
SoftwareX 23 (2023) 101516

e
l
w
m
v
t
u
t
a
b

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

DeepMTP: A Python-based deep learning framework formulti-target
prediction
Dimitrios Iliadis ∗, Bernard De Baets, Willem Waegeman
KERMIT, Department of Data Analysis and Mathematical Modeling, Ghent University, Coupure links 653, B-9000 Ghent, Belgium

a r t i c l e i n f o

Article history:
Received 22 May 2023
Received in revised form 9 August 2023
Accepted 25 August 2023

Keywords:
Multi-target prediction
Multi-label classification
Multivariate regression
Multi-task learning

a b s t r a c t

DeepMTP is a python framework designed to be compatible with the majority of machine learning sub-
areas that fall under the umbrella of multi-target prediction (MTP). Multi-target prediction includes
problem settings like multi-label classification, multivariate regression, multi-task learning, matrix
completion, dyadic prediction, and zero-shot learning. Instead of using separate methodologies for
the different problem settings, the proposed framework employs a single flexible two-branch neural
network architecture that has been proven to be effective across the majority of MTP problem
settings. To our knowledge, this is the first attempt at providing a framework that is compatible
with more than two MTP problem settings. The source code of the framework is available at https:
//github.com/diliadis/DeepMTP and an extension with a graphical user-interface is available at https:
//github.com/diliadis/DeepMTP_gui.

© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 0.0.22
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-23-00336
Permanent link to Reproducible Capsule
Legal Code License MIT License
Code versioning system used git
Software code languages, tools, and services used python
Compilation requirements, operating environments & dependencies several python packages described in the repository
If available Link to developer documentation/manual https://deepmtp.readthedocs.io/en/latest/
Support email for questions dimitrios.iliadis@ugent.be

1. Introduction

Over the last decade the area of machine learning has gained
normous popularity, partially due to the release of software
ibraries that implement popular models. The WEKA library [1]
as one of the first successful attempts of free software for
achine learning. It offered tools for data preprocessing and
isualization, as well as implementations of several popular at
he time machine learning algorithms, in an intuitive graphical
ser interface (GUI). Almost a decade later, scikit-learn [2] was in-
roduced, offering various classification, regression and clustering
lgorithms in a flexible Python package. More recently, python-
ased libraries like Pytorch [3] and Tensorflow [4] used automatic

∗ Corresponding author.
E-mail address: dimitrios.iliadis@ugent.be (Dimitrios Iliadis).

differentiation to aid with the rapid implementation of neural
networks that dominated the state-of-the-art in machine learning
research.

The aforementioned functionality is usually available for mod-
els compliant with standard classification, regression and cluster-
ing tasks. A less known task that has wide application potential
is Multi-target prediction (MTP). Multi-target prediction is a term
used to group several sub-areas of machine learning that have
one major commonality, the simultaneous prediction of multi-
ple targets of diverse type. These sub-areas include multi-label
classification, multivariate regression, multi-task learning, matrix
completion, zero-shot learning and dyadic prediction.

As mentioned in our previous work [5], these subareas de-
veloped fairly isolated despite their similarities. This isolation is
also reflected at the software level. In terms of libraries, Multi-
label classification has enjoyed the most activity, with MULAN
ttps://doi.org/10.1016/j.softx.2023.101516
352-7110/© 2023 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2023.101516
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101516&domain=pdf
https://github.com/diliadis/DeepMTP
https://github.com/diliadis/DeepMTP
https://github.com/diliadis/DeepMTP_gui
https://github.com/diliadis/DeepMTP_gui
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-23-00336
https://deepmtp.readthedocs.io/en/latest/
mailto:dimitrios.iliadis@ugent.be
mailto:dimitrios.iliadis@ugent.be
https://doi.org/10.1016/j.softx.2023.101516
http://creativecommons.org/licenses/by/4.0/


Dimitrios Iliadis, Bernard De Baets and Willem Waegeman SoftwareX 23 (2023) 101516

b
w
p
[
[
o
f

a
M
n
M
c
o
o
i
m

2

c
B
p

T
t
T
d
a
s
a
o
t
d

3

u
p
u
I
t
i
p
t
i
g
a
t
n
t
w
n
a
c
w

4

o

eing the most popular release. Developed by [6] it offers an API
ith an extensive range of methods and datasets. Subsequent
ackages offered additional methods and general functionality
7,8]. For other MTP problem settings like Multi-task learning
9–11], Zero-shot learning and Matrix completion [12–14], the
nly available options are usually GitHub repositories designed
or hyper-specific use cases and input types.

We propose a python package that implements and organizes
ll of the effort and ideas presented in our previous work [15].
ore specifically, the package implements a two-branch neural
etwork that is flexible enough to work with the majority of the
TP problem settings while achieving competitive performance
ompared to other related packages [15]. This architecture itself is
ffered with additional functionality, spanning most of the steps
f a typical machine learning pipeline. To our knowledge this
s the first library that offers out-of-the-box compatibility with
ore that two MTP problem settings.

. The basics of multi-target prediction

Multi-target prediction can be seen as an umbrella term that
overs all the aforementioned sub-areas of machine learning.
orrowing the basic terminology of our previous work, every MTP
roblem setting can be characterized by an instance set X , a

target set T and a score set Y . The dataset D can be decomposed
into triplets (xi, tj, yij) where xi ∈ X represents an instance, tj ∈ T
represents a target, and yij ∈ Y is the score that summarizes the
relationship of the instance xi-target tj pair. The number of in-
stances and targets are finite, so i ∈ {1, . . . , n} and j ∈ {1, . . . ,m}.
he scores can then be naturally arranged in an n × m matrix Y
hat remains incomplete in the majority of MTP problem settings.
o complete the definition of an MTP problem we also have to
efine the relation of instance and targets between the train set
nd test set. Even though the basic objective is to predict the
core for any unobserved instance-target pair (x, t) ∈ X × T , the
forementioned relationship can inform us about the difficulty
f a prediction task. Additionally, the existence of features for
he instances and/or targets (also called side information) can
etermine the feasibility of the generalization objective.

. A two-branch neural network architecture

The two-branch architecture used by DeepMTP was first pop-
larized by [16] in the area of collaborative filtering. In our
revious work we showed that the same basic architecture can be
sed as a successful benchmark for many MTP problem settings.
n its simplest form, the network is comprised of two branches
hat encode the input features of a specific instance and target
nto two embedding vectors that are then combined. In our
revious work [15], the two embeddings were concatenated and
hen passed to a series of fully-connected layers that terminated
nto a single output node predicting the interaction score for a
iven instance-target pair. This approach was introduced by [16]
s an improvement over a simpler version that just computes
he dot product between the two embeddings, introducing a
on-linearity and enabling the modeling of more complex rela-
ionships. In contrast to this notion, the subsequent publication of
ork [17,18] that questions this idea, combined with our prelimi-
ary internal testing, led us to offer both versions in the package,
nd set the dot product as the default option. A more detailed
omparison between the two versions is under development and
ill be published in the near future.

. The DeepMTP framework

The DeepMTP package offers an implementation of the previ-
usly mentioned two-branch neural network, but also provides

additional functionality at every major step of a typical machine
learning pipeline. Our goal is to provide the user with a package
that is simple enough to use across all MTP problem settings
and feature rich to enable easy benchmarking. We will provide
a summary (Fig. 1) of the functionality at every step below:

4.1. Input formats & dataset processing

At the input step, DeepMTP is designed to support two input
formats, reflecting the two main views of the score matrix in a
typical MTP dataset. The matrix view is the popular choice for
settings where the score matrix is fully observed (multi-label
classification, multivariate regression) and the default format for
popular multi-label classification and multivariate regression data
repositories. The second input format is the triplet view, which
is considered the most flexible and space efficient of the two.
This format is common in MTP problem settings where most of
the possible instance-target pairs are missing from the dataset
(multi-task learning, matrix completion, dyadic prediction). In
terms of available side information, DeepMTP supports different
input formats to better accommodate various input types. From
tabular data in a single CSV file to a collection of images in a spe-
cific directory, the library defines rules that users have to follow.
The data preprocessing step is considered the most important in
the entire pipeline of DeepMTP. In this stage, several characteris-
tics are detected from the score matrix and side information data.
The extracted information is essential for the suggestion of the
most relevant MTP problem setting, as well as the configuration
of the two-branch neural network architecture. By examining the
relationship of the instance and target ids between the train and
test set, DeepMTP detects the user’s generalization objective. At
the same time, the existence of side information for instances
and/or targets largely determines the feasibility of the detected
generalization goal. The recognition of the type of side informa-
tion guides the selection of an appropriate type of neural network
that is used in the corresponding branch. Finally, the detection of
the type of values present in the score matrix uncovers the type of
prediction task (classification, regression) and determines which
loss is used during the training phase (binary cross-entropy loss,
mean squared error loss).

4.2. Configure and train–validate–test the model

The configuration of the neural network and of all other as-
pects that relate to training, validation and testing have to be
defined at this step. This is currently achieved by calling the
generate_config function and by passing all the relevant infor-
mation as parameters. In this way, the user can override default
parameters or even parameters that were detected in the data
processing step. The configuration is then used to initialize the
neural network and start the train, validation and testing process.
Everything related to the implementation of the two-branch ar-
chitecture as well as several sub-architectures that can be used
in the branches is implemented using Pytorch [3]. The design is
flexible enough, so that users can introduce their own Pytorch-
based models in the two branches. To assist users with the
selection of hyperparameters, we decided to automate the step
by benchmarking different HPO methods using the two branch
architecture across multiple MTP problem settings. The details
of this benchmarking will be available in a future publication,
but based on this work, we decided to offer Hyperband [19], a
bandit-based configuration evaluation approach as a built-in HPO
method.

4.3. Additional functionality

Even though the standard machine learning pipeline is com-
prised of very important steps that help to form a valid
2



Dimitrios Iliadis, Bernard De Baets and Willem Waegeman SoftwareX 23 (2023) 101516

e
t
l
f
e
i
t
c
d
e
d

5

p
a
w
n
M
t
a
i
c
l
t
f
e
t
s
o

D

c
t

D

Fig. 1. A summary of the DeepMTP framework.

xperiment, additional functionality is needed to aid users with
he practical aspects of experimentation. DeepMTP offers three
ogging options or varying functionality and flexibility (local text
iles, TensorBoard [4], Weights & Biases [20]). To encourage quick
xperimentation with many of the MTP problem settings, we also
ncluded built-in datasets. The DeepMTP package is designed so
hat a user can obtain a trained model with only a few lines of
ode, but in order to maximize the potential audience, we also
eveloped an extension that offers a graphical user interface. The
xtension is implemented using the streamlit library and can be
eployed with minimal effort.

. Impact and conclusions

The goal of this paper was to present DeepMTP, a python
ackage suitable for MTP problems. Existing packages can support
t most two MTP problem settings while DeepMTP is compatible
ith at least five. This is achieved using a two-branch neural
etwork that is flexible enough to adapt to the intricacies of every
TP problem. The modular design of the architecture also makes

he package future-proof as new architectures can be made avail-
ble in the form of branch options. Various automations are also
mplemented to use the dataset, extract useful information, and
onfigure the underlying neural network. The package is not
imited to the implementation of the neural network, as contrary
o existing MTP-related software solutions, it offers additional
unctionality aimed at helping users with the everyday needs of
xperimentation (built-in hyperparameter optimization and au-
omated experiment logging). To further attract users from other
cientific fields, an extension of the basic package is implemented,
ffering the option to run experiments without writing code.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

ata availability

The datasets used are already available online.

Acknowledgment

This research received funding from the Flemish Government
under the ‘‘Onderzoeksprogramma Artificiele Intelligentie (AI)
Vlaanderen’’ programme.

References

[1] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The
WEKA data mining software: an update. ACM SIGKDD Explor Newslett
2009;11(1):10–8.

[2] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. Scikit-learn: Machine
learning in Python. The Journal of Machine Learning Research (JMLR)
2011;12:2825–30.

[3] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T,
Lin Z, Gimelshein N, Antiga L, et al. Pytorch: An imperative style,
high-performance deep learning library. Adv Neural Inf Process Syst
2019;32.

[4] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S,
Irving G, Isard M, et al. {TensorFlow}: a system for {Large-Scale} machine
learning. In: 12th USENIX symposium on operating systems design and
implementation (OSDI 16). 2016, p. 265–83.

[5] Waegeman W, Dembczyński K, Hüllermeier E. Multi-target prediction:
a unifying view on problems and methods. Data Mining Knowledge
Discovery (KDD) 2019;33(2):293–324.

[6] Tsoumakas G, Spyromitros-Xioufis E, Vilcek J, Vlahavas I. Mulan: A java
library for multi-label learning. The Journal of Machine Learning Research
(JMLR) 2011;12:2411–4.

[7] Read J, Reutemann P, Pfahringer B, Holmes G. MEKA: A multi-label/multi-
target extension to WEKA. The Journal of Machine Learning Research
(JMLR) 2016;17(21):1–5.

[8] Szymański P, Kajdanowicz T. Scikit-multilearn: A python library for multi-
label classification. The Journal of Machine Learning Research (JMLR)
2019;20(6):1–22.

[9] Ranjan R, Patel VM, Chellappa R. Hyperface: A deep multi-task learning
framework for face detection, landmark localization, pose estimation, and
gender recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI) 2017;41(1):121–35.

[10] Cao H, Zhou J, Schwarz E. RMTL: an R library for multi-task learning.
Bioinformatics 2019;35(10):1797–8.

[11] Rahimi F, Milios EE, Matwin S. MTLV: a library for building deep multi-
task learning architectures. In: Proceedings of the 21st ACM symposium
on document engineering (DocEng). 2021, p. 1–4.

[12] Hug N. Surprise: a python library for recommender systems. Journal of
Open Source Software (JOSS) 2020;5(52):2174.

[13] da Costa A, Fressato E, Neto F, Manzato M, Campello R. Case recommender:
a flexible and extensible python framework for recommender systems.
In: Proceedings of the 12th ACM conference on recommender systems
(RecSys). 2018, p. 494–5.
3

http://refhub.elsevier.com/S2352-7110(23)00212-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb1
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb2
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb3
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb4
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb5
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb6
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb7
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb8
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb9
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb10
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb11
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb11
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb11
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb11
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb11
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb12
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb12
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb12
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb13
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb13


Dimitrios Iliadis, Bernard De Baets and Willem Waegeman SoftwareX 23 (2023) 101516
[14] Radhakrishnan A, Stefanakis G, Belkin M, Uhler C. Simple, fast, and flexible
framework for matrix completion with infinite width neural networks.
Proceedings of the National Academy of Sciences of the United States of
America (PNAS) 2022;119(16):e2115064119.

[15] Iliadis D, De Baets B, Waegeman W. Multi-target prediction for dummies
using two-branch neural networks. Mach Learn 2022;111(2):651–84.

[16] He X, Liao L, Zhang H, Nie L, Hu X, Chua T-S. Neural collaborative filtering.
In: Proceedings of the 26th international conference on world wide web
(WWW). 2017, p. 173–82.

[17] Ferrari Dacrema M, Boglio S, Cremonesi P, Jannach D. A troubling analysis
of reproducibility and progress in recommender systems research. ACM
Trans Inform Syst (TOIS) 2021;39(2):1–49.

[18] Rendle S, Krichene W, Zhang L, Anderson J. Neural collaborative filtering
vs. matrix factorization revisited. In: Fourteenth ACM conference on
recommender systems (RecSys). 2020, p. 240–8.

[19] Li L, Jamieson K, DeSalvo G, Rostamizadeh A, Talwalkar A. Hyperband:
A novel bandit-based approach to hyperparameter optimization. J Mach
Learn Res (JMLR) 2017;18(1):6765–816.

[20] Biewald L. Experiment tracking with weights and biases. 2020, Software
available from wandb.com URL https://www.wandb.com/.
4

http://refhub.elsevier.com/S2352-7110(23)00212-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb14
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb15
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb15
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb15
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb16
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb16
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb16
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb16
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb16
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb17
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb17
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb17
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb17
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb17
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb18
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb19
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb19
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb19
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb19
http://refhub.elsevier.com/S2352-7110(23)00212-1/sb19
https://www.wandb.com/

	DeepMTP: A Python-based deep learning framework for multi-target prediction
	Introduction
	The basics of Multi-target prediction
	A two-branch neural network architecture
	The DeepMTP framework
	Input formats & Dataset processing
	Configure and train–validate–test the model
	Additional functionality

	Impact and conclusions
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


