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Abstract—Radar has become a key sensor in many advanced
driver assistance systems (ADAS). Due to its excellent range and
Doppler resolution, low cost, and robustness against environmen-
tal conditions, it is considered an attractive sensor for detecting
and tracking vulnerable road users (VRUs). In this paper, we
provide a theoretical analysis of the accuracy of radar based VRU
detection and tracking systems, thereby focusing on a number of
specific scenarios such as early detection and tracking of VRUs,
a VRU crossing the road at constant speed in front of a vehicle,
a VRU moving parallel to a vehicle, etc. More specifically, we
derive the Cramer-Rao lower bound (CRLB) for position and
velocity estimation of a moving target based on a sequence of
noisy range, azimuth, and Doppler measurements taken from
a moving ego-vehicle equipped with one or multiple radars.
Not only does the CRLB serve as a benchmark to evaluate the
performance of any practical tracking algorithm, it also allows
to gain practical insights regarding the impact of the radar
setup and configuration on the tracking accuracy in different
realistic scenarios. Furthermore, we show that the generalized
least-squares estimator (GLSE) achieves excellent performance
when few measurements are available, and propose a novel active
sensing (AS) application based on the CRLB where the radar
configuration is optimized on the fly to improve either tracking
accuracy or computational efficiency.

Index Terms—automotive radar, tracking accuracy

I. INTRODUCTION

Because of its low cost and robustness against environ-
mental conditions like rain, snow, fog, dust, dirt, darkness,
or glaring sun, mmWave radar has become a key sensor
in many advanced driver assistance systems (ADAS), such
as emergency brake, blind spot detection, and detection and
tracking of vulnerable road users (VRUs) [1], [2]. State-of-the-
art automotive radar sensors are known to provide excellent
range and Doppler resolution, but poor angular resolution due
to the limited number of antennas in the (virtual) antenna
array. In order to accurately track moving VRUs from im-
perfect (radar) detections, recursive Bayesian filters such as
Kalman filters (KFs) or Particle filters (PFs) have been well
established. By assuming that the state of a tracked object
evolves according to a Markov process, recursive Bayesian
filters allow a computationally and memory efficient two-step
implementation: in the prediction step, the current state is
predicted from the previous state and a prescribed dynamic
model, whereas in the update step, the state prediction is
updated using the current measurement (if available) and an
observation model. In order to model a maneuvering target’s
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“Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” program.

deviation from the dynamic model, additive process noise is
injected at the prediction step. Since a single dynamic model
is often not sufficient to describe the target’s movement at all
times, an interacting multiple model (IMM) approach can be
used where multiple recursive Bayesian filters operate in paral-
lel, each with their own dynamic model [3]. Any estimator for
a nonlinear filtering problem under the Bayesian framework is
lower bounded by the Bayesian or posterior Cramer-Rao lower
bound (PCRLB) [4]–[6]. However, since the PCRLB involves
taking the expectation over the joint probability density of
both the observations and the random state parameters, the
useful measurement information has been averaged out and
the PCRLB becomes an offline bound [7] that does not
properly address the tracking performance for a particular
trajectory. In [8], the performance of the current realization
of the tracker is shown to be more accurately bounded by the
predicted conditional Cramer-Rao lower bound (PC-CRLB),
which is conditioned on past measurements. In numerous
recent papers [9]–[11], the PC-CRLB has been adopted to
implement dynamic and real-time resource management in
large-scale (MIMO) radar networks.

In the context of VRU safety systems, however, it is
essential to be able to assess the tracking performance in a
number of important and well-defined scenarios of interest,
e.g., a pedestrian crossing at constant speed in front of a
vehicle, a VRU moving parallel to a vehicle turning left, early
detection and tracking of VRUs based on a small number of
measurements. As many of these scenarios can be sufficiently
well described by a deterministic dynamic model, the unknown
parameters are now deterministic and classical estimators can
be used instead of Bayesian filters. The variance of any
unbiased estimator is known to be lower bounded by the con-
ventional Cramer-Rao lower bound (CRLB). In the literature,
the CRLB is typically used for target localization accuracy
from a single radar measurement [12]–[14]. The CRLB for
position estimation from successive radar measurements has
been derived mainly in the context of air traffic control (ATC).
In [15], the CRLB for position and velocity estimation of a
single target in a horizontal plane using range and azimuth
measurements was derived under the assumption of temporally
white Gaussian noise. The positive impact of adding Doppler
measurements to the tracker in 3D space was shown in [16].
Ignoring the impact of ego-motion, the theoretical CRLB was
computed in [17] for various single and multi-sensor system
setups in urban and highway scenarios in order to select sensor
modalities, sensor type and sensor placement for automated



driving. To the best of our knowledge, a CRLB expression
taking the movement of the radar into account is not available
from the literature. Therefore, we derive in this paper the
CRLB for position and velocity estimation of a moving target
based on a sequence of noisy range, azimuth, and Doppler
measurements taken from a moving ego-vehicle equipped with
one or multiple radars. Whereas the target is assumed to move
according to a deterministic dynamic model with unknown but
constant parameters, the ego-vehicle can follow an arbitrary
but known trajectory. We follow a practical approach where
at each instant the target’s state is estimated with respect
to the current coordinate system (CS) of the ego-vehicle.
The measurement noise is zero-mean Gaussian, but can be
temporally correlated. Not only does the resulting CRLB serve
as a benchmark to evaluate the performance of any unbiased
estimator, it also allows to quantify the impact of frame rate
and other radar configuration parameters in realistic scenarios,
where the car’s motion considerably affects the accuracy of the
tracker. This includes the application of multiple radar sensors,
as well as their position and orientation with respect to the ego-
vehicle. These important practical insights are also applicable
in the context of Bayesian tracking.

In addition, we assess the performance of classical estima-
tors such as the least-squares estimator (LSE) and generalized
least-squares estimator (GLSE). We show that the GLSE
combines low complexity and excellent performance when
only few measurements are available. In this case, the GLSE
can also be used to improve the initialization of recursive
Bayesian filters, which are known to suffer from various
imperfections. For instance, the KF is known to be optimal
only for a linear system with temporally white Gaussian noise
with known covariance matrices [18]. PFs, which approximate
the posterior density of the state by a set of random samples
or particles, also require accurate knowledge of the covariance
matrices of the process and measurement noise and a proper
state initialization based on the a priori distribution of the
state. In practice, these conditions are rarely met, resulting in
convergence issues and degraded overall performance.

Finally, based on the derived CRLB, we propose a novel
active sensing (AS) application where the radar configuration
is optimized on the fly to improve either tracking accuracy
or computational efficiency. The presented approach is also
applicable in the context of IMM filters.

Although radar is able to provide the required measure-
ments, the analysis is not restricted to radar only, since, e.g.,
accurate azimuth estimation could be obtained from vision-
based pedestrian detection in a hybrid radar-camera tracking
system.

II. CRLB
A. Radar Measurements

We consider a scenario where an ego-vehicle equipped
with M radar sensors is following an arbitrary but known
trajectory and a target which is assumed to move according to
a deterministic dynamic model defined by a parameter vector
ϕ = [ϕ0, . . . , ϕN−1]

T consisting of N unknown but constant
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Fig. 1: A moving target as seen from a moving ego-vehicle.
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Fig. 2: Fixed position and orientation of m-th radar sensor
with respect to ego-vehicle.

parameters ϕn. Dynamic models often used in tracking appli-
cations are the constant velocity (CV), constant acceleration
(CA), and constant turn (CT) models [19]. Note that the
parameters of the dynamic model depend on the choice of
the CS. We follow a practical approach where the ego-vehicle
is assumed to estimate ϕ with respect to its current CS, which
has its origin located at the ego-vehicle’s current position and
its y-axis directed along the ego-vehicle’s current velocity
vector, as shown in Fig. 1. Since the ego-vehicle is moving,
this approach implies that the parameters of ϕ depend on the
time instant k, such that we use ϕk = [ϕk,0, . . . , ϕk,N−1]

T

to denote the parameter vector with respect to CSk, the ego-
vehicle’s CS at time instant k. Given the dynamic model ϕk

and a frame rate 1/T , we can easily derive the target’s position
and absolute velocity at each time instant l with respect to
CSk, which we denote by pk,l(ϕk) = [xk,l(ϕk), yk,l(ϕk)]

T

and vk,l(ϕk) = [ẋk,l(ϕk), ẏk,l(ϕk)]
T, respectively. In the

remainder of the section, we will omit the dependency on ϕk

to shorten the notation. As illustrated in Fig. 2, we assume that
the m-th radar has a fixed position δ(m) = [δ

(m)
x , δ

(m)
y ]T and

orientation ψ(m) with respect to the ego-vehicle’s CS, with
m ∈ {0, . . . ,M − 1}. This way, the target’s range, azimuth,
and Doppler velocity at time instant l at the m-th radar sensor



are given by:
µ
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(1)

where · denotes the dot product, sl = [0, sl]
T is the ego-

vehicle’s velocity vector at time instant l with respect to CSl,
and pl,l = [xl,l, yl,l]

T and vl,l = [ẋl,l, ẏl,l]
T denote the target’s

position and absolute velocity at time instant l with respect to
CSl. The latter parameters are readily obtained from pk,l and
vk,l as: {

pl,l = Tl,k +Rl,kpk,l,

vl,l = Rl,kvk,l,
(2)

where the rotation matrix Rl,k and the translation matrix Tl,k

are defined as:

Rl,k =

[
cos (ψl,k) sin (ψl,k)
− sin (ψl,k) cos (ψl,k)

]
, (3)

and
Tl,k =

[
δx,l,k
δy,l,k

]
, (4)

with ψl,k and [δx,l,k, δy,l,k] being the rotation and translation
of CSk with respect to CSl. Since the trajectory of the
ego-vehicle is assumed to be known, the matrices Tl,k and
Rl,k which define the transformations between the different
coordinate systems can be easily obtained. Given that pk,l

and vk,l are a function of the dynamic model ϕk, it follows
from (1) and (2) that the actual range, azimuth, and Doppler
velocity at time instant l can be written as a function of the
target’s dynamic model ϕk.

For the sake of clarity, we introduce the vector µ
(m)
l =

[µ
(m)
r,l , µ

(m)
θ,l , µ

(m)
d,l ]T which stacks the range, azimuth, and

Doppler velocity from (1). By concatenating the vectors
corresponding to the different radar sensors, we have µl =

[(µ
(0)
l )T, . . . , (µ

(M−1)
l )T]T. Assuming that at time instant k

the parameter vector is estimated from the current and K
previous radar measurements, we introduce the vector

µ := µ{k−K:k} = [µT
k−K , . . . ,µ

T
k ]

T, (5)

the length of which is 3M(K + 1). It is important to recall
that all elements of µ depend on the parameter vector ϕk.

B. Noise Covariance Matrix

In practice, radar measurements are affected by a large
variety of noise sources. Not only does FMCW radar suffer
from quantization noise due to finite FFT resolution, the
accuracy of radar measurements is also degraded by the low
radar cross section (RCS) of VRUs, the presence of clutter,
and multipath effects. Moreover, VRUs are not point targets,
so at different time instances, the main reflection might come
from different parts of the target, which also adversely affects
tracking accuracy. In order to keep the problem analytically

tractable, we consider additive zero-mean Gaussian measure-
ment noise, such that the measurement vector z gathering all
radar measurements from instant k−K until the current instant
k is given by:

z = µ+w, (6)

where µ is given by (5). The 3M(K + 1) × 3M(K + 1)
noise covariance matrix Σ = E[wwT] enables correlation
between range, azimuth, and Doppler measurements, between
radar sensors, and in time. Note that, in general, Σ is a
function of ϕk. For instance, the measurement noise can have
a larger variance for large range or azimuth. Since ϕk is to
be estimated, this implies that the tracker does not know Σ,
although it can approximate the unknown range or azimuth
by range or azimuth measurements. However, regardless of
dependency on ϕk, finding a good estimate for Σ is a
challenging task given the constantly changing environment
of a moving vehicle. Therefore, a detailed analysis of Σ is
outside the scope of this paper.

C. Fisher Information Matrix

The CRLB for the unknown parameters of the dynamic
model can be obtained from the Fisher Information Matrix
(FIM). All radar measurements are gathered in the vector z
and distributed according to z ∼ N (µ,Σ). In the general case
that both µ and Σ are a function of the unknown variables
in ϕk, we can use the Slepian-Bangs formula to obtain the
(i, j)-th element of the FIM [20], [21]:

[I (ϕk)]i,j =
∂µT

∂ϕk,i
Σ−1 ∂µ

∂ϕk,j

+
1

2
tr

(
Σ−1 ∂Σ

∂ϕk,i
Σ−1 ∂Σ

∂ϕk,j

)
. (7)

For a covariance matrix Σ that is independent of ϕk, the
second term in (7) becomes zero. Under the latter assumption,
we can further simplify (7) by assuming that certain mea-
surements are conditionally independent. For instance, if the
noise on different radar sensors is uncorrelated, (7) reduces to
the sum of the FIMs corresponding to these radar sensors. In
order to calculate the CRLB for unbiased estimators not using
one or multiple observations, it is sufficient to remove these
observations from µ and to remove the corresponding rows
and columns from Σ.

For each of the unknown variables in ϕk, the CRLB for any
unbiased estimator can be obtained from the FIM as follows:

E

[∣∣∣ϕ̂k,i − ϕk,i

∣∣∣2] ⩾
[
I (ϕk)

−1
]
i,i
, (8)

where the elements of I (ϕk) are given by (7).

III. PRACTICAL ESTIMATORS

It follows from (6) that the parameter vector ϕk can be
found by minimizing the squared residuals between the radar
measurements in z and the actual values for range, azimuth
and relative radial velocity in µ(ϕk):

ϕ̂k = argmin
ϕ̃

∥∥∥z− µ(ϕ̃)
∥∥∥2 , (9)



where we again explicitly mention the dependency of the
vector µ from (5) on the target’s (unknown) dynamic model
ϕk. Since it follows from (1) that µ(ϕk) is a non-linear
function, (9) is a non-linear least-squares (LS) problem. Since
a closed-form solution cannot be obtained, we linearize µ(ϕk)
around a certain initial estimate ϕ̂k,0:

µ (ϕk) = µ
(
ϕ̂k,0

)
+H0

(
ϕk − ϕ̂k,0

)
, (10)

where the Jacobian H0 is given by

H0 =

[
∂µ (ϕ)

∂ϕj

]
ϕ=ϕ̂k,0

(11)

and the initial estimate ϕ̂k,0 can be found using a naive
suboptimal estimator. Using the linear approximation (10), the
well-known LSE is given by:

ϕ̂
LS

k = ϕ̂k,0 +
(
HT

0 H0

)−1
HT

0

(
z− µ

(
ϕ̂k,0

))
. (12)

Note that we can consider (12) as the first iteration of an
iterative estimator:

ϕ̂
LS

k,i+1 = ϕ̂
LS

k,i +
(
HT

i Hi

)−1
HT

i

(
z− µ

(
ϕ̂

LS

k,i

))
, (13)

which is equivalent to the so-called Gauss-Newton algorithm
that is commonly used to solve non-linear least-squares prob-
lems. Assuming additive Gaussian measurement noise with
known covariance matrix Σ, further performance improvement
can be achieved by replacing the LSE by the GLSE. How-
ever, since iterative algorithms are often not preferred due
to computational complexity and we show in the numerical
results section that very good results can be obtained after
one iteration, we derive the GLSE from (12) as:

ϕ̂
GLS

k = ϕ̂k,0 +
(
HT

0 Σ
−1H0

)−1
HT

0 Σ
−1

(
z− µ

(
ϕ̂k,0

))
.

(14)
If the linear model (10) was exact, the GLSE would be the
minimum variance unbiased estimator (MVUE) for ϕk. For
non-Gaussian measurement noise, the GLSE would still be
the best linear unbiased estimator (BLUE). Note that although
the GLSE is unbiased with respect to (10), it may be biased
with respect to the actual non-linear model (1). In the case
of a diagonal noise covariance matrix (uncorrelated noise),
the GLSE reduces to the weighted least-squares estimator
(WLSE).

IV. ACTIVE SENSING

In most state-of-the art ADAS, the radar configuration is
fixed. However, by adopting an adaptive radar configuration,
the tracker performance can be improved. Using the theoretical
CRLB (8), we propose an AS approach where at each instant
the optimal configuration is selected from a set of possible
radar configurations. In this way, we can either minimize the
CRLB for a specific parameter or a combination of CRLBs
for different parameters, or minimize the computational com-
plexity for a given CRLB threshold. Note that this approach
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Fig. 3: Simulated trajectories of ego-vehicle and target. The
arrow represents the velocity vector during the last radar
measurement.

2 4 6 8 10
Number of measurements

10 2

10 1

100

101

102

Va
ria

nc
e

px, CRLB
px, naive
px, GLS
px, LS
py, CRLB
py, naive
py, GLS
py, LS
vx, CRLB
vx, naive
vx, GLS
vx, LS
vy, CRLB
vy, naive
vy, GLS
vy, LS

Fig. 4: CRLB for position and velocity estimation versus
variance of practical estimators.

assumes that the covariance matrix Σ depends on the radar
configuration, e.g., a configuration with lower range resolution
will result in a larger variance for the range measurement
noise.

V. NUMERICAL RESULTS

The first example demonstrates the important scenario of a
car driving at a constant velocity of 10m/s and a pedestrian
crossing the street at a constant speed of 1.2m/s, as shown
in Fig. 3a. Hereby, we assume that the last shown states for
car and pedestrian correspond to time instant k = 0, at which
the CRLB is calculated. In this way, the starting point of both
trajectories will depend on the number of (past) measurements,
whereas the endpoint (at k = 0) is fixed. The CRLB (8) for
position and velocity estimation and the simulated variance
of multiple practical estimation algorithms are displayed in
Fig. 4 as a function of the number of measurements. The
pedestrian’s position and velocity are modeled by a CV
dynamic model where, at each instant k, the parameter vector
ϕk = [px,k, py,k, vx,k, vy,k]

T is estimated with respect to the
ego-vehicle’s current CSk. The range, azimuth, and Doppler
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Fig. 5: CRLB for vx for multiple radar setups and configura-
tions.

measurements are assumed to be uncorrelated and affected
by AWGN with standard deviations σr = 0.4m, σθ = 0.052
(3°), and σd = 0.2m/s, respectively. The radar operates at
10 fps (T = 0.1s). Obviously, increasing the number of
measurements reduces the CRLB, although the impact of
the number of measurements is much larger for velocity
than for position estimation. This follows intuitively from the
fact that the object’s position can be obtained from a single
measurement, whereas subsequent measurements are required
to estimate the direction in which the object is moving, even if
the radial velocity is known. Furthermore, given that Doppler
measurements capture radial rather than lateral movement,
it is no surprise that py and vy can be more accurately
estimated than px and vx, thereby omitting the index k for
notational convenience. In the considered scenario, the GLSE
shows excellent performance after one iteration and for a
small number of measurements even slightly outperforms the
CRLB, which implies an estimation bias. The LSE performs
remarkably worse, in most cases even worse than a naive
estimator, which does not use Doppler measurements and
estimates the position from the current range and azimuth
measurements and the velocity from the first and last available
positions. Simulations with more than one iteration for the
GLSE and LSE showed very little performance improvement.
In order not to overload the figure, these curves are not
displayed.

In order to avoid a potential collision in the above scenario,
it is essential to have an accurate estimate of vx (perpendicular
to the ego-vehicle’s trajectory). However, since it follows
from Fig. 4 that even the best practical estimator for vx
will show relatively low accuracy, it is important to reduce
the CRLB by a proper radar setup and/or configuration. In
Fig. 5, we show the CRLB for vx for multiple radar setups
and configurations. For instance, it follows from the figure
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Fig. 6: Active Sensing technique using GLSE with adaptive
radar configuration.

that halving the standard deviation of the noise on range and
Doppler measurements has a negligible impact on the CRLB.
More accurate azimuth measurements, however, result in a
much lower CRLB. This motivates the use of (computationally
demanding) superresolution techniques such as MUSIC to
estimate the azimuth or even radar-camera sensor fusion,
since cameras are known to deliver very accurate azimuth
information. In order to investigate the impact of a higher
frame rate, we display the CRLB versus time, to allow a
fair comparison. However, since the accuracy of velocity
estimation largely depends on the total movement of the
pedestrian, the effect of increasing the frame rate is rather
small. A much more effective solution consist of mounting
two radars that are separated as far as possible. For instance,
whereas a separation of 0.2m (δ(0)x = −0.1m, δ(1)x = 0.1m)
results in a minor improvement of the CRLB, two radars
separated by 1.6m (δ(0)x = −0.8m, δ(1)x = 0.8m) achieve
impressive results compared to the case of a single radar. After
0.2s, e.g., the CRLB is reduced by a factor larger than 10.
Furthermore, the impact of correlation between the radars is
rather small and could even be beneficial, provided that the
correlation coefficient is known.

Fig. 6 displays the simulated variance of the position and
velocity estimates as a function of the number of available
measurements. The ego-vehicle is assumed to take a right
turn with 5m-radius at a constant speed of 7.85m/s, whereas
the pedestrian follows a CV model with speed 1.2m/s, as
shown in Fig. 3b. We assume an AS approach where the
ego-vehicle is equipped with two radars that are separated
by 1.6m, and at each time step k the radar configuration for
the next measurement at instant k + 1 is selected such that
either the CRLB for a particular parameter (in this case, vx)
or a combination of the CRLBs corresponding to different
parameters (in this case, the trace of the inverse FIM from



(8)) is minimized. In order to calculate the CRLB, we predict
the parameter vector ϕ̂k+1 based on the current estimate ϕ̂k.
The ego-vehicle’s position and velocity at instant k + 1 are
assumed to be known although in practice they need to be
predicted from the trajectory up to instant k. For the fixed radar
configuration scheme, we use the same standard deviations
σr = 0.4m, σθ = 0.052 (3°), and σd = 0.2m/s as for the previ-
ous examples. In the AS approach, however, it is assumed that
range resolution can be traded for Doppler resolution, resulting
in two additional configurations giving rise to σr = 0.1m and
σd = 0.8m/s, and σr = 1.6m and σd = 0.05m/s, respectively.
The standard deviation of the azimuth measurements remains
constant. With two radars and three possible configurations for
each, 9 different combinations of radar configurations can be
selected. When minimizing the CRLB for vx, it is observed
from the figure that after 4 measurements, the variance on vx is
almost 10 times lower than in the case of a fixed configuration.
Although the variances of the estimates of px and vy are also
satisfactory, the variance of the estimate of py becomes much
worse after more than 5 measurements. To avoid this, we can
minimize the sum of the CRLBs (i.e., the trace of the inverse
FIM) for the four parameters of the CV model. Although the
variance on vx becomes slightly larger, the variance on py is
much lower.

VI. CONCLUSION

In this paper, we derived the Cramer-Rao lower bound
(CRLB) for position and velocity estimation of a moving target
based on a sequence of noisy range, azimuth, and Doppler
measurements taken from a moving ego-vehicle equipped with
one or multiple radars. We showed how these expressions
allowed to gain interesting and important practical insights
regarding the impact of radar position and configuration on
the accuracy of radar based VRU perception systems. Further-
more, we showed that the generalized least-squares estimator
(GLSE) achieves excellent performance when few measure-
ments are available, and introduced an active sensing (AS)
application based on the CRLB where the radar configuration
is optimized on the fly to improve either tracking accuracy or
computational efficiency.
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