Table 1: Number of flowers, average height and diameter with standard deviation 468 
of flowers in a sample of 1 m2 in different plots. 469 

Plot Flowers Height (cm) Diameter (cm) 

A 24 49.2 ± 6.7 4.0 ± 1.1 

B 26 46.3 ± 5.5 4.2 ± 1.0 

C 31 41.4 ± 4.2 3.8 ± 1.1 

D 26 45.1 ± 5.0 4.1 ± 1.1 

E 26 47.2 ± 5.8 4.6 ± 1.3 

F 38 39.6 ± 4.9 6.2 ± 1.1 

G 76 43.3 ± 4.0 6.4 ± 0.9 

H 24 51.4 ± 3.8 6.1 ± 1.4 

 470 

3.1.2. Photogrammetry 471 

In total 980 images were taken in the controlled environment of a 472 

photo booth. This enabled the creation of 29 3D models of Calendula 473 

flowers and 7 different structures of leaves with the use of 474 

photogrammetry. 475 

3.1.3. Synthetic dataset 476 

In only a short amount of time, the flower field simulator is able to 477 

create a large dataset. On a laptop equipped with an Intel i7-8550U CPU 478 

and a Radeon Pro WX 3100 GPU it took us 20 minutes to create the 479 
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training set of 15.000 synthetic images. Figure 9 shows a few of the 480 

generated images next to images of real Calendula flowers. The synthetic 481 

images can mostly be easily distinguished from the real ones by looking 482 

after collage effects in the background, unrealistic lighting, colour schema, 483 

and arrangement of the objects. 484 

Despite clear differences, the synthetic images can be recognised as 485 

images of a Calendula field and clearly share some characteristics with the 486 

real images. In both, the same types of objects appear: flowers and leaves 487 

of Calendula plants, soil, weeds, and varied lighting conditions. The colour 488 

distribution of both datasets share similar characteristics as well. To 489 

quantify this, the images are converted to HSV colour space, and the 490 

distribution of the hue value is studied. Figure 10 shows that in both the 491 

real and synthetic datasets the hue of the flowers is very similar. In both, 492 

the mode is 28°. It is noticed however that for the other parts of the 493 

images, where no flowers occur, the distribution differs. The peak at 70° 494 

indicates the colour of the limited available leaf assets that were 495 

frequently used in generating the synthetic images without augmenting 496 

their colour. The background colour is thus in reality still more diverse 497 

than the background generated in the flower field simulator. 498 
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 (a) Hue distribution of flowers (b) Hue distribution of image background 499 

Figure 10: The colour distributions of real and synthetic images show similar 500 
characteristics. 501 

 502 

3.2. Sim-to-real flower detection 503 

The final detection model was trained for six epochs with a batch size 504 

of eight and a learning rate of 1e-5. To make the sim-to-real transfer, this 505 

model was tested on nine test sets: one test set of synthetically generated 506 

data, four test sets of orange Calendula flowers (cultivars Orange Beauty 507 

and Biosano Orange), and four test sets that hold up to fifteen different 508 

cultivars. More details about the test sets are included in Appendix A and 509 

Appendix B. In order to match the resolution of real images captured with 510 

the RealSense to the input of the detection model, the images in the test 511 

sets were divided in two along their horizontal centre, after which both 512 

halves were cropped to a resolution of 512 by 512 pixels. Both cropped 513 

halves where then inputted to the network. Tested on the selected model, 514 

the precision, recall, and F1 score on these test sets are reported in Fig. 515 

11. In this figure, the trade-off between recall and precision is made by 516 
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both the threshold applied to the heatmap prediction of the detection 517 

model outputs and the set PDJ fraction. A smaller PDJ fraction challenges 518 

the detection model to detect the centre of the flower accurately, while a 519 

larger fraction allows some offset to the centre. 520 

 521 

 522 
 523 

Figure 11: Sim-to-real transfer of the detection model on test sets of real images of 524 
Calendula flowers. Top: test sets with orange flowers. Bottom: Test sets with a 525 
diverse set of flower colours. 526 

      
 

 

 

 

 

 

 

 
 
 
 
 

      
 

 

 

 

 

 

 

 
 
 
 
 

(a) Detection on orange flowers with a maximum PDJ 
fraction of 0.10. 

(b) Detection on orange flowers with a maximum PDJ 
fraction of 0.15. 

      
 

 

 

 

 

 

 

 
 
 
 
 

      
 

 

 

 

 

 

 

 
 
 
 
 

(a) Detection on flowers with mixed colour and a 
maximum PDJ fraction of 0.10. 

(b) Detection on flowers with mixed colour and a 
maximum PDJ fraction of 0.15. 
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 527 

For the evaluation with the PDJ fraction, the centrepoint of a flower is 528 

defined as the centre of its bounding box. However, the true centre can 529 

deviate largely from this definition in case the flower is on the edge of the 530 

image. Because of this, the PDJ score is largely affected by flowers on the 531 

edges of the image. To mediate this, a border of 28 pixels in the 512 by 532 

512 input image was created in which the detections are not taken into 533 

account for the evaluation on the test sets. Further, a change of 534 

perspective or a tilt of the flower can also result in a difference between 535 

the true centre of a flower and the centre of its bounding box. In this 536 

evaluation, there is no compensation made for these effects and its 537 

assumed that the centre of the bounding box is a good approximation of 538 

the true centre. 539 

The sim-to-real transfer is made best on the test sets with orange 540 

flowers and a PDJ fraction of 0.15. In this case, the F1 score reaches up to 541 

84%. By increasing the PDJ fraction up to 0.25, the F1 score increases to 542 

86% on test set Orange-beauty-2. Since the average diameter of the 543 

measured Calendula flowers is 5.2 cm, a PDJ fraction of 0.10 and 0.15 544 

respectively correspond with a maximum deviation of about 5.2 and 7.8 545 

mm from the centrepoint of the flower in the horizontal plane. This is the 546 

case when the flower is not or is only slightly tilted. 547 

Since the detection model is trained on images that simulate an Intel 548 

RealSense sensor at a height of 120 to 140 cm above ground, a loss in 549 
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performance is observed when the sensor is set at a height of 82.5 cm in 550 

test set Orange-beauty-1 compared to the F1 score on test set Orange-551 

beauty-2. Since both test sets were captured at the same moment and of 552 

the same plants with only a difference in height of the RealSense sensor 553 

the decrease in F1 score can be assigned to the difference in sensor height. 554 

The detection model is able to infer 24 frames per second. This 555 

provides the needed speed to capture every part of a flower field. 556 

3.3. Flower localisation 557 

With the use of a virtually created flower field, the localisation 558 

accuracy of the stereo vision setup is tested. A total of three different fields 559 

are generated to this end. In these fields, the Calendula flowers were 560 

positioned at a height of 38.6, 44.6 and 50.6 cm. Figure 12 shows one pair 561 

of the generated images with the detected and matched flower pairs 562 

annotated. Next, Fig. 13 shows the difference between the measured and 563 

true location of the flowers. 564 

This shows that the stereo vision system can determine the height of 565 

the flowers with an average error of 6.9 ± 5.1 mm. 566 
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 567 

Figure 12: Left and right image of stereo vision system with detected and matched 568 
flowers annotated in corresponding colours, together with the epipolar lines. The 569 
images are made 50% transparent to increase the visibility of the annotations. 570 

 571 

 572 

Figure 13: The difference between the true and predicted location of the flowers. 573 
The average error in height is 6.9 ± 5.1 mm. 574 

 575 
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4. Discussion 576 

4.1. Synthetic data pipeline 577 

The proposed simulation pipeline makes it possible to quickly 578 

generate a large amount of varied image data. This enables quick 579 

development iterations without having to wait for the next harvest, or 580 

season to collect more data on the crop. With this, we can mediate the 581 

need and costs of collecting and labelling a large dataset of real images. 582 

Our pipeline can generate thousands of varied synthetic images with a 583 

minimum number of 3D models used as input. Although the background 584 

colour in the synthetically generated images is dominated by the green 585 

colour of the leaf assets, the use of the proposed pipeline offers the 586 

possibility to add even more variation than what is easy to capture in the 587 

real world. We introduced, for example, diverse soil and weed types by 588 

collecting and combining image data available from the different datasets. 589 

This could be extended for the leaf colours as well. 590 

The proposed pipeline and especially the flower field simulator show 591 

a big potential to create synthetic training data for agricultural 592 

applications. A limitation, however, in line with the remarks of Rizzardo 593 

et al. (2020), is that the flower field simulator based on Unity only renders 594 

field data. There is currently no integration with a robot operation system 595 

(ROS) to include robotic simulation or physical simulation of the flowers 596 
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which would create an end-to-end virtual test platform for the harvest of 597 

Calendula flowers. 598 

4.2. Sim-to-real flower detection 599 

While only trained on synthetic images, the detection model is capable 600 

of detecting flowers in real-world images with an F1 score of up to 84% 601 

when a PDJ fraction of 0.15 is applied. This is a lower F1 score compared 602 

to other recent studies that utilise deep learning to detect flowers. For 603 

instance, Dias et al. (2018) reports an F1 score of up to 92% for the 604 

detection of apple flowers. In the recent work of Wang et al. (2022), the 605 

detection of pear flowers was demonstrated using synthetic data. Their 606 

best model achieved an F1 score of up to 96%. However, they used the 607 

synthetic data as a supplement to a dataset of real images and did not 608 

make the full sim-to-real transfer. 609 

Although it is possible to compare F1 scores, it is still hard to make a 610 

good one-on-one comparison with the other works. This is because the 611 

targeted flower species, the used model, and the used metrics to 612 

determine true and false positives differ. In our study, for example, the use 613 

of a small PDJ fraction is an additional criterion in the evaluation 614 

compared to other studies. 615 

Further, the test sets of most other studies are not made publicly 616 

available. This raises the barrier to evaluating our detection model and its 617 

sim-to-real capabilities in other conditions or for other flower species. 618 
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The sim-to-real capability of our model is highly influenced by the 619 

colour and cultivar of the flowers. For the detection model to perform well 620 

on a wider range of cultivars and flower colours, the domain 621 

randomisation in the flower field simulator has to be extended to include 622 

a wider variety of cultivars. This illustrates the potential of the proposed 623 

pipeline to generate synthetic data. With only a few example plants of the 624 

other cultivars, new 3D models can be generated and used as an asset in 625 

the flower field simulator to generate new synthetic data. 626 

4.3. Flower localisation 627 

The localisation of Calendula flowers shows to be possible with an 628 

average error of 6,9 mm in height. This should make it possible to 629 

integrate the localisation system on a Calendula harvester and 630 

automatically adjust the harvester to the height of the flowers. 631 

A limitation of this work is that the localisation is only validated on a 632 

limited number of synthetic images. Although the results are promising, 633 

field tests have to be carried out in the future to validate the localisation 634 

on real data. A possible difficulty for the localisation on real data can be 635 

the matching of corresponding flowers between the left and right image. 636 

Much denser coverage of flowers, overlapping and tilted flowers are some 637 

of the complexities that will occur in an outdoor environment and were 638 

not present in the synthetic data on which the localisation was tested on. 639 
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Further, this work is not only relevant to the automated harvest of 640 

flowers but also to a wide range of precision agricultural applications. 641 

Other relevant applications for the developed sim-to-real pipeline and 642 

localisation system are yield prediction, weed management, fruit harvest, 643 

and variability mapping. 644 

5. Conclusion 645 

This work demonstrates how synthetically generated data can help 646 

accelerate the development of precision agricultural applications that 647 

require a huge amount of training data. To this end, we designed a simulation 648 

pipeline that makes use of photogrammetry and a flower field simulator to 649 

create synthetic images of a Calendula field. Secondly, we trained a flower 650 

detector on the synthetic images and demonstrated a successful transfer 651 

from simulation to reality. This transfer was validated on a large and diverse 652 

set of real Calendula images. Next, this detector has been used in 653 

combination with a stereo vision system to determine the positions of the 654 

flowers towards automating the harvest of Calendula flowers. As a final 655 

contribution, the collected and generated data for this study is published on 656 

Zenodo to further stimulate research on precision agriculture. 657 

In future work, the flower detection and localisation systems should 658 

be implemented on a real Calendula harvester. With this implementation, 659 

the effect of a dynamic height adjustment on harvest efficiency can be 660 

studied. 661 
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The relevance of this work is however much broader than the harvest 662 

of Calendula flowers. The proposed synthetic data pipeline is flexible and 663 

can be adapted to simulate other crops and agricultural processes. 664 

Leveraging the potential of sim-to-real learning can eliminate costs and 665 

can accelerate the development of precision agricultural applications. 666 
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Appendix A. Metadata 678 

Table A.1: Characteristics of collected data series 679 
 680 

   Camera Number of images  

Data serie Cultivar Condition Height (cm) Pitch (°) RGB-D Annotated Test set 

1 Orange Beauty C1 82.5 10 58 85 Orange-beauty-1 

2 Orange Beauty C1 120 10 78 78 Orange-beauty-2 

3 Orange Beauty C2 140 15 95 0 n/a 

4 Orange Beauty C2 120 50 200 0 n/a 

5 Orange Beauty C2 110 50 280 0 n/a 

6 Orange Beauty C2 140 50 204 0 n/a 

7 Biosano Orange C3 140 20 558 100 Biosano-orange-1 

8 Orange Beauty C3 140 20 414 100 Orange-beauty-3 

9 Mixed Cultivars 2 C4 140 10 15 15 Mixed-cultivars-1 

10 Mixed Cultivars 2 C5 140 10 15 15 Mixed-cultivars-2 

11 Unknown mix C6 140 10 5 5 Mixed-cultivars-3 

12 Unknown mix C7 140 10 5 5 Mixed-cultivars-4 
1 See Table A.2. 681 
2 Cultivars in data series: 15001, 15537, 2997 109/112, Biosano Orange, Erfurter Orange, Nova, Red With Black Center, Ringelblume, Corniche d'Dor, Yellow Gem, 682 
Orange Beauty Vreeken, Lemon Beauty, Carola, Apricot Beauty en 2008294 683 



41 

 684 
 685 
 686 
 687 

Table A.2: Time, location and weather conditions of data series. 688 
 689 

Condition Date (dd/mm/yyyy) Time Location Weather 

C1 17/09/2020 14:21 Merelbeke, Belgium Clear, sunny 

C2 05/11/2020 14:09 Molenbeek-Wersbeek, Belgium Clear, sunny 1 

C3 09/07/2021 13:19 Letterhoutem, Belgium Cloudy 

C4 09/08/2021 10:24 Merelbeke, Belgium Overcast 

C5 09/08/2021 15:04 Merelbeke, Belgium Clear, sunny 

C6 09/08/2021 15:24 Merelbeke, Belgium Clear, sunny 

C7 09/08/2021 16:58 Merelbeke, Belgium Clear, sunny 
1 Frost during night before. 690 
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Appendix B. Dataset examples 691 

 692 
 (a) Orange-beauty-1 (b) Orange-beauty-2 693 

 694 
 (c) Biosano-orange-1 (d) Orange-beauty-3 695 

 696 
 (e) Mixed-cultivars-1 (f) Mixed-cultivars-2 697 

 698 
 (g) Mixed-cultivars-3 (h) Mixed-cultivars-4 699 

 700 
(i) Synthetic 701 

Figure B.1: Samples of the different test sets used to validate the sim-to-real transfer.  702 
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