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When a decision-making model is complex, it can also be slow and clunky. That’s why we will look at a new technique
for removing redundancies from a model, making it faster and easier to use. The particular model here is sets desirable
gambles, which is a general framework to model uncertainty [4]. Suppose we have a finite set X containing all possible
outcomes of an experiment, then gambles are maps on X that map these possible outcomes to a real-valued utility scale.
They form a real vector space ℝX .

Given assessment 𝐴 ⊆ ℝX containing gambles that we assume to be desirable, its natural extension is the least committal
coherent extension, if it exists. Let ℝX

≥0 denote gambles with non-negative components, 0 the gamble that is zero for every
outcome and posi(𝐴) B

{∑𝑛
𝑘=1 𝜆𝑘 𝑓𝑘 : 𝜆𝑘 > 0 ∧ 𝑓𝑘 ∈ 𝐴 ∧ 𝑛 ∈ ℕ

}
the positive hull operator. Then the natural extension

E(𝐴) of 𝐴 is found (or in [4] defined) as a positive hull E(𝐴) = posi(𝐴 ∪ (ℝX
≥0 \ 0)) and exists if this doesn’t contain 0. A

common way of decision-making and the one that I will use here is checking if a given gamble is in the natural extension.
We look at the case where 𝐴 is finite. The most direct approach to do this is checking whether a given gamble is greater

than or equal to a positive linear combination of a finite number of gambles and is a linear feasibility problem that can be
solved by linear programming [3]. Let A be the matrix composed by the concatenation of the gambles of 𝐴 as column
vectors, 𝜆 be an unknown vector with |𝐴| components and 𝑔 a gamble for which we want to check if it is in the natural
extension. Then we need to check whether the following program has a solution: find 𝜆 subject to A𝜆 ≤ 𝑔, 𝜆 ≥ 1. A
less direct approach that works for low dimensions 𝑑 = |X| is to compute the credal set, which amounts to finding the dual
polytope, and check whether lower expectation is non-negative. This approach becomes more computationally expensive
for higher dimensions as the number of extreme probability mass functions given 𝑘 desirable gambles can be as many as(
𝑘 − ⌈𝑑/2⌉
⌊𝑑/2⌋

)
+
(
𝑘 − ⌈𝑑/2⌉ − 1
⌊𝑑/2⌋ − 1

)
, which grows exponentially in 𝑑. Computer evidence with random polytopes suggests that for

high dimension one attains this bound with high probability [2, p. 394-395].
So suppose we use the direct approach and have to check for multiple gambles if they are in the natural extension. Then it

can be advantageous to remove redundant gambles from 𝐴 and find another smaller gamble set 𝐴′ such that E(𝐴′) = E(𝐴).
This problem is essentially finding the extreme rays of E(𝐴), for which algorithms are usually grouped with the convex hull
problem. Here the same division of approaches can be made. Some approaches, e.g. Qhull, use the dual polytope but have
problems in high dimensions because of the high number of facets [1]. Therefore many libraries, such as CDDlib and
Polyhedra.jl simply check for every 𝑎 ∈ 𝐴 if 𝑎 ∈ E(𝐴 \ {𝑎}) which amounts to |𝐴| linear programs.

For consistent sets of desirable gambles, i.e. for which 0 ∉ E(𝐴), I have found that we can improve this method by
first using linear programming to find a hyperplane that intersects all rays of set of desirable gambles. Such hyperplane
can be found as all gambles 𝑔 for which the inner product 𝜆𝑇𝑔 = 1, where 𝜆 is the solution to the linear program
find 𝜆 subject to A𝑇𝜆 ≥ 1, 𝜆 ≥ 1. Then on this hyperplane we can remove one of the coordinates and find the

convex hull by |𝐴| linear programs on this lower-dimensional space to find the extreme rays. The last coordinate can easily
be retrieved using the defining relation of the hyperplane 𝜆𝑇𝑔 = 1. The price that we have to pay is that we have to add one
equality constraint for the convex hull: that the the sum of the coefficients equals one. In computer experiments I have found
that in practice this approach speeds up the calculations for high dimensions.
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