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Abstract

Bovine mesenchymal stromal cells (MSCs) display important features that render

them valuable for cell therapy and tissue engineering strategies, such as self-

renewal, multi-lineage differentiation, as well as immunomodulatory properties.

These cells are also promising candidates to produce cultured meat. For all these

applications, it is imperative to unequivocally identify this cell population. The isola-

tion and in vitro tri-lineage differentiation of bovine MSCs is already described, but

data on their immunophenotypic characterization is not yet complete. The currently

limited availability of monoclonal antibodies (mAbs) specific for bovine MSC markers

strongly hampers this research. Following the minimal criteria defined for human

MSCs, bovine MSCs should express CD73, CD90, and CD105 and lack expression

of CD14 or CD11b, CD34, CD45, CD79α, or CD19, and MHC-II. Additional surface

proteins which have been reported to be expressed include CD29, CD44, and

CD106. In this study, we aimed to immunophenotype bovine adipose tissue (AT)-

derived MSCs using multi-color flow cytometry. To this end, 13 commercial Abs

were screened for recognizing bovine epitopes using the appropriate positive con-

trols. Using flow cytometry and immunofluorescence microscopy, cross-reactivity

was confirmed for CD34, CD73, CD79α, and CD90. Unfortunately, none of the eval-

uated CD105 and CD106 Abs cross-reacted with bovine cells. Subsequently, AT-

derived bovine MSCs were characterized using multi-color flow cytometry based on

their expression of nine markers. Bovine MSCs clearly expressed CD29 and CD44,

and lacked expression of CD14, CD45, CD73, CD79α, and MHCII, while a variable

expression was observed for CD34 and CD90. In addition, the mRNA transcription

level of different markers was analyzed using reverse transcription quantitative poly-

merase chain reaction. Using these panels, bovine MSCs can be properly immuno-

phenotyped which allows a better characterization of this heterogenous cell

population.
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1 | INTRODUCTION

Healthy and sustainable food provision for a continuously growing

human population is one of the major challenges for the next decades.

Within the context of alternative food production methods, cultured

meat is a promising avenue for increasing the total supply of high-

quality protein and, at the same time, responding to a societal demand

for reduced animal slaughtering [1–3]. Traditionally, myosatellite cells

are used to produce cultured meat as these skeletal muscle stem cells

serve in vivo as a robust cell source for skeletal muscle repair [4].

Their proliferation and differentiation potential in vitro, however, is

limited.

Mesenchymal stromal cells (MSCs) are considered as a promising

alternative cell source due to their abundance, their role during muscle

development and their ability to differentiate into myocytes, adipo-

cytes, fibroblasts, neuronal and endothelial cells [5–8]. Indeed, MSCs

are easily isolated from a variety of sources, such as bone marrow,

adipose tissue, and neonatal tissues [9, 10]. Human MSCs are com-

monly characterized following the guidelines of the International Soci-

ety for Cellular Therapy (ISCT) [11, 12]: they must be [1] plastic

adherent under standard culture conditions; [2] be capable of differ-

entiating toward the osteogenic, adipogenic and chondrogenic line-

age; and [3] express surface markers such as CD73, CD90, and

CD105 but lack expression of hematopoietic or endothelial markers

such as CD11b or CD14, CD34, CD45, CD79α, or CD19 and MHC

class II. However, this definition by cell surface marker expression is

constantly evolving. For example, the ISCT has recently stated that

CD34 negativity is not as definitive [12], as subpopulations of human

adipose tissue-derived MSCs have been shown to express CD34

[13, 14].

The isolation, in vitro differentiation and immunophenotype of

bovine MSCs has already been reported (Table 1). As shown in

Table 1, it is clear that bovine MSCs represent a heterogeneous cell

population with differences originating from donor age, tissue of ori-

gin, genetic background, passage, and culture conditions [10, 51, 52].

For example, Kato et al. showed that bone marrow (BM)-derived

bovine MSCs lacked CD90 expression, while other researchers

showed a variable expression of CD90 (Table 1) [53]. Like human

MSCs, Rossi et al. confirmed a moderate CD34 expression in amniotic

fluid-derived bovine MSCs, while others showed only a low expres-

sion (Table 1) [54]. Such heterogeneity may reflect differences in pro-

liferation and differentiation potential, for example, predisposition for

dedicated lineages, which is important to identify when considering

bovine MSCs as a cell source to produce cultured meat [51, 55].

The expression of MSC markers is often analyzed on the mRNA

level using gel electrophoresis or reverse transcription quantitative

polymerase chain reaction (RT-qPCR) and/or protein level using

single-color flow cytometry. A multi-color flow cytometry protocol

enables to simultaneously evaluate the expression of different

markers and as such to identify MSC heterogeneity [56, 57]. How-

ever, there are currently no specific criteria to immunophenotype

bovine MSCs, partly due to the limited availability of bovine-specific

monoclonal antibodies (mAbs) or validated cross-reactive mAbs [9], as

illustrated by the study of Naraoka et al. Indeed, half of the tested

246 Abs showed cross-reactivity toward bovine epitopes, but 5%–

10% was the highest percentage of cross-reactivity reported (for

97 Abs) while only 1%–5% cross-reactivity was reported for

17 Abs [58].

In this study, 13 commercially available Abs were first evaluated

for their cross-reactivity using bovine leukocytes (LEU) or bovine

umbilical cord endothelial cells (UVECs) as appropriate positive con-

trols. For all evaluated antibodies, flow cytometric results were con-

firmed using immunofluorescent microscopy. Subsequently, bovine

AT-derived MSCs were characterized by tri-lineage differentiation

and multi-color flow cytometry using two selected panels consisting

of nine Abs in total. Additionally, marker expression was analyzed on

the mRNA level by RT-qPCR.

2 | MATERIALS AND METHODS

2.1 | Isolation methods

Bovine umbilical cord veins and blood waste products were obtained

from one routine health screening and two adult cows during caesar-

ean section, provided by the Department of Internal Medicine, Repro-

duction and Population of the Faculty of Veterinary Medicine. Bovine

MSCs were isolated from subcutaneous adipose tissue (AT) from

seven healthy calves, as part of an external research project, approved

by the institutional ethical committee of the Flanders Research Insti-

tute for Agriculture, Fisheries and Food (EC 2018/313).

After collection of approximately 5 mL venous blood using EDTA-

coated tubes, red blood cells were lysed with a NH4Cl lysing solution

to isolate bovine LEUs. Briefly, upon incubating for 5 min at room

temperature (RT), cells were centrifuged for 5 min at 300g at RT. The

cell pellet was washed in phosphate buffered saline (PBS) without

Ca2+/Mg2+ (Gibco), centrifuged for 5 min at 300g and finally resus-

pended in 1 mL low glucose Dulbecco's Modified Eagle Medium

(DMEM-LG, Invitrogen) containing 1% fetal bovine serum (FBS,

Sigma) [59].

To isolate primary bovine UVECs, tissue was digested using

1 mg/mL collagenase IA (Sigma) and 1.2 mg/mL dispase II (Sigma) for

30 min in a humidified incubator at 38.5�C and 5% CO2, as previously

described [60]. The enzymatic reaction was blocked by flushing the

vein with prewarmed PBS + 10% FBS. The solution was then centri-

fuged for 5 min at 250g at 4�C, resuspended in PBS + 10% FBS and

filtered over a 70 μm cell strainer. The cell suspension was centrifuged

for 5 min at 250g at 4�C and the pellet was resuspended in EGM-2

endothelial growth medium (Lonza). The medium was refreshed twice

weekly until 70–80% confluency was reached. Cells were passaged

until passage 3 prior to use as positive control cells for Ab screening.

Bovine MSCs were isolated from subcutaneous AT (n = 7) using

an enzymatic digestion method containing 1 mg/mL liberase (Sigma),

as previously described [61]. The isolated cells were seeded in culture

medium consisting of DMEM-LG, 30% FBS, 10�11 M dexamethasone

(Sigma), 1% antibiotic-antimycotic solution (Sigma) and 1% L-

glutamine (Invitrogen) in a 25 cm2 culture flask and cultured at 38.5�C

in a humidified atmosphere containing 5% CO2. After 24 h, non-
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adherent cells were removed by replacing the culture medium. Subse-

quently, culture medium was replaced twice weekly and cells were

passaged as soon as 70%–80% confluency was observed using

2.5 mg/mL trypsin (Sigma)-0.2 mg/mL EDTA (Sigma) in expansion

medium (identical to the culture medium without dexamethasone).

Cells were passaged until passage 4 prior to use for multi-color flow

cytometry.

2.2 | Tri-lineage differentiation of bovine AT-MSCs

To confirm their MSC identity, undifferentiated bovine MSCs of the

3rd passage were induced toward the adipogenic, chondrogenic, and

osteogenic lineage, respectively, as previously described [61]. Non-

induced MSCs cultured in expansion medium were used as appropri-

ate negative controls. Adipogenic differentiation was assessed using

Oil Red O histological staining with a Mayer's modified hematoxylin

(Abcam) counterstaining after cycles of 72 h culturing in adipogenic

induction medium (DMEM-LG supplemented with 1 μM dexametha-

sone, 0.5 mM 3-isobutyl-1-methylxanthine (Sigma), 10 μg/mL rh-

insuline (Sigma), 0.2 mM indomethacin (Sigma), 15% rabbit serum

(Sigma), 50 μg/mL gentamycin (Gibco) and 1% antibiotic-antimycotic

solution) and 24 h of culturing in adipogenic maintenance medium

(identical to the adipogenic induction medium except for the omission

of dexamethasone, indomethacin and 3-isobutyl-1-methylxanthine).

Chondrogenic differentiation was evaluated after 21 days of culture

TABLE 1 Overview of immunophenotypic profile on mRNA and protein level of bovine mesenchymal stromal cells.

Cellular marker

Expression on

mRNA level Protein level

CD13 + [15] + [16]

CD29 + [15, 17–31] + [15, 17, 19, 21, 24, 26–28, 30–35]

CD44 + [15, 18–21, 23–27, 29–31, 36] + [15, 16, 19, 21, 24–27, 30, 31, 34, 37–39]

� [17, 28, 40]

CD49d ND + [16]

CD71 ND + [19]

CD73 + [15, 17–21, 23–28, 30, 31, 41–44] + [17, 25, 27, 28, 33, 35, 40, 45–50]

CD90 + [15, 17, 22–25, 28, 30, 31, 41, 43] + [16, 17, 28, 35, 40, 45–50]

± [15]

CD105 + [15, 17, 22, 23, 28, 29, 41, 43] + [16, 17, 28, 29, 32, 35, 40, 45–47, 49, 50]

� [18] � ND

CD106 + [24, 25] ND

� [15, 30]

CD166 + [15, 19, 20, 24–26, 29, 31] + [29]

� [30]

MHCI + [15, 18, 29] + [15]

CD11b + [42] � [15]

� [15]

CD14 � [15, 18, 29] � ND

CD31 � [15] � ND

CD34 + [42] ± [29, 33, 34, 40, 48]

� [15, 18–21, 23–27, 29–31, 41, 43] � [16, 17, 19, 21, 24, 27, 28, 32, 35, 38, 39, 47, 50]

CD45 + [41–43] ± [33, 48]

� [15, 19–21, 23–26, 31, 41] � [15, 17, 28, 32, 35, 40, 45, 47, 50]

CD79α ND � [40, 47, 50]

CD117 � [15] � ND

MHCII � [15, 18, 24, 26, 29, 31] ± [29]

� [15, 34, 38, 39]

Note: At the mRNA level, + is defined as presence and – is defined as absence of mRNA (as determined by PCR agarose gel images and/or RT-qPCR). At

the protein level, + is defined as presence (> 10%) and – is defined as absence of protein (<2%), ± is defined as relative marker expression between 2% and

10% (as determined by immunofluorescence and western blot images). Percentages are linked to relative marker expression, at the protein level, analyzed

using quantitative methods such as flow cytometry.

Abbreviation: ND, not done.
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in chondrogenic medium (based on the basal differentiation medium

(Lonza), supplemented with 10 ng/mL Transforming Growth Factor-

β3 (Lonza)) by Alcian blue (Sigma) histological staining, with 0.1%

Nuclear Fast Red (Sigma) counterstaining. Osteogenic differentiation

was evaluated after 21 days of culture in osteogenic medium

(DMEM-LG supplemented with 10% FBS, 0.05 mM L-ascorbic acid-

2-phosphate (Sigma), 100 nM dexamethasone, 10 mM

β-glycerophosphate (Sigma), 50 μg/mL gentamycin and 1% antibiotic-

antimycotic solution) using the Alizarin Red S histological staining

(Sigma), according to the manufacturer's instructions [59].

2.3 | Single-color flow cytometry

An overview of the primary monoclonal and polyclonal Abs evaluated

in this study is given in Table 2. Secondary antibodies included fluo-

rescein isothiocyanate (FITC)-conjugated goat anti-mouse immuno-

globulin (Ig)G (BioRad), AlexaFluor488 (AF488)-conjugated goat anti-

rabbit IgG (Invitrogen), allophycocyanin-cyanine 7 (APC-Cy7)-

conjugated goat anti-rabbit IgG (AAT Bioquest), R-phycoerythrin-

cyanine 5 (PE-Cy5)-conjugated goat anti-rabbit IgG (ThermoFisher).

Additionally, a secondary streptavidin peridinin chlorophyll protein-

cyanine5.5 (PerCP-Cy5.5) label (Invitrogen) was used. The isotype

controls in this study included mouse IgG1-APC, IgG1-FITC and IgG1-

PE-Cy7 (BioLegend).

To screen for Ab reactivity, 500,000 positive control cells (either

LEU or UVECs, Table 2) were centrifuged in staining buffer (DMEM

+1% FBS) for 5 min at 400g at 4�C and incubated for 30 min at 4�C

in the dark with each of the primary Abs (Table 2). After two washing

steps for 5 min at 400 g at 4�C, a FITC-conjugated goat anti-mouse

secondary Ab or an AF488-conjugated goat anti-rabbit Ab was added

to the cells for 20 min at 4�C in the dark. After one washing step, cell

pellets were resuspended in 100 μL PBS with the viability dye Sytox

Blue (0.001 mM; ThermoFisher), following the manufacturer's guide-

lines. For intracellular antigen detection (CD79α), cells were fixed and

permeabilized using BD Cytofix/Cytoperm™ (BD Biosciences) for

20 min at 4�C prior to primary Ab incubation. At least 10,000 viable

single cells were analyzed using a CytoFLEX V2-B4-R3 flow cyt-

ometer (Beckman Coulter) equipped with a 405 nm, a 488 nm and a

638 nm laser, and data was subsequently analyzed in the CytExpert

software. All data were corrected for autofluorescence as well as for

unspecific binding using either secondary Abs alone or isotype-

matched negative controls.

2.4 | Immunofluorescence microscopy

Binding of the Abs to the bovine positive control cells was confirmed

by immunofluorescence microscopy, as routinely performed [62]

Briefly, cells (either LEU or UVECs) were stained as described for the

single-color flow cytometry, and subsequently fixed using 4% parafor-

maldehyde (PFA) for 20 min at 4�C in the dark. After centrifugation,

cells were incubated with 0.01 mg/mL Hoechst33258 (Sigma) to visu-

alize the nuclei, for 20 min at 4�C in the dark. Following centrifugation

and a washing step, the stained cells were imaged with a magnifica-

tion of 63x using fluorescence microscopy (Leica DMi8).

TABLE 2 Overview of the primary antibodies evaluated in this study.

Host Target species Antibodies Isotype Clone Company, product number
Positive
controls

Cross-
reactivity

Ra Hu, Mo, Rt, Pi CD34 IgG Polyclonal Bioss Antibodies, bs-8996R UVEC +

Mo Hu CD73-PC7 IgG1 AD2 BioLegend, 344,009 LEU �
Mo Hu CD73 IgG2b 45M4F9 Novus Biologicals,

NBP2-25237SS

LEU �

Ra Hu, Mo, Rt, Sh, Ca CD73 IgG Polyclonal Bioss Antibodies, bs-4834R LEU +

Mo Hu CD79α IgG1 HM57 BioRad, MCA2538GA LEU +

Mo Hu CD90-APC IgG1 5E10 BioLegend, 328133 LEU �
Mo Hu CD90 IgG1 AF-9 Novus Biologicals, NBP2-45230 LEU �
Ra Hu, Mo, Rt, Ca, Sh,

others

CD90 IgG Polyclonal Bioss Antibodies, bs-0778R LEU +

Mo Hu CD105 IgG1 SN6h Invitrogen, MA5-11854 UVEC �
Rt Mo, Rt, Hu CD105 IgG2a 2Q1707 Santa Cruz Biotechnology, sc-

71042

UVEC �

Mo Hu CD105-PC7 IgG1 SN6 ThermoFisher, 25-1057-42 UVEC �
Ra Hu, Mo, Rt CD105 IgG Polyclonal Bioss Antibodies, bs-057R UVEC �
Mo Hu CD106-FITC IgG1 1.G11B1 BioRad, MCA907F UVEC �

Note: Each antibody was tested using the appropriate bovine positive control cells.

Abbreviations: APC, allophycocyanin; Ca, canine; FITC, fluorescein isothiocyanate; Hu, human; LEU, leukocytes; Mo, mouse; PC7, PE-Cyanine7; Pi, pig; Ra,

rabbit; Rt, rat; Sh, sheep; UVEC, umbilical cord vein endothelial cells.
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2.5 | Multi-color flow cytometry

For multi-color flow cytometry, bovine MSCs of 7 donors were incu-

bated with two panels of both bovine-specific (CD14, CD44, CD45

and MHC-II) and cross-reacting Abs (CD29, CD34, CD73, CD79α and

CD90), as described in Table 3.

Approximately 500,000 cells per tube were centrifuged for 5 min

at 400g at 4�C in staining buffer. For panel 1, cells were first incu-

bated for 30 min at 4�C in the dark with a CD73-specific Ab. After

blocking and washing with the staining buffer for 5 min at 400g at

4�C, cells were incubated with the appropriate secondary Ab for

20 min at 4�C in the dark. The cells were washed and subsequently

blocked for 15 min using 10% rabbit serum in PBS, to block free bind-

ing spots of the indirectly labeled primary rabbit CD73-specific Ab.

Next, cells were incubated for 30 min at 4�C in the dark with a

biotinylated CD90-specific Ab. After washing with the staining buffer,

cells were incubated with a secondary Streptavidin PerCP-Cy5.5 label,

together with the directly labeled primary mAbs (CD29-APC,

CD45-FITC and MHCII-(R)PE) for 20 min at 4�C in the dark. After a

washing step, cell pellets were finally resuspended in 100 μL PBS with

0.001 mM Sytox Blue.

In panel 2, cells were first stained with a fixable live/dead violet

stain (ThermoFisher) for 30 min at 4�C in the dark. After one washing

step with PBS, cells were incubated for 30 min at 4�C in the dark with

the CD34-specific Ab. After blocking and washing with the staining

buffer, cells were incubated with an appropriate secondary Ab

together with the directly labeled primary mAbs (CD14-(R)PE and

CD44-FITC) for 20 min at 4�C in the dark. Subsequently, cells were

fixed and permeabilized using BD Cytofix/Cytoperm™ for 20 min at

4�C. After blocking and washing with 1X Perm/Wash washing buffer,

cells were incubated with the CD79α-AF700 Ab for 20 min at 4�C in

the dark. After a washing step, cell pellets were finally resuspended in

100 μL PBS.

For all panels, at least 10,000 cells were analyzed using a Cyto-

FLEX and CytExpert software. All data were corrected for autofluor-

escence, compensated and compared to specific fluorescence minus

one (FMO) controls. Compensation for spectral overlap between

fluorophores was performed using an automatic calibration technique

and subsequently evaluated individually with a compensation matrix.

2.6 | RT-qPCR

In order to investigate if the protein levels of the different markers, as

analyzed in panel 1 and 2 via multi-color flow cytometry, are reflected

in their mRNA levels, RT-qPCR was performed. Approximately

500,000 cells were trypsinized, washed with PBS and stored as cell

pellets at �80�C until RNA extraction. The cell pellets were thawed in

1 mL TRIR (ABgene) at RT for 5 min and total RNA was isolated in

30 μL using the Aurum Total RNA Mini Kit (Bio-Rad), according to the

manufacturer's instructions and including an on-column DNase treat-

ment of 20 min at RT. RNA purity and concentration was measured

via Nanodrop analysis (Thermo Scientific) and DNA contamination

was checked via minus-RT PCR with the TBP assay. Up to 1 μg of

DNA-free RNA was converted into cDNA with random hexamers and

oligo-dT using the ImProm-II Reverse Transcription System (Promega)

[63]. The integrity and the PCR amplificabillity of the cDNA (1/10

dilution) was confirmed via the UBC integrity assay [63].

qPCR reactions were performed on 2 μL 1/10 diluted cDNA with

the KAPA SYBR FAST qPCR Master Mix (KAPA Bio-systems) and

500 nM primers (Table S1) in a final volume of 10 μL. The reactions

were performed on the CFX96 Touch Real-Time PCR Detection Sys-

tem (Bio-Rad). Initial denaturation at 95�C for 3 min to activate the

DNA polymerase was followed by 40 cycles of denaturation at 95�C

for 20 s and a combined annealing/extension/signal detection step at

the primer annealing temperature for 40 s (Table S1). Finally, a melt

TABLE 3 Overview of the panels of the selected primary antibodies to immunophenotype viable bovine MSCs using multicolor flow
cytometry.

Antibody Clone Isotype Dilution Fluorochrome Manufacturer, product number Reactivity

Panel 1

Mo CD29-APC TS2/16 IgG1 1:50 BioLegend, 303,007 Cross-reactive

Mo CD45-FITC CC1 IgG1 1:10 BioRad, MCA832GA Bovine-specific

Mo MHCII-(R)PE CC158 IgG2a 1:20 BioRad, MCA5655 Bovine-specific

Ra CD73 IgG 1:50 IgG-APC-Cy7 AAT Bioquest, 16873 Cross-reactive

Ra CD90-biotin IgG 1:50 Streptavidin PerCP-Cy5.5 Invitrogen, 45-4317-80 Cross-reactive

Panel 2

Mo CD14-(R)PE CC-G33 IgG1 1:100 BioRad, MCA2678GA Bovine-specific

Mo CD44-FITC IL-A118 IgG1 1:10 BioRad, MCA2433F Bovine-specific

Mo CD79α-AF700 HM57 IgG1 1:50 Cross-reactive

Ra CD34 IgG 1:100 IgG-PE-Cy5 ThermoFisher, L43018 Cross-reactive

Note: When appropriate, the relevant secondary labels are also provided.

Abbreviations: (R)PE, R-phycoerythrin; AF700, Alexa Fluor 700; APC, allophycocyanin; APC-Cy7, APC-cyanine 7; FITC, fluorescein isothiocyanate; Ig,

immunoglobulin; Mo, mouse; PE-Cy5, PE-Cyanine5; PerCP-Cy5.5, peridinin chlorophyll protein-cyanine5.5; Ra, rabbit.
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curve analysis was performed (from 70�C to 95�C with 0.5�C incre-

ments of 5 min) to confirm that the detected signals came from the

intended amplicons. All reactions were performed in duplicate and a

no template control (NTC) was included in each run. A four-fold dilu-

tion series of one reference cDNA sample was additionally included

for each gene to acquire PCR efficiency based on relative standard

curves. Calculation of the Cq-values (quantification cycle), PCR effi-

ciencies, correlation coefficients and analysis of the melting curves

was performed by means of the CFX Maestro Software.

After duplicate RT-qPCR experiments, inter-run calibration was

performed. When inter-sample variability exceeded a Cq-value of 0.5,

a third run was performed. The mean Cq-value of the two or three

replicates was used for further data processing. To this end, mean Cq

values were transformed, using the exact PCR amplification efficiency,

into corrected Cq-values assuming a uniform PCR amplification effi-

ciency of 100% across all samples (Equation 1):

Cqcorrected ¼ Log2 Eexact
Cqmean

� �
: ð1Þ

In a preliminary experiment, the expression stability of six com-

monly used reference genes was determined in the MSC samples [64,

65]. After identifying the most efficient reference genes (ACTB,

SDHA, TBP, and HPRT1), NormFinder for Microsoft Excel was

applied. Applying this software program, ACTB and TBP were indi-

cated as the most stable genes in MSC samples, since the average sta-

bility values of these genes was 0.212. Relative quantification was

calculated based on the delta Cq-method, with ACTB and TBP used

as reference genes as described [66].

2.7 | Data analysis

Quantitative data are presented as mean ± standard deviation

(SD) from seven replicates and visualized using GraphPad Prism 8.

3 | RESULTS

3.1 | Evaluation of cross-reactive antibodies

Using bovine UVECs as appropriate positive controls, cross-reactivity

against bovine epitopes was identified for the commercially available

Abs directed against CD34 (3.37%), whereas none of the four CD105

Abs and the CD106 Ab tested showed cross-reactivity (Figure 1). Fur-

thermore, cross-reactivity against bovine epitopes was identified for

Abs directed against CD73 (17.83%), CD79α (27.41%), and CD90

(16.09%), using bovine LEU as appropriate positive controls (Figure 1).

Additionally, binding of the above-mentioned Abs to the bovine posi-

tive control cells was confirmed with immunofluorescence microscopy

(Figure 1).

3.2 | Tri-lineage differentiation potential of bovine
AT-derived MSCs

To confirm the MSC identity of the isolated cells from AT, cells were

differentiated toward adipocytes, osteocytes, and chondrocytes,

respectively. Tri-lineage differentiation potential was confirmed for all

donors (Figure S1).

F IGURE 1 Evaluation of cross-reactive antibodies against mesenchymal stromal cell markers using the appropriate bovine positive control
cells. The black histogram represents the negative control, while the green histogram represents the cells stained with the selected antibodies.
Immunofluorescence microscopy was used to confirm specific cellular binding. Nuclei were visualized using Hoechst. Scale bar = 10 micron; scale
bar inset = 5 micron. EC, endothelial cells; LEU, leukocytes. [Color figure can be viewed at wileyonlinelibrary.com]
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3.3 | Immunophenotyping of bovine AT-
derived MSCs

Based on the commercially available bovine-specific and the identified

cross-reacting Abs, two panels were developed to adequately immu-

nophenotype bovine AT-derived MSCs using multi-color flow cytome-

try. The gating strategy to assess marker expression of bovine MSCs

for panel 1 and 2 is presented in Figure 2. As shown in Figure 3A,

bovine AT-derived MSCs uniformly expressed CD29 (99.95%

± 0.04%) and CD44 (93.93% ± 4.60%), showed a variable expression

of CD34 (76.15% ± 19.74%) and CD90 (7.56% ± 6.31%), and lacked

expression of CD14 (0.30% ± 0.19%), CD45 (0.13% ± 0.24%), CD73

(0.23% ± 0.36%), CD79α (0.05% ± 0.03%) and MHCII (0.18%

± 0.13%). In panel 1, bovine MSCs are positive for both CD29 and

CD90, and negative for CD45, CD73 and MHCII. As all cells are

expressing CD29, the same variation in percentage CD90+ cells is

observed when focusing either on the total cell population or only on

the CD29+ cells. In panel 2, bovine MSCs are positive for CD34 and

CD44, and negative for CD14 and CD79α. Most cells in panel 2 co-

express both CD34 and CD44 (76.78 ± 18.26), while some cells lack

expression of both markers (2.90 ± 2.64) or express only CD34 (4.46

± 2.69) or only CD44 (15.85 ± 16.87) (Figure 3B).

To evaluate marker expression on transcript level, mRNA expres-

sion of MSC markers was assessed by RT-qPCR. RNA yield concentra-

tions ranged between 70 and 121 ng/μL and RNA samples gave a

260/280 ratio between 1.9 and 2.1. Bovine AT-MSCs showed a

higher mRNA expression of CD29, CD44 and CD90 (�ΔCq >0), a

moderate expression of CD34 and CD105 (�5 ≤ �ΔCq ≤0), and a low

expression of CD14, CD73, CD79α and MHCII (�ΔCq < �5), when

compared to the reference genes (Figure 4). CD45 was not expressed

above the detection limit of the RT-qPCR assay (Figure 4).

4 | DISCUSSION

In general, the immunophenotypic characterization of bovine MSCs is

hampered by the lack of bovine-specific or validated cross-reactive

mAbs. In this study, 13 commercially available Abs were screened to

compose two panels of bovine-specific and/or cross-reactive Abs.

Cross-reactivity with bovine epitopes was identified for Abs directed

against CD34, CD73, CD79α and CD90. Unfortunately, no cross-

reactive Abs were identified against CD105 and CD106. Although the

Abs directed against CD29 (TS2/16) and CD79α (HM57) were already

used to identify bovine cells [67–70], they were not validated yet

using the appropriate positive control cells. This validation is impor-

tant as it turned out that three of the four tested anti-CD105 clones

(SN6, SN6h, and 2Q1707) were already used to characterize bovine

MSCs [40, 46, 67], while, in our hands, these antibodies did not bind

to both bovine adipose tissue-derived MSCs and UVECs. The tissue

of origin of the MSCs might explain the difference in CD105 expres-

sion by MSCs reported in these studies and in our study [40, 46, 71].

On the other hand, the polyclonal CD34 Ab was evaluated in this

study, although only a low percentage of positive cells was observed

in the positive control, most likely because the primary endothelial

cells were not purified. This is in line with other reports where human

and bovine primary endothelial cells were reported to show variable

CD34 expression [72, 73].

Based on the evaluated cross-reactive and bovine-specific Abs,

two panels were developed to adequately immunophenotype bovine

MSCs. The use of multi-color flow cytometry enhances the characteri-

zation of the heterogenous MSC population [74]. Similar to human

MSCs, bovine MSCs highly expressed CD29 and CD44, and lacked

expression of CD14, CD45, CD79α, and MHCII. However, some

remarkable differences in marker expression between human and

bovine MSCs were observed. Bovine AT-derived MSCs showed a var-

iable expression of the hematopoietic stem and progenitor marker

CD34, only a low expression of CD90, and lacked expression of

CD73. These results were largely similar on the mRNA level.

As already mentioned, a variable CD34 expression is described

for both human and bovine MSCs, depending on sources and pas-

sages [13, 40, 54, 75, 76]. It is hypothesized that MSCs originate from

the perivascular cell population as they share markers and functional-

ity with perivascular and mural cells [12, 77]. This might explain the

CD34 positivity of certain MSC subpopulations. Traktuev et al.

(2008), for example, identified a subpopulation of human AT-derived

stem cells that is, CD34+/CD31�/CD144� cells, which simulta-

neously expressed mesenchymal, pericytic and smooth muscle

markers [77]. For bovine MSCs, mostly CD34 negativity is reported at

the mRNA and protein level (Table 1). As proper Ab evaluation and/or

quantitative data on CD34 expression, in case of immunofluorescent

staining of bovine MSCs, is often lacking [16, 19, 27, 47, 49, 50],

defining bovine MSCs as CD34 negative cells remains a point of dis-

cussion [12]. Furthermore, CD34 positivity has been reported for

bovine MSCs isolated from placental tissues [40, 54].

Interestingly, CD73, known to be expressed by human MSCs, was

negative in the bovine AT-derived MSC population, as confirmed on

both the mRNA and protein level. In general, CD73 positivity has been

reported for bovine MSCs (Table 1). In parallel with CD34 expression,

proper Ab evaluation and quantitative data at the protein level is

often lacking [15, 26, 41]. In one bovine study, however, lung-derived

MSCs showed low CD73 mRNA levels in passage 3 and 9, with an

increased expression observed in passage 17 and 25 [26]. Low CD73

expression was also observed for equine MSCs isolated from umbilical

cord blood, Whartons Jelly and peripheral blood [78]. Recently, two

subpopulations based on the presence or absence of CD73 expression

were identified in murine MSCs, isolated from pericardial AT [79].

Additionally, these researchers observed a heterogenous CD73

expression (ranging from 19% to 84%) in MSCs from other murine

sources as well, such as bone marrow, subcutaneous AT and umbilical

cord [79].

Regarding CD90 expression, a discrepancy between mRNA and

protein level was observed in this study, with a high mRNA level but a

rather low expression on the protein level. This finding confirms that

the absence of the corresponding proteins is preferably evaluated

rather than their mRNA levels [80]. Low expression of CD90 was

reported as well in two other bovine MSC studies. In the study of
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Pipino et al. (2018), only a fraction (30%–40%) of bovine MSCs iso-

lated from milk was CD90+ [46], while Xiong et al. observed low

mRNA expression of CD90 in MSC from bovine umbilical cord [31].

In conclusion, a multi-color flow cytometry protocol was devel-

oped to immunophenotype bovine MSCs after properly evaluating

cross-reacting Abs. In a recent ISCT communication, it is stated that

F IGURE 2 Gating strategy for bovine mesenchymal stromal cells, (A) for panel 1 and (B) panel 2. First, singlets were selected in FSC-A/FSC-H
(P1) and SSC-A/SSC-H (P2) dot plots. The population of interest (P) was identified based on side scatter area versus forward scatter area (SSC-A/
FSC-A) characteristics. The viable single cell population (P4) was then identified by Sytox Blue (panel 1) or fixable violet blue (panel 2) staining.
The final gate for analysis (P5) was identified by defining unspecific binding to cells in P4 using fluorescence minus one (FMO) controls. Marker
expression of a representative donor for panel 1 and panel 2 is shown. [Color figure can be viewed at wileyonlinelibrary.com]
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the characterization of MSCs, as defined by cell surface marker

expression, is evolving as new insights are gained [12]. It is also clear

that several subpopulations are present within the MSC population

[79]. Such heterogeneity may also reflect differences in proliferation

and differentiation potential. Suga et al. (2009), for example,

showed that human AT-derived CD34+ MSCs exhibited a higher

proliferative potential, while CD34� MSCs showed a greater ability

for adipogenic and osteogenic differentiation [14]. When consider-

ing bovine MSCs as alternative cell source to produce cultured

meat, it is important to identify those MSC subpopulations which

are able to proliferate on the one hand (in order to generate large

amounts of cultured meat) and to differentiate myogenically on the

other hand. The immunophenotypic characterization protocol

described in this study provides an interesting tool to rapidly iden-

tify different MSC subpopulations. In future research, the prolifera-

tion and myogenic differentiation potential of the different MSC

subpopulations should be evaluated after sorting, to identify the

most appropriate MSC subpopulation to produce cultured meat.

Furthermore, our results suggest that species-specific immunophe-

notypic profiles should be formulated when characterizing MSCs, as

it is clear from this study and other studies that the expression of

the commonly used panel of MSC markers is highly variable and

F IGURE 3 Immunophenotypic
profile of bovine AT-mesenchymal
stromal cells (MSCs) as assessed by
multi-color flow cytometry. The
expression of nine MSC markers was
evaluated on bovine AT-derived MSCs
(n = 7). (A) The horizontal line shows
the mean % positive cells and the error
bars the standard deviation. The dotted

line shows the 2% positive cells, i.e. the
upper limit set by the ISCT to determine
‘lack of expression’ (≤2%).
(B) Representative image of co-
expression of CD44 and CD34, i.e. the
only positive markers in panel 2.
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depends on the species, tissue of origin, donors, passages, and cul-

ture conditions.
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