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Introduction: The identification of patients with chronic kidney disease (CKD) at risk of progressing to

kidney failure (KF) is important for clinical decision-making. In this study we assesed whether urinary

peptidome (UP) analysis may help classify patients with CKD and improve KF risk prediction.

Methods: The UP was analyzed using capillary electrophoresis coupled to mass spectrometry in a case-

cohort sample of 1000 patients with CKD stage G3 to G5 from the French CKD-Renal Epidemiology and

Information Network (REIN) cohort. We used unsupervised and supervised machine learning to classify

patients into homogenous UP clusters and to predict 3-year KF risk with UP, respectively. The predictive

performance of UP was compared with the KF risk equation (KFRE), and evaluated in an external cohort of

326 patients.

Results: More than 1000 peptides classified patients into 3 clusters with different CKD severities and

etiologies at baseline. Peptides with the highest discriminative power for clustering were fragments of

proteins involved in inflammationandfibrosis, highlighting thosederived froma-1-antitrypsin, amajor acute

phase protein with anti-inflammatory and antiapoptotic properties, as the most significant. We then iden-

tified a set of 90 urinary peptides that predicted KF with a c-index of 0.83 (95% confidence interval [CI]:

0.81�0.85) in the case-cohort and 0.89 (0.83�0.94) in the external cohort, which were close to that estimated

with the KFRE (0.85 [0.83�0.87]). Combination of UPwith KFRE variables did not further improve prediction.

Conclusion: This study shows the potential of UP analysis to uncover new pathophysiological CKD pro-

gression pathways and to predict KF risk with a performance equal to that of the KFRE.
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C
KD, defined as the presence of irreversible struc-
tural or functional kidney damage, increases the

risk of poor kidney and cardiovascular outcomes.1 The
identification of patients at risk of progression to KF is
important for clinical decision-making and trial
enrolment. Risk equations have been developed to
predict KF, including the widely used 4-variable
KFRE from Tangri et al.,2 on the basis of age, sex,
estimated glomerular filtration rate (eGFR), and urinary
Kidney International Reports (2023) 8, 544–555

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
https://doi.org/10.1016/j.ekir.2022.11.023
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:julie.klein@inserm.fr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ekir.2022.11.023&domain=pdf


Figure 1. Study flow chart. KF, kidney failure.
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albumin-to-creatinine ratio (UACR); and that from the
German CKD cohort using 6 routine laboratory tests.3

However, UACR used as marker of kidney damage in
both equations is not present in all kidney diseases, and
within-person UACR variability is high among patients
with albuminuria. A number of other urinary proteins,
including uromodulin, tubular epithelium derived glyco-
protein Dickkopf-3, neutrophil gelatinase-associated
lipocalin/lipocalin 2, or kidney injury molecule 1 have
been assessed as potential biomarkers of CKD progres-
sion,4,5 with inconsistent or still limited findings.6–8

Single biomarkers may nevertheless not fully describe
the heterogeneous origin of CKD, and the implication of
a wide array of risk factors that contribute to CKD
progression.

Omics-based strategies, which assess multiple mo-
lecular features simultaneously, seem promising to
better capture such heterogeneity and complexity of
CKD. In this context, analysis of proteomic urine
peptide content (urinary peptidomics) has emerged as
one of the most attractive areas in the identification and
quantification of biomarkers to characterize CKD.9,10 A
urinary signature composed of 273 peptides, called the
CKD273 classifier, was developed to predict the
occurrence of CKD11; however, it was also shown to be
associated with kidney fibrosis.12 Although CKD273
was able to detect CKD at a very early stage as recently
shown in the CKD273 guided intervention trial PRI-
ORITY,13 this classifier loses its performance in pre-
dictingf eGFR decline at late-stage CKD.14 Whether the
analysis of the urine peptidome can predict and/or
improve the prediction of CKD progression to KF has
never been explored so far.

The main objectives of this study were therefore to
describe the urine peptidome diversity in patients with
CKD, and to assess its potential to better characterize
patients’ profile and predict their progression to KF. To
achieve these objectives, we selected a case-cohort
sample of 1000 patients with CKD stages G3 to G5
from the CKD-REIN cohort,15 and used machine
learning to first classify patients according to their UP,
then identify the best performing peptide signature to
predict KF. We also assessed the prediction perfor-
mance of this signature as compared to that of the KFRE
in the case-cohort study, and in an independent vali-
dation cohort of 326 patients with CKD stages G3 to G5
from Ghent, Belgium.16
METHODS

Study Design and Participants

The CKD-REIN study is a prospective cohort carried
out in 40 nephrology clinics in France, nationally
representative with respect to geography and facility
Kidney International Reports (2023) 8, 544–555
legal status, public or private. From 2013 through
2016, we included 3033 adult patients with CKD stage
G3 to G5 (eGFR <60 ml/min per 1.73 m2) and any type
of primary kidney disease, not on dialysis or trans-
planted. At baseline, fasting blood and second morning
urine samples were collected together with extensive
information about patient and disease characteristics.
Patients were then followed-up annually over 5 years.
Study protocol and cohort profile have been published
in detail elsewhere.15,17 The study was approved
by the institutional review board of the French Na-
tional Institute of Health and Medical Research
(IRB00003888) and is registered at ClinicalTrials.gov
(NCT03381950). For the peptidome analysis, a case-
cohort sample of 1054 participants was selected,
including all incident cases of KF and cardiovascular
events over the first 3-year follow-up, and a random
sample of enrolled patients, all of them with urinary
sample stored at baseline or within the next 3 months
(Figure 1). The validation cohort included 326 patients
with CKD stage G3 to G5 and UP data from the Ghent
cohort study, a single-center study that included 526
patients with CKD Stages G1 to G5 not on dialysis,
from Ghent University Hospital outpatient nephrology
clinic (Belgium), between 2011 and 2014.18,19 This
study was approved by the local ethical committee
at the Ghent University Hospital (2010/033;
B67020107926). Written informed consent was ob-
tained from all participants.
Outcome of Interest

KF was defined as initiation of dialysis or pre-emptive
transplantation. In the CKD-REIN cohort study, KF
and deaths before KF (concurrent event) were identified
from patient medical records or their family, or by
545
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record linkage to the national REIN and the death
registries until December 2020. In the Ghent cohort
study, all outcomes were recorded prospectively by a
single nephrologist (FV) until June 2017.
Demographic, Clinical and Laboratory Data

In the CKD-REIN study, patients’ characteristics (age,
sex, body mass index, blood pressure, and primary
kidney disease), and comorbidities (cardiovascular
disease, hypertension, and diabetes) were collected at
baseline from medical records. GFR was estimated us-
ing the CKD-epidemiology collaboration equation20 on
the basis of cystatin C and serum creatinine (isotope
dilution mass spectrometry traceable enzymatic
method) measured in a single laboratory from stored
blood samples. UACR was also measured centrally
based on stored urine samples. For missing data (8 for
eGFR, 13 for UACR), we used the closest routine lab-
oratory value to the inclusion date. In the Ghent cohort
study, GFR was estimated using the CKD- epidemiology
collaboration equation with serum creatinine.
Sample Preparation and Capillary

Electrophoresis–Mass Spectrometry Analysis

Detailed sample preparation and capillary
electrophoresis–mass spectrometry analysis can be
found in the Supplementary Methods. Spot urine
samples (second morning urine) were collected during
morning consultation at the hospital in urine collection
vials (Vacuette) without the use of protease inhibitors.
Samples were immediately stored at 4 �C and aliquoted
within 6 hours without additional processing (no
centrifugation or pH modification). All CKD-REIN
urine samples were stored frozen at �80 �C at the
Biobanque de Picardie (BRIF number: BB-0033-00017)
and shipped in the frozen form to Toulouse, France,
for analysis. Both teams were blind for outcome and
patients characteristics. Urine samples from Ghent,
Belgium, were immediately centrifuged after collection,
aliquoted, and stored at �80 �C. Sample preparation
was performed using established standard protocols,
which have been applied on >85,000 samples and
which have been described and evaluated in detail, also
with respect to reproducibility.21–23 Capillary
electrophoresis–mass spectrometry analyses were per-
formed on a PrinCE Next 840 capillary electrophoresis
system (Prince Technologies) on-line coupled to a
micrOTOF II mass spectrometer (Bruker Daltonic) as
previously described.24 Of the 1054 patients selected in
the case-cohort study, 1000 had urinary pepidome data
available for this analysis (Figure 1). Urine samples
from Ghent, Belgium, were analyzed in Hannover,
Germany on a P/ACE MDQ capillary electrophoresis
546
system (Beckman Coulter) coupled on-line coupled to a
micrOTOF II mass spectrometer (Bruker Daltonic).

Data Processing

Mass spectral ion peaks representing identical mole-
cules at different charge states were deconvoluted into
single masses with MosaiquesVisu software.25 The
software automatically examined all mass spectra from
a capillary electrophoresis–mass spectrometry analysis
for signals with a signal-to-noise ratio of at least 4
present in 3 consecutive spectra. Capillary electropho-
resis migration time was calibrated by local regression
with more than 1700 reference signals. Normalization
of urine peptidome data require correction for both
analytical variances during profiling (e.g., signal sup-
pression in the mass spectrometer) and for variability
caused by biological issues (e.g., dilution of urine by
different hydration states of the urine donors). With
that aim, mass spectrometry signal intensities were
normalized relative to 29 “housekeeping” peptides.26

These highly abundant endogenous collagen frag-
ments are generally present in at least 75% of all urine
samples with small relative SDs. For calibration, linear
regression was performed and a sample-specific dilu-
tion factor was calculated and subsequently used for
normalization of urinary peptides. The resulting peak
list characterized each peptide by its molecular mass
(Da) and normalized capillary electrophoresis migration
time (min). Normalized signal intensity (i.e., peptide
abundance) was used as a measure of relative abun-
dance of the peptides. All detected mass signals of
peptides were deposited, matched, and annotated in
Microsoft SQL Server.

Peptide Sequencing

For sequencing of peptides, the urine samples were
analyzed on a Dionex Ultimate 3000 RSLC nano flow
system (Dionex, Camberly, UK) coupled to an Orbitrap
Velos MS instrument (Thermo Fisher Scientific), using
data-dependent higher-energy collision dissociation
MS/MS sequencing of a maximum of the top 20 ions, as
described in Klein et al.27 Data files were analyzed us-
ing Proteome Discoverer 1.2 (Thermo Fisher Scientific)
and were searched against the Uniprot database. No
fixed modifications were selected; oxidation of methi-
onine, lysine and proline were selected as variable
modifications. The peptide data were extracted using
high confidence peptides, which are best ranking
peptides with an Xcorr $1.9, a delta mass between
experimental and theoretical mass � 5 ppm, absence of
cysteines in the sequence (because cysteines without
reduction and alkylation form disulphide bonds),
absence of oxidized proline in protein precursors other
than collagens or elastin.
Kidney International Reports (2023) 8, 544–555



Table 1. Patient characteristics at inclusion in the CKD-REIN case-
cohort and the Ghent cohort subsample

Characteristics

CKD-REIN case-cohort
(N [ 1000)

Ghent cohort subsample
(N [ 326)

% or mean ± SD or
median (Q1--Q3) Nmissing

% or mean ± SD or
median (Q1--Q3) Nmissing

Men 69% 60%

Age, yr 69 (61–77) 71 (61–79)

CKD stages

2–3 36% 67%

4 54% 28%

5 10% 5%

Estimated GFR (CKD-EPI),
ml/min/1.73 m2

28 � 11 36 � 13

Urine albumin-to-creatinine
ratio, mg/g

228 (39–1201) 1 NA

Urine albumin-to-creatinine
ratio categories

1 NA

Normal or minimal
increase (A1)

21%

Moderate increase (A2) 32%

Severe increase (A3) 46%

Urine protein-to-creatinine
ratio, g/g creatinine

NA 0.5 (0.2–1.5) 167

Primary kidney disease 106 -

Diabetic nephropathy 22% 20%

Glomerular nephropathy 19% 9%

Hypertensive or vascular
nephropathy

31% 24%

Tubulointerstitial
nephropathy

12% 7%

Polycystic kidney disease 6% 6%

Other or unknown 10% 34%

Kidney biopsy 24% 35

Diabetes 43% 2 38%

History of acute kidney injury 23% 76 NA

Hypertension 92% NA

Cardiovascular disease 57% 6 45%

CKD-EPI, chronic kidney injury epidemiology collaboration; GFR, glomerular filtration
rate; N, number; NA, not available; Q1, lower quartile; Q3, upper quartile; REIN, Renal
Epidemiology and Information Network.
Cardiovascular disease includes the presence or history of coronary artery disease,
myocardial infarction, coronary artery bypass surgery, percutaneous coronary inter-
vention, atrial fibrillation, other cardiac rhythm disorder, implanted pacemaker or
defibrillator, heart failure, pericarditis, valvular disease, prosthetic heart valve, stroke,
transient ischemic attack, cerebral hemorrhage, peripheral vascular disease, intermit-
tent claudication, heart valve prosthesis, arterial bypass grafting/percutaneous
intervention.
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Enzyme-Linked Immunosorbent Assay

Measurement of a-1-Antitrypsin
Urine a-1-antitrypsin concentration was determined in
a blinded manner with a commercially available
enzyme-linked immunosorbent assay kit for human
(Bio-techne, # DY1268), according to the manufac-
turer’s protocol.

Statistical Analysis

Patients’ baseline characteristics were reported as per-
centage for qualitative variables and as mean � SD or
median (lower quartile–upper quartile) for quantitative
variables. In all analyses, peptides abundances and
continous variables were used as linear predictors. In
the CKD-REIN case-cohort, a clustering algorithm with
selection of relevant variables and number of groups
was first carried out with the sequenced urinary pep-
tides to classify patients at baseline. Peptides present in
less than 20 patients or with a near zero variance were
excluded. The algorithm used the integrated complete-
data likelihood (VarSelLCM package in R Statistical
software, R Core Team).28 Patients’ baseline character-
istics were described according to identified clusters.
Several 3-year KF risk prediction models were then
developed in the CKD-REIN case-cohort with different
sets of predictors as follows: (i) sequenced peptides;
and (ii) sequenced peptides and risk factors including
age, sex, eGFR, and UACR (log transformation); two
supplementary models were created to explore the
prediction potential of nonsequenced peptides as fol-
lows: (iii) all peptides, (iv) all peptides and risk factors.
Only peptides that had more than 20 patients with a
nonzero value were predictor candidates. We used a
Cox’s proportional hazards model regularized by elastic
net penalty to develop each model (glmnet package in R
Statistical software, R Core Team).29 All predictors were
standardized before training. Two-fold stratified cross-
validation repeated 50 times was performed to choose
the optimal hyperparameters with the “one standard
error” rule30 and the Harrell c-index. Mean c-index
was estimated and its 95% CI obtained with the
percentile method through resampling. Finally, each
optimal model was fitted in the entire data set.

In accordance with clinical proteomics guide-
lines,31,32 we then assessed the performance of the
identified peptide KF signature in Ghent, an external
validation cohort, using the c-index and its 95%
bootstrap CI (percentile method). The overall calibra-
tion was verified for the absolute risk of KF at 3 years.
Mean of estimated probability of KF at 3-years was
calculated. Because of the competing risk of death
before KF, the cumulative incidence function of Kalb-
fleisch and Prentice was used to estimate the observed
probability. In the CKD-REIN case-cohort, the
Kidney International Reports (2023) 8, 544–555
performance of the 4-variables KFRE was also estimated
using the c-index [95% CI]. All statistical analyses were
performed with R software (v4.0.2; R Core Team 2020).
RESULTS

Characteristics of the CKD-REIN Case-Cohort

Subsample

Patients were mostly men, had a median age of 69 years
at baseline, any type of primary kidney disease, a
median eGFR of 25 ml/min per 1.73 m2, and a median
UACR of 228 mg/g (Table 1). Over 3-year follow-up,
262 patients progressed to KF (227 started dialysis; 35
had preemptive kidney transplantation; incidence rate,
547



Figure 2. Representation of the peptides with highest discriminative power for clustering at baseline. (a) Identities of 100 peptides with highest
discriminative power for clustering at baseline. (b) Percentage of peptides originating from collagenic or noncollagenic proteins among all
identified urinary peptides (N ¼ 1879) and among the top peptides for clustering at baseline (N ¼ 100). (c) Enzyme-linked immunosorbent assay
analysis of urinary a-1-antitrypsin in the CKD-REIN case-cohort.***P < 0.001 using Kruskal-Wallis rank sum test.
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10.5 per 100 person-years [95% CI: 9.2�11.8]), and 108
died before KF.
Urinary Peptidome-Based Classification of

Patients at Baseline

A total of 5616 different peptides were detected in
urine of the 1000 case-cohort patients. Sequence in-
formation was available for 2157 peptides, of which
1879 were detected in more than 20 patients. Clustering
algorithm classified patients at baseline into 3 clusters
with large between-cluster differences in both abun-
dance and types of fragments. The 100 peptides with
the highest discriminative power for clustering were
mainly fragments of a-1-antitrypsin (45%). Other
peptides included various collagen fragments (17%),
and fragments of hemoglobin subunit alpha and beta
(7% and 2%, respectively), antithrombin-III (3%),
apoliprotein A-1 (2%) and A-4 (2%), beta-2-
microglobulin (2%), clusterin (2%), and immunoglob-
ulin lambda (2%) (Figure 2a). The 3 groups of patients
substantially differed according to diabetes status,
primary kidney disease, and CKD severity, with
decreasing eGFR and increasing UACR levels from
cluster A to cluster C (Table 2). The incidence rate of KF
was 4.2 per 100 person-years (95% CI: 3.0–5.5) for
cluster A, 10.4 (95% CI: 8.3–12.4) for cluster B and 23
(95% CI: 18.9–27.1) for cluster C. Protein fragments of
548
a-1-antitrypsin were strongly enriched compared with
total peptidome (Figure 2b) and more abundant in the
urine of cluster C, including patients with more severe
CKD than in cluster A and B patients (Supplementary
Figure 1). Other protein fragments showing enrichment
in these top 100 peptides included hemoglobin subunit
alpha and antithrombin-III, whereas fragments of
collagens were significantly less represented compared
with total peptidome (Figure 2b). The link between
a-1-antitrypsin and patient classification was confirmed
using a commercial enzyme-linked immunosorbent assay
as increasing levels of urinary a-1-antitrypsin were
observed from cluster A to cluster C (Figure 2c).
Development And Internal Validation Of A

Urinary Peptidome Signature To Predict 3-Year

Risk Of Kf

Among the 1879 sequenced peptides, the regularized
Cox model selected 90 peptides that best predicted the
3-year risk of KF with a c-index of 0.83 (95%CI: 0.81–
0.85) (Figure 3). The majority of the 90 peptides were
fragments of various collagens (59%, Figure 4a and
Supplementary Table S1). Other peptides included
fragments of apolipoprotein A-1 (4%), a-1-antitrypsin
(4%), serum amyloid A protein (2%), albumin (2%),
fibrinogen alpha chain (2%), complement C3 (2%), and
annexin A1 (2%) (Figure 4a and Supplementary
Kidney International Reports (2023) 8, 544–555



Table 2. Patients characteristics at baseline according to the 3 urinary peptidomic clusters in the CKD-REIN case-cohort (N ¼ 1000)
Characteristics Cluster A (n [ 384) Cluster B (n [ 374) Cluster C (n [ 242) P-valuea Nmissing

Baseline characteristics

Male 67% 69% 74% 0.134

Age, yr 70 (63–77) 68 (60–77) 67 (59–75) 0.007

CKD stages <0.001

2–3 53% 32% 17%

4 41% 59% 66%

5 5% 9% 17%

Estimated GFR (CKD-EPI), ml/min/1.73 m2 31.8 � 12.2 26.4 � 10 22.5 � 8.4 0.004

Urine albumin-to-creatinine ratio categories <0.001 1

Normal to mildly increased 43% 12% 2%

Moderatly increased 35% 42% 14%

Severly increased 22% 46% 84%

Primary kidney disease <0.001 106

Diabetic nephropathy 15% 23% 30%

Glomerular nephropathy 14% 19% 26%

Hypertensive or vascular nephropathy 39% 29% 22%

TubuloInterstitial nephropathy 15% 11% 8%

Polycystic kidney disease 7% 7% 6%

Other 10% 11% 8%

Diabetes 35% 45% 53% <0.001 2

History of acute kidney injury 19% 26% 22% 0.077 76

History of cardiovascular disease 58% 57% 58% 0.946 6

CI, confidence interval; CKD-EPI, chronic kidney injury epidemiology collaboration; GFR, glomerular filtration rate; N, number; Q1, lower quartile; Q3, upper quartile; REIN, Renal
Epidemiology and Information Network.
aP-value of analysis variance test, Kruskal-Wallis test, Fisher exact test, or the c2test as appropriate.
Data of baseline characteristics are presented as %, mean � SD or median (Q1–Q3);
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Table S1). Peptides that contributed most to the pre-
dictive power of the signature were fragments of
fibrinogen alpha chain, albumin, apolipoprotein A-1
and apolipoprotein A-4 (positive association,
Supplementary Figure S3), and fragments of CD99
(MIC2 or single-chain type-1 glycoprotein; negative
association, Supplementary Figure S3). Fragments of
collagens contributed both positively and negatively to
the prediction (Supplementary Figure S3). At the pep-
tide level, only 5 fragments (3 a-1-antitrypsin, 1
annexin A1, and 1 uromodulin fragment) of the 90
Figure 3. Performance metrics of the prediction models. Perfor-
mance of the prediction models with the different sets of predictors
was estimated in the CKD-REIN case-cohort (N ¼ 1000, E ¼ 262) and
in the Ghent cohort (N ¼ 326, E¼28). N: number of patients; E:
number of kidney failure events at 3 years; Urinary peptides:
sequenced and present among more than 20 CKD-REIN patients; 4-
variable Kidney Failure Risk Equation2 including age, sex, log UACR,
and eGFR. 1Estimated by 2 folds cross-validation repeated 50 times;
2Estimated in the entire data set. CI, confidence interval; eGFR,
estimated glomerular filtration rate; KFRE, kidney failure risk equa-
tion; UACR, urinary albumin-to-creatinine ratio.

Kidney International Reports (2023) 8, 544–555
predictive peptides were also present in the top 100
discriminative peptides at baseline. However, most
parent proteins were commonly represented in both
signatures (Figure 4b), except for protein fragments of
antithrombin-III and a-2-HS-glycoprotein that were
only found in the top 100 clustering peptides at base-
line; and fragments of CD99, complement C3, and
serum amyloid A protein that were only found in the
KF signature (Figure 4b). Comparing the 90 KF pre-
dictors with the total peptidome showed a significant
enrichment in fragments of apoliprotein A-1 that were
more abundant in the urine of KF cases compared with
that of noncases (Figure 4c and Supplementary
Figure S2). Other protein fragments showing enrich-
ment were peptides from anti-inflammatory proteins
annexin A1 and serum amyloid protein (Figure 4c).

When analyzed according to the different underlying
CKD etiologies, the 90-peptide KF signature showed similar
score distribution among the various etiologies
(Supplementary Figure S4). Finally, based on all 5616
differentially abundant peptides, not restricted to the
sequenced peptides, the Cox model selected 169 peptides
that similarly predicted the 3-year risk of KF with a c-in-
dex of 0.83 (95% CI: 0.82–0.85) (Supplementary Table S2).
Prediction Performance of the Peptidomic

Signature as Compared to the KFRE

The performance of the 4-variable KFRE2 was close to
that of the 90-peptide signature to predict the 3-year
549



Figure 4. Representation of the peptides predictive of kidney failure. (a) Identities of 90 peptides included in the 3-year KF model. (b) Comparison
of the parent proteins represented in the 100 peptides with highest discriminative power for clustering at baseline and the 90 peptides included
in the 3-year KF model. (c) Percentage of peptides originating from collagenic or noncollagenic proteins among all identified urinary peptides
(N ¼ 1879) and among the peptides identified as KF predictors (N ¼ 90). KF, kidney failure.
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risk of KF, with c-index of 0.85 (95% CI: 0.83–0.87)
versus 0.83 (95% CI: 0.81–0.85), respectively
(Figure 3). When the 1879 sequenced peptides were
combined with the 4 KFRE variables, the optimal model
selected 24 peptides and 3 of these 4 variables (age,
eGFR, and log [UACR]) with a c-index of 0.85 (95%CI:
0.83–0.87), similar to that of the above models
(Figure 3). All of those 24 peptides were also present in
the initial 90-peptide signature. Because the loss of 66
of the 90-peptides in this combined model did not
modify the predictive performance, this suggests that
the information contained in the peptides is partially
redundant with these 3 variables. This is supported by
the strong correlation between the peptide-based and
the KFRE-based scores (Rho ¼ 0.83, Figure 5). Similar
results were obtained when all peptides, sequenced or
not were considered. Twenty-five peptides combined
with age, eGFR and log (UACR) predicted KF with a c-
index of 0.85 (95% CI: 0.83–0.87) (Supplementary
Table S2).

External Validation of the Peptidomic Signature

to Predict KF

Compared to the CKD-REIN case-cohort, the Ghent
cohort used for external validation included patients at
an earlier CKD stage; 28 of 326 patients progressed to
KF over the 3-year follow-up and 61 died before KF
550
(Table 1). The incidence rate of KF was 3.3 per 100
person-years (95% CI: 2.0–4.5). The performance of the
90-peptide signature was high with a c-index of 0.89
(95%CI: 0.83–0.94) for the prediction of the 3-year risk
of KF (Figure 3). Overall calibration diagnostic showed
an overestimation of the 3-year predicted risk of KF by
the 90-peptide signature compared to the observed
risk, 0.16 (95% CI: 0.14–0.17) versus 0.09 (95% CI:
0.06–0.12), respectively. Similar results were obtained
with the 169-peptide signature based on all peptides
with a c-index of 0.90 (95% CI: 0.84–0.96)
(Supplementary Table S2).
DISCUSSION

In this case-cohort study nested in a large cohort of
well-phenotyped patients with CKD, 5000 urinary
peptides were detected and quantified using peptidome
analysis. Unsupervised machine learning classified the
patients into 3 groups with homogeneous peptidome
profiles at baseline. These groups differed significantly
in terms of CKD severity. The 100 peptides with the
highest discriminative power for clustering were
mainly fragments of inflammation and fibrosis proteins,
highlighting those derived from a-1-antitrypsin as the
most significant. Using supervised machine learning,
we further identified a set of 90 peptides which
Kidney International Reports (2023) 8, 544–555



Figure 5. Correlation between the peptide-based and KFRE-based scores. Logarithm of the urinary peptidomic model risk score according to
the logarithm of the KFRE risk score and patient outcome at 3-years in the CKD-REIN case-cohort (N ¼ 1000).
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achieved excellent discrimination in predicting the risk
of progression to KF, in both the development and
validation cohorts with c-index largely above 0.80.
However, this 90-peptide signature or the combination
of these peptides with age, eGFR, and UACR did not
improve the prediction provided by the KFRE alone.
These findings have both clinical and research
implications.

One objective of this study was to better understand
the pathophysiological mechanisms associated with
CKD severity and progression (e.g., glomerular and
tubular injury, inflammation, extracellular matrix
remodeling, etc) using untargeted peptidome analysis.
Among the peptides identified in the present study, the
anti-inflammatory a-1-antitrypsin urinary fragments
emerged as the most abundant peptides in the cluster of
patients with most severe CKD, and this was confirmed
at the protein level by enzyme-linked immunosorbent
assay. Three of the a-1-antitrypsin fragments were also
present in the signature predicting progression to KF.

Alpha-1-antitrypsin is a member of the serpin fam-
ily, a major acute phase protein, and a physiological
inhibitor of serine proteases such as neutrophil elastase,
resulting in a plethora of anti-inflammatory and anti-
apoptotic effects.33 The lack of such an important
circulating proteinase inhibitor predisposes homozy-
gous individuals with severe a-1-antitrypsin deficiency
Kidney International Reports (2023) 8, 544–555
to early-onset emphysema (“loss of function”).33

Although lung and liver diseases are the most promi-
nent associated disorders, several other conditions,
such as CKD and diabetes are overrepresented in per-
sons with a-1-antitrypsin deficiency.33

In patients with diabetes, plasma levels and activity
of a-1-antitrypsin have been shown to be significantly
decreased,34 whereas increased levels of urinary a-1-
antitrypsin peptides were observed in an animal
model of diabetes.35,36 Our present data extend the
findings that increased levels of urinary a-1-
antitrypsin peptides and protein are also associated
with CKD severity and progression in patients with
diabetic and nondiabetic kidney disease. A possible
mechanism to explain the increased levels of urinary a-
1-antitrypsin peptides and protein is an increased
excretion because of local synthesis by various kidney
cell types combating inflammatory processes in the
kidney. In keeping with this hypothesis is the obser-
vation that transgenic mice which were expressing the
normal human a-1-antitrypsin gene in tubular epithe-
lial cells exhibited a-1-antitrypsin protein in the
cisternae of the rough endoplasmic reticulum.37

Another alternative consequence of enhanced renal
loss could be decreased plasma a-1-antitrypsin levels,
an activity that might be of clinical significance. Elastin
is the main component of elastic fibers, and the
551
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destruction of elastin fibers by elastase causes loss of
elasticity of the arterial wall.38 Therefore, a possible
consequence of plasma a-1-antitrypsin deficiency
could be increased elastase activity leading to a greater
arterial stiffness, that is, arteriosclerosis as a major
contributor to nonatheromatous vascular disease. In
this context, it is noteworthy that arteriosclerosis has
been shown to predict rapid GFR decline among pa-
tients with high cardiovascular risk.39 Whether ther-
apy with a-1 antitrypsin, which is available on the
market but indicated only for the treatment of the se-
vere forms of a-1 antitrypsin deficiency, will be helpful
to protect the risk of progression from CKD to KF re-
mains to be demonstrated by clinical studies.

Many blood-derived protein fragments (e.g., albu-
min, apolipoproteins, hemoglobin, fibrinogen, and b-2-
microglobulin) were present in both the top 100
clustering peptides and the 90-peptide KF signature.
This could be interpreted as functional change because
of the loss of function of the glomerular filtration
barrier40 and confirms observations of Pontillo et al.,14

who observed more blood-derived urinary peptides in
patients with advanced CKD and in those that showed
CKD progression. Our data also confirm the modifica-
tion of urinary collagen peptide abundance in CKD10,11

and the suggested link to in-situ fibrosis previously
observed.12 Other fragments such as b-2-microglobulin
and uromodulin4 present in both selection of peptides,
however, may reflect tubular damage.

The other objective of this study was to evaluate the
potential of the urine peptidome to predict CKD pro-
gression to KF, and its added value compared to other
predictors. In CKD stages G3 to G5, it has been reported
that the urinary peptide signature CKD273, developed
to identify CKD, does not have an added value in
predicting CKD progression (defined as eGFR decline
>5 ml/min per 1.73 m2 per year) compared to urinary
albumin excretion.14 In our population of patients with
CKD stages G3 to G5, the urinary peptide signature
displayed similar predictive performance as the 4-
variable KFRE, and its combination with KFRE vari-
ables did not further improve this performance,
thereby confirming these observations. This was not
surprising given the high c-index of 0.85 (0.83–0.87)
observed for the equation in this cohort, as in many
others worldwide.2 Interestingly, the 6-variable risk
equation based on routine laboratory parameters and
developed using machine learning by the German CKD
cohort was shown to provide a slight improvement in
KF prediction of 0.010 in the CKD-REIN cohort
compared to the KFRE.3 Altoghether, this suggests that
in moderate to advanced CKD, the information con-
tained in the urine peptidome, analyzed with an
untargeted holistic approach, is redundant with those
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captured by age, sex, eGFR, and UACR alone. Analysis
of different biological levels (e.g., metabolome) or
other biological fluids (e.g., plasma) could help to
better grasp the multifactorial disease character.41,42

Although urinary peptide signatures do not seem to
have added value for KF risk prediction in advanced
CKD compared to the routinely used KFRE, they
emerge as good predictors for patients at risk of CKD,
in individuals with type 2 diabetes and normoalbu-
minuria.13 Our findings that the 90-peptide KF signa-
ture showed similar score distribution across the
various types of primary kidney disease may prompt
further reseach to assess its predictive performance in
patients at early stages of various nonalbuminuric CKD
phenotypes.

This study has major strengths with respect to
standards requested for proteomic analyses.31,43,44 It
is based on a large cohort of well-phenotyped CKD
patients with adequate demographic and clinical data
(type of nephropathy and comorbidities), clearly
defined clinical questions, patient selection, and
outcomes, and detailed information about the sam-
pling methodology because urinary samples of the
CKD-REIN study have been collected and stored
following strict standard operating procedures. The
case-cohort design of the study was cost-effective
and allowed us to use Cox proportional hazards
models and Harell c-index to evaluate the 90-peptide
signature performance as for the entire cohort.
Moreover, we validated our findings in an external
independent cohort with less severe CKD. Interest-
ingly, the samples were collected from another site
(Ghent University Hospital) than the CKD-REIN
cohort, and peptidome analysis was also performed
in another laboratory confirming the high inter-
laboratory precision, stability, and reproducibility of
our biomarkers regardless of the analytical plat-
form.21,45 Our study also has some limitations. The
small number of events in the validation cohort leads
to a low precision of c-statistics and does not allow
to evaluate calibration by level of risk. Finally, we
did not explore early CKD stages, which limits the
clinical implication of the present results to CKD
stage 3 to 5 patients, and lacks sufficient study po-
wer to assess the performance of the signature in
patients with low albuminuria level.

In conclusion, UP appears to represent a useful tool
for the detection of new pathophysiological pathways
involved in CKD severity and progression, and KF risk
prediction with a performance equal to that of the
KFRE. The combination of urinary peptides with the
KFRE variables does not improve the prediction, indi-
cating that the KFRE and peptidome probably reflect
similar mechanisms of progression to KF.
Kidney International Reports (2023) 8, 544–555



APPENDIX

Members of the CKD-REIN Study Group

Collaborators

Natalia Alencar de Pinho, Carole Ayav, Dorothée Cannet,

Christian Combe, Jean-François Deleuze, Denis Fouque,

Luc Frimat, Yves-Edouard Herpe, Christian Jacquelinet,

Maurice Laville, Sophie Liabeuf, Ziad A. Massy, Christophe

Pascal, Bruce Robinson, Roberto Pecoits-Filho, Joost

Schanstra, Bénédicte Stengel, Céline Lange, Marie

Metzger, Elodie Speyer.

ZA Massy et al.: Urine Peptidome and CKD Progression CLINICAL RESEARCH
DISCLOSURE

ZAM reports having received grants for CKD-REIN and other

research projects from Amgen, Baxter, Fresenius Medical

Care, GlaxoSmithKline, Merck Sharp and Dohme-Chibret,

Sanofi-Genzyme, Lilly, Otsuka, Astra Zeneca, Vifor, and

the French government, and fees and grants to charities

from Astra Zeneca, Boehringer Ingelheim, and Glax-

oSmithKline. HM is the cofounder and co-owner of Mosai-

ques Diagnostics. JS is employed by Mosaiques

Diagnostics. BS coordinates the CKD-REIN cohort study,

funded by the Agence Nationale de la Recherche through

the 2010 Cohortes-Investissements d’Avenir program and

by the 2010 national Program Hospitalier de Recherche

Clinique, and supported through a public-private partner-

ship currently involving Fresenius Medical Care, Glax-

oSmithKline, Vifor Fresenius and Boehringer Ingelheim

France. CKD-REIN is supported by a public-private partner-

ship with funding from 10 pharmaceutical companies as

listed in the Funding section.
ACKNOWLEDGMENTS

We acknowledge the CKD-REIN study coordination staff

for their efforts in setting up the CKD-REIN cohort (Marie

Metzger, Elodie Speyer, Céline Lange, and all the clinical

research associates) as well as the CKD-REIN clinical sites

and investigators: Alsace: Prs. T. Hannedouche et B.

Moulin (CHU, Strasbourg), Dr. A. Klein (CH Colmar);

Aquitaine: Pr. C. Combe (CHU, Bordeaux), Dr. J.P. Bour-

denx (Clinique St Augustin, Bordeaux), Dr. A. Keller, Dr. C.

Delclaux (CH, Libourne), Dr. B. Vendrely (Clinique St Mar-

tin, Pessac), Dr. B. Deroure (Clinique Delay, Bayonne), Dr.

A. Lacraz (CH, Bayonne); Basse Normandie: Dr. T. Lobbe-

dez (CHU, Caen), Dr. I. Landru (CH, Lisieux); Ile de France:

Pr Z. Massy (CHU, Boulogne – Billancourt), Pr. P. Lang

(CHU, Créteil), Dr. X. Belenfant (CH, Montreuil), Pr. E.

Thervet (CHU, Paris), Dr. P. Urena (Clinique du Landy, St

Ouen), Dr. M. Delahousse (Hôpital Foch, Suresnes); Lan-

guedoc – Roussillon: Dr. C. Vela (CH, Perpignan); Limousin:

Pr. M. Essig, Dr. D. Clément (CHU, Limoges); Lorraine: Dr.

H. Sekhri, Dr. M. Smati (CH, Epinal), Dr. M. Jamali, Dr. B.
Kidney International Reports (2023) 8, 544–555
Hacq (Clinique Louis Pasteur, Essey-les-Nancy), Dr. V.

Panescu, Dr. M. Bellou (Polyclinique de Gentilly, Nancy),

Pr. Luc Frimat (CHU, Vandœuvre-les-Nancy); Midi-Pyr-

énées: Pr N Kamar (CHU, Toulouse); Nord-Pas-de-Calais:

Prs. C. Noël et F. Glowacki (CHU, Lille), Dr. N. Mai-

sonneuve (CH, Valenciennes), Dr. R. Azar (CH, Dunkerque),

Dr. M. Hoffmann (Hôpital privé La Louvière, Lille); Pays-de-

la Loire: Pr. M. Hourmant (CHU, Nantes), Dr. A. Testa

(Centre de dialyse, Rezé), Dr. D. Besnier (CH, St Nazaire);

Picardie: Pr G. Choukroun (CHU, Amiens), Dr. G. Lambrey

(CH, Beauvais) Provence-Alpes - Côte d’Azur: Pr. S. Burtey

(CHU, Marseille), Dr. G. Lebrun (CH, Aix-en-Provence), Dr.

E. Magnant (Polyclinique du Parc Rambot, Aix-en-

Provence); Rhône-Alpes: Pr M. Laville, Pr. D. Fouque

(CHU, Lyon-Sud) et L. Juillard (CHU Edouard Herriot,

Lyon), Dr. C. Chazot (Centre de rein artificiel Tassin Char-

cot, Ste Foy-les-Lyon), Pr. P. Zaoui (CHU, Grenoble), Dr. F.

Kuentz (Centre de santé rénale, Grenoble).

The authors are grateful to all biological resource cen-

ters for their participation in the project: the Biobanque de

Picardie (BB-0033-00017), NeuroBioTec (BB-0033-00046),

Centre de ressources biologiques (CRB)-Centre Hospitalier

Universitaire de Nantes Hôtel Dieu (BB-0033-00040), CRB-

Centre Hospitalier Universitaire Grenoble Alpes (BB-0033-

00069), CRB-Centre Hospitalier Régional Universitaire de

Nancy (BB-0033-00035), Service de Néphrologie, Centre

Hospitalier de Perpignan, the Plateforme de Ressources

Biologiques-Hôpital Henri Mondor (BB-0033-00021), the

Centre d’Investigation Clinique Plurithématique CIC-1435,

Plateforme de Ressources Biologiques-Hôpital européen

Georges-Pompidou (BB-0033-00063), L’Etablissement

Français du sang (EFS) Hauts de France–Normandie (Site

de Bois-Guillaume, Site de Loos-Eurasanté), EFS Nouvelle

Aquitaine (site Pellegrin), EFS Ile de France (Site Avicenne),

EFS Occitanie (Site de Toulouse), EFS Grand-Est (Site de

Colmar, Site de Metz), EFS PACA-Corse (Site de Marseille).

Funding

CKD-REIN is funded by the Agence Nationale de la

Recherche through the 2010 «Cohortes-Investissements

d’Avenir » program (ANR-IA-COH-2012/3731) and by the

2010 national Program Hospitalier de Recherche Clinique.

CKD-REIN is also supported through a public-private

partnership with Fresenius Medical Care and Glax-

oSmithKline (GSK) since 2012 and Vifor France since 2018,

Sanofi Genzyme (2012 to 2015), Baxter and Merck Sharp &

Dohme-Chibret (MSD France) from 2012 to 2017, Amgen

(2012 to 2020), Lilly France (2013 to 2018), Otsuka Phar-

maceutical (2015 to 2020), AstraZeneca (2018 to 2021) and

Boehringer Ingelheim France since 2022. Inserm Transfert

set up and has managed this partnership since 2011.

The work was also supported by a grant from the

Agence Nationale de la Recherche (Proteomark_CKD,
553



CLINICAL RESEARCH ZA Massy et al.: Urine Peptidome and CKD Progression
ANR-17-CE17-0006-01) and by the “Fondation pour la

Recherche Médicale” (DEQ20170336759).

Authorizations

All legal autorizationswereobtained including those fromthe

Comité consultatif sur le traitement de l’information en

matière de recherche dans le domaine de la santé (CCTIRS

N�12.360), the Commission nationale de l’informatique et

des libertés (CNIL N�DR-2012-469), and from the Kremlin-

Bicêtre Comité de protection des personnes (CPP N�IDRCB
2012-A00902-41). CKD-REIN biological collection is regis-

tered in the management application of the COnservation

D’Eléments du COrps Humain (CODECOCH N�-2012-1624).
The Institut national de la santé et de la recherche

médical (Inserm) Institutional Review Board approved the

study protocol (IRB00003888). ClinicalTrials.gov Identifier:

NCT03381950.

Data Availability

All data, including the risk equation with the predictors list,

are available on reasonable request from the authors.

SUPPLEMENTARY MATERIAL

Supplementary File (PDF)

Supplementary Methods.

Figure S1. Urinary peptide abundance in the CKD-REIN

case-cohort according to the peptidome clusters.

Peptides are grouped by proteins. Only the 100 pep-

tides with the highest discriminating power are

represented.

Figure S2. Urinary peptide abundance in the CKD-REIN

case-cohort according to the status case/noncase at 3

years. Peptides are grouped by proteins. Only the 90

peptides present in the KF signature are represented.

Figure S3. Coefficients of standardized abundance of

the 90 peptides present in the urinary peptidome-

based KF prediction model. Positive coefficients in-

crease the risk score, negative coefficients decrease the

risk score.

Figure S4. Risk score of the urinary peptidome model

according to the primary kidney disease and patient

outcome at 3 years in the CKD-REIN case-cohort.

Table S1. Sequence of the 90 urinary peptides predicting

KF.

Table S2. Performance metrics of regularized Cox’s

models with all urinary peptides.

TRIPOD Checklist.
REFERENCES

1. Romagnani P, Remuzzi G, Glassock R, et al. Chronic kidney

disease. Nat Rev Dis Primers. 2017;3:17088. https://doi.org/10.

1038/nrdp.2017.88

2. Tangri N, Grams ME, Levey AS, et al. Multinational assess-

ment of accuracy of equations for predicting risk of kidney
554
failure: a meta-analysis. JAMA. 2016;315:164–174. https://doi.

org/10.1001/jama.2015.18202

3. Zacharias HU, Altenbuchinger M, Schultheiss UT, et al.

A predictive model for progression of CKD to kidney failure

based on routine laboratory tests. Am J Kidney Dis. 2022;79:

217–230.e1. https://doi.org/10.1053/j.ajkd.2021.05.018

4. Rampoldi L, Scolari F, Amoroso A, et al. The rediscovery of

uromodulin (tamm-Horsfall protein): from tubulointerstitial

nephropathy to chronic kidney disease. Kidney Int. 2011;80:

338–347. https://doi.org/10.1038/ki.2011.134

5. Fliser D. Urinary Dickkopf-3 and the evaluation of chronic

kidney disease progression. Nephrol Dial Transplant.

2021;36:2161–2163. https://doi.org/10.1093/ndt/gfab246

6. Malhotra R, Katz R, Jotwani V, et al. Urine markers of kidney

tubule cell injury and kidney function decline in Sprint trial

participants with CKD. Clin J Am Soc Nephrol. 2020;15:

349–358. https://doi.org/10.2215/CJN.02780319

7. Ntrinias T, Papasotiriou M, Balta L, et al. Biomarkers in pro-

gressive chronic kidney disease. Still a long way to go. Pril

(Makedon Akad Nauk Umet Odd Med Nauki). 2019;40:27–39.

https://doi.org/10.2478/prilozi-2020-0002

8. Hsu CY, Xie D, Waikar SS, et al. Urine biomarkers of tubular

injury do not improve on the clinical model predicting chronic

kidney disease progression. Kidney Int. 2017;91:196–203.

https://doi.org/10.1016/j.kint.2016.09.003

9. Klein J, Schanstra JP. Implementation of proteomics bio-

markers in nephrology: from animal models to human

application? Proteomics Clin Appl. 2019;13:e1800089. https://

doi.org/10.1002/prca.201800089

10. Schanstra JP, Zürbig P, Alkhalaf A, et al. Diagnosis and pre-

diction of CKD progression by assessment of urinary pep-

tides. J Am Soc Nephrol. 2015;26:1999–2010. https://doi.org/

10.1681/ASN.2014050423

11. Good DM, Zürbig P, Argilés A, et al. Naturally occurring hu-

man urinary peptides for use in diagnosis of chronic kidney

disease. Mol Cell Proteomics. 2010;9:2424–2437. https://doi.

org/10.1074/mcp.M110.001917

12. Magalhães P, Pejchinovski M, Markoska K, et al. Association

of kidney fibrosis with urinary peptides: a path towards non-

invasive liquid biopsies? Sci Rep. 2017;7:16915. https://doi.

org/10.1038/s41598-017-17083-w

13. Tofte N, Lindhardt M, Adamova K, et al. Early detection of

diabetic kidney disease by urinary proteomics and subse-

quent intervention with spironolactone to delay progression

(PRIORITY): a prospective observational study and

embedded randomised placebo-controlled trial. Lancet Dia-

betes Endocrinol. 2020;8:301–312. https://doi.org/10.1016/

S2213-8587(20)30026-7

14. Pontillo C, Jacobs L, Staessen JA, et al. A urinary proteome-

based classifier for the early detection of decline in glomer-

ular filtration. Nephrol Dial Transplant. 2017;32:1510–1516.

https://doi.org/10.1093/ndt/gfw239

15. Stengel B, Metzger M, Combe C, et al. Risk profile, quality of

life and care of patients with moderate and advanced CKD:

the French CKD-REIN Cohort Study. Nephrol Dial Transplant.

2019;34:277–286. https://doi.org/10.1093/ndt/gfy058

16. Fourdinier O, Schepers E, Metzinger-Le Meuth V, et al. Serum

levels of miR-126 and miR-223 and outcomes in chronic kid-

ney disease patients. Sci Rep. 2019;9:4477. https://doi.org/10.

1038/s41598-019-41101-8
Kidney International Reports (2023) 8, 544–555

http://ClinicalTrials.gov
https://doi.org/10.1016/j.ekir.2022.11.023
https://doi.org/10.1038/nrdp.2017.88
https://doi.org/10.1038/nrdp.2017.88
https://doi.org/10.1001/jama.2015.18202
https://doi.org/10.1001/jama.2015.18202
https://doi.org/10.1053/j.ajkd.2021.05.018
https://doi.org/10.1038/ki.2011.134
https://doi.org/10.1093/ndt/gfab246
https://doi.org/10.2215/CJN.02780319
https://doi.org/10.2478/prilozi-2020-0002
https://doi.org/10.1016/j.kint.2016.09.003
https://doi.org/10.1002/prca.201800089
https://doi.org/10.1002/prca.201800089
https://doi.org/10.1681/ASN.2014050423
https://doi.org/10.1681/ASN.2014050423
https://doi.org/10.1074/mcp.M110.001917
https://doi.org/10.1074/mcp.M110.001917
https://doi.org/10.1038/s41598-017-17083-w
https://doi.org/10.1038/s41598-017-17083-w
https://doi.org/10.1016/S2213-8587(20)30026-7
https://doi.org/10.1016/S2213-8587(20)30026-7
https://doi.org/10.1093/ndt/gfw239
https://doi.org/10.1093/ndt/gfy058
https://doi.org/10.1038/s41598-019-41101-8
https://doi.org/10.1038/s41598-019-41101-8


ZA Massy et al.: Urine Peptidome and CKD Progression CLINICAL RESEARCH
17. Stengel B, Combe C, Jacquelinet C, et al. The French Chronic

Kidney Disease-Renal Epidemiology and Information

Network (CKD-REIN) cohort study. Nephrol Dial Transplant.

2014;29:1500–1507. https://doi.org/10.1093/ndt/gft388

18. Glorieux G, Vanholder R, Van Biesen W, et al. Free p-cresyl

sulfate shows the highest association with cardiovascular

outcome in chronic kidney disease. Nephrol Dial Transplant.

2021;36:998–1005. https://doi.org/10.1093/ndt/gfab004

19. Verbeke F, Siwy J, Van Biesen W, et al. The urinary proteomics

classifier chronic kidney disease 273 predicts cardiovascular

outcome in patients with chronic kidney disease. Nephrol Dial

Transplant. 2021;36:811–818. https://doi.org/10.1093/ndt/gfz242

20. Stevens LA, Coresh J, Schmid CH, et al. Estimating GFR using

serum cystatin C alone and in combination with serum

creatinine: a pooled analysis of 3418 individuals with CKD.

Am J Kidney Dis. 2008;51:395–406. https://doi.org/10.1053/j.

ajkd.2007.11.018

21. Mischak H, Vlahou A, Ioannidis JPA. Technical aspects and

inter-laboratory variability in native peptide profiling: the CE-

MS experience. Clin Biochem. 2013;46:432–443. https://doi.

org/10.1016/j.clinbiochem.2012.09.025

22. Mavrogeorgis E, Mischak H, Latosinska A, et al. Reproduc-

ibility evaluation of urinary peptide detection using CE-MS.

Molecules. 2021;26:7260. https://doi.org/10.3390/molecules

26237260

23. Latosinska A, Siwy J, Mischak H, Frantzi M. Peptidomics and

proteomics based on CE-MS as a robust tool in clinical

application: the past, the present, and the future. Electro-

phoresis. 2019;40:2294–2308. https://doi.org/10.1002/elps.

201900091

24. Theodorescu D, Wittke S, Ross MM, et al. Discovery and

validation of new protein biomarkers for urothelial cancer: a

prospective analysis. Lancet Oncol. 2006;7:230–240. https://

doi.org/10.1016/S1470-2045(06)70584-8

25. Neuhoff N v, Kaiser T, Wittke S, et al. Mass spectrometry for

the detection of differentially expressed proteins: a compar-

ison of surface-enhanced laser desorption/ionization and

capillary electrophoresis/mass spectrometry. Rapid Commun

Mass Spectrom. 2004;18:149–156. https://doi.org/10.1002/

rcm.1294

26. Jantos-Siwy J, Schiffer E, Brand K, et al. Quantitative urinary

proteome analysis for biomarker evaluation in chronic kidney

disease. J Proteome Res. 2009;8:268–281. https://doi.org/10.

1021/pr800401m

27. Klein J, Papadopoulos T, Mischak H, Mullen W. Comparison

of CE-MS/MS and LC-MS/MS sequencing demonstrates sig-

nificant complementarity in natural peptide identification in

human urine. Electrophoresis. 2014;35:1060–1064. https://doi.

org/10.1002/elps.201300327

28. Marbac M, Sedki M. Variable selection for model-based

clustering using the integrated complete-data likelihood.

Stat Comput. 2017;27:1049–1063. https://doi.org/10.1007/

s11222-016-9670-1

29. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization

paths for Cox’s proportional hazards model via coordinate

descent.JStatSoftw. 2011;39:1–13. https://doi.org/10.18637/jss.

v039.i05

30. Breiman Leo, Friedman J, Stone CJ, Olshen RA. Classification

and Regression Trees. Chapman & Hall; 1984.
Kidney International Reports (2023) 8, 544–555
31. Mischak H, Allmaier G, Apweiler R, et al. Recommendations

for biomarker identification and qualification in clinical pro-

teomics. Sci Transl Med. 2010;2:46ps42. https://doi.org/10.

1126/scitranslmed.3001249

32. Moons KGM, Kengne AP, Woodward M, et al. Risk prediction

models: I. Development, internal validation, and assessing

the incremental value of a new (bio)marker. Heart. 2012;98:

683–690. https://doi.org/10.1136/heartjnl-2011-301246

33. Strnad P, McElvaney NG, Lomas DA. Alpha1-antitrypsin

deficiency. N Engl J Med. 2020;382:1443–1455. https://doi.

org/10.1056/NEJMra1910234

34. Hashemi M, Naderi M, Rashidi H, Ghavami S. Impaired ac-

tivity of serum alpha-1-antitrypsin in diabetes mellitus. Dia-

betes Res Clin Pract. 2007;75:246–248. https://doi.org/10.1016/

j.diabres.2006.06.020

35. Siwy J, Zoja C, Klein J, et al. Evaluation of the Zucker diabetic

fatty (ZDF) rat as a model for human disease based on urinary

peptidomic profiles. PLoS One. 2012;7:e51334. https://doi.org/

10.1371/journal.pone.0051334

36. Klein J, Ramirez-Torres A, Ericsson A, et al. Urinary pepti-

domics provides a noninvasive humanized readout of dia-

betic nephropathy in mice. Kidney Int. 2016;90:1045–1055.

https://doi.org/10.1016/j.kint.2016.06.023

37. Carlson JA, Rogers BB, Sifers RN, et al. Multiple tissues ex-

press alpha 1-antitrypsin in transgenic mice and man. J Clin

Invest. 1988;82:26–36. https://doi.org/10.1172/JCI113580

38. Tsujii T, Katayama K, Naito I, Seno S. The circulating

alpha 1-antitrypsin-elastase complex attacks the elastic lam-

ina of blood vessels. An immunohistochemical study.

Histochemistry. 1988;88:443–451. https://doi.org/10.1007/

BF00570307

39. Satirapoj B, Triwatana W, Supasyndh O. Arterial stiffness

predicts rapid decline in glomerular filtration rate among

patients with high cardiovascular risks. J Atheroscler

Thromb. 2020;27:611–619. https://doi.org/10.5551/jat.52084

40. Genovese F, Manresa AA, Leeming DJ, et al. The extracellular

matrix in the kidney: a source of novel non-invasive bio-

markers of kidney fibrosis? Fibrogenesis Tissue Repair.

2014;7:4. https://doi.org/10.1186/1755-1536-7-4

41. Magalhaes P, Pontillo C, Pejchinovski M, et al. Comparison of

urine and plasma peptidome indicates selectivity in renal

peptide handling. Proteomics Clin Appl. 2018;12:e1700163.

https://doi.org/10.1002/prca.201700163

42. Boizard F, Brunchault V, Moulos P, et al. A capillary electro-

phoresis coupled to mass spectrometry pipeline for long

term comparable assessment of the urinary metabolome. Sci

Rep. 2016;6:34453. https://doi.org/10.1038/srep34453

43. Mischak H, Apweiler R, Banks RE, et al. Clinical proteomics: a

need to define the field and to begin to set adequate stan-

dards. Proteomics Clin Appl. 2007;1:148–156. https://doi.org/

10.1002/prca.200600771

44. Mischak H, Ioannidis JPA, Argiles A, et al. Implementation of

proteomic biomarkers: making it work. Eur J Clin Investig.

2012;42:1027–1036. https://doi.org/10.1111/j.1365-2362.2012.

02674.x

45. Klein J, Lacroix C, Caubet C, et al. Fetal urinary peptides to

predict postnatal outcome of renal disease in fetuses with

posterior urethral valves (PUV). Sci Transl Med. 2013;5:

198ra106. https://doi.org/10.1126/scitranslmed.3005807
555

https://doi.org/10.1093/ndt/gft388
https://doi.org/10.1093/ndt/gfab004
https://doi.org/10.1093/ndt/gfz242
https://doi.org/10.1053/j.ajkd.2007.11.018
https://doi.org/10.1053/j.ajkd.2007.11.018
https://doi.org/10.1016/j.clinbiochem.2012.09.025
https://doi.org/10.1016/j.clinbiochem.2012.09.025
https://doi.org/10.3390/molecules26237260
https://doi.org/10.3390/molecules26237260
https://doi.org/10.1002/elps.201900091
https://doi.org/10.1002/elps.201900091
https://doi.org/10.1016/S1470-2045(06)70584-8
https://doi.org/10.1016/S1470-2045(06)70584-8
https://doi.org/10.1002/rcm.1294
https://doi.org/10.1002/rcm.1294
https://doi.org/10.1021/pr800401m
https://doi.org/10.1021/pr800401m
https://doi.org/10.1002/elps.201300327
https://doi.org/10.1002/elps.201300327
https://doi.org/10.1007/s11222-016-9670-1
https://doi.org/10.1007/s11222-016-9670-1
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.18637/jss.v039.i05
http://refhub.elsevier.com/S2468-0249(22)01896-4/sref30
http://refhub.elsevier.com/S2468-0249(22)01896-4/sref30
https://doi.org/10.1126/scitranslmed.3001249
https://doi.org/10.1126/scitranslmed.3001249
https://doi.org/10.1136/heartjnl-2011-301246
https://doi.org/10.1056/NEJMra1910234
https://doi.org/10.1056/NEJMra1910234
https://doi.org/10.1016/j.diabres.2006.06.020
https://doi.org/10.1016/j.diabres.2006.06.020
https://doi.org/10.1371/journal.pone.0051334
https://doi.org/10.1371/journal.pone.0051334
https://doi.org/10.1016/j.kint.2016.06.023
https://doi.org/10.1172/JCI113580
https://doi.org/10.1007/BF00570307
https://doi.org/10.1007/BF00570307
https://doi.org/10.5551/jat.52084
https://doi.org/10.1186/1755-1536-7-4
https://doi.org/10.1002/prca.201700163
https://doi.org/10.1038/srep34453
https://doi.org/10.1002/prca.200600771
https://doi.org/10.1002/prca.200600771
https://doi.org/10.1111/j.1365-2362.2012.02674.x
https://doi.org/10.1111/j.1365-2362.2012.02674.x
https://doi.org/10.1126/scitranslmed.3005807

	Machine Learning-Based Urine Peptidome Analysis to Predict and Understand Mechanisms of Progression to Kidney Failure
	Methods
	Study Design and Participants
	Outcome of Interest
	Demographic, Clinical and Laboratory Data
	Sample Preparation and Capillary Electrophoresis–Mass Spectrometry Analysis
	Data Processing
	Peptide Sequencing
	Enzyme-Linked Immunosorbent Assay Measurement of α-1-Antitrypsin
	Statistical Analysis

	Results
	Characteristics of the CKD-REIN Case-Cohort Subsample
	Urinary Peptidome-Based Classification of Patients at Baseline
	Development And Internal Validation Of A Urinary Peptidome Signature To Predict 3-Year Risk Of Kf
	Prediction Performance of the Peptidomic Signature as Compared to the KFRE
	External Validation of the Peptidomic Signature to Predict KF

	Discussion
	Disclosure
	Acknowledgments
	Funding
	Appendix
	Members of the CKD-REIN Study Group Collaborators

	Authorizations
	Data Availability
	Supplementary Material
	References
	flink10


