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Standard models of decision-making under risk and uncertainty are deterministic. Inconsistencies in choices

are accommodated by separate error models. The combination of decision model and error model, however,

is arbitrary. Here, I derive a model of decision-making under uncertainty in which choice options are mentally

encoded by noisy signals, which are optimally decoded by Bayesian combination with pre-existing infor-

mation. The model predicts diminishing sensitivity towards both likelihoods and rewards, thus providing

cognitive micro-foundations for the patterns documented in the prospect theory literature. The model is,

however, inherently stochastic, so that choices and noise are determined by the same underlying parameters.

This results in several novel predictions, which I test on one existing dataset and in two new experiments.
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As far as the laws of mathematics refer to reality, they are not certain, as far as they are certain, they do not

refer to reality.
Albert Einstein (1922), p. 28

1. Motivation

Take a wager paying a prize x if event e occurs, and y < x under the complementary event ẽ.

Assume that a decision maker has to choose between this wager and a sure amount of money, c,

where x > c > y. Traditionally, decision makers have been assumed to have deterministic utilities

over outcomes, as well as being able to form subjective beliefs over the occurrence of event e (Savage

1954). Choices of this type could then be used to recover the underlying belief and preference

parameters of the decision maker. Empirical observations, however, have pointed to choices that

are often inconsistent, even when the same choice options are repeated within relatively short time

delays (Mosteller and Nogee 1951, Tversky 1969, Agranov and Ortoleva 2017).

1



Author: Decisions under Uncertainty as Bayesian Inference
2 Article submitted to Management Science; manuscript no. MS-BDE-23-00265.R3

The dominant response to such challenges in work aimed at identifying preferences from choice

data has been to append an additive error term to the deterministic choice model (Hey and Orme

1994, Bruhin et al. 2010). The combination of error model and deterministic choice model, however,

is arbitrary, in the sense that it provides many degrees of freedom to the econometric modeller.

Buschena and Zilberman (2000) showed that inferences about the best-fitting choice model depend

on the chosen error structure; and, vice versa, that conclusions about the most suitable error struc-

ture depend on the choice model adopted—a phenomenon that they describe as a ‘path dependency

problem for model selection’ (p. 69). Conclusions reached based on any given combination of deci-

sion model and stochastic choice structure could thus be driven by arbitrary assumptions about

the error structure (Alós-Ferrer et al. 2021).

I propose a model in which decision makers receive imperfect, noisy signals about the choice

quantities. They then combine these noisy signals with mental priors describing the likelihood of

different values in the environment to make inferences about the true choice options triggering

the signals. The model is inherently stochastic, so that the decision model and stochastic choice

model emerge organically from one and the same setup.1 The model predicts decreasing sensi-

tivity to rewards and probabilities much as documented in prospect theory (PT ; Kahneman and

Tversky 1979, Tversky and Kahneman 1992, Wakker 2010), thus establishing micro-foundations

for observed choice behaviour. At the same time, however, the model departs markedly from PT

in other respects. The same parameters determine discriminability between choice options and

decision noise. The model thus predicts that the ‘white noise’ assumption underlying typical PT

implementations is not warranted. This is problematic inasmuch as systematic correlations between

errors and decision parameters may bias the inferences about preferences drawn from such models.2

I present several empirical tests to illustrate the model predictions. The first test examines

novel predictions about patterns we should observe when estimating PT preference functionals on

data that were truly generated by the Bayesian Inference Model (BIM ) presented here. The first

prediction concerns correlations between the decision parameters and noise. Perhaps surprisingly,

such correlations have not been systematically examined to date. Correlations between noise and

decision parameters may violate the ‘PT plus white noise’ assumption, and may affect the very

inferences about preference parameters that are the main interest of such empirical estimations.

The BIM, on the other hand, predicts exactly this sort of correlations based on errors affecting the

mental representation of the choice stimuli, with the perceptual noise variance entering both the

1 Other examples of stochastic models are Busemeyer and Townsend (1993) and Gul and Pesendorfer (2006). Both
the cognitive foundations and the predictions of my model, however, are quite distinct from these models.

2 Some recent papers have discussed related issues (Wilcox 2011, Blavatskyy 2014, Apesteguia and Ballester 2018).
The insights presented here, however, rely on a model making precise predictions on the form of correlations we ought
to observe in standard ‘PT plus additive noise’ setups based on a fully stochastic decision model.
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definition of the decision parameters and the noise term. As showcased by Buschena and Zilberman

(2000), this may not only affect preference parameters in quantitative terms, but can hit at the

very heart of the debate on the descriptive validity of different decision models. Alós-Ferrer and

Garagnani (2022) indeed showed that imposing a symmetric noise structure on data can produce

inferences seemingly supporting a given model even if the underlying data have been generated

based on a random choice algorithm.

The second test concerns PT’s strict precept of probability-outcome separability. Violations of

this precept under risk are well known, and take the form of probability weighting being affected

by stake size (Hogarth and Einhorn 1990, Fehr-Duda et al. 2010, Bouchouicha and Vieider 2017).

The BIM further predicts a novel violation of probability-outcome separability under ambiguity.

While models of decision making typically distinguish categorically between risk and ambiguity

(Ghirardato et al. 2004, Wakker 2010, Abdellaoui et al. 2011), the Bayesian inference model I

present places the two on a continuum of uncertainty about choice stimuli. Knowledge about

probabilities is thereby predicted to affect utility curvature, so that ambiguity will be reflected in

utility curvature as well as in probability weighting. The driving force is once again complexity,

since ambiguous probabilities are arguably more difficult to assess than known probabilities. Here, I

test this prediction using an original dataset that is rich enough to allow for the separate estimation

of all the relevant quantities under both risk and ambiguity.

Finally, I present a test pitching PT against the BIM on binary choice data, using the ‘mirrors’

of risky choice situations introduced by Oprea (2022). If some subjects simply adopt a heuristic of

switching towards the middle of any given list, this could yield inferences that mechanically resemble

likelihood-distortions (Vieider 2018). I thus compare binary choices for risk to binary choices for

mirrors of the same tasks. The BIM makes no fundamental distinction between these two settings.3

PT, on the other hand, models the first setting as being driven by attitudes towards risk, whereas

the second setting reduces to a comparison of sure outcomes. I find behaviour for mirrors to closely

correspond to behaviour for risky lotteries. The BIM produces comparable parameter estimates in

the two settings. This illustrates the ability of the BIM to capture and quantify patterns of choice

beyond the realm of risk and ambiguity.

The approach taken here builds on an influential theoretical paradigm in neuroscience, according

to which the brain uses probabilistic mechanisms to encode perceptual information about the world,

and decodes this information by Bayesian updating with a mental prior (Knill and Pouget 2004,

Doya et al. 2007, Vilares and Kording 2011). This will be optimal whenever decision settings are

complex, and thus taxing for the constrained mental resources allocated to a problem (Bhui et al.

3 The BIM is not alone in being able to account for similar behaviour in risky choices and choices without risk
maintaining the same level of complexity, see e.g. Steiner and Stewart (2016) and Netzer et al. (2021).
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2021). Noise in the perception of choice quantities will then arise in quick approximate tradeoffs

between multi-dimensional choice options. This serves to add computational realism to economic

choices, which is often lacking in traditional models (Bossaerts et al. 2019).

The noisy neural coding of choice stimuli will naturally result in discrimination difficulties for

values that are observed infrequently, an intuition that is shared with a variety of other models

(Robson 2001, Netzer 2009, Woodford 2012, Steiner and Stewart 2016, Netzer et al. 2021). Such

discrimination difficulties for relatively infrequent stimuli will result in regression to the mean,

which can explain a number of behavioural regularities (Zhang and Maloney 2012). The degree of

this phenomenon will, in turn, be governed by the relative confidence subjects have in the evidence,

a phenomenon that has been documented empirically under the label of cognitive undertainty

(Enke and Graeber 2023). Note that such a system may indeed be optimal, given that the weights

determining the degree of regression to the mean are endogenously determined by the relative

magnitudes of perceptual noise and environmental variation. Past experiences as enshrined in the

prior then serve to rein in the worst biases that could arise from the noise, which results in efficient

decision-making when cognitive resources are limited and many complex decisions have to be taken

in short sequence. More in general, coding noise ought to be seen as subject to costly attentional

modulation, so that it can be optimally adjusted whenever the situation warrants this.

The model I present is closely related to some recent contributions in economics. Notably, Khaw

et al. (2021) used a formally similar noisy numerical perception setup to explain small stake risk

aversion. My model differs from theirs in several respects. While they assume probabilities to be

objectively perceived, I allow for the noisy perception of both probabilities and outcomes. Outcomes

are furthermore assessed in a comparative cost-benefit setting, which formalizes the underlying

intuition that noise arises from approximate tradeoffs. The noisy perception of probabilities makes

the model applicable to uncertainty as well as risk, and even to deterministic mirrors of risky wagers

(Oprea 2022). It furthermore allows for accommodating risk seeking for gains and risk aversion for

losses, both of which are beyond the reach of the model of Khaw et al. (2021).

The BIM is also closely related to other recent models of noisy cognition. Gabaix and Laibson

(2017) show that hyperbolic discounting can emerge from the noisy perception of future utilities

by otherwise perfectly patient Bayesian decision makers. In a twin paper (Vieider 2021), I discuss

a model applying an identical numerical perception setup to time delays, and show how the model

accounts for several open puzzles. Natenzon (2019) uses a related Bayesian noisy perception setup

to explain the attraction and compromise effects. The results I present are further related to a

large literature showcasing the instability of revealed preferences. Revealed preferences ought to

be unstable to the extent that individual choices are based on noisy signals, and to the extent

that priors change over time. Such instability has been documented extensively for inter-temporal
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correlations of risk attitudes—see Chuang and Schechter (2015) for a review. The same sort of

instability has also been documented specifically for PT parameters (Zeisberger et al. 2012).

The insights I present have potentially far-reaching policy implications. For one, the model

suggests that revealed choice behaviour is not indicative of actual risk preferences, making it

optimal for a welfare-maximizing policy maker to ignore such patterns. It should furthermore

become possible to steer behaviour by simplifying the decision environment, providing training

on how to efficiently handle complex decision situations, or by providing advice to overcome such

complexities. Indeed, if what we think of as preferences is driven to a large extent by the noisy

processing of complex decision situations and by changeable priors, then such decisions should be

eminently malleable and subject to policy intervention.

2. The Bayesian Inference Model
2.1. Noisy coding of uncertainty as log-likelihood ratios

I start by showcasing the efficiency of coding probabilistic information in terms of likelihood ratios.

Assume a decision maker (DM ) needs to take a decision based on her assessment of the likelihood

of an uncertain event e.4 Assume that the DM does not know the true likelihood of e occurring, but

observes a noisy signal, s, about this likelihood. Assume further that the DM knows the probability

of the signal conditional on the event, P [s|e], as well as the probability of the signal conditional

on the complementary event ẽ, P [s|ẽ]. The DM can then use the following equation to infer the

likelihood of the event, conditional on the signal:

P [e|s]
P [ẽ|s]

=
P [s|e]
P [s|ẽ]

× P̂ [e]

P̂ [ẽ]
, (1)

where the ratio P̂ [e]

P̂ [ẽ]
indicates the prior likelihood ratio, which incorporates any knowledge the DM

may have previously held about the likelihood of event e.5

This setup can be used to arrive at an optimal choice rule based on the relative costs and benefits

of different actions. Take a wager offering x conditional on event e, but y < x if ẽ obtains instead,

and assume it is compared to a sure outcome, c. Integrating the costs and benefits from taking the

wager into equation 1, the wager will be preferred to the sure option whenever:

P [e|s]
P [ẽ|s]

× (x− c)

(c− y)
> 1, (2)

4 I will generally work with discrete events (e.g., a ball extracted from an urn is blue), and associated probabilities
P [e]. For continuous outcome variables (the stock market index increases by over 2% in a given year; cumulative
rainfall during the agricultural planting season falls between 500mm and 700mm), this constitutes a slight abuse of
notation for the more accurate P [a< e< b] =

∫ b

a
f [e]de, where f indicates the probability density function.

5 This follows from an application of Bayes rule, whereby P [e|s] = P [s|e]∗P̂ [e]
P [s]

. The use of likelihood ratios means that

P [s] conveniently cancels out of the expression.
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where x− c indicates the benefit from choosing the wager over the sure amount, and c− y the

cost (see Loomes 2010, for a model based on a similar intuition). This choice rule is optimal, being

based on Bayesian updating and expected value maximization. It is further used without loss of

generality. If the DM has a concave utility function defined over lifetime wealth, the choice model

can be augmented by such a preference without altering the conclusions that follow.

From a computational point of view, it is convenient to take the natural logarithm of (2), thus

transforming the choice rule from a product to a sum. Gold and Shadlen (2001) explicitly discuss

the neural realism of such a choice rule. The optimality of the choice rule is unaffected by such

an operation, since any monotonic transformation will leave this choice rule unaltered. This holds

both ex ante and ex post, and the results presented below do not change in any substantive way

if I use the choice rule in (2) instead (see online appendix S1). The choice rule then becomes:

ln

(
P [e|s]
P [ẽ|s]

)
> ln

(
c− y

x− c

)
. (3)

The wager should be chosen over the sure option whenever the log-likelihood ratio of event e and

its complement ẽ exceeds the log cost-benefit ratio.

The model can easily be extended to the comparison of multi-outcome wagers. Take two wagers

offering outcomes xxx= {x1, ..., xn} and yyy= {y1, ..., yn} under events e1, ..., en, where wager xxx is riskier.

The event space is constructed in a way as to encompass all comparative events. The optimal choice

rule equivalent to (2) then takes the following form:

n−1∑
i=1

P [ei]

P [en]

(xi− yi)

(yi−xn)
> 1, (4)

which sums the relative costs and benefits of the two wagers. The equation takes the form of an

optimal choice rule used in signal detection theory (Green et al. 1966). It incorporates the same

two principles as (2)—optimal belief updating, and assuming additivity of probabilities, expected

value maximization. The reference outcome, here taken to be xn, is arbitrary, since the choice

rule enshrines within it all pairwise comparisons (similar to what happens in multinomial logits).

To see this, let Vin ≜
P [ei]

P [en]

(xi−yi)
(yi−xn)

. It is then straightforward to derive any binary comparison as

Vij = Vin/Vjn.

The model I will present below is based on the premise that mental processing of uncertain

wagers functions much like in the optimal choice rule above. According to an influential theoretical

paradigm in neuroscience, the human brain acts as a Bayesian inference machine, continuously

combining noisy signals about the environment with prior beliefs to assess the relative merit the

choice options (Knill and Pouget 2004, Doya et al. 2007, Vilares and Kording 2011). Even numer-

ically represented quantities, such as a monetary outcome x or an objectively given probability p,
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will be mentally represented by a noisy signal before entering the choice process. Noise will arise

especially when assessments of the relevant quantities are made quickly and intuitively. Such noise

may indeed be an optimal reaction to many complex tradeoffs being presented in short sequence.

In general, however, noise ought to be seen as subject to attentional modulation, so that it will be

a function of the importance and the complexity of the decision at hand.

2.2. Bayesian mental processing of noisy signals

I now present a step-by-step derivation of subjective choice parameters from the mental encoding-

decoding of choice stimuli. For simplicity’s sake, I will present the derivation for the choice between

a binary wager and a sure outcome, as in (3). The derivation for the more general choice rule in

(4) proceeds very similarly, and is shown in Appendix A.

The mental encoding stage and the likelihood

Take a vector of mental signals, rrr, encoding the characteristics of a given choice problem. The

signals in this vector can be thought of as neural firing rates, encoding the desirability of the choice

stimuli in the brain. The mental signals in rrr thus play a role that is analogous to that of the signal s

used above to illustrate the optimal choice rule. Just like s above, the mental signals will generally

be noisy, and the noise itself may carry useful information about the accuracy of the signals.

Other than above, however, not only uncertain events are represented by mental signals, but so

are nominally certain monetary outcomes, the exact nature of which also needs to be inferred by

the mind from noisy signals. I will thus assume that there are two such mental signals in rrr, re and

ro, encoding the desirability of the likelihood ratio and the cost-benefit ratio, respectively.6 Costs

c− y and benefits x− c from taking the wager are best conceived of as approximate comparisons,

rather than the precise mathematical quantities entailed by the differences depicted, thus providing

a further rationale for their noisy mental representations.7

Stimuli will have compressed mental representations for efficiency reasons, and logarithmic func-

tions are typically used to model such mental representations (Dayan and Abbott 2001, Petzschner

et al. 2015). It has been shown that the activation of neurons responsible for the approximate

mental representations of numbers is best fit by a normal distribution with as its argument the

6 The setup with two mental signals corresponds to a minimal setup in which the two choices can be compared. In
particular, modelling costs and benefits through two separate mental signals will only result in a rescaling of decision
noise, and is thus inconsequential from any practical point of view. I abstract from explicitly modelling the encoding
of other aspects of the decision situation, such as the colours associated with winning and losing options, since they
are not of central importance to the decision to be taken and do not enter the optimal choice rule derived above.

7 In particular, transformation of single numerical quantities such as modelled by Khaw et al. (2021) could be included
in the equation to provide a further rationale for the noisy comparison modelled here, so that my approach is
complementary to theirs. Tversky (1969) discusses the superiority of such a comparative setup, inasmuch as it contains
the transformation of single quantities within as a special case and facilitates otherwise taxing value judgments. I
refrain from formally introducing such additional transformations for the sake of analytical tractability.
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logarithm of the number being represented (Dehaene and Changeux 1993, Dehaene 2003, Nieder

and Miller 2003, Piazza et al. 2004, Harvey et al. 2013). The underlying rationale for logarith-

mic coding can be traced back to the functional architecture of the neural system, where single

neurons tend to have receptive fields that are tuned towards the detection of stimuli falling into

a pre-determined range. Howard and Shankar (2018) show that logarithmic spacing of receptive

fields is optimal inasmuch as it allows an organism to adapt to the statistics of the environment

with maximum flexibility. This conclusion holds independently of the distribution of actual stimuli

in the environment, which is a priori unknown to the organism.

I thus assume that re and ro are two independent signals representing the log-likelihood ratio

and the cost-benefit ratio. Note that re and ro constitute a shorthand for the more accurate re|e

and ro|x, y, c, since the signals are conditional on the specific stimulus being presented. The term

ln
(
P [e]

P [ẽ]

)
thus indicates the mental probability representation in the expression below, which is

assumed to correspond to the true underlying probabilities in the case of fully described risks. The

same holds for Ellsberg urns, where the true probability can be inferred from an exchangeability

argument. The two signals are independently drawn from the following likelihood functions:

re ∼N
(
ln

(
P [e]

P [ẽ]

)
, ν2

)
, ro ∼N

(
ln

(
c− y

x− c

)
, ν2

)
, (5)

where ν is the common coding noise of the log odds and the log cost-benefit ratio, capturing the

uncertainty around the true mean of the stimulus with which a given stimulus is perceived.8 The

coding noise is modelled as being common to the two dimensions since different coding noises

would not be separately identifiable from direct tradeoffs—an important feature of a model that

is supposed to be neurally implemented. This same assumption is indeed maintained throughout

the Bayesian noisy coding literature (Natenzon 2019, Khaw et al. 2021). The representation as

the logarithm of the stimuli implies that the difference necessary for two stimuli to be reliably

discriminated will be proportional to the magnitude of the stimuli themselves (Dayan and Abbott

2001, ch. 3). This amounts to a so-called just noticeable difference in the stimulus m, ∆m, so

that ∆m
m

is a constant. Neural coding can thus be seen as the driving factor behind a behavioural

phenomenon that has long been known in psychophysics as the Weber-Fechner law (Fechner 1860).

The mental decoding stage and the posterior expectations

The information provided by the noisy mental signals re and ro needs to be decoded to be trans-

formed into actionable quantities that can inform the decision process. This is due to the uncer-

tainty in the mental representation of the stimuli, which makes it desirable to combine the encoded

8 In the case of degenerate choices involving e.g. x= c or c= y, the equations in (5) are not defined. This can easily
be fixed by adding an arbitrarily small number, ϵ, to both the numerator and denominator inside the logarithm. I do
not do this here to avoid notational clutter.
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signal with prior information about what sort of stimuli are likely to be encountered in the given

decision environment. It seems natural to let the mental priors used to this effect follow a normal

distribution, since the choice of a conjugate prior distribution will minimize the burden in terms of

neural computations. This, once again, serves to increase the biological realism of the model. The

priors take the following form:

ln

(
P [e]

P [ẽ]

)
∼N

(
ln(ξ) , σ2

e

)
, ln

(
c− y

x− c

)
∼N

(
ln(ζ) , σ2

o

)
(6)

where ln (ξ) and ln(ζ) are the means and σe and σo are the standard deviations of the two priors.

The logit-normal distributions imply that the prior mean will be 0 for likelihoods and costs and

benefits that are equal on average, and will tend towards plus and minus infinity as the differences

between these quantities become extreme. Such symmetric distributions around the mean provide

a realistic representation of typical choice quantities a DM would encounter across a range of

environments.

Combining the likelihoods in (5) with the priors in (6) by Bayesian updating, we obtain the

following posterior distributions, conditional on the mental signals drawn:

ln

(
P [e]

P [ẽ]

)∣∣ re ∼N
(

σ2
e

σ2
e + ν2

× re+
ν2

σ2
e + ν2

× ln (ξ) ,
ν2σ2

e

ν2 +σ2
e

)
ln

(
c− y

x− c

)∣∣ ro ∼N
(

σ2
o

σ2
o + ν2

× ro+
ν2

σ2
o + ν2

× ln (ζ) ,
ν2σ2

o

ν2 +σ2
o

)
,

(7)

where σ2e
σ2e+ν

2 and σ2o
σ2o+ν

2 constitute the Bayesian shrinkage weights assigned to the signals of the

log-likelihood ratio and the log cost-benefit ratio of the stimulus, relative to the weights assigned to

the means of the priors. Given the importance of these weights for what follows, I will henceforth

use the following shorthand for the weights:

γ ≜
σ2
e

σ2
e + ν2

, α≜
σ2
o

σ2
o + ν2

, (8)

so that ν2

σ2e+ν
2 = 1 − γ and ν2

σ2o+ν
2 = 1 − α. The relative uncertainty associated with the mental

signal and the prior, as captured by ν and {σe, σo}, will thus determine how much weight will be

attributed to the signal versus the prior in the posterior mean. As the coding noise parameter ν

converges to 0, the signal will accurately reflect the stimuli, and the weights put on the signals will

converge to 1. For coding noise strictly larger than 0 and weights strictly smaller than 1, however,

the expectations of the log-likelihood ratio and the log-cost benefit ratio conditional on the signals

will reflect a convex combination of signals and priors.

The actionable choice rule

The posterior expectations of the choice quantities just derived can now inform the decision process.
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To this end, we must amend the optimal choice rule described in equation 3 by replacing the

objective quantities with their mental representations:

E

[
ln

(
P [e]

P [ẽ]

)∣∣ re]>E [
ln

(
c− y

x− c

)∣∣ ro] , (9)

indicating that the wager on event e will be accepted whenever the posterior expectation of the

log-likelihood ratio exceeds the posterior expectation of the log cost-benefit ratio. Note, however,

that the choice rule will nevertheless not be deterministic, since it depends on the stochastic signals

re and ro, which are drawn from the distributions in (5). Substituting the posterior expectation

from (7) into the choice rule in (9) and solving for the mental signals, we get:

γ× re−α× ro > ln(δ)
−1, (10)

where δ ≜ ξ1−γ × ζα−1, and where ln(δ)−1 provides the threshold which the weighted difference of

mental signals on the left-hand side needs to exceed in order for the wager to be accepted. The

threshold parameter δ has a natural interpretation, since it is made up by the prior mean of the

likelihood ratio, multiplied by the prior mean of the benefit-cost ratio (i.e., the inverse of the cost-

benefit ratio)—the more favourable the prior expectation of the likelihood ratio and of the benefit

to cost ratio, the more likely the DM will be to accept the wager.

The probabilistic choice rule

To derive an expression for the probability with which the wager will be chosen over the sure

outcome that can be observed by an econometrician, we need to obtain an expression free of the

unobservable mental signals. To this end, we obtain the z-score of the weighted difference in mental

signals in (10) by jointly distributing the two signals exploiting the known distributions in (5).

Obtaining the z-score, and comparing it to the z-score of the threshold equation yields the following

probabilistic choice rule (see proof below):

Pr[(x, e;y)≻ c] = Φ

γ× ln
(
P [e]

P [ẽ]

)
−α× ln

(
c−y
x−c

)
− ln(δ)−1

ν×
√
γ2 +α2

 , (11)

where Φ is the standard normal cumulative distribution function. Notice how the same parame-

ters governing the discriminability between the choice options are also driving decision noise. All

model parameters are indeed tightly intertwined, with coding noise ν constituting the common

cause binding everything together. The noise term in the denominator can further be rewritten

as
√

ν2σ4e
(ν2+σ2e)

2 +
ν2σ4o

(ν2+σ2o)
2 , showing that it is made up of the variances of the response distributions,

i.e. of the distributions of the inferred choice stimuli conditional on the real choice stimuli (see

Ma et al. 2023, ch. 4). Stochasticity in choices is thus driven by the average uncertainty about the

posterior inferences on the choice stimuli.
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Proof of Probit equation. Given that re and ro follow a normal distribution, their weighted

difference in (10) will itself follow a normal distribution:

γ× re−α× ro ∼N
(
γ× ln

(
P [e]

P [ẽ]

)
−α× ln

(
c− y

x− c

)
, ω2

)
,

where ω≜ ν×
√
γ2 +α2 is the standard deviation of the weighted difference of the two uncorrelated

noisy mental signals. This yields the following z-score:

z =
γ× re−α× ro−

[
γ× ln

(
P [e]

P [ẽ]

)
−α× ln

(
c−y
x−c

)]
ω

.

Transforming the threshold equation (10) to be expressed on the same scale, we obtain

zt =
γ× re−α× ro+ ln(δ)−1

ω
.

Subtracting z− zt eliminates the unobservable signals and yields the expression inside parentheses

in (11). Since a z-score follows a standard-normal distribution by definition, a difference between

two z-scores will also follow a standard normal distribution. □

2.3. The BIM generates PT functionals for binary wagers

I now show that the BIM results in stochastic micro-foundations for choice patterns as they have

been documented in the PT literature. We can write the point of indifference in the numerator in

(11) as follows, where indifference is taken to mean a 50% chance of choosing either choice option:

ln

(
c− y

x− c

)
= α−1

[
ln(δ)+ γ× ln

(
P [e]

P [ẽ]

)]
. (12)

This represents the point of indifference between (x, e;y) and c, where the likelihood dimension

on the right—subjectively transformed by the mental representation parameters α, γ, and δ—is

traded off against the outcome dimension on the left. Let us define π(P [e]) ≜ c−y
x−y , which is the

solution of the equation c= π(P [e])x+(1−π(P [e]))y for the decision weight π(P [e]) under a dual-

EU representation of the choice problem (Yaari 1987). Assuming P [ẽ] = 1 − P [e] following PT,

we obtain ln
(
c−y
x−c

)
= ln

(
π(P [e])

1−π(P [e])

)
. Substituting this expression into (12) and solving for π(P [e])

yields:

π(P [e]) =
δ1/α(P [e])γ/α

δ1/α (P [e])
γ/α

+(1−P [e])γ/α
. (13)

This closely resembles a probability-distortion function commonly used in the decision-making

literature (Goldstein and Einhorn 1987, Gonzalez and Wu 1999, Bruhin et al. 2010). The variance

ratio α ≤ 1 allows for outcome distortions in addition to probability distortions, and shows how

probability weighting emerges from the tension between the two. The parameter γ mostly governs

the slope of the function, capturing likelihood-sensitivity. The fact that γ decreases in the noisiness
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of the coding process receives support from findings showing that probabilistic sensitivity increases

with cognitive ability (Choi et al. 2022). The parameter δ determines mostly the elevation of the

function, thus governing global optimism/pessimism.

The mapping just presented shows how PT-like parameters naturally emerge from noisy mental

representations of choice stimuli and their mental decoding by a prior distribution, indicating

the likelihood of different stimuli in a given environment. A difference from PT is that outcome-

distortions are defined over the costs and benefits associated with different events, rather than

over single outcomes. Such a comparative setting has a number of advantages over outcomes being

transformed individually. For one it is more general, and could accommodate transformations of

single outcomes within it (Tversky 1969). It will also facilitate the evaluation of choice tasks, since

outcomes are compared directly instead of being evaluated separately. The comparative setting

thus seems well-suited for the approximate valuation entailed by the BIM, since it allows to simplify

the problem when some quantities are approximately equal.

We can also conceive of x, y, and c as losses, with x > c > y. The setup just derived can then

directly be applied to this situation. Assume that under event e the DM stands to lose x, or else

lose y < x under ẽ, and that this scenario is compared to a sure intermediate loss of c. The gains

and losses are now flipped relatively to the setup discussed above, so that x− c constitutes the cost

from taking the wager, and c−y the benefit, with everything else remaining the same. Such a setup

will then naturally result in decreasing sensitivity towards costs and benefits in both the gain and

loss domain, much like PT incorporates decreasing sensitivity towards absolute outcomes relative

to a reference point. Furthermore, the mechanism used to account for loss aversion in Khaw et al.

(2021) carries over to this setting, so that the model can also account for loss aversion.9

We can further derive substantive predictions about behaviour from the intuitions emerging from

the model. Under the BIM, the parameter δ has a natural interpretation as the mean of the prior.

Let ξ = ψ
1−ψ and α = 1, so that δ =

(
ψ

1−ψ

)1−γ
. The parameter ψ can then be shown to coincide

with the fixed point of the probability-distortion function where the function crosses the 45◦ line.

Substituting ψ into the decision weight for the probability P [e], we obtain:

ln

(
π(ψ)

1−π(ψ)

)
= γ× ln

(
ψ

1−ψ

)
+(1− γ)× ln

(
ψ

1−ψ

)
= ln

(
ψ

1−ψ

)
, (14)

from which follows that π(ψ) =ψ, and by extension, π(P [e]) = P [e]. The expectation of the mental

prior thus coincides with the fixed point of the probability-distortion function, at which probabilities

are perceived without subjective distortions.

9 Khaw et al. (2021) describe loss aversion by different priors for gains and losses. If the prior mean for losses is larger
in absolute value than the one for gains, then loss aversion takes the form of a multiplicative constant just like in PT
under some additional constraints on the variances.
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Decisions under risk and ambiguity. The BIM can directly be applied to decision-making

under risk and ambiguity. The case of risk obtains by setting P [e] = p, with p a fully described

probability. The case of ambiguity obtains when subjects are asked to bet on Ellsberg-urns with

unknown colour proportions (Ellsberg 1961, Abdellaoui et al. 2011). Given that unknown odds are

more difficult to encode than known odds (Petzschner et al. 2015), we should expect coding noise to

increase as the information about the probabilities involved becomes more vague.10 This yields the

prediction that γa <γr, where the subscripts a and r stand for ‘ambiguity’ and ‘risk’ respectively—a

phenomenon known as ambiguity-insensitivity, which is well-documented (Abdellaoui et al. 2011,

Dimmock et al. 2015, Trautmann and van de Kuilen 2015, L’Haridon et al. 2018). Once again, this

prediction is driven by the Bayesian aggregation of evidence and prior. With the evidence carrying

less weight under ambiguity, we should expect regression to the mean of the prior to increase in

strength. This prediction is further supported by the finding that time pressure, which presumably

augments coding noise, increases ambiguity-insensitivity (Baillon et al. 2018b).

It is now at the time to circle back to the noise term. Other than under typical stochastic

implementations of PT, where the decision model and the noise model are combined in an ad

hoc fashion, decision noise naturally emerges from the same mental encoding-decoding process as

the other model parameters. Outcome-discriminability α and likelihood-discriminability γ directly

enter the definition of decision noise, ω≜ ν×
√
α2 + γ2, and coding noise enters the definition of the

discriminability parameters α≜ σ2o
σ2o+ν

2 and γ ≜ σ2e
σ2e+ν

2 . This implies that both the choice parameters

and decision noise will be causally determined by noise in the signals as quantified by ν. It follows

that parameters estimated in a PT setup, which neglects these intricate interrelations, should be

correlated in a systematic way. This concerns primarily correlations between the noise parameter

and likelihood-sensitivity, with knock-on effects on other parameters. (Being defined over costs

and benefits, the outcome-discriminability parameter, α, deviates more substantially from utility

curvature in PT, so that the predictions are less crisp). The correlations are predicted to occur

because of an ‘omitted variable bias’ in the ‘PT plus white noise’ setup, with coding noise ν playing

the role of the omitted variable according to the predictions of the BIM.

Coding noise and separability violations. A further consequence of the role played by ν

in the definitions of α and γ is that no strict separability between the likelihood and outcome

dimensions seems warranted, in opposition to what is postulated by PT. We may thus expect

coding noise to increase in stakes. This should then be reflected in lower outcome-discriminability,

10 I limit my discussion to the case of Ellsberg urns with unknown colour proportions. Findings may well deviate
from the ones described here in other contexts, since it is well-known that ambiguity attitudes over natural sources of
uncertainty may vary depending on a DM’s knowledge of the specific context or the DM’s perceived competence in
a given task (Heath and Tversky 1991, Abdellaoui et al. 2011). Presumably, such effects may be created by learning
(Baillon et al. 2018a), but a formal treatment of this issue is beyond the scope of this paper.
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resulting in apparent patterns of increasing relative risk aversion (Holt and Laury 2002). The

same change will also result in apparent changes in likelihood-discriminability, thus impacting

the probability dimension. Under PT, such effects will take the form of violations of probability-

outcome separability, whereby changes in stakes ought to be reflected purely in utility curvature

and leave probability-distortions unaffected. Such violations are well-documented in the literature

(Hogarth and Einhorn 1990, Fehr-Duda et al. 2010, Bouchouicha and Vieider 2017).

The flip-side of this issue is observed when moving from risk to ambiguity. Given the increase

in coding noise we expect under ambiguity, the BIM predicts a lowered level of likelihood-

discriminability. The latter, in turn, is expected to go hand-in-hand with a lowering of outcome-

discriminability, which results from the increase in coding noise for equal variance of choice stimuli,

so that σe can be expected to remain constant across the two settings. While remaining undocu-

mented to date, such a pattern would contradict PT, according to which ambiguity attitudes ought

to be reflected purely in probability weighting (Wakker 2010, Abdellaoui et al. 2011, Dimmock et

al. 2015).

3. Empirical evidence
3.1. PT parameters show systematic correlations with noise

I start by examining parameter correlations in PT models. I use the rich individual-level data of

Bruhin et al. (2010) collected in 3 different experiments, to estimate distributions of PT parameters

(results based on the 30 country data of L’Haridon and Vieider 2019 are similar, see appendix

S2). The basic econometric framework follows the one in the original paper (see appendix S2 for

details). Other than in the original paper, I use Bayesian random parameter models to estimate the

model parameters (Gelman et al. 2014b). This method is geared towards maximizing the predictive

power of the model for new data, rather than towards optimizing its fit to existing data.

The BIM predicts that the parameters governing sensitivity towards outcomes and probabilities

are governed by coding noise. This results in a prediction that, when estimating a PT model, the

noise term ought to be correlated with the decision parameters, given that the residuals will also be

determined by coding noise. In a typical PT setup plus noise, on the other hand, the additive noise

term is assumed to take the form of ‘white noise’, and thus to be independent of the decision model

itself. The same issues, however, also generalize to more sophisticated noise structures such as the

contextual utility model of Wilcox (2011), since they do not take the specific mechanism predicted

by the BIM into account. A violation of independence of preference parameters and noise would

be problematic, since any inferences on preference parameters one draws from the model may then

be sensitive to the specific assumptions about noise. I will test these predictions using Spearman

rank correlations on the estimated parameters.11 Any p-values reported are always two-sided.

11 I use rank correlations to minimize the impact of potential outliers. Correlations based on the estimated covariance
matrix or calculated using the full richness of the Bayesian posterior draws deliver analogous results.
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To ensure comparability with the model derived above, I adopt power utility throughout, so that

u(x) = xα̂. I will use the Goldstein and Einhorn (1987) probability-distortion function for the same

reason, with parameters γ̂ and δ̂, where the ‘hat’ serves to distinguish the PT parameters from the

equivalent BIM-generated parameters. These same functional forms were also used in the original

paper. I will refer to γ̂ as likelihood-sensitivity, and to α̂ as outcome-sensitivity, to distinguish them

from the equivalent BIM-derived parameters, to which I refer as discriminability parameters.

Figure 1 shows correlations between decision noise and likelihood-sensitivity γ̂ for gains and

for losses. Note that the econometric model allows for heteroscedasticity in errors across outcome

domains, and the errors for gain and losses are thus not the same. All results presented are robust

to using contextual errors as proposed by Wilcox (2011) instead. Panel 1(a) shows a scatter plot

of the PT noise parameter, ω̂+, against the likelihood-sensitivity parameter, γ̂+, for gains. The

two parameters show a strong negative correlation (ρ=−0.422, p < 0.001), which is also present in

each of the 3 individual experiments. The results for losses, shown in panel 1(b), are very similar

(ρ = −0.389, p < 0.001). For both gains and losses, a small group stands out that has virtually

no noise and likelihood-sensitivity arbitrarily close to 1. These are the expected value maximizers

detected in the mixture model of Bruhin et al. (2010), who most likely based their responses on

precise calculations rather than on quick and approximate judgments. The correlations presented

are qualitatively robust to removing this group of subjects.
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Figure 1 Scatter plot of PT parameters, likelihood-sensitivity

The parameters have been obtained from the estimation of a PT model plus additive noise. The different colours and
shapes represent the 3 experiments in Bruhin et al. (2010): ZH03 stands for Zurich 03; ZH6 for Zurich 06; and BJ05 for
Beijing 05. Solid lines indicate regression lines. The dashed lines indicate the median parameter values. Some outliers
may be cut for better visual display.

The correlations just shown further have knock-on effects on correlations between the deter-

ministic model parameters. Larger values of γ̂ coincide with values of δ̂ tending towards 1 (see
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appendix S2). These effects are not foreseen by PT, but line up exactly with the predictions

emerging from the BIM. There are furthermore correlations between likelihood-sensitivity γ̂ and

outcome-sensitivity α̂, even though the predictions of the BIM are less crisp in this respect due

to the different definitions of outcome transformations in the two models (see Herold and Netzer

2023, for predictions on such correlations). Online appendix S2.3 further reports predictive tests

of the BIM against PT, and shows that the BIM outperforms ‘PT plus white noise’ (as well as PT

plus contextual noise) in all 6 test cases of the Bruhin et al. (2010) data, as well as in the 60 test

cases provided by the L’Haridon and Vieider (2019) data.

The patterns I just illustrated are clearly suggestive of the patterns predicted by the BIM.

In light of the extensive empirical literature estimating PT functionals, it seems surprising that

such correlations have not been examined previously. The reason for this may be that no existing

theoretical models—including existing stochastic choice models—have predicted such correlations.

Nevertheless, this does not exclude that some alternative error model could be devised to account

for such patterns, though such a model would likely need to capture some of the same elements

enshrined in the BIM.

3.2. Probability-outcome separability under ambiguity

The BIM predicts ambiguity-insensitivity based on increased difficulty in assessing unknown prob-

abilities. Such patterns are well-documented in the literature (Abdellaoui et al. 2011, Dimmock et

al. 2015, Trautmann and van de Kuilen 2015, L’Haridon et al. 2018). Enke and Graeber (2023)

have documented empirically that this phenomenon goes hand-in-hand with a lowering of the con-

fidence people declare to have in their choices, which is consistent with the account presented here.

In addition, however, the BIM predicts a novel violation of PT’s probability-outcome separability,

whereby utility curvature is also affected by ambiguity.12 This constitutes a violation of PT, since

utility curvature for risk and ambiguity is assumed to be the same under PT due to the strict sep-

aration of the likelihood and outcome dimensions inherent in the model (Wakker 2010, Abdellaoui

et al. 2011, Dimmock et al. 2015). In this section, I present a test of that prediction in a PT setup.

I use an original dataset containing a rich choice setup to test this hypothesis. The data contain

observations for 47 subjects indicating certainty equivalents for both risky and ambiguous lotteries

in a within-subject design. The data structure and experimental procedures closely follow those in

L’Haridon et al. (2018). The stimuli are, however, richer in that the stimuli for risk are replicated

exactly for ambiguity, including variation over outcomes and non-zero lower outcomes for both risk

and ambiguity, thus allowing for the identification of utility curvature under ambiguity as well as

12 This violation arises due to an increase in coding noise under ambiguity, triggered by the increased complexity
inherent to the description of Ellsberg urns. At the same time, the outcomes remain fully observable and are identical
to those presented under risk, so that there is no reason for the variance of the outcome prior to change.
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under risk (Fehr-Duda and Epper 2012). The econometric approach closely follows the setup used

above for the data of Bruhin et al. (2010). Further details can be found in appendix S3.
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Figure 2 Likelihood- and outcome-sensitivity under risk and ambiguity

Densities of individual-level parameters (top) and of the mean parameters (bottom) of likelihood- and outcome-sensitivity.
Panel 2(d) plots the difference in posterior draws between the two means, which is the quantity used in Bayesian tests of
mean differences (Kruschke 2014).

Figure 2 shows density plots for γ̂ and α̂, for risk and ambiguity. The difference in individual-level

estimates between risk and ambiguity for γ̂, shown in panel 2(a), is sizeable. This sort of lowering

of likelihood-sensitivity under ambiguity relative to risk, termed ambiguity-insensitivity, is indeed

a standard finding in the PT literature. The difference in individual-level parameters between

outcome sensitivity for risk and ambiguity is displayed in panel 2(b). While it is less pronounced,

the distribution under ambiguity is shifted to the left. This is confirmed by a Mann-Whitney test

on the paired individual-level parameters, indicating that outcome-sensitivity is indeed reduced

under ambiguity (p= 0.002, two-sided).
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One can further test for the existence of differences using the posterior draws of the mean

parameters for risk and ambiguity. Panel 2(c) shows the density of the posterior draws of the

means of the two utility parameters for risk and ambiguity. The utility parameter for ambiguity is

clearly smaller than the one for risk. To assess the statistical significance of this difference, however,

we need to look at the difference in posterior draws, given that the draws are not independent

(Gelman et al. 2014b, Kruschke 2014). That difference is shown in panel 2(d). The overlap with

0 is minimal, and 0.987 % of the posterior probability mass falls above 0, indicating a significant

difference in the means. This results in a violation of the probability-outcome separability precept

of PT. It does, however, conform precisely to the prediction emerging from the BIM.

3.3. Lottery choice versus deterministic mirrors

The tests shown so far aimed at testing predictions about what we should observe if we estimated

the data in a PT setup, if the BIM is the true data-generating model. Here, I present a test of PT

against the number-perception account of the BIM. To this end, I deploy a variation of Oprea’s

(2022) deterministic mirrors. One potential shortcoming of the approach taken by Oprea (2022)

is that the choice list format may be driving some of the results. That is, if some subjects pick

switching points that mechanically fall towards the middle of the list, this could produce the same

sort of patterns for risk and deterministic mirrors. I thus adapt the mirror setup to a rich binary

choice setting to test the robustness of the effect. This allows me to structurally estimate the BIM

for both risk and mirrors, which serves to showcase the BIM’s ability to capture these patterns.

The experiment was conducted in an introductory class of Behavioural Economics at Ghent

University using a between-subject design. Students had heard about expected value and expected

utility theory, but had not yet been introduced to behavioural models of decision making. Students

were told to bring a laptop or tablet to class. The lecturer seated them apart so that they could not

look into each others’ screens. All subjects who showed up for class participated in the experiment.

While calculations of expected values on the computers were possible in principle, such calculations

would work against the effects shown below. 10 subjects were randomly selected to play one of

their decisions for real money. After a short introduction describing the length of the experiment

and the incentive structure, the lecturer shared a link for the online experiment with the students.

133 students submitted complete responses in the allocated time.

Figure 3 shows a screenshot of the experiment. Subjects had to indicate their choice between two

options. Each option had a number of boxes associated with monetary payoffs. Option A had some

boxes associated with a higher payoff, and some with a lower payoff. The number of high outcome

boxes could take the value 12, 32, 42, 48, 52, 58, 68, 88. The winning outcome ranged from e18

to e32, and the tasks included non-zero lower outcomes as well (see table 1 for a list). Option B
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Figure 3 Screenshot of choice situation

always contained 100 boxes with the same outcome, which was made to vary in steps of e1 between

the high and the low outcome in option A. The binary choice options were, however, completely

randomized, as was the position of option A and option B on the screen. These stimuli were chosen

to reflect typical choice stimuli used to investigate decision making under risk. Subjects faced 200

such binary choices in total, of which 20 were repeated choices.

Table 1 Choice tasks and choice proportions by treatment

characteristics risk mirrors ranksum test
task high low prob risky SD complex SD p-value

1 18 0 0.12 0.14 0.35 0.14 0.34 0.672
2 18 0 0.32 0.22 0.42 0.24 0.43 0.614
3 18 0 0.68 0.52 0.50 0.55 0.50 0.142
4 18 0 0.88 0.70 0.46 0.72 0.45 0.301
5 27 5 0.48 0.39 0.49 0.40 0.49 0.704
6 27 5 0.52 0.49 0.50 0.53 0.50 0.287
7 32 5 0.42 0.39 0.49 0.38 0.49 0.718
8 32 0 0.58 0.42 0.49 0.46 0.50 0.334
9 43 18 0.48 0.42 0.49 0.45 0.50 0.410

Summary table of task characteristics and choice proportions. The column ‘risky’

indicates the choice proportion of the risky option A in the random box treatment.

The column ‘complex’ indicates the choice proportion of the complex option A in the

average box treatment. The column ‘ranksum test’ indicates p-values of Wilcoxon

rank sum tests executed on choice proportions of Option A. The tests are based on

72 subjects assigned to the average box treatment, versus 61 subjects assigned to the

random box treatment.

The instructions provided the following information. First, all subjects saw an explanation of the

general structure of the choice task. They were told that they had to decide between two options,

and how different boxes could have different payoffs attached to them. Subsequently, subjects
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were randomly allocated to one of two treatments—a random box treatment, and an average box

treatment. In the random box treatment, they learned that one random box from the chosen

option would be opened to determine their payoff, following standard procedures in the risky choice

literature. In the average box treatment, on the other hand, they learned that they would be paid

the amount in the average box. That is, the payoffs would be summed over the 100 boxes, and

divided by 100. Examples served to clearly illustrate the choice situation and resulting payoffs.

Subjects furthermore had to go through a number of comprehension questions that were meant to

drive home the payoff mechanism (full instructions in appendix S4).
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Figure 4 Choice proportions for risky or complex option

The graph plots the number of high-payoff boxes on the x-axis against choice proportions of the risky option (random
box treatment) or the complex option (average box treatment). Given the equal steps in sure options, the graph can be
interpreted as a (stochastic) variant of a dual-EU probability-distortion function.

Figure 4 shows the choice proportions for the risky option (random box treatment) or the complex

option (average box treatment) for tasks providing different numbers of boxes associated with e18,

or else 0. In the random box treatment, the data reveal an inverse-S shape as typically found in

the PT literature. Strikingly, the same pattern occurs in the mirror treatment, where no risk is

present and choices are between deterministic options. There is no difference in any of the choice

proportions, and the same holds for choice tasks not shown in the graph (see table 1). Risk and

choice complexity in a riskless setup thus produce virtually identical results.

Next, I estimate equation (11) on the complete data to examine the individual-level parame-

ters. Figure 5, panel 5(a), shows a density plot of the individual-level likelihood-discriminability

parameters (lottery treatment) and the individual-level ‘complexity-discriminability’ parameters

(mirror treatment). Both distributions present a peak around 0.5, and look very similar. The



Author: Decisions under Uncertainty as Bayesian Inference
Article submitted to Management Science; manuscript no. MS-BDE-23-00265.R3 21

lottery-discriminability has some probability mass to the left of the complexity-discriminability

distribution, possibly indicating an effect of risk on top of the complexity effect, as also discussed

by Oprea (2022). That effect, however, appears to be relatively small.
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Figure 5 Individual-level parameters for lotteries and mirrors

Graphical representation of individual-level parameters for risk and mirrors. The density functions in panel a have been
obtained by plotting the individual-level mean estimates from the Bayesian hierarchical model. Panel b presents a scatter
plot of the mean individual-level estimates of likelihood-discriminability γ and outcome-discriminability α.

Panel 5(b) shows a scatter plot of the parameters capturing sensitivity towards the number of

boxes, and sensitivity towards outcomes. There is no indication that behaviour for mirrors might

converge towards behaviour resembling value maximization (i.e., a deterministic choice for the

option with the higher value). Remarkably, the results not only show equal distortions driven by

the number of boxes across the two treatments, but also equal distortions of outcomes, providing

direct evidence that outcome-discriminability is also driven by the complexity of the situation,

rather than by any inherent attitude towards risk. This results in a clear violation of PT, and

is indeed hard to reconcile with any deterministic model of risky choice. The BIM, however, can

handle them easily since it models the perception of numerical quantities, rather than attitudes

towards risk per se. While the BIM shares this feature with other models from the noisy coding

family (Steiner and Stewart 2016, Netzer et al. 2021), it has an edge when it comes to quantifying

patterns occurring in data, since it is geared towards direct econometric implementability.

This is further showcased by a comparison of the predictive performance of the two models on

the data. The BIM will then deploy one and the same modelling setup for both treatments, whereas

PT will directly compare the utilities of the two deterministic outcomes in the mirror treatment,

plus an additive error term just like the one used for risk. I test model performance based on their

out-of-sample predictive ability (Gelman et al. 2014a, Vehtari et al. 2017). An aggregate test yields
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a clear verdict in favour of the Bayesian Inference model (ELPD difference of −7653.5, with a

standard error of 239.6). To take the hierarchical nature of the data into account, I also conduct

a stratified leave-k-out test, whereby a subset of k% of the choices of each individual are removed

and predicted based on the remaining (100− k)% of the observations. This procedure is repeated

for each subset of k% of the data. Setting k = 10, the results once again indicate that the BIM

outperforms PT (ELPD diff. of −753.8, se= 51.9).

Finally, let us take a look at decision times across the two treatments. Decision times are related

to decision difficulty, and have been shown to be predictive of utility differences (Alós-Ferrer et al.

2021, Alós-Ferrer and Garagnani 2022). Based on standard models of decision making under risk,

we would expect decision times for lotteries and mirrors to look rather different. Decision times in

risky choice have been shown to be closely linked to differences in the expected utilities of choice

options, whereas they tend to be only weakly linked to differences in expected values (Alós-Ferrer

and Garagnani 2022). If the results were purely caused by errors in calculations of values in mirrors

then we should expect to see differences between the conditions, with decision times in the mirror

treatment peaking towards the point of EV equality between the two options. The fact that the

distributions are very similar, however, points to a similarity in decision processes across the two

settings. According to the BIM, we should not see major differences between the treatments. In

both cases, the BIM thus predicts decision time to follow an inverted-U shape, with its peak at

the point of no discriminability, where the two choice options become difficult to tease apart.
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(b) Decision time and BIM discriminability

Figure 6 Average decision time as a function of EV difference and discriminability

Plot of expected value difference between the choice options (panel 6(a)) and normalized individividual-level discrim-
inability between the choice options (panel 6(b)) against average decision time. Both differences in EV and differences
in discriminability have been normalized to fall between −1 and 1 at the individual level. The discriminability plot has
been obtained by means of a binning procedure applied to discriminability. The solid lines indicate a least squares fit of
a second-degree polynomial with surrounding uncertainty regions.
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Figure 6 plots average decision times against the difference in expected values (panel 6(a)) and

against the discriminability given by the nominator of (11) (panel 6(b)). Decision times increase

towards the point of equality in expected values, continue to increase slightly thereafter, and

subsequently decline. Importantly, there is no difference whatsoever in this trend for lotteries and

mirrors, as deterministic models of decision making under risk would suggest. The inverse-U shape

as a function of discriminability in the Bayesian inference model shown in panel 6(b) is much more

pronounced than the curve for the EV difference. The peak in decision times coincides with the

point of zero discriminability, where both options appear equally good, and shows no difference

between lotteries and mirrors. This further supports the conclusion that decisions in lotteries and

mirrors are driven by the same process, in contradiction to standard models of risky choice, but in

line with the predictions of the Bayesian Inference Model.

4. Discussion and Conclusion

Traditional models of decision-making under risk and uncertainty represent behaviour by determin-

istic preference functionals applied to objectively perceived stimuli. The deterministic choice model

is then augmented by an independently chosen stochastic model to allow for preference parameters

to be recovered from noisy data. The combination between decision model and stochastic model of

choice, however, is arbitrary. Such arbitrary combinations of decision models and stochastic choice

architectures may bias inferences on the model parameters and even about the correct underlying

model if the stochastic assumptions are not warranted.

The Bayesian Inference Model I presented in this paper turns this process on its head. Starting

from the premise that the choice stimuli themselves are encoded by noisy mental signals, I have

shown how the optimal decoding of these signals by means of a mental prior will result in decisions

that deviate systematically from the underlying optimal choice rule, and in particular, which will

result in systematic outcome- and likelihood-distortions akin to those documented in the prospect

theory literature. While providing cognitive micro-foundations for PT-like choice patterns, the

model simultaneously predicts violations of ‘PT plus white noise’. Other than PT, the model is not

specifically geared at describing attitudes towards risk and uncertainty, but rather captures the

noisy perception of numerical quantities. The model is thus applicable not only to lottery choice,

but also to the deterministic mirrors of those lotteries introduced by Oprea (2022). At the same

time, the model blurs the line between traditional categories such as risk (known probabilities)

and ambiguity (unknown or vague probabilities), which according to the BIM are located along a

continuum of perceptual difficulty of probabilistic information.

In the present paper, I have presented three empirical illustrations of patterns predicted by

the BIM, and which are difficult to organize under traditional behavioural models of choice. The
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core strength of the model, however, is that it provides common foundations for decision-making

phenomena which are currently explained by different behavioural models. In a twin paper (Vieider

2021), I show that an identical modelling setup as used in this paper can account for the co-existence

of time discounting patterns that cannot be organized under standard models of discounting.

L’Haridon et al. (2023) show that the same model can account for the Ellsberg paradox when

applied to choices between risky and ambiguous wagers, and that it predicts both patterns such

as predicted by prospect theory, and patterns as predicted in the multiple priors literature, thus

potentially unifying these two streams of ambiguity literatures. Oprea and Vieider (2023) further

show that allowing subjects to sample from fully described choice options leads to learning, and

reduces probability distortions. The occurrence of learning when probabilities are objectively given

and fully described directly speaks to the perceptual uncertainty enshrined in the BIM, since

learning should have no effect in the absence of uncertainty about described objective probabilities.

An important question concerns the model’s status vis-a-vis prospect theory. A prime insight

arising from the model is that functionals as documented in the extensive PT literature can be

generated by noise in the perception of choice quantities, which need to be inferred from noisy

signals. The same noise, in turn, will violate the ‘PT plus white noise’ assumption underlying

standard empirical implementations of PT, creating systematic correlations between decision noise

and PT-preference parameters estimated under that assumption. Given its ability to capture this

feature, the BIM represents a promising tool for empirical investigations, particularly since it allows

for the parameters of the priors and likelihoods to be endogenized in a dynamic setting. The

development of such a fully endogenous model, however, will need to be left for future work.

In terms of economic theory, however, PT continues to have an edge due to its comparative

simplicity. Where the parameters of the BIM are tricky to manipulate theoretically due to their

inherent interdependence, the nominal independence of the equivalent PT parameters allows for

a flexible modelling framework that can nevertheless capture many of the central behavioural

features. At the same time, the BIM shows some of the limitations of the standard PT model,

which could prove valuable in informing modelling exercises going forward.

The model proposed in this paper shares a common intuition with other models of adaptive

behaviour. Most notable is the connection to the evolutionary models of Robson (2001) and Netzer

(2009), who propose a fitness-maximizing model predicated on limited discernibility of outcomes to

derive a utility function that adapts to the local environment. A common element is that all these

models incorporate the intuition of just noticeable differences in utility, although in the BIM this

is a result of the compressed mental representation of stimuli, whereas it is a modelling assumption

in the Robson-Netzer framework, where it results in utility taking the form of a step function.
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There are also commonalities with other models of noisy perception. Steiner and Stewart (2016)

present a model in which probabilities of binary wagers are subject to noisy perception, similar

to the intuition developed here. Other than in the model presented here, however, outcomes are

processed without uncertainty, and the model makes no predictions about decision noise. The sure

option is the quantity driving probability distortions, rather than a weight capturing the DM’s

confidence in the evidence. Netzer et al. (2021) present a model in which an agent receives noisy

signals about different lottery arms. The agent may thereby decide to oversample some lottery

arms, which could lead to the overweighting of small probabilities. While some of the underlying

intuitions are similar to those developed in this model, the focus is different. Netzer et al. (2021)

primarily focus on the question of what happens when decision noise goes to zero, resulting in

insights that are complementary to those presented in this paper.

The general framework based on the noisy neural coding of stimuli—and its extension to setups

allowing for the adaptation of the model parameters to changes in the environment—presents the

promise of a unifying theory of individual choice behaviour. On the one hand, coding noise plays

a central role in the model, driving deviations from optimal behaviour, such as expected value

maximization for small-stake risks. This results in behavioural regularities that are likely to impact

decisions far beyond the particular setup used in this paper. For instance, we may well expect

the presentation format of stimuli to impact choices, and the noise of stimulus encoding may be

expected to increase systematically with the difficulty of the choice tasks. The precise implications

of this insight deserve close attention, and are thus left for future work.

Possibly the most far-reaching implications, however, concern the role of the prior mean. A

dynamic hierarchical model detailing how the prior is determined promises to shed light on how

preferences adapt to new choice situations, as documented empirically by Di Falco and Vieider

(2022). Understanding both short term determinants of the prior in the lab, and long-term deter-

minants of the prior in the real world should thus be a priority topic for future research. Notice

that particularly long-term components of the prior—likely contained in a higher-level prior that

can inform decisions and behaviour across a variety of choice situations—could present a unique

chance to deliver a coherent theory of preference formation.
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Appendix A: Derivation for multi-outcome wagers

I assume that each term in the comparison in (4) is logged and evaluated in parallel within a neural

network. That implies that there will be a comparison between log-odds and log-cost benefits just

like the one discussed in the main text for each comparative state of the world. For an arbitrary

comparison i, we will thus observe the following likelihood functions:

rie ∼N
(
ln

(
P [ei]

P [en]

)
, ν2

)
, rio ∼N

(
1 ln

(
1(xi− yi)

yi−xn

)
, ν2

)
. (15)

where 1= 1 if xi > yi, and 1=−1 if xi < yi (xn < yi ∀i by construction of the comparison). Other

than in the binary case, the signal ro should now be understood as the signal for the relative

benefit-cost ratio, since one can no longer simply refer to ‘costs’ and ‘benefits’ in the general case.

We can follow the same steps as in the binary case to obtain a threshold equation and a contribu-

tion to the overall evidence in favour of taking the riskier wager from each of the single comparisons.

This will result in the following multidimensional generalization of (11):

P [xxx≻ yyy] = Φ

n−1∑
i=1

γ× ln
(
P [ei]

P [en]

)
+1α× ln

(
1(xi−yi)
yi−xn

)
− ln(δ)−1

ν×
√

(n− 1)× (α2 + γ2)

 . (16)

The result obtains from the observation that, since the single contributions to the comparative

evaluation of the wagers follow a standard normal distribution, their sum will also follow a standard

normal distribution. Note that this decision rule is thus fully general and applicable to all forced

choice paradigms, as long as n is finite (as will typically be the case for monetary outcomes specified

down to the last cent). Other than in modern, cumulative, version of PT, the probability distortions

are not applied to good-news probabilities attached to ranked outcomes, so that for more than 2

non-zero comparative outcomes the model provides microfoundations for the biseparable model of

Ghirardato et al. (2004).
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