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ABSTRACT High-quality draft genome sequences were obtained for the two type strains
Telluria chitinolytica ACM 3522T and Telluria mixta DSM 29330T. The genomes of both strains
show a considerable biosynthetic potential to produce secondary metabolites.

Gram-negative bacteria are known as a prolific source of natural products with unique
chemical scaffolds and biological modes-of-action (1, 2). In the course of our ongoing

screening for active secondary metabolites from Gram-negative bacteria from different
genera (3–6), we are currently investigating the potential of the genus Telluria. The genus
is formed by the two type strains, Telluria chitinolytica ACM 3522T (= LMG 28806T) and
Telluria mixta DSM 29330T (= ACM 1762T = LMG 11547T), which both represent soil bacte-
ria (7, 8). T. chitinolytica was furthermore described to possess nematicidal properties (9).
To reveal the genetic background of their beneficial properties and to shed light on the
biosynthetic capacity for secondary metabolism, both type strains were sequenced. An
Illumina-based whole-genome sequencing (WGS) project for Telluria mixta ACM 1762T has
been recently deposited at DDBJ/ENA/GenBank (accession number JANUHC000000000).
However, it is quite fragmented, with 47 contigs, and therefore less suitable for genome
mining for relatively large secondary metabolite gene clusters since it bears the risk that
they will also be split up and not adequately recognized. This problem will be overcome
with the PacBio long-read sequencing method.

In 2015, the T. chitinolytica strain was obtained from the Australian Collection of
Microorganisms (ACM), while the T. mixta strain was obtained from the German Culture
Collection (DSMZ). Cells were grown in liquid for 2 to 3 days at 27°C in 20 mL nutrient broth
(NB) on a rotary shaker (180 rpm), inoculated directly from280°C frozen stock, and then pel-
leted by centrifugation. For genomic DNA isolation, the Qiagen genomic DNA purification
kit was used in combination with 100/G Genomic-tips according to the manufacturer’s
protocol, except that for the bacterial lysis, the handled volumes were doubled, and the
incubation time at 50°C was prolonged until a clear lysate was obtained. Macrogen, Inc.
(Seoul, South Korea), generated the PacBio RS II data (Table 1) using the 8PAC V3, DNA
polymerase binding kit P6, and one single-molecule real-time (SMRT) cell; a g-TUBE (Covaris,
Inc., Woburn, MA, USA) was used for DNA shearing followed by BluePippin size selection
(Sage Science, MA, USA). De novo assembly was performed utilizing HGAP3, whose protocol
relies on PreAssembler v1 for filtering, PreAssembler v2 and AssembleUnitig v1 for assembly,
BLASR v1 (10) for mapping, and Quiver v1 for consensus polishing. Default parameters were
used except where otherwise noted. When the contig ends overlapped, contigs were
connected to form a circular DNA. Annotation was performed with the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP, v6.4) pipeline (11, 12).

The sequenced Telluria strains shared a similar G1C content of about 66% (Table 1), which
is consistent with the genus description (67 to 72%) (7, 8). In comparison with the existing
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genome of T. mixta (7.39 Mbp), the genome size determined in our study appeared to
be slightly larger (7.44 Mbp). Secondary metabolism analysis using antiSMASH 7.0 (13)
predicted 9 to 12 biosynthetic gene clusters per strain (Table 1), revealing the encouraging
potential of this genus for the production of novel bioactive compounds.

Data availability. GenBank accession numbers for raw sequencing data and genome
assemblies are as follows: T. chitinolytica ACM 3522T, SRR23700812 and CP119083, and T. mixta
DSM 29330T, SRR23715232 and CP119520, respectively.
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