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Abstract

Nanoporous materials such as metal-organic frameworks (MOFs) have been ex-

tensively studied for their potential for adsorption and separation applications. In

this respect, grand canonical Monte Carlo (GCMC) simulations have become a well-

established tool for computational screenings of the adsorption properties of large sets

of MOFs. However, their reliance on empirical force field potentials have limited the

accuracy with which this tool can be applied to MOFs with challenging chemical en-

vironments such as open-metal sites. On the other hand, density-functional theory

(DFT) is too computationally demanding to be routinely employed in GCMC simu-

lations due to the excessive number of required function evaluations. Therefore, we

propose in this paper a protocol for training machine leaning potentials (MLPs) on a

limited set of DFT intermolecular interaction energies (and forces) of CO2 in ZIF-8

and the open-metal site containing Mg-MOF-74, and use the MLPs to derive adsorp-

tion isotherms from first principles. We make use of equivariant NequIP model which

1



has demonstrated excellent data efficiency, and as such an error on the interaction

energies below 0.2 kJ·mol-1 per adsorbate in ZIF-8 was attained. Its use in GCMC

simulations results in highly accurate adsorption isotherms and heats of adsorption.

For Mg-MOF-74, a large dependence of the obtained results on the used dispersion

correction was observed, where PBE-MBD performs the best. Lastly, to test the trans-

ferability of the MLP trained on ZIF-8, it was applied to ZIF-3, ZIF-4 and ZIF-6, which

resulted in large deviations on the predicted adsorption isotherms and heats of adsorp-

tion. Only when explicitly training on data for all ZIFs, accurate adsorption properties

were obtained. As the proposed methodology is widely applicable to guest adsorption

in nanoporous materials, it opens up the possibility for training general-purpose MLPs

to perform highly accurate investigations of guest adsorption.
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Introduction

Porous materials such as metal-organic frameworks (MOFs) have drawn widespread interest

in the last few decades for their potential for gas adsorption and separation applications.1–3

Consisting of metal-oxide building blocks and organic ligands, their permanent porosity un-

der guest removal was first established in the late 1990s.4–8 Through their high degree of

versatility, rational design of these materials for targeted adsorption properties became pos-

sible through the concept of isoreticular design. In seminal work by the group of Yaghi,

the pore size of MOF-5 could be incrementally varied from 3.8 to 28.8 Å by substitution of

the constituting organic linker, giving rise to the IRMOF isoreticular series of MOFs. Of

these, IRMOF-6 demonstrated state-of-the-art methane storage capacity at the time.9 Fur-

thermore, linkers can be functionalized to tune the host-guest interactions.10–12 Clearly, the

chemical space of MOFs arising from combining linkers, metal-oxide bricks, topologies and

linker functionalizations is vast, precluding an exhaustive search of this space through exper-

imental characterization. Herein lies the prime value of computational screening studies.13–23

Through grand canonical Monte Carlo simulations, the adsorption properties of large sets of

MOF structures can be quickly extracted. Early studies following this approach focused on

the screening of MOFs for their uptake and heat of adsorption of hydrogen, carbon dioxide

and methane,13–15 with later studies investigating separation properties.16–19 Prime examples

of the success of such computational screenings include the identification of NU-1103 out of

a set of 13 512 MOFs with outstanding hydrogen storage capacity at cryogenic temperatures

and the identification of 300 out of a set of 137 953 MOFs with exceptional methane stor-

age capacity.20,21 Lin et al. leveraged GPU hardware to significantly speed up adsorption

simulations, enabling them to screen hundreds of thousands of zeolites and ZIFs (zeolitic

imidazolate framework; a class of MOFs with isomorphic topology to zeolites) for carbon

capture applications.22,23 Furthermore, recent developments in machine learning (ML) mod-

els have been leveraged to predict the adsorption characteristics in MOFs.24–30 By training

such models on reference calculations or experimental uptakes, the adsorption properties of
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novel MOFs can be predicted with high accuracy (compared to the reference calculations or

experiments).

While all of the aforementioned screening studies have clearly demonstrated their merit in

identifying promising nanoporous for applications, they critically rely on an accurate descrip-

tion of the underlying potential energy surface (PES). Preferentially, DFT or wavefunction-

based methods would be used to provide a highly accurate description of the PES. However,

such methods are excessively computationally demanding for routine usage in GCMC simu-

lations, due to the required number of evaluations needed to converge a typical simulation.

Therefore, computationally cheap force fields are usually employed. To describe the host-

guest and guest-guest interactions, non-covalent force field potentials are employed. Usually,

a Lennard-Jones (LJ) or Buckingham potential is used, supplemented with an electrostatic

interaction arising from atomic charges assigned to the framework and adsorbates. Examples

of force fields used for this task are the Universal Force Field (UFF), DREIDING, MM3 and

the general Amber force field (GAFF).31–34 In later years, these force fields were adapted for

specific use with MOFs, including parameterizations of transition metals commonly encoun-

tered in these materials.35,36 However, many examples exist in the literature where force

fields required re-parameterization due to poor agreement with experiments. Boulanger

et al. rescaled the GAFF van der Waals dispersion parameters by a factor of 1.115 to obtain

accurate hydration free energies, Wu et al. rescaled the UFF LJ parameter ε by a factor

of 0.635 to reproduce methane adsorption isotherms in ZIF-8 and similarly, Pérez-Pellitero

et al. found that a rescaling of the LJ parameters was required for agreement with experi-

mental adsorption isotherms of N2 and CO2 in ZIFs.37–39 Moreover, force fields such as UFF

and DREIDING have been shown to significantly underestimate the interaction strength of

adsorbates with open-metal sites present in many MOFs.40 This deficiency has spurred the

development of more advanced polarizable force fields in which polarization of the adsorbate

on open-metal sites is modeled with the induced dipole method.41? –45 However, even when

employing these more advanced force fields, significant deviations between the experimental
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and predicted CO2 adsorption isotherms and heats of adsorption remain in the open-metal

site containing M-MOF-74 (M=Co,Fe,Mg,Mn,Ni,Zn) series of MOFs.45 Such limits in the

attainable accuracy could be related to the functional form of the employed force fields,

which might not fully capture the interaction of adsorbates with the open-metal site.

The preceding discussion demonstrates the need for methods that can bridge the gap be-

tween a force field and DFT description of the intermolecular interactions between adsorbates

and a MOF adsorbent. On one hand, DFT calculations are prohibitively expensive for use

in GCMC simulations due to the required number of iterations needed for convergence.46

On the other hand, force field based GCMC simulations are computationally (relatively)

cheap, but are limited in accuracy when applied to challenging intermolecular interactions

such as those present in open-metal site containing MOFs. To bridge this gap, different

approaches have been investigated. Lee et al. evaluated the Henry regime (characterizing

the low-pressure adsorption behavior) in M-MOF-74(M=Zn,Mg) for several adsorbents by

performing biased single particle insertions, evaluated at the DFT level of theory.47 In a

similar work, Vandenbrande et al. proposed an importance sampling scheme based on pre-

ceding force field calculations to evaluate the Henry coefficients and heats of adsorption at

the DFT level of theory at infinite dilution for methane in UiO-66 and CO2 in Mg-MOF-74

by means of single particle insertions.48 However, the efficiency of this method (the num-

ber of required DFT evaluations) still depends critically on the quality of the used force

field. Moreover, only the low-pressure regime can be characterized from this method. Al-

ternatively, Kundu et al. predicted the adsorption isotherms of CO2 in Mg-MOF-74 from

calculations of the interaction energy of an adsorbate on the open-metal site and linker with

a correlated wavefunction-corrected DFT method.49–51 With these adsorption sites, a lattice

of sites was defined, on which grand canonical Monte Carlo simulations were performed.

Although successful in predicting the adsorption isotherms at different temperatures, this

method relies on an initial accurate determination of well-defined adsorption sites, as guest

molecules are not considered to adsorb on other sites of the framework, limiting the general
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applicability of this method.

Hence, this work aims at a generally applicable methodology to perform GCMC calcu-

lations in MOFs at DFT accuracy. For this, we leverage the recent developments of highly

accurate and data-efficient equivariant machine learning potentials (MLPs) to describe the

interaction of guest molecules in MOFs. In the message passing NequIP potential used in

this work, each atom is characterized by a feature vector which is refined during training

through a series of interactions layers.52 Tested on datasets of energies and forces of small

molecules and periodic materials, it demonstrated state-of-the-art accuracy as well as excep-

tional data efficiency. In recent years, MLPs have been employed to study the mechanical,

diffusion and phase transition properties of MOFs by means of MD simulations.53–56 In these

applications, the training set consists of DFT energies and atomic forces. However, for our

application of employing an MLP in GCMC simulations, the requirements on the training

set are fundamentally different. Through the integration of the equations of motion, an equi-

librium canonical MD simulation samples regions of the PES proportional to a Boltzmann

factor of the potential energy. While the exact same distribution is sampled from (canon-

ical) Monte Carlo simulations, this is achieved by performing trial moves of the system to

regions of the PES which might be very high in energy. Even though these trial moves will

not be accepted and are therefore not relevant, they still need to be reliably rejected. This

implies that, contrary to the case of MD simulations, the MLP needs to be explicitly trained

on structures high on the PES. Secondly, only the intermolecular or non-covalent energy is

of importance in GCMC simulations, as both the framework and adsorbates are generally

considered rigid.

To address these considerations, a methodology is proposed to efficiently generate datasets

of frameworks loaded with guests which will serve as the input data to train an MLP. Sub-

sequently, tests are performed to determine both the hyperparameters of the network, as

well as the required data set size to derive an accurate model for CO2 in ZIF-8. For adsorp-

tion in this MOF, high quality experimental data is available, allowing for a unambiguous
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comparison with the results obtained with our proposed methodology.57 With the trained

MLP, GCMC calculations are performed to extract the isotherms and heats of adsorption,

demonstrating excellent agreement with experiments. The proposed methodology is also ap-

plied to model CO2 adsorption in the open-metal site containing Mg-MOF-74 with reference

data generated at the PBE-D3(BJ), PBE-TS and PBE-MBD level of theory, highlighting

the important differences between the used dispersion corrections.58–62 Lastly, the ability of

an MLP trained on ZIF-8 to model adsorption in ZIF-3, ZIF-4 and ZIF-6 was investigated,

as this type of transferability of interactions to similar chemical environments is usually

implicitly assumed in classical force fields. The MLP is shown to be unable to capture the

stronger interactions present in ZIF-3 and ZIF-4. Even in ZIF-6, where the error on the

test set is acceptable, significant errors in the predicted heats of adsorption are obtained,

highlighting the risk of extrapolation for MLPs. Only when explicitly training on all ZIFs,

accurate results are obtained.

Methodology

Non-covalent dataset generation

As mentioned before, the requirements on a dataset to train an MLP employed in GCMC

simulations are different than the ones needed for performing MD simulations, due to the

need to reliably reject trial moves that are high in potential energy. On the other hand,

MLPs can generally be trained to higher accuracy when the training set is not excessively

unbalanced, as would be the case when combining repulsive interactions order of magnitudes

stronger than the attractive interactions. Therefore, an inclusion in the dataset of extremely

repulsive interactions as encountered when atoms approach each other closely, is not desir-

able. As a compromise between these considerations, the method illustrated in Figure 1 for

generating a dataset of non-covalent interactions is proposed.

First, the van der Waals radii derived by Alvarez are assigned to each element present in
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Figure 1: Proposed methodology for generating the dataset to train an MLP on intermolecu-
lar energies (and forces). First, snapshots of the framework loaded with adsorbates respecting
minimum intermolecular distances defined by the exclusion spheres are generated. Subse-
quently, rigid-guest optimizations of the adsorbates are performed (with a fixed framework)
to guide the adsorbates to favorable interaction sites in the framework.

the framework and adsorbates.63 Their analysis of more than 5 million non-covalent distances

shows that no non-bonded interactions occur at inter-atomic distances below the sum of two

atomic radii minus 0.7 Å. Therefore, the van der Waals radius for each atom minus 0.35 Å

can be seen as an ‘exclusion sphere’ within which no adsorbate-adsorbate or adsorbate-

framework interactions occur. The exclusion spheres will be used further on (with proper

validation) in GCMC simulations to reject any trial step in which an overlap occurs. Because

of this, there is no need to explicitly train the MLP to these very short-ranged (repulsive)

interactions.

Subsequently, a set of N guest-loaded snapshots constrained by the exclusion spheres

are generated by means of random insertions, implemented in a custom python script. The

number of adsorbates in each snapshot Nads is distributed uniformly between 0 and Nmax,

with Nmax the maximum number of guests which can reliably be inserted without violating

the constraints. Although the snapshots generated from this procedure respect the mini-

mum intermolecular distances defined by the exclusion spheres, they still mostly represent

high energy structures. Therefore, in a last step, each snapshot is optimized using the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimizer from the Atomic Simulation Environ-
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ment (ASE) at the relevant level of theory for Nsteps iterations, keeping both the framework

coordinates fixed and the adsorbates rigid (Nsteps = 30 in this work, as will be shown fur-

ther).64 While extensions to flexible frameworks and adsorbates are possible, these will not

be considered in this work. Every snapshot from the optimizations is retained in the dataset,

for a total of N ×Nsteps snapshots. By retaining all snapshots, both the high energy (at the

beginning of the optimization), as well as the low energy structures (at the end of the opti-

mization) are sampled. By subtracting the energies and forces of the constituting isolated

framework and adsorbates from the total energies and forces, the intermolecular energies

Einter and forces Finter are obtained. As the framework remains fixed, the energy and forces

of the framework are the same for each snapshot, requiring only 1 single point calculation. In

this work, the experimentally resolved structures for all MOFs are used. Similarly, because

of the use of rigid adsorbates, only a single calculations of the energy and forces of an isolated

adsorbate are required. Note that this calculation of intermolecular energies and forces is

not subject to a basis set superposition error, as plane waves were used as basis set in this

work. Further details on the DFT settings are given in the Computational Details.

MLP training

The Neural Equivariant Interatomic Potential (NequIP) is used in this work as MLP to

represent the intermolecular interaction energy and forces of guest-loaded frameworks, chosen

for its excellent accuracy and data efficiency.52 However, future more advanced models could

also be employed as simple drop-in replacements. To train the network, an appropriate cost

function is required. In this work, a slight adaptation of the existing cost functions in NequIP

is made. As Nads varies across snapshots in the training set and the intermolecular energy is

an extensive property, the energy cost is normalized with Nads (see Equation 1). Neglecting

to do so would artificially bias training towards snapshots with higher Nads. Additionally,

the intermolecular forces are also included in the cost function. While not strictly needed,

including forces during training is known to improve data efficiency. An L1 cost function is
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used for increased robustness with respect to outliers:

C(θ) =
λE
N

N∑
i=1

∥∥∥∥∥E(i)(θ)− Ê(i)
inter

Nads,i

∥∥∥∥∥+
λF

3NNa

N∑
i=1

N
(i)
a∑

a=1

∥∥∥F (i)
a (θ)− F̂

(i)

inter,a

∥∥∥ (1)

with the sum over i running over the snapshots, the sum over a running over atoms, N
(i)
a the

number of atoms in each snapshot i and Na =
∑

iN
(i)
a . In this cost function, the parameters

of the network θ are to be optimized to minimize the difference between the predicted

energies and forces (E(i)(θ) and F (i)
a (θ)) and the reference energies and forces (Ê

(i)
inter and

F̂
(i)

inter,a). The hyperparameters λE and λF determine the relative weight of the energies and

forces. The effect of different hyperparameters of the network such as the cutoff radius, the

number of interaction layers, the number of features and the maximum rotation order are

investigated in the Supporting Information.

GCMC calculations

With the trained MLPs, GCMC calculations are performed using the same exclusion spheres

as for the dataset generation to reject unphysical trial moves. Care is taken that the exclusion

spheres were not too large such that energetically favorable moves would be rejected (see

further). In other words, the exclusion spheres should strictly encompass regions of the pores

associated with unfavorable insertion energies. The Peng-Robinson equation of state is used

to convert the gas pressure to a fugacity used in the simulations. Apart from the gas uptake,

the isosteric heat of adsorption Qst as a function of the gas pressure can be derived from

GCMC calculations from the following Equation:65

Qst = −〈E ·N〉 − 〈E〉〈N〉
〈N2〉 − 〈N〉2

+RT (2)

with N and E the instantaneous number of adsorbates and intermolecular energy, the brack-

ets 〈· · · 〉 denoting an ensemble average and R and T are the molar gas constant and tem-
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perature. In this Equation, the first term represents the difference in interaction energy

between a MOF loaded with N + 1 molecules, compared to N molecules, and the second

term represents the work required to compress an ideal gas at a fixed pressure and tempera-

ture. Alternatively, the isosteric heat of adsorption at infinite dilution Qst,dilution can also be

computed using the Widom insertion method, performing a set of random insertions of the

adsorbate in the framework and computing the interaction energy ∆E:66

Qst,dilution = −〈∆E e
−β∆E〉

〈e−β∆E〉
+RT (3)

Results

Carbon dioxide adsorption in ZIF-8

(a) (b)

Figure 2: (a) Histogram of the interaction energy per adsorbate along three steps in op-
timization trajectories (step 0, 15 and 30) out of a total of 1000 optimizations, performed
at the PBE-D3(BJ) level of theory. (b) The mean absolute error (MAE) on the energy of
the validation set during training for different sizes of the dataset (between 125 and 1000
optimizations).

With the procedure outlined before, 1000 snapshots containing between 0 and 32 CO2

adsorbates were generated after which each was optimized at the PBE-D3(BJ) level of theory

for a total of 30 optimization steps. To determine whether the geometric optimizations have
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steered the adsorbates to the favorable interaction sites, the histograms of the interaction

energy per adsorbate are shown at the start of the optimization trajectories (step 0), in the

middle (step 15) and at the end (step 30) in Figure 2(a). As can be seen, the initial snapshots

represent mostly configurations between -10 and 10 kJ·mol-1 per adsorbate. Optimizing the

snapshots, most have reached interaction sites between -20 and -15 kJ·mol-1 per adsorbate

at the end. Note that it is not vitally important for all optimization trajectories to fully

converge. As long as sufficient favorable interactions are included in the dataset, the MLP

is able to accurately represent the minima (see further). To determine the required number

of trajectories to train an accurate MLP, the total dataset of 1000 optimization trajectories

was subdivided into sets containing N = 125, 250, 500 and 1000 trajectories. For each set,

a separate MLP was trained (denoted further as MLP125, MLP250, MLP500 and MLP1000),

in which 80% of the data is used for training and 20% for validation. The validation mean

absolute error (MAE) is shown in Figure 2(b). As can be seen, the MAE on the interaction

energies is low even for the dataset containing 125 trajectories. Increasing N from 125 to

1000 decreases the MAE from 0.093 to 0.060 kJ·mol-1 per adsorbate. However, evaluating

each model on a test set containing 100 optimizations to which no training was performed,

elevated errors of 0.45 to 0.15 kJ·mol-1 per adsorbate are obtained for MLP125 and MLP1000.

As a first validation of the derived MLPs, their accuracy in reproducing interaction

energies of a single adsorbate in the framework is investigated. A set of 50 rigid-body

optimizations of an adsorbate in ZIF-8 performed with MLP1000 revealed that the strongest

interaction site of CO2 is a configuration in which the adsorbate interacts with a pore window,

perpendicular to the plane of the window (see Figure 3(b)). To explore the interaction

around this minimum, the adsorbate was subsequently translated along the normal of the

pore window plane. Relative to the configuration centered in the pore window, the adsorbate

is translated with distances between 0 and 4 Å with steps of 0.1 Å. For each structure, the

interaction energy is recomputed with all MLPs and the reference PBE-D3(BJ) level of

theory. As shown in Figure 3(a), significant deviations are observed for MLP125. For the
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(a) (b)

Figure 3: (a) Interaction energies of an adsorbate with the pore window in ZIF-8, perpendic-
ular to the plane of the window, computed with all four MLPs and the reference PBE-D3(BJ)
level of theory. The adsorbate is translated along the normal (see (b)) with distances be-
tween 0 and 4 Å. (b) Visualization of the adsorbate interacting with the pore window of
ZIF-8, and the translation vector along the normal on the pore window. For clarity, only
the Zn atoms and imidazolate linkers of the six-membered pore ring are shown.

other MLPs, good agreement with the reference energies are obtained. Furthermore, as the

optimizations were performed with an MLP, this demonstrates that the forces learned during

training enable accurate optimizations towards the minimum.

While this first validation demonstrates that an MLP trained on a sufficient number of

optimizations can accurately reproduce interaction energies around minima on the potential

energy surface, an additional validation of the used exclusion spheres is vital to ensure that

their exact values do not influence the adsorption properties obtained further. To this end,

the heats of adsorption Qst of CO2 in ZIF-8 were computed at 273 K by means of Widom

insertions with rescaled values of the radii of the exclusion spheres between a factor of 0.80

and 1.20. In case the exclusion spheres would erroneously exclude relevant regions of the

potential energy surface, Qst would be sensitive to rescaling factors smaller than 1. As shown

in Figure 4, Qst is indeed insensitive to the exact choice of the radii for the exclusion spheres
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exclusion zone

Larger
exclusion zone

Figure 4: Isosteric heat of adsorption Qst of CO2 in ZIF-8 obtained from 5 · 106 Widom
insertions using MLP1000 with rescaled exclusion sphere radii. Errors are obtained from
dividing the set of 5·106 Widom insertions in 5 subsets, and computing the standard deviation
between Qst obtained for each subset.

(with only small deviations occurring from rescaling factors larger than 1), demonstrating

that the region excluded by the exclusion spheres is indeed an irrelevant part of the phase

space.

With each of the MLPs trained on varying dataset sizes, GCMC calculations were sub-

sequently performed at a temperature of 273 K and a range of gas pressures between 0.1

bar and 50 bar. Each simulation consists of 5 · 106 MC steps, with equal probability for

translations, rotations, insertions and deletions. The resulting uptake as a function of the

gas pressure and heat of adsorption as a function of the guest loading are shown in Figure

5(a) and 5(b). The adsorption isotherms obtained with the MLPs trained on between 125

and 1000 optimizations are nearly identical. Comparing these isotherms with experimental

results obtained by Simmons et al., Abraha et al. and Gracés et al., good agreement between

both is observed, as seen in Figure 5(a).57,67,68 While a slight over-prediction of the uptake

at low gas pressure and an under-prediction of the uptake at high gas pressures is observed,

this could be due to the rigid-framework approximation employed in GCMC simulations, as

the flexible behavior of ZIF-8 and its effects on adsorption have been well-established.69 As

shown in Figure 5(b), MLP1000 predicts an increase in the heat of adsorption of CO2 in ZIF-8

from 18.0 kJ·mol-1 at the smallest loadings to approximately 25.8 kJ·mol-1 at the highest
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(c)

(d)

(a)

(b)

Figure 5: (a) The gas uptake and (b) isosteric heats of adsorption of CO2 in ZIF-8 obtained
with MLPs trained on between 125 and 1000 optimizations. Error bars are obtained from
block averaging. (c) The test MAE on the energy of snapshots extracted from GCMC
simulations as a function of the gas pressure and (d) a density plot of adsorbate atoms
extracted from the MLP trained on 1000 optimizations at 10 bar.

15



loadings, in good agreement with experimentally derived heats of adsorption.57 This increase

in heat of adsorption as a function of the CO2 loading is indicative for the relatively weak

host-guest interactions in ZIF-8 compared to the guest-guest interactions. Even though the

most favorable interaction sites for an adsorbate in ZIF-8 are already occupied at higher

guest loadings, the heat of adsorption still increases due to the guest-guest stabilization.

To determine the accuracy of the performed GCMC simulations compared to the reference

level of theory, 50 snapshots were taken from the GCMC simulations performed with each of

the MLPs at each gas pressure. The interaction energy of these snapshots was recomputed

with the reference PBE-D3(BJ) level of theory. As shown in Figure 5(c), the resulting average

MAE on the energy decreases with increasing N from 0.54 to 0.13 kJ·mol-1 per adsorbate.

Already for N = 250 (representing 7500 total DFT evaluations), a MAE smaller than 0.40

kJ·mol-1 per adsorbate is attained. As illustration, the density of adsorbate oxygen atoms

extracted from the GCMC simulations using N = 1000 at a pressure of 10 bar is shown in

Figure 5(d).

Carbon dioxide adsorption in Mg-MOF-74

Having validated our proposed methodology, it is now applied to the challenging case of CO2

adsorption on the open-metal sites present in Mg-MOF-74. Due to the undercoordination of

the metal, CO2 molecules can approach the Mg site in this MOF to within 2.2 Å , which is

closer than would be allowed by the tabulated van der Waals radius for Mg.45,63 Therefore,

the Mg van der Waals radius was set to 1.0 Å , allowing insertions of CO2 in the framework

to within 1.8 Å of the Mg metal site. This choice was validated a posteriori, as was done

for ZIF-8 in Figure 4, and is shown in Section 3 of the Supporting Information.

From the literature, it is known that the interaction energy of a CO2 molecule with

the Mg open-metal site in Mg-MOF-74 depends significantly on the choice of dispersion

correction.70 Therefore, 1000 optimizations were performed in the framework at the PBE-

D3(BJ), PBE-TS and PBE-MBD levels of theory. This selection of dispersion corrections

16



(a) (b)

Figure 6: (a) The excess CO2 uptake and (b) isosteric heats of adsorption in Mg-MOF-74
computed with MLPs trained on PBE-D3(BJ), PBE-TS and PBE-MBD reference optimiza-
tions, compared to experiments by Dietzel et al.,71 Yu et al.72 and Queen et al.73 and UFF
simulations.45 All MLP GCMC simulations were performed at 298 K and pressures between
2·10-4 and 50 bar.

was inspired by previous work by Rehak et al. in which the adsorption energy on the Mg site

obtained with different levels of theory was benchmarked.70 Therein, the PBE-TS and PBE-

MBD functionals most closely agreed with the experimentally derived adsorption energy.

Therefore, these two functionals, as well as the commonly used PBE-D3(BJ) functional are

considered further.

Training an MLP on the energies and forces results in a validation MAE on the energies

of 0.16, 0.20 and 0.16 kJ·mol-1 per adsorbate for the PBE-D3(BJ), PBE-TS and PBE-MBD

functionals, respectively. Subsequently, GCMC simulations were performed for 2.5·106 itera-

tions at 298 K and pressures between 2·10-4 and 50 bar. The results are shown in Figure 6 and

compared to experiments performed by Dietzel, Yu and Queen et al., as well as simulations

performed previously with the Universal Force Field (UFF).45,71–74 As seen in Figure 6(a),

UFF underestimates the uptake at low pressures and overestimates the uptake at the highest

pressures. This is due to its limited accuracy in describing the interaction strength with the

Mg site (underestimating the heats of adsorption at low uptakes, see Figure 6(b)), as well as
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Figure 7: The test MAE on the energy of snapshots extracted from GCMC simulations as a
function of the gas pressure for the MLPs trained on PBE-D3(BJ), PBE-TS and PBE-MBD
reference optimizations, respectively.

the mutual interaction between CO2 adsorbates (as seen from the heats of adsorption at the

highest uptakes). GCMC simulations performed with the MLPs at each of the three levels of

theory significantly improves the description of guest adsorption in the framework. Between

these, PBE-MBD performs best, accurately capturing the shape of the adsorption isotherm

at pressures below 1 bar. Moreover, as seen in Figure 6(b), the MLP trained on PBE-MBD

reference data results in highly accurate heats of adsorption. Compared to the dependence of

the heats of adsorption on the uptake seen for ZIF-8 (see Figure 5(b)), the opposite behavior

is observed. At loadings below 1 adsorbate per Mg site, a heat of adsorption of approxi-

mately 42 kJ·mol-1 is obtained, in good agreement with experiments.71–73 At higher loadings,

the heat of adsorption suddenly drops to around 26 kJ·mol-1 due to the full occupation of

Mg interaction sites, as also observed experimentally. This investigation demonstrates how,

compared to UFF, a model which captures the interaction energy with the framework and

other adsorbates with high accuracy can result in quantitative predictions of the adsorption

properties in an open-metal site containing MOF.

As before, 50 snapshots were extracted from simulations at each gas pressure for the three

levels of theory and recomputed. As shown in Figure 7, the MAEs are equal to 0.41, 0.42 and
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Figure 8: (a) RDF of magnesium–adsorbate oxygen atoms and (b) RDF of the adsorbate–
adsorbate atoms computed from GCMC calculations in Mg-MOF-74 at each of the three
levels of theory. The full lines correspond to a loading of half an adsorbate per magnesium
site, and the dotted lines correspond to a loading of one and a half adsorbates per magnesium
site.
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0.40 kJ·mol-1 per adsorbate for PBE-D3(BJ), PBE-TS and PBE-MBD, respectively. A slight

increase in error is seen at the lowest pressures, as for these snapshots all CO2 molecules are

adsorbed on Mg sites, on which the interaction is most difficult to capture. The errors are

significantly higher than for CO2 adsorption in ZIF-8, and can be rationalized by the more

diverse adsorption environment in Mg-MOF-74, with significantly stronger interactions on

the Mg site compared to the linkers.51 However, these errors are still deemed acceptable, as

differences between the levels of theory can be significantly larger (as seen from the heats of

adsorption shown in Figure 6(b)).

To investigate the difference in structure of adsorbed CO2 in the region of high heats

of adsorption at low loadings and lower heats of adsorption at higher loadings (see Figure

6(b)) as well as differences between functionals, radial distribution functions (RDFs) of

the magnesium–adsorbate oxyen atoms and adsorbate–adsorbate atoms are computed and

shown in Figures 8(a) and 8(b), respectively. Comparing the Mg–O RDFs at low and high

adsorbate loadings (0.5 adsorbates versus 1.5 adsorbates per Mg site), shown in Figure 8(a),

it is clear that at low loadings guests preferentially adsorb at the Mg site, with a peak

in the RDF around 2.4 Å and a secondary broad peak between 4 and 5 Å, representing

the interaction with a neighboring Mg site. Compared to this, the high framework loading

exhibits a significantly lower first peak as more adsorbates are located in the middle of the

pores, further away from the Mg sites. The difference between simulations performed with

MLPs trained on each of the three levels of theory is minor. Only in the first peak, a slight

shift of approximately 0.05 Å is seen for PBE-MBD compared to the other functionals. In

Figure 8(b), the RDF of adsorbate atoms is shown at low and high loadings. As seen from

the low occupation of distances between 3 and 4 Å at low loadings, adsorbates are mostly

separated from each other, located at each Mg site. Contrary to this, due to the filling

of the center of the pore at higher loadings, interatomic distances between 3 and 4 Å are

much more represented, with a peak around 4 Å. Again, only minor differences are observed

between different functionals.
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An investigation into transferability

Given an MLP trained on interaction energies of an adsorbate in a MOF consisting of certain

building blocks, one could be interested in modeling adsorption in MOFs comprised of the

same building blocks but with different topologies. This approach is exemplified in most

common force fields making use of atom types: parameters derived for atoms in certain

chemical environments are assumed to transfer well between different systems containing

those environments. To investigate whether this concept of transferability can be applied to

non-covalent interactions in MOFs modeled by MLPs, GCMC simulations were performed

on ZIF-3, ZIF-4 and ZIF-6 (see Figure 9(a)) by use of the MLP trained on 1000 optimizations

of CO2–loaded ZIF-8 (denoted MLPZIF8). This approach is shown schematically in Figure

9(b), with the resulting isotherms and heats of adsorption shown as dotted curves in Figure

9(c). While the results seem acceptable at first sight, a problem arises when recomputing

extracted snapshots at the PBE-D3(BJ) level of theory. MAEs of 2.38, 8.27 and 0.97 kJ·mol-1

are obtained for ZIF-3, ZIF-4 and ZIF-6.

As comparison to this, a single MLP was trained instead on 250 optimization in each of

the four ZIFs (denoted MLPZIF{3,4,6,8}). Note that the same number of total optimizations

(1000) are performed for this MLP as for MLPZIF8. This approach is shown in Figure 9(d),

and the resulting adsorption isotherms and heats of adsorption are shown in Figure 9(c)

with solid lines. A significantly different adsorption behavior is observed, with consistently

higher heats of adsorption and uptakes. For MLPZIF{3,4,6,8}, recomputing the extracted

snapshots results in MAEs of 0.40, 0.39, 0.32 and 0.32 kJ·mol-1 for ZIF-3, ZIF-4, ZIF-6

and ZIF-8. From the difference in heats of adsorption obtained from both methods, it

is clear that MLPZIF8 is not capable of reproducing the adsorption behavior in the other

ZIFs. This can be rationalized by their substantially different density, probe-occupiable

pore volume and surface area (computed using a nitrogen probe with PoreBlazer,75 see

Table 1). For example, ZIF-4 is the densest of the four MOFs, resulting in a significantly

stronger interaction of an adsorbate with the adsorbent (as seen from the heats of adsorption
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Figure 9: (a) Illustrations of ZIF-3, ZIF-4, ZIF-6 and ZIF-8. (b) An MLP trained on
optimizations in ZIF-8 (MLPZIF8) is applied to perform GCMC simulations in all of the four
ZIFs. (c) The uptake and heats of adsorption as a function of the gas pressure obtained
from GCMC simulations obtained with both MLPZIF8 in dotted lines and MLPZIF{3,4,6,8} in
full lines. (d) An MLP is trained on optimizations in all four ZIFs (MLPZIF{3,4,6,8}) and
subsequently applied to each.
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Table 1: Topology, density, probe-occupiable pore volume (VPO) and surface area of all four
ZIFs, computed with PoreBlazer.75

Topology Density [g/cm3] VPO [cm3/g] Surface area [m2/g]
ZIF-3 dft 0.88 0.61 1476
ZIF-4 cag 1.22 0.22 166
ZIF-6 gls 0.76 0.80 2612
ZIF-8 sod 0.92 0.52 1173

in the low pressure regime from Figure 9(c)). Even for ZIF-6, on which MLPZIF8 exhibited

a MAE of 0.97 kJ·mol-1, heats of adsorption consistently off by approximately 4 kJ·mol-1

are obtained compared to MLPZIF{3,4,6,8}. The reason for this discrepancy is the content of

the test set. Due to the lacking ability of MLPZIF8 to recognize the favorable adsorption

locations in the ZIF-6 framework, the test set does not include these locations. Therefore,

the test error is deceptively low, while the actual error at these sites is significantly higher.

Only when explicitly training an MLP to reference data which includes these important sites,

this failure is alleviated.

To validate whether this statement holds true, it is possible to compute the heats of

adsorption at infinite dilution at the reference PBE-D3(BJ) level of theory by means of an

importance sampling approach, proposed by Vandenbrande et al .48 First, a set of 106 random

insertions in each of the ZIFs are constructed for which the MLPZIF{3,4,6,8} interaction energies

are computed. Subsequently, a set of Nimportance insertions are extracted from this wider

set with a probability proportional to a Boltzmann factor. Recomputing those Nimportance

snapshots, the heats of adsorption at the reference level of theory can be obtained from the

following Equation:

Qst =
〈∆U exp (−β(∆U −∆Ũ))〉
〈exp (−β(∆U −∆Ũ))〉

(4)

with ∆Ũ and ∆U the interaction energies computed with the MLP and PBE-D3(BJ), respec-

tively, β = 1/kBT and the ensemble average a canonical average over the MLP energies. In

case the MLP accurately reproduces the reference PES, only a limited number of insertions

Nimportance are required, keeping the computational cost for this procedure manageable. In
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Figure 10: Difference between the MLP and reference PBE-D3(BJ) heats of adsorption for all
four ZIFs. MLP results are obtained from 106 Widom insertions, and the reference heats of
adsorption are obtained from recomputing importance sampled configurations from the MLP
insertions. Convergence with respect to the number of recomputed snapshots Nimportance is
shown for Nimportance between 50 and 2000.

Figure 10, the difference between the MLP and PBE-D3(BJ) importance sampled heats of

adsorption obtained in this manner are shown. With Nimportance = 1000, convergence within

0.10 kJ·mol-1 is obtained. As can be seen, the heats of adsorption obtained with the MLP

compare well to those computed from importance sampled PBE-D3(BJ) insertions. For all

four ZIFs, the error on the predicted heats of adsorption are lower than 0.20 kJ·mol-1, further

validating the derived MLP.

This investigation highlights how even seemingly well-performing MLPs can fail in un-

foreseen ways when sampling parts of the PES on which it was not adequately trained. While

such failures can be detected by validation on optimizations performed at the reference DFT

level of theory, this implies additional computationally demanding calculations. This clear

failure in transferability can be attributed to the short-range nature of the employed MLPs.

As the MLPs only describe the short-range interactions within a certain cutoff radius, longer

ranged interactions are not explicitly modeled, and are only incorporated implicitly through

error cancellation with the short-range interactions. Therefore, the merging of an explicit

model for the long-range interactions by classical force fields with the short-range description

by neural networks appears the most promising method to improve transferability. For ex-

ample, MLPs could be trained to predict short-range atomic energies as well trainable atomic
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force field parameters such as charges or Lennard-Jones parameters.76 In this way, both the

short-range and long-range interactions are modeled explicitly. However, such approaches

were not investigated in this work, as these would require extensive benchmarking on which

functional forms and trainable force field parameters increase the transferability across sets

of MOFs with different topologies.

However, from the results obtained in this work, it is clear that accurate MLPs can

be derived from a dataset containing between 250 and 1000 optimizations performed at

the DFT level of theory (between 7500 and 30000 single point calculations, respectively).

To illustrate the computational speedup enabled by the MLP compared to reference DFT

calculations, a single energy evaluation of a guest-loaded ZIF-8 framework was performed

with both methods on a single core of an Intel Xeon Gold 6140 processor. On this CPU, a

DFT calculations takes approximately 6300 seconds, while the same energy evaluation takes

only 490 milliseconds with the MLP. This represents a speedup of more than four orders

of magnitude. To speed up both the training and use of the MLPs for GCMC simulations

further, NVIDIA V100 GPUs were employed. On one such GPU, training an MLP takes on

average 27 hours, while a typical GCMC calculation consisting of 5 · 106 iterations can be

performed in approximately 50 hours. It is therefore clear that properly trained MLPs can

vastly extend the applicability of DFT calculations, and can be expected to be of significant

help in modeling adsorption in challenging systems such as open-metal site containing MOFs.

Conclusions

In this work, we proposed a generally applicable methodology for performing GCMC simula-

tions by use of MLPs trained on DFT intermolecular reference energies and forces. First, an

appropriate dataset was constructed to train the MLPs. For this, snapshots of guest-loaded

frameworks are generated based on van der Waals ‘exclusion spheres’ and subsequently

(rigidly) optimized using the relevant level of theory. With 7500 single point calculations
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(250 trajectories, with 30 optimizations steps each) a test MAE on the energy of less than

0.4 kJ·mol-1 per adsorbate can be achieved, as calculated from snapshots extracted from

GCMC simulations performed with the MLP. Having initially benchmarked the method-

ology on CO2 adsorption in ZIF-8, it was subsequently applied to model CO2 adsorption

in Mg-MOF-74, an open-metal site containing MOF which has attracted attention for its

interesting adsorption properties, as well as the challenge in modeling these properties com-

putationally using force fields. Comparing three different dispersion corrections combined

with the PBE functional for modeling adsorption in this MOF, PBE-MBD showed excellent

agreement between the computed and experimentally obtained adsorption isotherms and

heats of adsorption at 298 K. The characteristic drop in the heat of adsorption of CO2 in

this MOF between low and high uptakes from approximately 42 kJ·mol-1 to 26 kJ·mol-1 is

quantitatively predicted from the performed GCMC simulations. Lastly, also the transfer-

ability of an MLP trained on ZIF-8 towards other ZIFs was tested. In this case, significant

under-predictions of the uptakes and heats of adsorption were obtained for a set of other

ZIFs composed of the same building blocks. This investigation highlighted the difficulty

in training transferable MLPs, warranting caution when MLPs are employed to model ad-

sorption in MOFs with structural differences to those/that in the training set. Only when

explicitly training to data for all ZIFs, accurate results are obtained.

The general methodology proposed here has potential to be widely applicable not only

to model adsorption in MOFs, but also in other nanoporous materials such as covalent or-

ganic frameworks (COFs), zeolites or graphene derivatives. By training an MLP on limited

set of DFT reference data, a ‘best of both worlds’ compromise is made between the accu-

racy of DFT and the computational efficiency of force fields, unlocking the potential for

routine GCMC simulations at DFT accuracy. Moreover, it could be employed as a tool to

benchmark computationally cheaper classical force fields where experimental reference data

is not available. Therefore, this work holds potential to aid accurate computational screen-

ing of adsorption properties in nanoporous materials, supporting application-focused future
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research.

Care should still be taken in choosing an accurate reference level of theory. As shown in

this work, the choice of dispersion correction alone can affect the obtained heat of adsorption

of CO2 in Mg-MOF-74 by as much as 5 kJ·mol-1. For MOFs containing transition metals,

the presence of multiple magnetic configurations could further complicate the generation of

accurate reference data.48,72 Secondly, this work only considered rigid frameworks. However,

it could easily be extended to flexible adsorbents by including different framework geometries

and training on the total energy and atomic forces (not just the intermolecular energy and

forces). With this, hybrid GCMC/MD schemes could be employed to properly sample the

adsorbate-induced flexibility of frameworks.77

Computational details

DFT optimizations

All single point calculations were performed with VASP, using the projected augmented

wavefunction (PAW) PBE potentials.78–81 The electronic convergence threshold for the en-

ergy was set to 10-5 eV. For ZIF-8, a single k-point was used, while for Mg-MOF-74 a 2×2×2

k-point mesh was used for all PBE-D3(BJ) and PBE-TS calculations and a 3×3×3 k-point

mesh for all PBE-MBD calculations (see Supporting Information). An appropriate value

for the cutoff energy for CO2 adsorption in ZIF-8 was determined by performing 20 opti-

mizations of guest-loaded frameworks for 30 steps using a cutoff of 700 eV. The final 20

structures were recomputed with cutoff energies between 350 eV and 650 eV. As shown in

the Supporting Information, the interaction energy is converged to within 0.05 kJ·mol-1 using

a cutoff energy of 500 eV. For Mg-MOF-74, a cutoff energy of 600 eV was used in accordance

with previous work.70 Furthermore, as the difference between calculations performed with

the precision set to normal compared to accurate is also within 0.05 kJ·mol-1, the precision

was set to normal. For the optimizations, the BFGS optimizer from ASE was used with a
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maximum step size of 0.5 Å.64

MLP hyperparameters

The effect of different hyperparameters of the network on both the accuracy and compu-

tational efficiency are tested and are included in the Supporting Information. The used

hyperparameters are as follows: a cutoff radius of 5 Å is used, combined with 4 interaction

layers, 32 features and a maximum rotation order of 1. The weights λE = 50 and λF = 1

are used to train the network. Although forces are not strictly necessary (only the energy is

required in GCMC simulations), including forces is known to improve data efficiency during

training.
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