
Analytical Traffic Model of 6TiSCH using Real-Time

In-Band Telemetry

Dries Van Leemput, Jeroen Hoebeke, Eli De Poorter

IDLab, Department of Information Technology, Ghent University - imec,
Technologiepark-Zwijnaarde 126, 9000 Ghent, Belgium e-mail:

firstname.lastname@ugent.be.

Preprint submitted to Elsevier Internet of Things - DOI: https://doi.org/10.1016/j.iot.2023.100847

Analytical Traffic Model of 6TiSCH using Real-Time

In-Band Telemetry

Dries Van Leemput, Jeroen Hoebeke, Eli De Poorter

IDLab, Department of Information Technology, Ghent University - imec,
Technologiepark-Zwijnaarde 126, 9000 Ghent, Belgium e-mail:

firstname.lastname@ugent.be.

Abstract

In industrial environments, the IETF 6TiSCH stack is a protocol stack
consisting of standardized layers (IEEE 802.15.4, TSCH, 6LoWPAN, RPL,
CoAP) that enable reliable wireless communications. To efficiently manage
the network, gathering insights is critical. This allows for detecting traf-
fic bottlenecks, predicting energy consumption, checking duty cycle limits,
adjusting network topology, and identifying interference. As such, detailed
knowledge of the traffic quantity can be used to create a digital twin of
the network to help prevent node or network failures by re-configuring net-
work parameters. To that end, this paper presents an analytical model to
calculate the transmitted and received bytes for every node in a 6TiSCH net-
work, considering the complete 6TiSCH network stack. Real-time in-band
network telemetry is used to limit monitoring overhead by piggybacking in-
formation onto transmitted data packets. Simulations demonstrate that our
model provides accurate predictions with a median of 95 to 99% under var-
ious circumstances, such as topology changes and packet loss. The model
can enhance network robustness and can be extended to predict the energy
consumption of 6TiSCH devices easily.

Keywords: IETF 6TiSCH, Traffic Prediction, In-Band Network Telemetry,
TSCH, RPL, 6LoWPAN, CoAP.

1. Introduction

Industry 4.0 aims to improve industrial applications and optimize pro-
cesses by introducing a higher degree of digitalization, which enables new

Preprint submitted to Elsevier Internet of Things - DOI: https://doi.org/10.1016/j.iot.2023.100847

IETF CoAP

UDP

IPv6

IETF 6LoWPAN

IEEE 802.15.4e TSCH

IEEE 802.15.4 PHY

IETF RPL

IETF 6top

ICMPv6

Figure 1: The 6TiSCH network stack consists of multiple protocol layers: the IEEE
802.15.4 PHY and MAC layer, the IETF 6top and 6LoWPAN adaptation layers, IPv6
and ICMPv6, the IETF Routing Protocol for Low-power and lossy networks (RPL), UDP,
and the Constrained Application Protocol (CoAP).

insights and technologies such as machine learning, artificial intelligence,
digital twins, etc. The Industrial Internet of Things (IIoT) is integral to
achieving these goals as it allows continuous measurement from numerous
wireless sensors. However, Wireless Sensor Networks (WSNs) must be scal-
able, reliable, low latency, and energy-efficient, despite having constraints like
limited memory, processing power, and battery life. Additionally, harsh in-
dustrial environments typically experience signal reflections, multi-path prop-
agation, and fading. To address these challenges, the Internet Engineering
Task Force (IETF) IPv6 over the TSCH mode of IEEE 802.15.4e (6TiSCH)
working group has proposed the 6TiSCH protocol stack (Fig. 1). This pro-
tocol stack consists of multiple standardized protocol layers that provide re-
liable and deterministic behavior, making it possible to integrate constrained
devices into Internet Protocol version 6 (IPv6) networks.

In realistic multi-hop scenarios, packet loss, traffic congestion, and bat-
tery depletion can occur frequently, making it crucial for network managers
to have current topology and network traffic information to make informed
decisions regarding network (re)configuration. Ideally, this allows a cen-
tral manager to detect and resolve imminent network congestion, breaches in
duty-cycle regulations, battery depletion, etc. before occurring. To that end,
existing solutions aim to predict how often sensor devices generate data [1].
However, the 6TiSCH network stack itself also introduces a non-negligible
amount of traffic due to control messages, packet headers, multi-hop routing,
etc. Therefore, we present an analytical model to predict 6TiSCH network

3

traffic that considers the complete network stack.
Due to the constraints of the network nodes, the calculations should be

performed at a central network manager, which requires topology and timing
information to be available. To obtain this information, all intermediary
nodes insert network telemetry in existing frames, which introduces very
limited overhead and provides real-time telemetry to the central manager.
This also ensures that the model is able to react to changes in network
topology, such as nodes joining or leaving the network. In summary, the
main contributions of this work are:

• We present, to the best of our knowledge, the first analytical model of
a full 6TiSCH network, while considering all protocols of the 6TiSCH
network stack (TSCH, RPL, 6LoWPAN, and CoAP).

• In contrast to existing theoretical models, we also propose a method
to efficiently collect the necessary network information and make it
available to a central manager that can solve the analytical model in
real-time without prior network information.

• We extend an existing In-band Network Telemetry solution (used for
efficiently collecting network data from WSNs) to also enable data col-
lection when using the storing mode of RPL.

• We analyse the overhead for collecting telemetry data to achieve dif-
ferent accuracy levels for conditions with and without packet loss.

• Finally, we provide open-source of the model and telemetry approach
[2].

The remainder of this paper is structured as follows. Section 2 de-
scribes the required technical background on 6TiSCH, and Section 3 gives
an overview of related works. Next, Section 4 explains the operation and
different sub-models of the model, and defines certain assumptions. Subse-
quently, Sections 5, 6, and 7 describe the single-hop, multi-hop, and control
traffic overhead sub-models in more detail. Then, Section 8 details the in-
band network telemetry solution and Section 9 evaluates the proposed model
through simulations. Finally, Section 10 concludes the paper.

4

2. Technical Background

The IEEE 802.15.4 standard [3] defines multiple PHYsical layers (PHYs)
and Medium Access Control (MAC) layers targeted at low-rate wireless net-
works with limited battery consumption requirements. Time-Slotted Chan-
nel Hopping (TSCH) combines Time Division Multiplexing (TDM) with Fre-
quency Division Multiplexing (FDM) to provide a MAC suitable for indus-
trial environments due to its high reliability, low duty cycle, and resilience
against frequency selective fading. Time is divided into timeslots, which are
organized into repeating slotframes. A single timeslot allows for the trans-
mission of a frame and an optional ACKnowledgement (ACK), can be ei-
ther dedicated to a single transmitter-receiver pair or can be shared between
multiple devices. Advertisement timeslots are used to transmit Enhanced
Beacons (EBs), which nodes use to synchronize and advertise the network.
A channel offset is assigned to every timeslot, which, combined with the ab-
solute slot number, results in channel hopping to combat frequency selective
fading.

To enable IPv6 communication using low-power networks, the IETF 6TiSCH
working group defined a set of protocols based on the TSCH MAC mode of
IEEE 802.15.4, depicted in Fig. 1. Two adaptation layers were proposed in
between the MAC layer and higher layers: 6Tisch OPeration sublayer (6top)
and IPv6 over Low-Power Personal Area Networks (6LoWPAN). The 6top
adaptation layer executes one or multiple Scheduling Functions (SFs), which
define when to add or remove cells from the TSCH schedule, and terminates
the 6top Protocol (6P) to let nodes communicate removals or additions of
cells. As there is no default SF specified in the IEEE 802.15.4 standard,
the implementation of the SF is entirely up to the developer. Common SFs
include Orchestra [4] and Minimal Scheduling Function (MSF) (RFC9033).
The 6LoWPAN adaptation layer allows the use of IPv6 on top of IEEE
802.15.4 as IPv6 requires packet sizes larger than the Maximum Transmission
Unit (MTU) of IEEE 802.15.4. To that end, 6LoWPAN specifies a compres-
sion format for network headers in addition to the possibility of fragmenting
the frame payload over multiple fragments.

6TiSCH uses the Routing Protocol for Low-power and lossy networks
(RPL) as it is seen as the de-facto routing protocol for WSNs. Nodes in RPL
are organized in a Destination Oriented Directed Acyclic Graph (DODAG)
structure with one node acting as the RPL root. Each node is assigned a rank,
which increases as the node resides further down the DODAG, and is com-

5

puted by an implementation-dependent Objective Function (OF). Two pos-
sible OFs are Objective Function zero (OF0) and Minimum Rank with Hys-
teresis Objective Function (MRHOF), described in RFC6552 and RFC6719,
respectively. RPL defines two Mode of OPerations (MOPs): non-storing
mode and storing mode. In non-storing mode, nodes do not keep a rout-
ing table and all traffic is therefore routed towards the root, which inserts
a routing header to forward the frame to its destination. In contrast, nodes
in storing mode do keep a routing table, which reduces the overall packet
overhead but increases memory consumption on the nodes. In addition to
RPL, IPv6 and Internet Control Message Protocol version 6 (ICMPv6) com-
plete the network layer, which sits below the User Data Protocol (UDP) as
transport layer.

Finally, the Constrained Application Protocol (CoAP) is used as appli-
cation protocol because of its features for constrained networks and since it
enables low-overhead, secure, RESTful interaction.

3. Related work

This section describes related work focusing on (i) prior existing analytical
models for 6TiSCH and (ii) state-of-the-art solutions for efficiently collecting
network information.

3.1. Analytical 6TiSCH Network Models

Due to its deterministic nature, 6TiSCH is often modelled in literature.
Table 1 lists other 6TiSCH models and indicates which network protocols
are included. As can be seen, most models capture a single protocol, while
only a few works include multiple. In contrast, to the best of our knowledge,
we present the first model covering the complete 6TiSCH network stack,
including TSCH, RPL, 6LoWPAN, and CoAP. As our model is applicable to
a general 6TiSCH network, we do not consider 6top since its use is dependent
on the SF and implementation specific.

Some works focus on the behaviour of the TSCH MAC by modelling the
energy consumption [5–9], reliability [7–11], latency [7–10], network forma-
tion [12], etc. However, none of these works model the overhead introduced
by TSCH, and some focus on shared cells or network formation only. In con-
trast, we model the overhead while considering a network in a steady-state,
and include both shared and dedicated cells.

6

Related works covering RPL also model different characteristics of the
network. The convergence time and network formation process of RPL was
modelled in [13, 14], whereas [15–17] focus on the Trickle Algorithm. Our
model differs from the former works as we do not consider network formation,
but focus on a steady-state network. While [15, 16] do study steady-state
networks, we also incorporate additional control traffic.

In contrast to the works modelling TSCH or RPL, several more recent
works include both protocols in their model. Again, a frequently modelled
characteristic of TSCH-RPL networks is network formation [18–21]. Next to
network formation, the authors in [22] estimate the energy consumption by
modelling the occurrence of different TSCH slot types. 6top is also included
in the model presented in [23].

In terms of 6LoWPAN and CoAP models, the authors in [24] model the
number of bits sent in the presence of route-over forwarding and 6LoWPAN
fragmentation, whereas the congestion in 6LoWPAN is modelled in [25], in-
cluding the number of received packets at the final destination. The authors
in [26] relate the CoAP application packet loss to the network packet loss.
Finally, both 6LoWPAN and CoAP are incorporated in [27], as 6LoWPAN
fragmenting and CoAP block-wise transfer are compared.

Table 1: Comparison of 6TiSCH network models: in contrast to other works, our work
models the complete network stack and incorporate Real-Time Monitoring (RTM) of the
network.

Related TSCH RPL 6top 6LoWPAN CoAP RTM

[5–12] X 5 5 5 5 5

[13–17] 5 X 5 5 5 5

[18–22] X X 5 5 5 5

[23] X X X 5 5 5

[24, 25] 5 5 5 X 5 5

[26] 5 5 5 5 X 5

[27] 5 5 5 X X 5

[28–31] 5 5 5 5 5 X

Our work X X 5 X X X

Next to incorporating the complete 6TiSCH network stack, our modelling
of the individual network protocols in 6TiSCH also differs from the litera-

7

ture models presented above, as prior scientific publications rarely model the
network traffic, but focus instead on modelling energy consumption, network
convergence, collision probability, etc. In addition, these models often rely on
(unrealistic) prior network knowledge such as known topologies, and validate
their work using offline datasets. In contrast, as shown in the right column
of Table 1, we collect network information using non-intrusive network mon-
itoring and validate our model in real-time.

3.2. Network Telemetry in 6TiSCH

This section describes approaches that have been proposed to provide
real-time monitoring in 6TiSCH networks.

The authors of [30] present a light-weight telemetry solution for moni-
toring 6TiSCH [31], based on the Alternate Marking Performance Monitor-
ing (AMPM) concept. While the overhead is close to zero as only a single
bit is used for telemetry collection, only end-to-end and hop-by-hop reliabil-
ity and delay can be monitored, which is insufficient for creating advanced
network models. Lahmadi et al. [28] propose a monitoring framework for
Low-power and Lossy Networks (LLNs) that minimizes overhead while still
being adaptive to topology changes. By exploiting available routing data, the
authors assign poller roles to certain nodes and piggyback monitoring data
and poller assignment information embedded in standard packets. Their al-
gorithm was validated in simulation and a real-life 6LoWPAN deployment.
Gaillard et al. [29] present a mechanism to collect end-to-end delivery ratio
and delay for clients and/or applications in 6TiSCH by piggybacking Infor-
mation Elements (IEs) onto dedicated (additional) control packets. Similarly,
Karaagac et al. [30] present a solution for 6TiSCH monitoring using IEs to
piggyback information through the network. Instead of using dedicated con-
trol packets, the IEs are added to data frames to create a flexible and powerful
in-band network telemetry solution to support a wide range of monitoring
operations and use cases. Due to its flexibility and low communication and
energy consumption overhead, this telemetry solution will form the basis for
real-time telemetry collection in our work. However, the authors only con-
sider the non-storing mode of RPL. In contrast, in this paper, we extend
their solution to also include storing mode and use DAO packets instead
of data packets. As such, our solution is capable of piggybacking network
information on control traffic that needs to be transmitted anyway.

8

4. Overview of Analytical Model and Assumptions

The goal of our analytical model is to predict the number of transmitted
and received bytes by every node in a 6TiSCH network. Fig. 2 shows an
overview of the analytical models and the different required components to
implement the prediction model into a real-life 6TiSCH network. To limit
computation and energy consumption overhead on the nodes, the model is
executed on a Computation Unit (CU), connected to the network 6LoWPAN
Border Router (6LBR). Therefore, as mentioned in Section 3, we employ the
In-band Network Telemetry (INT) strategy proposed in [30] to provide net-
work telemetry from the nodes to the 6LBR, which forwards this information
to the CU. The telemetry comprises topology and timing information and is
encapsulated in IEs, added to data frames, to limit overhead. This eliminates
the need for a manual initialization phase because all necessary information
can be obtained through INT. Therefore, the model is applicable to various
network configurations, irrespective of the network topology, and is able to
react to network changes due to the real-time telemetry. Next to telemetry,
the model takes data traffic information (payload, source, destination, and
timestamp) as input and calculates the introduced overhead by the network.
This way, the number of TX and RX bytes can be calculated for every node.

The model is divided in three sub-models, each modelling a different type
of overhead: control traffic overhead, single-hop overhead, and multi-hop
overhead. The control traffic sub-model calculates the number of transmitted
and received control frames for the TSCH, RPL, and ICMPv6 protocols,
using timing and topology information gathered with INT. The single-hop
overhead sub-model calculates the number of additional bytes due to headers
and fragmentation for both data and control traffic. Subsequently, the multi-
hop overhead considers the forwarding of frames in case sender and receiver
are not within one-hop distance, using the available topology information.
Calculating single-hop overhead and multi-hop overhead for both data and
control traffic allows us to calculate the total number of transmitted and
received bytes for every device in the network.

Before delving deeper into the details of the model, we define four as-
sumptions for the 6TiSCH network and the analytical model:

A 1 (Known data traffic). Since our model takes data traffic information
as input, we assume this to be known in advance for each node, i.e., the
payload, destination, and timestamp of every data frame. Predicting data
traffic is out of scope for this paper, as suitable prediction models are available

9

CU

6LBR

client

client

client client
Single-hop
overhead

Multi-hop
overhead

Control traffic

Data traffic

TX/RXTX/RXTX/RXTX/RX

Figure 2: Overview of the analytical model. The Computation Unit (CU) calculates the
number of received and transmitted bytes for every node in the network, using three sub-
models to determine the control traffic, single-hop, and multi-hop overhead. Data traffic is
assumed to be known and the 6LoWPAN Border Router (6LBR) collects network telemetry
from the individual nodes.

in literature. Our model aims to extend these models by calculating the
associated network overhead. Moreover, nodes could use INT to provide
history of their own traffic to the CU, or supply estimations of future traffic
requirements.

A 2 (Limited topology changes). We assume the network has been de-
ployed and converged but do support infrequent topology changes such as
adding, removing, or moving nodes. We do not focus on initial network for-
mation because (i) this is a short period compared to the complete network
lifetime and (ii) this is already covered in previous works [18–21].

A 3 (LoWPAN-bound asymmetric traffic). All data traffic is assumed
to be bound within a single Low-power Wireless Personal Area Network
(LoWPAN), where the bulk of the information flows from a source to a
destination (asymmetric traffic). The source can either be a client pushing
data to a server, or a server publishing data to a client.

A 4 (Unique DODAG). We assume a network with one unique DODAG,
where the single 6LBR operates as RPL root and TSCH coordinator.

The following sections discuss each sub-model in more detail, starting
with single-hop overhead in Section 5, multi-hop overhead in Section 6, and
control traffic overhead in Section 7.

10

5. Single-Hop Overhead

The single-hop overhead sub-model takes CoAP payload as input and
calculates all transmitted bytes by the source and destination. We distin-
guish three types of single-hop overhead in a 6TiSCH network: fixed net-
work headers inherent to the 6TiSCH frame format, CoAP block transfer,
and 6LoWPAN fragmenting. We start with examining the standard 6TiSCH
packet format, including all possible headers, before deriving a model for
both CoAP block transfer, and 6LoWPAN fragmenting.

5.1. 6TiSCH Frame Format

Fig. 3 depicts the frame format for a standard 6TiSCH data frame, split
into an IEEE 802.15.4 frame (top), a 6LoWPAN frame (middle) and a CoAP
frame (bottom right). The IEEE 802.15.4 frame format includes both PHY
and MAC headers. The PHY Service Data Unit (PSDU) is preceded by
a Synchronization HeadeR (SHR) and PHY HeadeR (PHR), of which the
length is variable and depends on the chosen PHY. The PSDU comprises
the MAC Service Data Unit (MSDU), multiple MAC headers and a MAC
footer. The size of these headers is configurable and defined in the Frame
Control field. The standard specification defines multiple addressing modes,
for intra-Personal Area Network (PAN) and inter-PAN communication with
either short (2 B) or extended (8 B) addresses. Due to A 3, we only consider
intra-PAN communication, which results in the source PAN ID being elided.
For security concerns, an optional Auxiliary Security Header (ASH) may be
included to specify the security configuration of the frame. IEEE 802.15.4
enables the use of IEs to transport information between nodes, of which the
authors in [32] list the IEs applicable to 6TiSCH. Usually, IEs are used
exclusively by 6TiSCH control plane frames, but since INT also employs IEs,
they can also be present in data frames. Because the size of the headers
is configurable, we assume this configuration to be known by the CU for
every frame type. However, the Addressing Fields and IEs are still variable
depending on the frame type, e.g., the source address field in EBs is elided,
while it is carried inline for data frames. Therefore, a fixed SHR and PHR
can be assumed, but the MAC header size depends on the frame type.

The MAC payload of an IEEE 802.15.4 frame equals a 6LoWPAN frame,
which includes various 6LoWPAN compressed headers and a 6LoWPAN
payload. The 6LoWPAN adaptation layer framework (RFC6282) defines
LoWPAN IP Header Compression (IPHC) for compressing IPv6 headers, and

11

LoWPAN Next Header Compression (NHC) for compressing UDP headers
and IPv6 Extension Headers. LoWPAN IPHC relies on information per-
taining to the entire 6LoWPAN to compress the IPv6 header down to 2 or
3 B. The potential in-line fields directly follow the IPHC and comprise a Hop
Limit, a Traffic Class & Flow Label, and a short or extended IPv6 source and
destination address. The compressed IPv6 header is followed by a LoWPAN
NHC compressed UDP header. A NHC byte indicates the size and presence
of potential in-line fields, including a source and destination UDP port num-
ber and an UDP checksum. The 6LoWPAN adaptation layer format was
also extended by a compression format for RPL headers in RFC8183, called
6LoWPAN Routing Header (6LoRH). It provides a compressed form for the
IPv6 RPL Option for Carrying RPL Information in Data-Plane Datagrams
(RFC6553) and IPv6 Header for Source Routes (RFC6554). A 6LoRH is
expressed as a Type-Length-Value (TLV) field, made up of a Dispatch Value
bit pattern, a 6LoRH Type field and a variable length Value field. The RPL
Packet Information (RPI)-6LoRH replaces RFC6553 and must be present
in every RPL frame. It contains a Sender Rank and an optional RPL In-
stance ID in case multiple RPL instances are defined. The Source Routing
Header (SRH)-6LoRH is a compressed form of the SRH3 defined in RFC6554
and is an optional header that holds the addresses of the remaining hops in
the path towards the destination. The SRH-6LoRH is only used in RPL
non-storing mode.

The bottom right of Fig. 3 depicts the CoAP frame format, which equals
the 6LoWPAN payload. Each CoAP frame comprises a 4 B header including
Version, Type, Token Length, Code and Message ID. The header is followed
by the Token field and potentially by several CoAP options using a TLV
format. Finally, the CoAP payload is separated from the headers by a 1 B
Payload Marker. CoAP defines four message types, indicated by the Type
field: Confirmable, Non-confirmable, Acknowledgement, and Reset. A Con-
firmable message requires an Acknowledgement from the receiver or a Reset if
it is unable to process the Confirmable message. A Non-confirmable message
does not require an Acknowledgement, but the receiver may send a Reset.

5.2. 6LoWPAN Fragmenting

IEEE 802.15.4 defines a MTU for the PSDU, which is either 127 B or
2047 B depending on the chosen PHY. In case of a 127 B MTU, the 6LoWPAN
adaptation layer describes the possibility to divide the payload over multiple
fragments if the payload does not fit into a single frame. The bottom left of

12

Preamble
Sequence

SFD Frame
Length/

Reserved

Bytes: 0/128 0/4 0/4

Frame
Control

Seq.
Num.

Dst.
PAN
ID

Dst.
Addr.

Src.
PAN
ID

Src.
Addr.

Addressing Fields

Auxiliary
Security
Header Header IEs

Payload IEs

Information Elements MAC
Payload

Src.
Addr.

FCS

2 0/1 0/2 0/2/8 0/2 0/2/8 Var. Var. Var. 2/4

Dispatch
&

 IPHC

Hop
Limit

IPv6
Src.
Addr.

IPv6
Dst.
Addr.

2/3 0/1 0/2/8 0/2/8

NHC Src.
Port

Dst.
Port

UDP
Checksum

1 0/20.5/1/2 0.5/1/2

Dispatch
Value Bit
Pattern

1

6LoRH
Type

1

RPL
Instance

ID

0/1

Sender
Rank

1/2

Dispatch
Value Bit
Pattern

Bytes: 1

6LoRH
Type

1

Hop1

1/2/4/8/16

HopN

1/2/4/8/16

...

SRH-6LoRH (optional) RPI-6LoRH 6LoWPAN IPHC 6LoWPAN NHC

6LoWPAN
Payload

Var.

Version
Type

Token Length

Bytes: 1

Code

1

Message
ID

2

Token

0-8

Option
Delta

Option
Length

1

Option
Delta
Ext.

Option
Length

Ext.

0/1/2 0/1/2

Option
Value

Var.

Options

Payload
Marker

1

CoAP
Payload

Var.

PSDUIE
EE

 8
0

2
.1

5
.4

6
Lo

W
P

A
N

C
oA

P

SHR PHR
MSDU

Frag. Type
&

Datagram Size

Datagram
Tag

Datagram
Offset

6LoWPAN
Headers

Fragment
Payload

Bytes: 2 2 0/1 0/Var. Var.

6
Lo

W
P

A
N

fr
ag

m
en

t

6LoWPAN fragmentation

TC &
FL

0-4

Figure 3: 6TiSCH frame format, comprising of the IEEE 802.15.4 PHY and MAC header
(top), 6LoWPAN fixed and optional headers (middle), an optional 6LoWPAN fragmenting
header (bottom left), and a CoAP header (bottom right).

Fig. 3 shows the format of a 6LoWPAN fragment and must be seen as ei-
ther an extension or replacement of the 6LoWPAN frame, as the 6LoWPAN
headers are only included in the first fragment but elided in all subsequent
fragments. In addition, the Datagram Offset field is elided in the first frag-
ment, resulting in a fragmentation header size of 4 B for the first fragment
and 5 B for subsequent fragments. Therefore, next to the 6LoWPAN header,
there is only a one-byte difference between the initial and subsequent frag-
ments. Since the Datagram Offset is only able to express multiples of 8 B,
all fragments except for the last one must be multiples of 8 B in length.

Knowing this, we are able to derive an equation that calculates the num-
ber of fragments and total size of those fragments, given a 6LoWPAN payload
size. Eq. (1) calculates the available payload in every fragment, where Sfpl1

represents the available fragment payload in the first fragment, SfplX the
available fragment payload in subsequent fragments, Sfhdr1 the first frag-
ment header size, SfhdrX the subsequent fragments header size, S6mtu the
PSDU MTU, S6hdr the size of 6LoWPAN headers, and Smhdr the size of
MAC headers and footers. Since the Datagram Offset only allows multiples
of 8 B, the fragment payload size is rounded to 8.

Sfpl1 = bS6mtu − Sfhdr1 − S6hdr − Smhdrc8
SfplX = bS6mtu − SfhdrX − Smhdrc8

(1)

Using (1), (2) calculates the total number of fragments Nf , given a 6LoWPAN
payload size S6pl. If S6pl fits within S6mtu, the frame can be sent without
fragmentation. Else, the number of fragments is dependent on the available

13

fragment payload for the first (Sfpl1) and subsequent (SfplX) fragments.

Nf(S6pl) =

1,
S6pl + S6hdr+

Smhdr ≤ S6mtu

1 +
⌈
S6pl−Sfpl1

SfplX

⌉
, else

(2)

The total size of a frame Sf with a 6LoWPAN payload size S6pl is calculated
in (3). As 6LoWPAN fragmenting is considered by taking (2) into account,
(3) is valid for fragmented and unfragmented frames. The PHY header’s
Sphdr and MAC header’s and footer’s size Smhdr are included in every frame
or fragment, the 6LoWPAN header’s S6hdr size in every frame or in the first
fragment, Sfhdr1 in the first fragment, and SfhdrX in all fragments but the
first.

Sf(S6pl) = S6pl + (Smhdr + Sphdr) ∗Nf(S6pl)

+ S6hdr + Sfhdr1 ∗min(Nf(S6pl)− 1, 1)

+ SfhdrX ∗ (Nf(S6pl)− 1)

(3)

5.3. CoAP Block-Wise Transfer

In case large payloads have to be transmitted, CoAP Block-Wise Trans-
fer (RFC7959) offers the possibility of transmitting multiple blocks of in-
formation using multiple request-response pairs. To specify the block-wise
transfer characteristics, two CoAP options can be included in the CoAP
header: Block1 Option to describe the request payload block-wise transfer
and Block2 Option to describe the response payload block-wise transfer. The
options can be used in two ways: in descriptive usage, where Block1 is used
in a request and Block2 in a response, or in control usage, where Block2 is
used in a request (to describe the response block-wise transfer) and Block1
in a response (describing the request block-wise transfer). For this paper,
we assume descriptive and control usage, resulting in a CoAP block option
in both requests and responses. Although RFC7959 specifies that both mes-
sages can be transmitted with CoAP block-wise transfer (using Block 1 and
Block 2 at the same time), this is out of scope for this paper. This is in line
with A 3, where we assumed the bulk of the information flows from a source
to a destination.

The number of CoAP blocks Nb, given a CoAP payload Scpl and block
size Scbs,is calculated in (4), where we assume the source and destination

14

agree on the block size.

Nb(Scpl) =

{
1, Scpl ≤ Scbs⌈
Scpl

Scbs

⌉
, Scpl > Scbs

(4)

The 6LoWPAN payload size of a single CoAP (block) message is calculated
in (5), where Schdr represents the size of the CoAP header (including options
and payload marker), Scopt the size of a CoAP block option1, and Sbpl the
payload of the CoAP block message. If block-wise transfer is not needed, the
CoAP block options are excluded and Sbpl equals Scpl.

S6pl(Sbpl, Scpl) = Schdr + Sbpl

+ min(Nb(Scpl)− 1, 1) ∗ Scopt

(5)

We are now able to calculate Ss, the total number of bytes transmitted by
the source in (6). Note that Scspl represents the CoAP payload, transmitted
by the source. Since this payload may differ from an optional destination
payload Scdpl, we distinguish between Scspl and Scdpl in the following equa-
tions. As CoAP block-wise transfer is taken into account by using (4) and
(5), (6) is valid for both single CoAP messages and multiple CoAP blocks. If
block-wise transfer is needed, all blocks have a payload of Scbs (first term in
(6)) except for the last block, which contains the remaining payload (second
term in (6)). Otherwise, the CoAP message has a payload of Scspl. Note
that by using (3), we also account for 6LoWPAN fragmenting. In general,
by correctly choosing the value of Scbs, 6LoWPAN fragmenting should not
be necessary. However, since an optional and variable SRH-6LoRH header
might be included in the frame (Section 6), or due to a poorly chosen Scbs,
CoAP block-wise transfer and 6LoWPAN fragmenting might be needed for
the same frame.

Ss(Scspl) = Sf(S6pl(Scbs, Scspl)) ∗ (Nb(Scspl)− 1)

+ Sf(S6pl(Scspl − (Nb(Scspl)− 1) ∗ Scbs, Scspl))
(6)

The total number of bytes transmitted by the destination Sd, given a source
CoAP payload Scspl and destination payload Scdpl, is calculated in (7). The

1The size of the block option depends on the block number, resulting in a variable
Scopt. However, for simplicity, this is assumed implicitly.

15

destination transmits as many CoAP messages as the source transmits CoAP
blocks and includes a CoAP block option when needing CoAP block-wise
transfer. By using (3), 6LoWPAN fragmenting is also accounted for. For
non-confirmable CoAP, the destination has no payload to send, resulting in
Scdpl being zero. Nonetheless, the destination still transmits CoAP ACKs
because of the CoAP block option’s control usage.

Sd(Scspl, Scdpl) = Nb(Scspl) ∗ Sf(S6pl(Scdpl, Scspl)) (7)

6. Multi-Hop Overhead

In multi-hop RPL networks, frames may need to be forwarded along mul-
tiple hops to reach their destination. As a consequence, this introduces over-
head for all intermediate nodes along the path from source to destination.
This multi-hop overhead sub-model takes the unidirectional or bidirectional
CoAP payload by the source and destination into account, and calculates the
number of transmitted and received bytes for every node along the path from
source to destination. Depending on the RPL MOP, the RPL root must be
included in the path (non-storing mode) or may be excluded (storing mode),
as explained in section 2. To cover all possible scenarios, we assume a Multi-
Point to Multi-Point (MP2MP) scenario, where each node is able to reach
all other nodes. Fig. 4 shows the trajectory of a CoAP GET-ACK pair
along an example three-hop path, including the associated layer-2 Enhanced
ACKnowledgements (EACKs)s for each frame. Note that other confirmable
CoAP traffic is also possible using the same equations, as is non-confirmable
traffic by setting the destination payload Sdcpl to zero, but we assume a con-
firmable CoAP GET-ACK pair in the remainder of this section. As RPL
storing mode produces the most general path, we will first consider storing
mode, before calculating the overhead in case of non-storing mode. Finally,
we take packet loss and associated re-transmissions into account by using the
Expected Transmission count (ETX) link metric, used in RPL OFs.

6.1. RPL Storing Mode

Based on Fig. 4, (8) calculates the total number of bytes transmitted
by node i (STX,i) as a result of a CoAP GET with payload Scdpl from the
destination towards the source and a CoAP ACK with payload Scspl from
the source towards the destination. The number of hops between the source
and destination is represented by h, Scg,i represents the number of bytes due

16

CoAP GET

CoAP GET

CoAP GET

EACK (GET)

EACK (GET)

EACK (GET)

CoAP ACK

CoAP ACK

CoAP ACK
EACK (ACK)

EACK (ACK)

EACK (ACK)

dest
0

node
1

node
2

source
3

Figure 4: Example multi-hop path of a CoAP GET-ACK pair, including layer-2 EACKs
for each frame.

to the forwarding of the CoAP GET message, Seg,i the bytes associated with
the EACKs to this message, Sca,i the number of bytes due to the forwarding
of the CoAP ACK message, and Sea,i the bytes associated with the EACKs
to the CoAP ACK.

STX,i =

Scg,i + Sea,i, i = 0

Scg,i + Sea,i + Sca,i + Seg,i, 0 < i < h

Sca,i + Sea,i, i = h

(8)

Likewise, the total number of received bytes SRX,i by node i are given in (9).

SRX,i =

Sca,i+1 + Seg,i+1, i = 0

Scg,i−1 + Sea,i−1 + Sca,i+1 + Seg,i+1, 0 < i < h

Sca,i−1 + Sea,i−1, i = h

(9)

Before calculating the different terms of (8) and (9), we should take an-
other effect into account that is caused by multi-hop routing: the size of
the 6LoWPAN headers is variable depending on the position of the frame
along the path. For RPL storing mode, the variable fields are present in the
6LoWPAN IPHC header, namely Hop Limit, IPv6 Source, and Destination
address. Eq. (10) calculates the total 6LoWPAN header for RPL storing
mode (S6hdr,s), where Snhc is the 6LoWPAN NHC size, Srpi the RPI-6LoRH
size, Siphc the size of the 6LoWPAN Dispatch and IPHC field, S6hl the size of
the Hop Limit, S6sa the size of the IPv6 source address, and S6da the size of
the IPv6 destination address. In the first hop, only the IPv6 destination ad-
dress is included as the IPv6 source address can be obtained from the IEEE

17

802.15.4 addressing fields. Likewise, the IPv6 destination address is elided
in the final hop. Additionally, the IPv6 hop limit is elided in the first hop.

S6hdr,s(i, h) = Snhc + Srpi + Siphc

+

S6da, i = 0

S6hl + S6sa + S6da, 0 < i < h− 1

S6hl + S6sa, i = h− 1

(10)

By replacing S6hdr in (1)-(3) by (10), eqs. (2), (3), (6), and (7) also become
dependent on i and h. This allows us to calculate Scg,i in (11) by using (7)
and Sca,i in (12) by using (6). Since the CoAP ACK message travels in the
opposite direction of the CoAP GET message, h− i is used instead of i.

Scg,i = Sd(Scspl, Scdpl, i, h) (11)

Sca,i = Ss(Scspl, h− i, h) (12)

To calculate the number of bytes due to EACKs, we first calculate the number
of EACKs by multiplying the number of fragments with the number of CoAP
blocks for each frame. Eqs. (13) and (14) calculate the number of EACKs
related to Seg,i and Sea,i respectively and follow a similar approach as (6)
and (7). However, instead of using (3) to calculate the size of a 6LoWPAN
frame, (2) is used to calculate the total number of fragments, where i and h
are also taken into account.

Neg,i = Nb(Sscpl) ∗Nf(S6pl(Scdpl, Scspl), i, h) (13)

Nea,i = Nf(S6pl(Scbs, Scspl), h− i, h) ∗ (Nb(Scspl)− 1)

+ Nf(S6pl(Scspl − (Nb(Scspl)− 1) ∗ Scbs, Scspl), h− i, h)
(14)

To calculate Seg,i and Sea,i, it suffices to multiply (13) and (14) with the
length of an EACK frame Seack, of which the format is described in Section
7.

6.2. RPL non-storing mode

The above equations are also valid for RPL non-storing mode, except for
the addition of a SRH-6LoRH as soon as the frame passes the RPL root.
The size of this SRH-6LoRH Ssrh is calculated in (15), where S6srha is the
size of an IPv6 address inside a SRH-6LoRH (defined by the 6LoRH Type

18

field), and 2 is the size of the Dispatch Value Bit Pattern and 6LoRH Type
fields. Note that the number of IPv6 addresses is the remaining number of
hops h− i minus one, as the IPv6 address of the final hop is already present
as the IPv6 destination address field in the 6LoWPAN IPHC header.

S6srh(i, h) = 2 + (h− i− 1) ∗ S6srha (15)

This allows us to calculate the total 6LoWPAN header size in case of RPL
non-storing mode (S6hdr,ns) in (16), where r represents the index of the RPL
root along the path. S6srh is only included in all after the root, except for
the last.

S6hdr,ns(i, h, r) = S6hdr,s(i, h) +

{
S6srh(i, h), r ≤ i < h− 1

0, else
(16)

Using (16) instead of (10) in (11)-(14) enables us to calculate the total num-
ber of transmitted and received bytes by node i in case of non-storing mode,
where these equations now also depend on the position of the root along the
path r.

6.3. Packet Loss and Re-Transmissions

As packet loss is inherent to LLNs, our model takes the associated re-
transmissions into account by using the ETX link metric, used in RPL OFs.
While other link metrics can be used in OFs, we assume this link metric is
available at each node for its preferred parent. The ETX metric is defined in
RFC 6551 and provides a discrete value representing the number of expected
transmissions of a node to a destination, which is its preferred parent in this
case. As the ETX is available locally on every node, it requires to be collected
by the CU using INT. However, as only the ETX to a preferred parent of a
node is available, we make the assumption each link is symmetric. That way,
the same ETX can be used as link metric from preferred parent to the child.
If the ETX is included in the model, Scg,i and Sca,i in (8) must be replaced by
(17) and (18), where ETX(i, i+ 1) represent the ETX metric from node i to
node i+ 1. As such, the packet is estimated to be transmitted ETX(i, i+ 1)
times, after which the receiver correctly receives it and transmits an EACK.
Therefore, (9) and the number of EACKs do not require any modifications.

S ′cg,i = Scg,i ∗ ETX(i, i + 1) (17)

19

S ′ca,i = Sca,i ∗ ETX(i− 1, i) (18)

While the above equations only take single-hop re-transmissions into account,
it may occur that the number of required re-transmissions exceeds the max-
imum number of allowed MAC re-transmissions, after which the packet is
dropped and higher layers are notified and a multi-hop re-transmission is
required. In that case, the accuracy of the model will drop momentarily.
However, we chose to not include multi-hop re-transmissions for two reasons.
First, if the model wrongfully assumes a multi-hop re-transmissions is re-
quired, this will cause an equal drop in the accuracy. Second, if the packet
is dropped by the MAC layer, this will probably result in a topology change
anyway, after which the accuracy of the model will inevitably drop. However,
including multi-hop re-transmissions would only require a minor change to
the model, by including the number of allowed MAC re-transmissions.

7. Control Traffic Overhead

This section describes the control traffic overhead sub-model, modelling
the TSCH, RPL, and ICMPv6 control frames. The sub-model takes a time
interval, during which the number of transmitted and received control frame
bytes need to be estimated, as input. In addition, several timing offsets are
needed as input, which are gathered in real-time by the CU using the INT,
described in Section 8.

7.1. TSCH Control Traffic: EACK and EB

We consider two types of TSCH control messages: EACKs and EBs. For
valid frames that are not broadcast, a receiver will reply with an EACK
indicating successful reception of the frame. As opposed to a regular ACK,
EACKs can carry data and can be secured. Additional content, encapsulated
in IEs, can be included in the EACK, such as timing correction in the Timing
Correction IE. The frame format of an EACK is identical to the IEEE
802.15.4 frame format depicted in the top of Fig 3. PAN ID compression,
Sequence Number compression and Security fields are set to the same value
as the corresponding fields of the acknowledged frame.

Nodes use EBs to enable other nodes to join the network and send peri-
odic updates of TSCH parameters, such as scheduling and synchronization
information. Once connected to the network, each node generates an EB
with a time period Teb and sends this EB during the next advertisement

20

slot, dedicated for EB transmission. The EB frame format is identical to
the IEEE 802.15.4 frame depicted on the top of Fig. 3. EBs must include
the address of the transmitting device in the Source Address field and may
use IEs to inform receiving nodes with the required information. Although
a period at which EBs are generated (Teb) needs to be defined by the proto-
col, the actual period in between EB transmissions may vary depending on
the TSCH schedule. After all, EBs can only be transmitted during TSCH
advertisement slots. Therefore, the number of EB transmissions that occur
within a certain time interval Ti depends on the relative positioning of Ti

to the advertisement slots and EB generation times. This is illustrated in
Fig. 5, where each node is assigned a single advertisement slot per slotframe
with duration Tsf . Idle advertisement slots are highlighted in green, active
advertisement slots in red, and EB generation times by red arrows. In this
simple example, although two EBs are generated during Ti, only a single EB
is transmitted. We calculate the number of transmitted EBs within a time
interval Ti in (19), taking the relative positioning of Ti to the EB generation
times and advertisement slots into account. As illustrated in Fig. 5, To1

and To2 represent the time offsets between the start of Ti and the previous
EB generation and advertisement slot respectively, whereas To1′ and To2′ are
similar time offsets between the end of Ti and the last EB generation and ad-
vertisement slot within Ti. The first term in (19) calculates the total number
of generated EBs within Ti, taking the time offset To1 into account. The final
term accounts for the positioning of the advertisement slots at the beginning
and end of Ti: if To2 > To1, and extra EB transmission occurs, whereas if
To2′ > To1′ , the final generated EB will not be transmitted within Ti resulting
in one less EB transmission. Note that (19) only depends on To1 and To2,
since To1′ and To2′ can be calculated using (20), where T equals Teb for To1

and Tsf for To2. To1 and To2 must be obtained once for each node using INT,
described in Section 8.

Neb(Ti, To1, To2) =

⌊
Ti − (Teb − To1)

Teb

⌋
+

sign(To2 − To1) + sign(To2′ − To1′)

2

(19)

To′ =

⌊
Ti − (T − To)

T

⌋
∗ T − To − Ti (20)

21

Tsf

Teb

Ti

To1

To2 To2'

To1'

Ilde advertisement slot Active advertisement slot

Figure 5: Periodical EB transmission for a defined EB period TEB and a slotframe size
Tsf during a time interval Ti. The number of transmitted EBs (active advertisement
slots) may vary to the number of generated EBs (red arrows) during Ti, depending on the
relative positioning of the advertisement slots and EB generation times to Ti.

While (19) is suited for small intervals, when using large values of Ti, the
time offsets become negligible and (19) can be replaced by (21).

Neb(Ti) =
Ti

Teb

(21)

The total number of transmitted bytes due to EBs can therefore be calculated
in (22), where Seb represents the size of an EB. To calculate the total number
of received bytes due to EBs, it suffices to use (22) for every neighbour the
node listens to, which must be obtained using INT.

STX,eb(Ti, To1, To2) = Neb(Ti, To1, To2) ∗ Seb (22)

7.2. RPL Control Traffic: DIO and DAO

RPL employs five types of control messages: a DODAG Information
Solicitation (DIS) message, DODAG Information Object (DIO) message,
Destination Advertisement Object (DAO) message, DAO ACKnowledge-
ment (DAO-ACK) message, and Consistency Check (CC) message. As we
assume a deployed and converged network (A 2), DIS and CC messages are
not considered in our model because they are used during network forma-
tion. Fig. 6 shows the frame format for a DIO (left), DAO (middle), and
DAO-ACK (right) message. As RPL control messages are ICMPv6 messages,
each message type includes an ICMPv6 header and a message body, com-
prising a message base and a variable number of options. The frame formats
of Fig. 6 must be seen as an addition to the 6LoWPAN frame format de-
picted in the middle of Fig. 3, where the ICMPv6 header is encoded using
NHC. Depending on RPL configuration parameters, multiple options can be

22

NHC

Bytes: 1

ICMPv6 header

Type Code Checksum Sec. RPL
Inst.
ID

Version
Num.

Rank G/0/
MOP/
Prf

DTSN Flags Res. DODAGID

1 1 2 0/Var. 1 1 2 1 1 1 1 16

Options

Var.

ICMPv6 DIO base

RPL
Inst.
ID

DAO
Seq.

Flags Res. DODAGID

1 11 1 16

ICMPv6 DAO base

RPL
Inst.
ID

DAO
Seq.

Flags Status DODAGID

1 11 1 16

ICMPv6 DAO-ACK base

Figure 6: ICMPv6 RPL control messages: DIO (left), DAO (middle), and DAO-ACK
(right). DAOs and DAO ACKs also contain the ICMPv6 header and Options, shown in
the DIO message.

included in the control messages. For more information on these options, the
reader is referred to RFC6550.

In a stable network, nodes use DIOs to maintain the DODAG and up-
ward routes, and distribute configuration parameters and related metrics.
They multicast DIOs to all RPL nodes using a Trickle timer (RFC6206). As
the network is fully converged (A 2), nodes use the maximum interval Imax.
The Trickle algorithm states that nodes choose a random moment within
[Imax/2,Imax] since the start of the interval to generate a DIO message. Be-
cause of this random nature, it is impossible to determine the exact amount
of transmitted DIOs within a certain time interval Ti. However, the number
of transmitted DIOs can be approximated by (23), where Tdio equals 3Imax/4.

Ndio(Ti) =
Ti

Tdio

(23)

The total number of transmitted bytes due to DIOs is calculated in (24),
where Sdio represents the size of a DIO. It must be noted that we did not take
the redundancy constant k into account, which suppresses a DIO transmis-
sion if k DIOs where received during the current Trickle interval. However,
the effect of k has already been modelled in [16]. To calculate the number of
received bytes due to DIOs, (24) must be used for every neigbour the node
listens to, obtained using INT.

Sdio(Ti) = Ndio(Ti) ∗ Sdio (24)

Contrary to DIOs, DAOs are used for downward route discovery and mainte-
nance in both storing and non-storing mode. Every device must only generate
a new DAO before the expiration of the Path Lifetime, of which the duration
is implementation specific. Therefore, the interval in between DAOs might
be random as well, similar to DIOs. Nonetheless, as a DAO generation re-
sults in more transmitted and received bytes than a DIO generation (due
to DAO-ACKs and forwarding), a time offset to the last transmitted DAO

23

can increase the precision of the model, especially for short time intervals.
In non-storing mode, DAOs are unicast to the root to construct SRHs. The
number of DAO transmissions during a time interval Ti in non-storing mode
(Ndao,ns) is therefore given in (25), where To represents the offset to the pre-
vious DAO transmission and the beginning of Ti, and Tdao is equal to the
(average) interval in between DAOs.

Ndao,ns(Ti, To) =

⌊
Ti − (Tdao − To)

Tdao

⌋
(25)

Similar to EBs, including To in (25) is suited for small intervals. If the time
offset to the previously transmitted DAO is not available (e.g. because it is
not included in the telemetry), (25) falls back to (26).

Ndao,ns(Ti) =
Ti

Tdao

(26)

Since DAOs are unicast to the RPL root, all devices along the path towards
the root transmit and receive DAOs and EACKs. To calculate the number
of transmitted and received bytes per node, we make use of (8) and (9),
where Scg,i is replaced by Sd,i, calculated in (27). We use (3) to calculate the
size of the frame and replace S6hdr by (16) to also include routing headers
dependent on i, h, and r. Sdao represents the size of the DAO as depicted in
Fig. 6. Since the frame is destined to the RPL root, the position of the root
along the path is chosen to be h, resulting in no SRH.

Sd,i = Sf (Sdao, i, h, h) (27)

If DAOs need to be confirmed by DAO-ACKs, Sca,i in (8) and (9) is replaced
by Sda,i, given in (28). Instead of using h as the position of the root along
the path, we now use 0 which results in a SRH inclusion. Sdaoa represents
the size of the DAO-ACK. In case DAO-ACKs are disabled, it suffices to
remove Sda.i and the associated EACKs from (8) and (9).

Sda,i = Sf (Sdaoa, i, h, 0) (28)

Contrary to non-storing mode, devices unicast DAOs to their DAO parents
when using storing mode, who will be triggered to send a DAO themselves
if the received DAO contains updated information. Expiration of the Path
Lifetime automatically results in updated DAO information, because the

24

Path Sequence will be increased as a result. However, devices should wait
for a delay of DelayDAO before triggering a DAO in response to an updated
DAO, in order to aggregate information from multiple received DAOs. Each
device can have a different DelayDAO and the correct choice of DelayDAO
can reduce the number of transmitted DAOs. If DelayDAO is non-zero,
the number of DAO transmissions per Path Lifetime, the associated timings,
and the DAO parents per node can be collected using INT. In that case,
the number of transmitted DAOs for storing mode Ndao,s is calculated in
(29), where Ndp indicates the number of DAO parents and D the number
of DAO transmissions per Path Lifetime. Note that all of the D DAOs will
be sent to each of the Ndp DAO parents. To,j represents the offset from the
beginning of Ti to the previous DAO transmission, associated with the jth

DAO transmission per Path Lifetime. If DelayDAO is zero, D equals the
number of DAO parents. If no timing offset(s) is/are collected, (26) should be
used inside the sum operator. Collecting timing offsets is therefore optional
for both DAO and EB estimation, as alternative equations are available.

Ndao,s(Ti) = Ndp ∗
D−1∑
j=0

Ndao,ns(Ti, To,j) (29)

As was the case for non-storing mode, (8) and (9) can be used to calcu-
late the total transmitted and received bytes respectively, for a single DAO
transmission. We again replace Scp,i by Sd,i, which is now given by (30),
where S6hdr in (3) is calculated using (10). Since DAOs in storing mode are
unicast to DAO parents (i.e. single-hop), h is set to 1.

Sd,i = Sf (Sdao, i, 1) (30)

Similar to non-storing mode, Sca,i can be replaced by (31) if DAO-ACKs are
enabled, or omitted if disabled.

Sda,i = Sf (Sdaoa, i, 1) (31)

7.3. ICMPv6 Control Traffic: 6LoWPAN ND

6LoWPAN Neighbour Discovery (ND) (RFC6775) provides an alterna-
tive to classic IPv6 ND for LoWPANs by limiting the use of multicast,
enabling multi-hop distribution of prefix and 6LoWPAN context, and in-
troducing several new ICMPv6 options. Six ICMPv6 messages are defined:

25

Neighbour Solicitation (NS), Neighbor Advertisement (NA), Router Solicita-
tion (RS), Router Advertisement (RA), Duplicate Address Request (DAR)
and Duplicate Address Confirmation (DAC). Messages follow the same
frame format as depicted in Fig. 6, without the DIO, DAO, or DAO-
ACK base, and can include three possible options: Address Registration
Option (ARO), 6LoWPAN Context Option (6CO), and Authoritative Bor-
der Router Option (ABRO). Each 6LoWPAN Node (6LN) (hosts and 6LoW-
PAN Routers (6LRs)) periodically transmits unicast NS messages to each of
its 6LRs, stored in its neighbour cache, for re-registration and Neighbor Un-
reachability Detection (NUD) purposes. The period of transmission is given
by the Registration Lifetime, which is defined in the ARO included in a NS.
In response to the NS, the receiving 6LR responds with a NA message to
the 6LN and updates the corresponding entry of the 6LN in the 6LBR’s Du-
plicate Address Detection (DAD) table, which results in a DAR from 6LR
to 6LBR and a DAC vice versa. The number of NS transmissions within a
time interval Ti for a single Neighbour Cache Entry (NCE) can be calculated
using (25), by replacing Tdao with the registration lifetime Trl. The total
number of transmitted and received bytes due to NS, NA, DAR, and DAC
are calculated using (8) and (9) as all these messages are unicast. Depend-
ing on the type of message, source, destination, and RPL MOP, the correct
values of Scg,i, Sac,i, Seg,i, and Sea,i need to be calculated, similar to RPL
control traffic. These calculations need to be performed for every entry in
the neighbour cache, which is collected for every node using INT.

In a route-over topology, RAs are multicast by 6LBRs and 6LRs to other
6LRs, comprising an ABRO, 6CO, and Prefix Information Object (PIO).
The RAs should be transmitted with a period sufficiently smaller than ABRO
Valid Lifetime such that missing an RA does not result in removing all 6LBR
information. RFC6775 specifies substitutable features, which may be substi-
tuted by a routing protocol, such as RPL. One of those features is the multi-
hop distribution of prefix and 6LoWPAN header compression, comprised in
the ABRO and 6CO. As DIOs provide this functionality, we assume the RA
functionality is taken care of by DIOs.

8. In-band Network Telemetry

As discussed in Section 4, the CU is in need of real-time telemetry from
each node to provide an accurate estimation of future network traffic. The
implementation of INT in [30] only allows for telemetry distribution to the

26

Table 2: Required (top) and optional (bottom) telemetry per RPL Mode Of Operation
(MOP).

Telemetry Non-storing MOP Storing MOP Size

Neighbours X X N B

Preferred parent 5 X 1 B

Routing table 5 X 2R B

Time source X X 1 B

DAO parents 5 X D B

ETX X X 2 B

TX ASN X X 2 B

EB ASN X X 4 B

DAO ASN X 5 3 B

6LBR in non-storing mode of RPL, because telemetry is added to frames
which eventually pass the 6LBR (RPL root) due to the nature of non-storing
mode. In storing mode, however, frames do not always pass the 6LBR. We
therefore extend the solution in [30] to storing mode by making use of INT
in DAOs. Although DAOs are not unicasted to the root, the reception of a
DAO by a DAO parent triggers the transmission of a new DAO to its own
DAO parent, until a DAO reaches the root. Therefore, two adaptations are
needed: (i) nodes are only allowed to insert telemetry in DAOs, and (ii)
the telemetry in received DAOs needs to be copied to transmitted DAOs.
Inserting telemetry in DAOs has an additional advantage when used in our
model: DAOs are generated periodically in a stable network but are also
triggered upon a topology change, which allows the model to quickly adapt
to a topology change while limiting the telemetry overhead during stable
periods. As such, an adaptive INT update interval is achieved.

Since the CU is connected to the 6LBR, some essential information might
already be present, depending on the MOP. Additionally, some telemetry
is required for correct execution of the model, whereas some telemetry is
optional to increase the accuracy of the model. Table 2 lists the required (top)
and optional (bottom) telemetry for each MOP, including the telemetry size,
where N , R, and D represent the number of neighbours, routes, and DAO
parents respectively. Each node is assigned a 1 B ID by the 6LBR (e.g.,
by using a hash table of the MAC address), which results in 256 possible

27

nodes in the network. Naturally, the preferred parent and routing table
are not required for non-storing mode as the 6LBR already possesses this
information. In contrast, nodes in storing mode retain their own routing
table so must forward this to the 6LBR. Additionally, DAO parents are only
relevant for storing mode.

As discussed in Section 7, timing offsets to the previous EB and DAO
transmission/generation can increase the accuracy of the prediction, espe-
cially for shorter prediction intervals. In addition, ETX can improve the
accuracy of the model in case of packet loss. Inserting these telemetry op-
tions is, however, optional. To transmit the timing offsets, the Absolute Slot
Number (ASN) is used as it is shared by every node in the network. The TX
ASN refers to the moment at which the frame, encapsulating the telemetry, is
transmitted. The EB and DAO ASNs are the time offsets (in ASNs) relative
to the TX ASN. Note that two EB ASNs need to be included, for To1 and
To2 in (19).

9. Evaluation

This section evaluates the accuracy of our model under various condi-
tions, including topology changes and packet loss. Additionally, we examine
the effects of optional telemetry, INT update interval, and prediction interval
for storing and non-storing modes. To test the model, we simulated a net-
work of ten nodes using the Cooja network simulator of Contiki-NG. Nine
client nodes periodically transmit CoAP GET requests to a server, which re-
sponds with a CoAP ACK message. The server was chosen differently from
the 6LBR to account for MP2MP traffic, and the 6LBR also functions as
a client and polls for server updates. Table 3 lists all necessary parameters
for the analytical model used in the simulations, from top to bottom: data
traffic, control traffic, header configuration, and TSCH network configura-
tion parameters. In terms of data traffic parameters, clients request a 30 B
update every 3 min. Control traffic parameters use default values in Contiki-
NG. According to the Trickle Algorithm, the actual DIO interval is a random
value between 524 s and 1048 s, given a maximum Trickle interval of 1048 s
(Section 7). The DAO interval is implementation-specific and results in a
random value between 15 min and 22.5 min for a Prefix Lifetime of 30 min,
according to the Contiki-NG implementation. In the simulations, each node
has a single DAO parent that coincides with its preferred parent. The De-
layDAO parameter is set to 0 s to limit INT overhead. Note that 6LoWPAN

28

ND messages are not considered in the simulations due to the current version
of Contiki-NG not implementing 6LoWPAN ND. However, as described in
Section 7, this could be easily included in the model using the equations for
other control traffic. The network header configuration parameters allow for
solving the single-hop and multi-hop submodel in Sections 5 and 6, respec-
tively. As discussed in Section 5.1, the MAC header size depends on the
frame type. Therefore, the size of control traffic frames already includes the
MAC header size, and the header size for data frames is defined as Smhdr

in Table 3. Finally, the bottom part of Table 3 lists TSCH configuration
parameters. We use a slot size of 10 ms with the Orchestra Sender-Based
scheduling function, where the EB slotframe size is 397, the Broadcast slot-
frame size is 31, and the Sender-based Unicast slotframe is 17. For further
details on the Orchestra Sender-Based scheduling function, refer to [4].

For all simulations, we calculate the average accuracy every second over
the 10 simulated nodes. The average accuracy of is calculated using (32),
where Ptx,i and Prx,i represent the predicted TX and RX bytes of node i, and
Atx,i and Arx,i the actual TX and RX bytes.

a =

∑10
i=1 |Ptx,i + Prx,i − Atx,i − Arx,i|∑10

i=1(Atx,i + Arx,i)
(32)

9.1. Effect of Prediction Interval

In our initial simulations, we examine a stable, fully converged network
over a duration of six hours. Fig. 7 presents the distribution of the accuracy
for prediction intervals of 1 min, 15 min, and 1 h. We display the accuracy
for storing and non-storing modes, employing only the default telemetry (De-
fault) and also with optional timing telemetry enabled (Opt. INT), as listed
in Table 2. For every simulation, we use an average INT update interval of
15 min for both storing and non-storing modes. The results indicate that
the accuracy increases with larger prediction intervals, reaching 99.37 % and
99.00 % for storing and non-storing modes, respectively. This increase is due
to the averaging out of timing errors at the beginning and end of the predic-
tion interval by more prediction data. However, even for a small prediction
interval of 1 min, the median accuracy remains at 91.46 % and 92.78 % for
storing and non-storing modes, respectively. Moreover, when optional tim-
ing telemetry is enabled, the median accuracy rises to 95.28 % and 94.88 %,
albeit at the cost of introducing more deviant outliers. On the other hand,

29

Table 3: Parameters of the analytical model, used in the simulations. From top to bot-
tom: data parameters, control traffic parameters, network header parameters, and TSCH
network configuration paremeters.

Parameter Value

CoAP GET payload (Scdpl) 7 B

CoAP ACK payload (Scspl) 30 B

CoAP interval 3 min

EB size (Seb) 37 B

EB period (Teb) 16 s

DIO size (Sdio) 96 B

Max. Trickle interval (Imax) 1048 s

DAO size (Sdao) 67/85 B

DAO ACK size (Sdaoa) 34 B

Prefix Lifetime (Spl) 30 min

DAO parents 1

DelayDAO 0 s

PHY header size (Sphdr) 5 B

MAC header size (Smhdr) 23 B

Dispatch & IPHC bytes (Siphc) 2 B

IPv6 address size (S6da, S6sa, S6srha) 8 B

6LoWPAN NHC size (Snhc) 7 B

CoAP header size (Schdr) 5 B

6LoWPAN MTU (S6mtu) 127 B

CoAP Block size (Scbs) 64 B

TSCH Scheduling Function Orchestra TSCH-SB-397-31-17

TSCH slot duration (Tts) 10 ms

30

Figure 7: Effect of the prediction interval and optional INT on the accuracy of the model
for storing mode (green) and non-storing mode (red). Predictions were calculated ev-
ery second for six hours in a converged network, for a 1 min (left), 15 min (middle), and
1 h (right) prediction interval. As shown, the accuracy of the model increases for larger
prediction interval since timing errors at the edges of the interval are averaged out. There-
fore, enabling optional INT for shorter prediction intervals of 1 s increases the accuracy
significantly, while having a negligible effect for longer intervals of 15 min and 1 h.

for larger prediction intervals, the optional timing telemetry does not have a
significant effect. This is because the optional telemetry is intended to mini-
mize timing-related errors at the start and end of the prediction interval, re-
sulting in substantial advantages for shorter prediction intervals where such
errors are more crucial. In conclusion, the accuracy of our model declines for
smaller prediction intervals but can be enhanced by enabling optional timing
telemetry. For larger intervals, the accuracy improves, and optional timing
telemetry does not significantly enhance accuracy.

9.2. Effect of Packet Loss

To evaluate the impact of packet loss on accuracy in stable network
operation, we conducted additional simulations with Packet Reception Ra-
tio (PRR) set to 100 %, 90 %, and 80 %. These simulations used a prediction
interval and average INT update interval of 15 min. Fig. 8 illustrates the
accuracy for storing and non-storing modes and demonstrates the effect of
using ETX. As anticipated, enabling ETX has a negligible effect on accu-
racy when PRR is 100 %. However, it significantly improves accuracy in
cases where PRR is less than 100 %. Even with a PRR of 90 % or 80 %,
our model achieves a median accuracy of approximately 97 %. Consequently,
ETX telemetry should always be employed to enhance accuracy, particularly
in LLNs with suboptimal PRRs.

31

Figure 8: Effect of packet loss and ETX telemetry on the accuracy of the model for storing
mode (green) and non-storing mode (red). Predictions were calculated every second for
six hours in a stable network for a PRR of 100 % (left), 90 % (middle), and 80 % (right).
As shown, enabling ETX telemetry significantly increases the accuracy when packet loss
is introduced, obtaining a median accuracy of approximately 97 %.

9.3. Effect of Topology Changes

While the previous simulations assumed a stable network, our model is
also capable of reacting to a topology change. To demonstrate this, we in-
troduced a topology change in a fully converged network by moving three
nodes to the other side of the network, which required them to rejoin with
different preferred parents and neighbours. Predictions were calculated every
second for two hours since the start of the topology change, with a predic-
tion interval of 15 min. The distribution of the accuracy during this time is
depicted in Fig. 9a for storing mode and in Fig. 9b for non-storing mode.
During the topology change, the model’s accuracy initially dropped but grad-
ually increased again as the CU received the updated topology through INT.
This explains why there are many outliers in the accuracy distribution, as
they mostly represent the accuracy during the topology change. We consid-
ered different INT update intervals to determine their impact on the model’s
responsiveness. The blue line on the right vertical axis indicates the INT
overhead, which is the number of transmitted INT bytes per node per hour
for the given INT update interval.

We used DAOs as telemetry carriers in the storing mode simulations and
data traffic in non-storing mode simulations to demonstrate the difference
between them for piggybacking INT to the 6LBR. In storing mode, we con-
sidered average INT update intervals of 60, 30, and 15 min. Due to a random
DAO interval between 15 and 22.5 min, the lowest achievable update inter-
val was 15 min. We also considered an adaptive update interval, where each
triggered DAO piggybacks INT. As shown in Fig. 9a, increasing the INT

32

update interval improved the prediction accuracy significantly, but it also
increased the INT overhead. However, with an adaptive update rate, the ac-
curacy improved notably with only a limited increase in INT overhead. This
is because, during a topology change, more DAOs will be triggered because
of downward route changes, causing the update interval to momentarily in-
crease before converging back to 15 min during stable operation.

In non-storing mode, the effect of the INT update interval was very differ-
ent from storing mode, as shown in Fig. Fig. 9b). We used the same update
intervals as in storing mode, in addition to an interval of 3 min, which is the
lowest achievable interval equal to the CoAP interval. The INT update rate
had limited to no impact on the prediction accuracy, which can be explained
by the fact that in non-storing mode, the 6LBR is already aware of the net-
work topology, even without INT. Only the neighbours, time source, and
optional telemetry need to be collected (Table 2).

In conclusion, our model is capable of reacting to changes in network
topology. For storing mode, choosing an adaptive INT update interval can
increase the prediction accuracy with only a limited increase in INT overhead.
However, the INT update rate has limited impact on the prediction accuracy
for non-storing mode since the CU is already aware of the topology change
without INT.

10. Conclusion

The ability to gather insights about a network is critical for a central net-
work manager to detect and resolve potential issues such as congestion, duty
cycle regulation breaches, and battery depletion. In this paper, we propose
a model that can calculate the network traffic overhead in a 6TiSCH net-
work, using in-band network telemetry to predict the number of transmitted
and received bytes. Our model covers the entire 6TiSCH stack, including
TSCH, RPL, 6LoWPAN, and CoAP, and calculates the introduced over-
head in terms of control traffic, single-hop, and multi-hop communication.
Through simulations, we demonstrate that our model provides accurate pre-
dictions under various circumstances, such as sudden topology changes and
packet loss. During topology changes, non-storing mode predictions retain
high accuracy regardless of the telemetry update interval, while an adaptive
update interval significantly improves prediction accuracy in storing mode
while minimizing overhead. In a converged network, accuracy increases for
larger prediction intervals, and optional timing telemetry can be used to

33

(a) Storing mode (b) Non-storing mode

Figure 9: Effect of a topology change for (a) storing and (b) non-storing mode on the
accuracy of the model for different INT update intervals. Boxplots show the accuracy of
the model for different update intervals with the associated number of INT bytes per node
per hour indicated by blue lines. Predictions are calculated every second for two hours
since the start of the topology change, with a prediction interval of 15 min. In storing
mode (a), INT is collected by DAOs, while in non-storing mode (b), data traffic is used to
piggyback telemetry. As shown, increasing the INT update interval significantly improves
the accuracy in storing mode, while having a negligible effect in non-storing mode since
the 6LBR knows the network topology without requiring INT.

improve accuracy for shorter intervals. We showed that in-band network
telemetry is essential to construct a topology at the CU, to restrict computa-
tion overhead on the nodes while minimizing communication overhead. Our
open-source model can be used to prevent network outages due to conges-
tion, duty-cycle regulation breaches, battery depletion, etc. Furthermore, it
can be easily extended with a machine learning model to predict traffic gen-
eration patterns or with energy measurements for different TSCH slot types
to predict node energy consumption precisely.

Acknowledgment

Part of this research was funded by the Flemish FWO SBO S001521N
IoBaLeT (Sustainable Internet of Batteryless Things) project.

References

[1] M. L. N. Shilpa P. Khedkar, R. Aroul Canessane, Prediction of Traf-
fic Generated by IoT Devices Using Statistical Learning Time Series
Algorithms, Wireless Communications and Mobile Computing (2021)
12doi:10.1155/2021/5366222.

34

[2] Dries Van Leemput, 6tisch traffic model.
URL https://github.com/imec-idlab/6tisch traffic model.git

[3] IEEE Standard for Local and Metropolitan Area Networks - Part 15.4:
Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment
1: MAC Sublayer, Ieee standard 802.15.4-2020 (July 2020).

[4] S. Duquennoy, B. Al Nahas, O. Landsiedel, T. Watteyne, Orchestra:
Robust Mesh Networks Through Autonomously Scheduled TSCH, in:
Proceedings of the ACM Conference on Embedded Networked Sensor
Systems, 13th Edition, 2015, p. 337–350. doi:10.1145/2809695.2809714.

[5] X. Vilajosana, Q. Wang, F. Chraim, T. Watteyne, T. Chang,
K. S. J. Pister, A Realistic Energy Consumption Model for
TSCH Networks, IEEE Sensors Journal 14 (2) (2014) 482–489.
doi:10.1109/JSEN.2013.2285411.

[6] G. Daneels, E. Municio, B. Van de Velde, G. Ergeerts, M. Weyn,
S. Latré, J. Famaey, Accurate Energy Consumption Modeling of IEEE
802.15.4e TSCH Using Dual-Band OpenMote Hardware, Sensors 18 (2)
(2018). doi:10.3390/s18020437.

[7] C. Ouanteur, L. Bouallouche-Medjkoune, D. Aı̈ssani, An En-
hanced Analytical Model and Performance Evaluation of the IEEE
802.15.4e TSCH CA, Wireless Personal Communications 96 (09 2017).
doi:10.1007/s11277-017-4241-0.

[8] H. Hajizadeh, M. Nabi, R. Tavakoli, K. Goossens, A Scalable and Fast
Model for Performance Analysis of IEEE 802.15.4 TSCH Networks,
in: 2019 IEEE 30th Annual International Symposium on Personal,
Indoor and Mobile Radio Communications (PIMRC), 2019, pp. 1–7.
doi:10.1109/PIMRC.2019.8904420.

[9] S. Scanzio, M. G. Vakili, G. Cena, C. G. Demartini, B. Montrucchio,
A. Valenzano, C. Zunino, Wireless Sensor Networks and TSCH: A Com-
promise Between Reliability, Power Consumption, and Latency, IEEE
Access 8 (2020) 167042–167058. doi:10.1109/ACCESS.2020.3022434.

[10] D. De Guglielmo, B. Al Nahas, S. Duquennoy, T. Voigt, G. Anastasi,
Analysis and Experimental Evaluation of IEEE 802.15.4e TSCH CSMA-

35

CA Algorithm, IEEE Transactions on Vehicular Technology 66 (2)
(2017) 1573–1588. doi:10.1109/TVT.2016.2553176.

[11] S. B. Yaala, F. Théoleyre, R. Bouallegue, Performance Modeling of IEEE
802.15.4-TSCH with Shared Access and ON-OFF traffic, in: 2018 14th
International Wireless Communications Mobile Computing Conference
(IWCMC), 2018, pp. 352–357. doi:10.1109/IWCMC.2018.8450358.

[12] D. De Guglielmo, S. Brienza, G. Anastasi, A Model-based Bea-
con Scheduling algorithm for IEEE 802.15.4e TSCH networks, in:
2016 IEEE 17th International Symposium on A World of Wire-
less, Mobile and Multimedia Networks (WoWMoM), 2016, pp. 1–9.
doi:10.1109/WoWMoM.2016.7523517.

[13] O. Gaddour, A. Koubâa, S. Chaudhry, M. Tezeghdanti, R. Chaari,
M. Abid, Simulation and performance evaluation of DAG construction
with RPL, in: Third International Conference on Communications and
Networking, 2012, pp. 1–8. doi:10.1109/ComNet.2012.6217747.

[14] H. R. Kermajani, C. Gomez, Modeling the network conver-
gence time in RPL in error-prone, IEEE 802.15.4 chain topol-
ogy multihop networks, in: 2014 11th International Symposium
on Wireless Communications Systems (ISWCS), 2014, pp. 365–369.
doi:10.1109/ISWCS.2014.6933379.

[15] M. Becker, K. Kuladinithi, C. Görg, Modelling and Simulating the
Trickle Algorithm, in: K. Pentikousis, R. Aguiar, S. Sargento, R. Agüero
(Eds.), Mobile Networks and Management, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012, pp. 135–144.

[16] H. Kermajani, C. Gomez, M. H. Arshad, Modeling the Message Count
of the Trickle Algorithm in a Steady-State, Static Wireless Sensor
Network, IEEE Communications Letters 16 (12) (2012) 1960–1963.
doi:10.1109/LCOMM.2012.111612.121232.

[17] B. Bannour, A. Lapitre, Model Checking of Trickle-based IoT Dissemi-
nation, in: 2020 9th Mediterranean Conference on Embedded Comput-
ing (MECO), 2020, pp. 1–6. doi:10.1109/MECO49872.2020.9134251.

[18] C. M. G. Algora, E. O. Guerra, S. Montejo-Sánchez, E. M. G. Fernández,
K. Steenhaut, A Theoretical Association Time Model for IEEE 802.15.4

36

TSCH Networks, IEEE Communications Letters 25 (2) (2021) 656–659.
doi:10.1109/LCOMM.2020.3032674.

[19] C. Vallati, S. Brienza, G. Anastasi, S. K. Das, Improving Network For-
mation in 6TiSCH Networks, IEEE Transactions on Mobile Computing
18 (1) (2019) 98–110. doi:10.1109/TMC.2018.2828835.

[20] A. Kalita, M. Khatua, Channel Condition Based Dynamic Beacon In-
terval for Faster Formation of 6TiSCH Network, IEEE Transactions on
Mobile Computing (2020) 1–1doi:10.1109/TMC.2020.2980828.

[21] J. Vera-Pérez, J. Silvestre-Blanes, V. Sempere-Payá, TSCH and RPL
Joining Time Model for Industrial Wireless Sensor Networks, Sensors
21 (11) (2021). doi:10.3390/s21113904.

[22] M. Kubaszek, J. Macheta, L. Krzak, C. Worek, The analysis of energy
consumption in 6TiSCH network nodes working in sub-GHz band, In-
ternational Journal of Electronics and Telecommunications vol. 66 (No
1) (2020) 201–210. doi:10.24425/ijet.2020.131864.

[23] D. Hauweele, R.-A. Koutsiamanis, B. Quoitin, G. Z. Papadopoulos,
Thorough Performance Evaluation Analysis of the 6TiSCH Minimal
Scheduling Function (MSF), Journal of Signal Processing Systems (June
2021). doi:10.1007/s11265-021-01668-w.

[24] A. Weigel, V. Turau, An Analytical Model of 6LoWPAN Route-Over
Forwarding Practices, in: S. Guo, J. Lloret, P. Manzoni, S. Ruehrup
(Eds.), Ad-hoc, Mobile, and Wireless Networks, Springer International
Publishing, Cham, 2014”, pp. 279–289.

[25] H. A. Al-Kashoash, F. Hassen, H. Kharrufa, A. H. Kemp, Analytical
modelling of congestion for 6LoWPAN networks, ICT Express 4 (4)
(2018) 209–215. doi:https://doi.org/10.1016/j.icte.2017.11.001.

[26] R. Herrero, Analytical model of IoT CoAP traffic, Dig-
ital Communications and Networks 5 (2) (2019) 63–68.
doi:https://doi.org/10.1016/j.dcan.2018.07.001.

[27] A. Ludovici, P. D. Marco, A. Calveras, K. H. Johansson, Analytical
Model of Large Data Transactions in CoAP Networks, Sensors 14 (8)
(2014) 15610–15638. doi:10.3390/s140815610.

37

[28] A. Lahmadi, A. Boeglin, O. Festor, Efficient Distributed Monitoring
in 6LoWPAN Networks, in: CNSM - 9th International Conference on
Network and Service Management - 2013, University of Zürich, Zurich,
Switzerland, 2013.

[29] G. Gaillard, D. Barthel, F. Theoleyre, F. Valois, Monitoring KPIs in
synchronized FTDMA multi-hop wireless networks, in: 2016 Wireless
Days (WD), 2016, pp. 1–6. doi:10.1109/WD.2016.7461516.

[30] A. Karaagac, E. De Poorter, J. Hoebeke, In-Band Network
Telemetry in Industrial Wireless Sensor Networks, IEEE Transac-
tions on Network and Service Management 17 (1) (2020) 517–531.
doi:10.1109/TNSM.2019.2949509.

[31] A. Karaagac, E. De Poorter, J. Hoebeke, Alternate Marking-based Net-
work Telemetry for Industrial WSNs, in: 2020 16th IEEE International
Conference on Factory Communication Systems (WFCS), 2020, pp. 1–8.
doi:10.1109/WFCS47810.2020.9114490.

[32] X. Vilajosana, T. Watteyne, T. Chang, M. Vučinić, S. Duquennoy,
P. Thubert, IETF 6TiSCH: A Tutorial, IEEE Communications Surveys
Tutorials 22 (1) (2020) 595–615. doi:10.1109/COMST.2019.2939407.

38

