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The Internet of Robotic Things:
A review of concept, added value
and applications
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Abstract
The Internet of Robotic Things is an emerging vision that brings together pervasive sensors and objects with robotic and
autonomous systems. This survey examines how the merger of robotic and Internet of Things technologies will advance
the abilities of both the current Internet of Things and the current robotic systems, thus enabling the creation of new,
potentially disruptive services. We discuss some of the new technological challenges created by this merger and conclude
that a truly holistic view is needed but currently lacking.
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Introduction

The Internet of Things (IoT) and robotics communities

have so far been driven by different yet highly complemen-

tary objectives, the first focused on supporting information

services for pervasive sensing, tracking and monitoring; the

latter on producing action, interaction and autonomous

behaviour. For this reason, it is increasingly claimed that

the creation of an internet of robotic things (IoRT) combin-

ing the results from the two communities will bring a strong

added value.1–3

Early signs of the IoT-robotics convergence can be seen

in distributed, heterogeneous robot control paradigms like

network robot systems4 or robot ecologies,5 or in

approaches such as ubiquitous robotics6–8 and cloud

robotics9–12 that place resource-intensive features on the

server side.13,14 The term ‘Internet of robotic things’ itself

was coined in a report of ABI research1 to denote a concept

where sensor data from a variety of sources are fused,

processed using local and distributed intelligence and used

to control and manipulate objects in the physical world. In

this cyber-physical perspective of the IoRT, sensor and data

analytics technologies from the IoT are used to give robots

a wider situational awareness that leads to better task exe-

cution. use cases include intelligent transportation15 and

companion robots.16 Later uses of the term IoRT in literature

adopted alternative perspectives of this term: for example,

one that focuses on the robust team communication,17–19 and
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a ‘robot-aided IoT’ view where robots are just additional

sensors.20,21

Cloud computing and the IoT are two non-robotic

enablers in creating distributed robotic systems (see

Figure 1). IoT technologies have three tenets22: (i) sensors

proliferated in the environment and on our bodies;

(ii) smart connected objects using machine-to-machine

(M2M) communication; and (iii) data analytics and seman-

tic technologies transforming raw sensor data. Cloud com-

puting provides on-demand, networked access to a pool of

virtualized hardware resources (processing, storage) or

higher level services. Cloud infrastructure has been used

by the IoT community to deploy scalable IoT platform

services that govern access to (raw, processed or fused)

sensor data. Processing the data streams generated by bil-

lions of IoT devices in a handful of centralized data centres

brings concerns on response time latency, massive ingress

bandwidth needs and data privacy. Edge computing (also

referred to as fog computing, cloudlets) brings on-demand

and elastic computational resources to the edge of the net-

work, closer to the producers of data23. The cloud paradigm

was also adopted by the robotics community, called cloud

robotics9–12 for offloading resource-intensive tasks,13,14 for

the sharing of data and knowledge between robots24 and for

reconfiguration of robots following an app-store model.25

Although there is an overlap between cloud robotics and

IoRT, the former paradigm is more oriented towards pro-

viding network-accessible infrastructure for computational

power and storage of data and knowledge, while the latter is

more focused on M2M communication and intelligent data

processing. The focus of this survey is on the latter, dis-

cussing the potential added value of the IoT-robotics cross-

over in terms of improved system abilities, as well as the

new technological challenges posed by the crossover.

As one of the goals of this survey is to inspire research-

ers on the potential of introducing IoT technologies in

robotic systems and vice versa, we structure our discussion

along the system abilities commonly found in robotic

systems, regardless of specific robot embodiment or appli-

cation domains. Finding a suitable taxonomy of abilities is

a delicate task. In this work, we build upon an existing

community effort and adopt the taxonomy of nine system

abilities, defined in the euRobotics roadmap,26 which

shapes the robotic research agenda of the European Com-

mission. Interestingly, these abilities are closely related to

the research challenges identified in the US Robotics road-

map27 (see Figure 2).

Basic abilities

Perception ability

The sensor and data analytics technologies from the IoT

can clearly give robots a wider horizon compared to local,

on-board sensing, in terms of space, time and type of infor-

mation. Conversely, placing sensors on-board mobile

robots allows to position them in a flexible and dynamic

way and enables sophisticated active sensing strategies.

A key challenge of perception in an IoRT environment

is that the environmental observations of the IoRT entities

are spatially and temporally distributed.28 Some techniques

must be put in place to allow robots to query these distrib-

uted data. Dietrich et al.29 propose to use local databases,

one in each entity, where data are organized in a spatial

hierarchy, for example, an object has a position relative to a

robot, the robot is positioned in a room and so on. Other

authors30,31 propose that robots send specific observation

requests to the distributed entities, for example, a region

and objects of interest: this may speed up otherwise intract-

able sensor processing problems (see Figure 3).

A key component of robots’ perception ability is getting

knowledge of their own location, which includes the ability

to build or update models of the environment.32 Despite

great progress in this domain, self-localization may still

be challenging in crowded and/or Global Positioning Sys-

tem (GPS)-denied indoor environments, especially if high

reliability is demanded. Simple IoT-based infrastructures

such as an radio frequency identification (RFID)-enhanced

floor have been used to provide reliable location informa-

tion to domestic robots.33 Other approaches use range-

based techniques on signals emitted by off-board

Figure 1. The scope of this review paper is the IoT as enabler in
distributed robotic systems. IoT: Internet of Things.

Figure 2. Mapping between the system abilities defined in the
multi-annual roadmap of euRobotics26 – along which this review is
structured – and the research challenges identified in the roadmap
for US Robotics.27
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infrastructure, such as Wi-Fi access points34 and visible

light,35 or by IoT devices using protocols such as Ultra-

Wideband (UWB),36 Zigbee37 or Bluetooth lowenergy.38,39

Motion ability

The ability to move is one of the fundamental added values

of robotic systems. While mechanical design is the key fac-

tor in determining the intrinsic effectiveness of robot mobi-

lity, IoT connectivity can assist mobile robots by helping

them to control automatic doors and elevators, for example

in assistive robotics40 and in logistic applications.41

IoT platform services and M2M and networking proto-

cols can facilitate distributed robot control architectures in

large-scale applications, such as last mile delivery, preci-

sion agriculture, and environmental monitoring. FIROS42

is a recent tool to connect mobile robots to IoT services by

translating Robot Operating System (ROS)43 messages into

messages grounded in Open Mobile Alliance APIs?. Such

an interface is suited for robots to act as a mobile sensor

that publishes its observations and makes them available to

any interested IoT service.

In application scenarios such as search and rescue,

where communication infrastructure may be absent or dam-

aged, mobile robots may need to set up ad hoc networks

and use each other as forwarding nodes to maintain com-

munication. While the routing protocols developed for

mobile ad hoc networks can be readily applied in such

scenarios, lower overhead and increased energy efficiency

can be obtained when such protocols explicitly take into

account the knowledge of robot’s planned movements and

activities.44 Sliwa et al.45 propose a similar approach to

minimize path losses in robot swarms.

Manipulation ability

While the core motivation of the IoT is to sense the envi-

ronment, the one of robotics is to modify it. Robots can

grasp, lift, hold and move objects via their end effectors.

Once the robot has acquired the relevant features of an

object, like its position and contours, the sequence of tor-

ques to be applied on the joints can be calculated via

inverse kinematics.

The added value of IoT is in the acquisition of the

object’s features, including those that are not observable

with the robot’s sensors but have an impact on the grasping

procedure, such as the distribution of mass, for example, in

a filled versus an empty cup. Some researchers attached

RFID tags to objects that contain information about their

size, shape and grasping points5. Deyle et al.46 embedded

RFID reader antennas in the finger of a gripper: Differences

in the signal strength across antennas were used to more

accurately position the hand before touching the object.

Longer range RFID tags were used to locate objects in a

kitchen47 or in smart factories,48,49 as well as to locate the

robots themselves.50

Higher level abilities

Decisional autonomy

Decisional autonomy refers to the ability of the system to

determine the best course of action to fulfil its tasks and

missions.26 This is mostly not considered in IoT middle-

ware:51–53 applications just call an actuation API of so-

called smart objects that hide the internal complexity.28

Roboticists often rely on Artificial Intelligence (AI)

planning techniques54,55 based on predictive models of the

environment and of the possible actions. The quality of the

plans critically depends on the quality of these models and

of the estimate of the initial state. In this respect, the

improved situational awareness that can be provided by

an IoT environment (see “Perception ability” section) can

lead to better plans. Human-aware task planners56 use

knowledge of the intentions of the humans inferred through

an IoT environment to generate plans that respect con-

straints on human interaction (see Figure 4).

IoT also widens the scope of decisional autonomy by

making more actors and actions available, such as control-

lable elevators and doors.40,57 However, IoT devices may

dynamically become available or unavailable,58 which

challenges classical multi-agent planning approaches. A

solution is to do planning in terms of abstract services,

which are mapped to actual devices at runtime.59

Interaction ability

This is the ability of a robot to interact physically, cogni-

tively and socially either with users, operators or other

systems around it.26 While M2M protocols60 can be

directly adopted in robotic software, we focus here on how

Figure 3. Distributed cameras assist the robot in locating a
charging station in an environment. The charging station was
placed between a green and yellow visual marker (location A).
Visual markers of the same colours were placed elsewhere in the
environment to simulate distractors. Visual processing is per-
formed on-demand on the camera nodes to inform the robot that
the charging station is at location A and not at the distracting
location B (Image from Chamberlain et al.30) (c) 2016 IEEE.

Simoens et al. 3



IoT technologies can facilitate human–robot interaction at

functional (commanding and programming) and social lev-

els, as well as a means for tele-interaction.

Functional pervasive IoT sensors can make the func-

tional means of human–robot interaction more robust. Nat-

ural language instructions are a desirable way to instruct

robots, especially for non-expert users, but they are often

vague or contain implicit assumptions.61,62 The IoT can

provide information on the position and state of objects

to disambiguate these instructions (see Figure 5). Gestures

are another intuitive way to command robots, for instance,

by pointing to objects. Recognition of pointing gestures from

sensors on-board the robot only works within a limited field

of view.63 External cameras provide a broader scene per-

spective that can improve gesture recognition.64 Wearable

sensors have also been used, for example, Wolf et al.65

demonstrated a sleeve that measures forearm muscle move-

ments to command robot motion and manipulation.

Social body cues like gestures, voice or face expression

can be used to estimate the user’s emotional state66 and

make the robot respond to it.67,68 The integration with

body-worn IoT sensors can improve this estimate by mea-

suring physiological signals: Leite et al.69 measured heart

rate and skin conductance to estimate engagement, motiva-

tion and attention during human–robot interaction. Others

have used these estimates to adapt the robot’s interaction

strategy, for example, in the context of autism therapy70 or

for stress relievement.71

Tele-interaction robots have also been used besides IoT

technologies for remote interaction, especially in healthcare.

Chan et al.72 communicate hugs and manipulations between

persons via sensorized robots. Al-Taee et al.73 use robots to

improve the tele-monitoring of diabetes patients by reading

out the glucose sensor and vocalizing the feedback from the

carer (see Figure 6). Finally, in the GiraffPlus project?, a

tele-presence robot was combined with environmental sen-

sors to provide health-related data to a remote therapist.

Cognitive ability

By reasoning on and inferring knowledge from experience,

cognitive robots are able to understand the relationship

Figure 4. The vacuum cleaning robot adapts its plan to avoid interference in the kitchen (Figure from Cirillo et al.56) (c) 2010 ACM.

Figure 5. Depending on the state of the environment, a natural language instructions results in different actions to be performed
(Image from Misra et al.62) (c) 2016 SAGE.
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between themselves and the environment, between objects,

and to assess the possible impact of their actions. Some

aspects of cognition were already discussed in the previous

sections, for example, multi-modal perception, deliberation

and social intelligence. In this section, we focus on the

cognitive tasks of reasoning and learning in an IoRT

multi-actor setting.

Knowledge models are important components of

cognitive architectures.74,75 Ontologies are a popular

technique in both IoT and robotics for structured knowl-

edge. Example ontologies describing the relationship

between an agent and its physical environment are the

Semantic Sensor Network,76 IoT-A77 and the IEEE

Ontologies for Robotics and Automation78 (ORA). For

example, Jorge et al.79 use the ORA ontology for spatial

reasoning between two robots that must coordinate in

providing a missing tool to a human. Recent works???

harness the power of the cloud to derive knowledge

from multi-modal data sources, such as human demon-

strations, natural language or raw sensor data observa-

tions?, and to provide a virtual environment for

simulating robot control policies. In an IoRT environ-

ment, these knowledge engines will be able to incorpo-

rate even more sources of data.

In the IoT domain, cognitive techniques were

recently proposed for the management of distributed

architectures.80,81 Here, the system self-organizes a

pipeline of data analytics modules on a distributed set

of sensor nodes, edge cloud and so on. To our knowl-

edge, the inclusion of robots in these pipelines has not

yet been considered. If robots subscribe themselves as

additional actors in the environment, then this gives rise

to a new strand of problems in distributed consensus and

collaboration for the IoT, because robots typically have

a larger degree of autonomy than traditional IoT ‘smart’

objects, and because they are able to modify the phys-

ical environment leading to complex dependencies and

interactions.

System level abilities

Configurability

This is the ability of a robotic system to be configured to

perform a given task or reconfigured to perform different

tasks.26

IoT is mainly instrumental in supporting software con-

figurability, in particular to orchestrate the concerted con-

figuration of multiple devices, each contributing different

capabilities and cooperating to the achievement of com-

plex objectives. However, work in IoT does not explicitly

address the requirement of IoRT systems to exchange

continuous streams of data while interacting with the

physical world.

This requirement is most prominent in the domains of

logistic and of advanced manufacturing, where a fast reac-

tion to disruptions is needed, together with flexible adapta-

tion to varying production objectives.

Kousi et al.82 developed a service-oriented architecture

to support autonomous, mobile production units which can

fuse data from a peripheral sensing network to detect dis-

turbances. Michalos et al.83 developed a distributed system

for data sharing and coordination of human–robot colla-

borative operations, connected to a centralized task plan-

ner. Production lines have also been framed as multi-agent

systems84,85 equipped with self-descriptive capabilities to

reduce set-up and changeover times.

General purpose middlewares have also been developed

to support distributed task coordination and control in IoRT

environments. The Ubiquitous Network Robot Platform86

is a general purpose middleware for IoRT environments

(see Figure 7). It manages the handover of functionality

for services using real and virtual robots, for example

reserving a real assistant robot using a virtual robot on the

smartphone.

Configurability can be coupled with decision ability to

lead to the ability of a system to self-configure. Self-

configuration is especially challenging in an IoRT system

since the configuration algorithms must take into account

both the digital interactions between the actors and their

physical interactions through the real world. The ‘PEIS

Ecology’ framework5 includes algorithms for the self-

configuration of a robot ecology: complex functionality is

achieved by composing a set of devices with sensing, act-

ing and/or computational capabilities, including robots. A

shared tuple-space blackboard allows for high level colla-

boration and dynamic reconfiguration.87

Adaptability

This is the ability of the system to adapt to different work

scenarios, environments and conditions.26 This includes the

ability to adapt to unforeseen events, faults, changing tasks

and environments and unexpected human behaviour. The

key enablers for adaptability are the perception, decisional

and configuration abilities as described above. Hence, we

Figure 6. The robot acts as a master Bluetooth device that reads
out glucose sensors and transfers them to the caregivers. The
robot is then used to provide verbal information concerning the
patient’s diet, insulin bolus/intake, and so on (Image from Al-Taee
et al.73) (c) 2017 IEEE.

Simoens et al. 5



will now discuss relevant application domains and support-

ing platforms.

Mobile robots are used in precision agriculture for the

deployment of herbicide, fertilizer or irrigation.88 These

robots need to adapt to spatio-temporal variations of crop

and field patterns, crop sizes, light and weather conditions,

soil quality, and so on.89 Wireless Sensor Network (WSNs)

can provide the necessary information,90,91 for example,

knowledge of soil moisture may be used to ensure accurate

path tracking.92,93 Gealy et al.94 use a robot to adjust the

drip rate of individual water emitters to allow for plant-

level control of irrigation. This is a notable example of how

robots are used to adjust IoT devices.

Some platforms supporting adaptation of IoRT have also

been showcased in the context of Ambient Assisted Living

(AAL). Building on OSGi, a platform for IoT home auto-

mation, AIOLOS exposes robots and IoT devices as reusa-

ble and shareable services, and automatically optimizes the

runtime deployment across distributed infrastructure, for

example, by placing a shared data processing service closer

to the source sensor.95,96 Bacciu et al.97,98 deploy recurrent

neural networks on distributed infrastructure to automati-

cally learn user preferences, and to detect disruptive envi-

ronmental changes like the addition of a mirror.99

Dependability

Dependability is a multifaceted attribute, covering the

reliability of hardware and software robotic components,

safety guarantees when cooperating with humans and the

degree to which systems can continue their missions when

failures or other unforeseen circumstances occur.

In this section, we follow the classification of means of

dependability identified by Crestani et al.100

A first means of dependability is to forecast faults or

conflicts. For instance, robots in a manufacturing plant

must stop if an operator comes too near. IoT technology

can provide useful tools to realize this. Rampa et al.101

mounted a network of small tranceivers in a robotic cell

and estimated the user position from the perturbations of

the radio field. Other researchers embedded sensors in

clothing and on the helmet. Qian et al.102 developed a

probabilistic framework to avoid conflicts of robot and

human motion, by combining observations from fixed cam-

eras and on-board sensors with historical knowledge on

human trajectories (see Figure 8).

In a marine context, acoustic sensor networks have

been used to provide information on water current and

ship positions to a path planner for underwater gliders,

to avoid collisions when they come to the surface103 or

to preserve energy.104

A second means of dependability is robust system engi-

neering. This can take new forms in an IoRT system. For

instance, mobile wireless communication is a key enabler

for industry 4.0, where both field devices, fixed machines

and mobile AGV are connected. IoT protocols such as

WirelessHart or Zigbee Pro were designed to address the

industry concerns on reliability, security and cost.105 When

Figure 7. The Ubiquitous Network Robot Platform is a two-layered platform. The LPF configures a robotic system in a single area. The
GPF is a middle-layer between the LPFs of different areas and the service applications (Image from Nishio et al.86). LPF: local platform;
GPF: global platform (c) 2013 Springer-Verlag.
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mobility is involved, however, these protocols must be

complemented by meshing technologies to cope with hand-

overs and with the massive presence of metal.106,107

The last means is fault tolerance, which allows the

system to keep working even when components fail.

Redundancy is key to fault tolerance, and the IoRT

enables redundancy of sensors, information and actuation.

Data fusion from both on-board and environment sensors,

however, requires a good understanding of the spatial and

temporal relationship between the observations from dif-

ferent sensors. Such relationships have been explicitly

modelled, for example, in the Positioning Ontology79

(POS), or implicitly learned as part of modular deep

neural network controller.108

Conclusion

Robotics and IoT are two terms each covering a myriad

of technologies and concepts. In this review, we have

unravelled the added value of the crossover of both

technology domains into nine system abilities. The IoT

advantages exploited by roboticists are mostly distribu-

ted perception and M2M protocols. Conversely, the IoT

has so far mostly exploited robots for active sensing

strategies. Current IoRT incarnations are almost

uniquely found in vertical application domains, notably

AAL, precision agriculture and Industry 4.0. Domain-

agnostic solutions, for example, to integrate robots in

IoT middleware platforms, are only emerging. It is our

conviction that the IoRT should go beyond the readings

of ‘IoT-aided robots’ or ‘Robot-enhanced IoT’. We hope

that this survey may stimulate researchers from both

disciplines to start work towards an ecosystem of IoT

agents, robots and the cloud that combines both the

above readings in a holistic way.
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