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Abstract 

In 1998, Bill Gray and colleagues showed that warm temperatures trigger Arabidopsis 

hypocotyl elongation in an auxin-dependent manner. This laid the foundation for a vibrant 

research discipline. With several active members of the ‘Thermomorphogenesis’ community, 

we here reflect on 25 years of elevated ambient temperature research and look to the future.  

 

The beginning 

In the early days of molecular genetics, temperature-sensitive mutants became a tool for 

dissecting molecular pathways. In the late 1970s, for example, essential genes regulating the 

budding yeast secretory pathway were identified in this manner [1]. Being trained as a yeast 

geneticist, Bill (William) Gray, a postdoc in Mark Estelle’s lab at Indiana University (USA), and 

colleagues used a similar approach in Arabidopsis thaliana (hereafter Arabidopsis). Bill aimed 

to identify temperature-sensitive alleles of TRANSPORT INHIBITOR RESPONSE 1 (TIR1), 

which was at the time an unknown auxin co-receptor. Although he was not successful at 

identifying such tir1 alleles, his observation that elevated temperature promotes auxin-

mediated hypocotyl elongation [2] would lay the foundation for a thriving research discipline 

known now as thermomorphogenesis. This year the engaged and active 

thermomorphogenesis community celebrates its 25th anniversary (Figure 1). 

The Gray study provided the basis for a molecular framework to understand the physiological 

responses to elevated ambient temperatures. Subsequently, work from the Franklin laboratory 

provided important insights into the potential benefits that plants obtain from 

thermomorphogenic growth patterns by showing that, in particular, petiole elongation and 

hyponastic growth are associated with increased transpiration and lower leaf temperatures 

(Figure 1A). This indicates that thermomorphogenesis stimulates leaf cooling by enhancing 

evaporation, suggesting a possible functional relevance to plants, at least under laboratory 

conditions [3]. However, in natural and agricultural settings the situation is undoubtedly more 

complex as plants have to deal with multiple environmental factors at the same time (see also 

below).  

 

Molecular signalling and thermosensing 

The publication of Gray’s seminal results [2] did not immediately spark follow-up studies. 

Indeed, it was not until 2009, when the Franklin lab identified the bHLH transcription factor 

PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) [4] as a key regulator of 

thermomorphogenic signalling, paving the way for subsequent discoveries, including the 

identification of the first thermosensors. In the same year, a second important study was 

published, describing gibberellins and brassinosteroids as phytohormones that, in addition to 

auxin, coordinate thermosensitive shoot growth [5], as we now know, downstream of PIF4. 

These two papers [4,5], together with the finding that PIF4 directly regulates specific auxin 

biosynthesis genes, like YUCCA8 [6,7], inspired many scientists. More and more groups from 

related disciplines (photobiology, phytohormone biology, natural variation, flowering 

regulation, epigenetics, thermotolerance, cellular signalling, immunity, post-transcriptional 

regulation, microRNA biogenesis) stepped in and started to elucidate how plants respond to 

elevated ambient temperatures. Not least, the research interest was fueled by the emerging 

awareness of rapid global warming and the need to harness crops to safeguard food security. 

The prospect of contributing to climate change mitigation is still a major driver for many of the 

authors of this paper to devote resources to gain fundamental knowledge of 

thermomorphogenesis regulation and understanding its functional consequences. 
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Studying warm temperature signalling is not a trivial task because temperature, being 

essentially molecular motion, is a versatile signal and has no ligand properties nor distinct 

physical features. For many years, it therefore remained unclear whether or not specific 

thermosensors had evolved in plants. Finding bona fide thermosensors has been, and still 

remains a major goal in the field. Although not entailing a dedicated sensor, a warm 

temperature relay cascade was uncovered by the Wigge lab in 2010, showing that eviction of 

non-canonical histone H2A.Z from chromatin of temperature-inducible genes is required for 

thermomorphogenic responses [8]. Building on earlier work from the Whitelam, Schäfer and 

Halliday labs, the Wigge and Casal labs showed that phytochrome B (phyB) is a thermosensor 

using a combination of omics, biochemistry, spectroscopy and genetics, hence revealing that 

thermomorphogenesis requires a surveillance system directly linked to light responses [9,10]. 

Subsequently, temperature-dependent phase transition of EARLY FLOWERING 3 (ELF3) into 

biomolecular condensates and temperature-dependent conformational changes in PIF7 

mRNA structure, resulting in enhanced translation, were shown to also sense temperature 

changes [11,12]. Thus, various thermosensing mechanisms at the DNA, RNA and protein 

levels have been uncovered and more are expected to be found. 

 

Where do we go from here? 

Based on the early findings on the involvement of PIF4, auxin and other hormones [2,4,5-7], 

and by the identification of thermosensory mechanisms, thermomorphogenesis has become 

an established field in the plant sciences. However, many important points remain to be 

addressed. One major question is the spatial and temporal regulation of thermomorphogenic 

responses across organs and tissues, down to potential cell type specificities. Although a 

number of studies have specifically addressed this issue [e.g., 13], we are only now beginning 

to understand communication of temperature signals within the plant. Another challenge is to 

distinguish if specific thermomorphogenic signalling events exist and to distinguish those from 

thermodynamic effects on several (if not all) signalling networks, given that temperature 

impacts every molecule and reaction in the plant, including enzyme activities. This also raises 

the question of how cold, ambient warm and heat (tolerance) responses are, if at all, 

connected. A gradient approach may reveal for example, whether cold regulators are involved 

in warm temperature responses and vice versa, and thus if there exists a generic response to 

temperature or whether distinct signalling branches deal with different temperature cues. Part 

of the answer may be obtained by taking an epigenetic approach, as regulation of different 

levels of histone H3 lysine 4 methylation appears to be a signalling hub where diverse 

temperature cues converge [14]. 

 

At the organismal level, a potential pitfall of thermomorphogenesis research is that functional 

hypotheses are relatively easy to formulate when only temperature is considered. For 

example, temperature-induced root elongation may serve to reach deeper water to meet the 

demands of increased transpiration and hyponasty is likely to reduce heat flux on the leaves. 

However, the contribution of thermomorphogenesis and its component traits in natural 

environments is complex and currently not well understood. One avenue of future research 

should focus on understanding which thermomorphogenic responses actually contribute to 

plant performance in the wild and/or agricultural environments, what fitness costs are 

associated, and which regulators of the canonical or peripheral pathways are targeted by 

natural selection to confer a selective advantage. While the community has so far gained 

understanding of thermomorphogenesis under highly controlled conditions, it is time to expand 
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beyond the laboratory, to study thermomorphogenesis in wild species and in crops. It has been 

reported that thermomorphogenesis does occur in several crop species such as cabbages, 

tomato and wheat [15], yet the molecular mechanisms need to be further explored to be able 

to contribute to the generation of climate-resilient varieties (Figure 1B). Emphasis should be 

placed on the interaction with biotic signals and their potential trade-offs. Global warming will 

increase pathogen pressure, highlighting the importance of better understanding the 

interactions between temperature and the biotic environment, which may also apply vice versa 

to microorganisms that positively influence plant performance in symbiotic interactions. In 

addition, temperature will influence the way in which abiotic factors such as drought or salt 

stress are perceived and dealt with. For example, while warm temperature episodes often co-

occur with drought, there is an apparent conflict in their optimal responses, since drought-

induced stomatal closure may prevent leaf cooling facilitated through increased 

thermomorphogenesis-mediated transpiration. The cross-talk and potential priming role of 

thermomorphogenesis on thermotolerance (e.g., do thermomorphogenesis signalling and 

resulting phenotypes contribute to heat stress survival) is another critical point that requires 

further investigation.  

 

Perhaps the greatest challenge for thermomorphogenesis research lies in translation: how do 

we exploit conceptual breakthroughs in understanding temperature signalling to engineer 

plant resilience in this era of unprecedented global warming? Despite excellent progress on 

understanding the mechanisms underlying individual thermomorphogenesis responses over 

the last 25 years, we may still have yet bigger discoveries to come. 
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Figure 1. Milestones in 25 years of thermomorphogenesis research (A) Model 

thermomorphogenic phenotypes represented on a stylised plant; arrows indicate thermo-

induced directions of the corresponding phenotypes. (B) Roadmap of selected important 

research milestones, starting with the discovery that the auxin indole-3-acetic acid (IAA) 

mediates temperature-dependent hypocotyl elongation and leading towards the generation of 

future climate-resilient crops; colours of the centerline markings indicate the global 

temperature change relative to the 1971-2000 average, based on information from 

https://showyourstripes.info/c/globe with each stripe representing one year. Blue and red 

colours indicate below-average and above-average temperatures, respectively, with darker 

colours indicating greater deviations from the mean. 
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