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Abstract 13 

Epithelial–mesenchymal plasticity (EMP) enables cells to interconvert between 14 

several states across the epithelial–mesenchymal landscape, thereby acquiring hybrid 15 

epithelial/mesenchymal phenotypic features. This plasticity is crucial for embryonic 16 

development and wound healing, but also underlies the acquisition of several 17 

malignant traits during cancer progression. Recent research using systems biology 18 

and single-cell profiling methods has provided novel insights into the main forces that 19 

shape EMP, which include the microenvironment, lineage specification and cell 20 

identity, and the genome. Additionally, key roles have emerged for hysteresis (cell 21 

memory) and cellular noise, which can drive stochastic transitions between cell states. 22 

Here, we review these forces and the distinct but interwoven layers of regulatory 23 

control that stabilize EMP states or facilitate epithelial–mesenchymal transitions 24 

(EMTs) and discuss the therapeutic potential of manipulating the EMP landscape. 25 
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Introduction 26 

Throughout the development of multicellular organisms, each cell lineage increasingly 27 

sacrifices its differentiation potential for the actuality of a specific role — a specific set 28 

of functions supported by a stable cell identity. During this development, each cell fate 29 

decision adds additional constraints, locking cells into distinct lineage trajectories. 30 

Famously, this process was represented visually by Waddington as a ball rolling down 31 

a rugged landscape until, ultimately, coming to a halt in one of the lower valleys1. 32 

Under homeostatic conditions, most mature cell types remain locked in this stable and 33 

mature ‘attractor’ state. However, in response to microenvironmental stimuli or 34 

pathology, some cell types can regain plasticity within the confines of their identity. For 35 

example, many epithelial cells continue to inhabit a limited ‘landscape of plasticity’ 36 

consisting of multiple metastable and interconvertible phenotypic states2-4. 37 

 Epithelial–mesenchymal transition (EMT) describes a shift from an epithelial to a 38 

mesenchymal cellular phenotype (Fig. 1). Typical epithelial characteristics, such as an 39 

apical–basal polarity, attachment to the basement membrane, and strong cell–cell 40 

adhesion, result in immobile cells, stably anchored in tightly linked epithelial sheets, 41 

which are wellsuited to act as barriers against the external or internal environment. 42 

During an EMT programme, the firm epithelial cell–cell adhesion is lost, matrix 43 

interactions are modulated, and the apical–basal polarity is exchanged for a front–44 

back polarity. As a result, individualized and migratory mesenchymal-like cells, which 45 

often display invasive capacities, emerge from the epithelial sheets (Fig. 1a). These 46 

mesenchymal-like cells can reclaim their epithelial phenotype by undergoing a 47 

mesenchymal–epithelial transition (MET)2-4. 48 

 EMT does not refer to a single process but, rather, encompasses a set of 49 

considerably different biological processes with overlapping characteristics (Fig. 1b). 50 

EMT was initially described in embryology5,6; the many morphogenetic movements 51 

during early embryonic development (type 1), whereby cells often undergo 52 

consecutive rounds of EMT and MET, are considered the motor of gastrulation and 53 

organogenesis6. Soon after, similar morphological and molecular changes were 54 

described in adult life, where EMT not only plays important roles in wound healing, 55 

tissue regeneration and the pathogenesis of organ fibrosis (type 2), but also 56 

contributes to cancer progression (type 3)2-4,7. 57 

 58 
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 59 

Fig. 1|Epithelial cells inhabit a landscape of plasticity 60 
a| Epithelial cells mechanically integrate through adhesive interactions mediated by tight junctions, 61 
adherens junctions, desmosomes, and gap junctions. Furthermore, they attach to the basement 62 
membrane with hemidesmosomes and focal adhesions. As a result, epithelial cells are static, non-63 
invasive, and arranged in tightly linked cell sheets. During epithelial-mesenchymal transition (EMT), 64 
epithelial markers such as cell-cell adhesion molecules and cytokeratins are downregulated, whereas 65 
mesenchymal markers such as N-cadherin, vimentin and fibronectin are upregulated. EMT is also 66 
coupled to a downregulation of epithelial integrins (for example, α6β4) and upregulation of 67 
mesenchymal integrins (for example, α5β1, α1β1, α2β1, αvβ3, and αvβ6)350.  Through incomplete EMT 68 
processes, cells may inhabit intermediate states.  Such partial EMT (pEMT)  or hybrid EMT states 69 
simultaneously display epithelial and mesenchymal (E/M) properties. Following EMT, the resulting 70 
mesenchymal cells show front-back polarity and a cytoskeleton containing actin stress fibres. These 71 
cells show weak (or no) cell-cell adhesion, and they adhere to the extracellular matrix (ECM) through 72 
integrin-based focal adhesions. Consequently, EMT results in individual, motile cells with fibroblast-like 73 
morphology and invasive capacity2-4,8. b| Epithelial-mesenchymal plasticity (EMP) varies highly 74 
between contexts9, being dependent on the system studied as well as the applied EMT driver. The 75 
diversity of EMP programmes implies countless EMP states, and argues against the often presented, 76 
one-dimensional, linear conception of the EMP spectrum (as in p a)10. Therefore, the EMP landscape 77 
is visualized here as a feature space and several potential EMT and mesenchymal-epithelial transition 78 
(MET) trajectories are plotted. Terminal states represent states in which cells remain indefinitely during 79 
continuous, intense exposure to, or long-term, complete withdrawal of, an EMT driver. Intermediate 80 
induction states can be thought of as partial responses to the stimulus as a result of the stimulus being 81 
applied only recently (time-course analysis) or at lower intensity (dose-response analysis), and vice 82 
versa for intermediate withdrawal stages. EMT and MET were classically described as symmetrical 83 
processes, the MET trajectory being the reverse of the EMT trajectory (panel 1). However, considering 84 
phenomena such as cell memory, MET may display distinct kinetics (panel 2) and/or  distinct trajectories 85 
(panel 3) from EMT. Additionally, an EMT process may be completely (panel 4) or partially (panel 5) 86 
irreversible upon withdrawal of the stimulus which evoked it. Lastly, stimuli that evoke EMT in one 87 
system, may evoke only partial EMT (panel 6), or no EMT at all, or inhibit EMT, in other systems. 88 
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 EMT and MET were originally considered binary processes: a transit from the 89 

epithelial to the mesenchymal phenotype and vice versa. However, recent single-cell 90 

RNA9,11-18 and protein18-20 profiling has demonstrated that cells can linger in a series 91 

of intermediate states along the epithelial–mesenchymal axis21. Such partial EMT 92 

(pEMT) states simultaneously exhibit epithelial and mesenchymal properties. 93 

Depending on the context, cells with hybrid E/M phenotypes can be either firmly 94 

locked22,23 or free to roam throughout a vast landscape of alternative states — a 95 

phenomenon termed epithelial–mesenchymal plasticity (EMP)4 (Fig. 1b). 96 

 This Review gives a concise overview of the general forces shaping the EMP 97 

landscape and the mechanisms that govern transitions therein. We First outline five 98 

distinct factors that contribute to shaping EMP; we review the well-appreciated roles 99 

of the microenvironment, lineage specification, and genetics, and then reflect on the 100 

emerging roles of hysteresis (cell memory) and noise-driven stochastic state 101 

transitions. Next, we discuss the specific regulatory mechanisms — transcriptional, 102 

translational, epigenetic and metabolic rewiring — that either stabilize specific cell 103 

states or drive state transitions within the EMP landscape. 104 

 105 

Shaping the EMP landscape 106 

EMP as a response to the local microenvironment 107 

EMT is not a global phenomenon but, rather, a focal occurrence3. Each cell is 108 

embedded in and shaped by a microenvironment consisting of cellular neighbours, 109 

extracellular matrix and cytokine gradients. Only by sensing the changes in the 110 

microenvironment will epithelial cells know when and how to initiate EMT. Ligands 111 

such as TGF-β24,25, HGF26, FGF27, EGF, Wnt28 and Notch29, for example, have been 112 

shown to induce or enforce EMT. Other microenvironmental parameters such as 113 

hypoxia30,31, access to nutrients32-34, shear forces35-37 and matrix rigidity38,39 also 114 

mediate EMP. Importantly, these parameters have mostly been studied under varying 115 

artificial in vitro conditions with fully transformed and genetically instable cancer cell 116 

lines. Nevertheless, these studies have illustrated the drastic influence of the 117 

microenvironment in determining the permissiveness of a cell for EMP, or in driving 118 

EMP itself. Microenvironmental influences may work synergistically or 119 

antagonistically; however, the many intricacies of these interactions remain to be 120 

elucidated. 121 



5 
 

 An asymmetry arises when comparing the interactions of epithelial versus 122 

mesenchymal cells with the microenvironment. Epithelial cells, being held in place by 123 

firm adhesive properties, are ‘overcome’ by their microenvironment. By contrast, 124 

migratory mesenchymal cells, coordinated by chemotactic signals, actively seek out a 125 

specific environment. Such chemotactic mechanisms are crucial for body plan 126 

formation during development but also contribute to organotropism during cancer cell 127 

metastasis40. Cells in a partial EMT state may combine motility with some stability in 128 

their environment by migrating in a cluster-like fashion. In this case, the migratory unit 129 

contains a ‘travelling microenvironment’. Besides tumour cells, these clusters can 130 

contain platelets41, immune cells42-45, cancer-associated fibroblasts42,46 and 131 

extracellular matrix42,47. These clusters can stabilize the partial EMT state by 132 

maintaining TGFβ signalling42. Additionally, clustering can prevent anoikis48,49 (a type 133 

of programmed cell death that occurs in anchorage-dependent cells upon loss of 134 

attachment to the extracellular matrix) and shield tumour cells from immune attacks, 135 

shear forces and other external stressors50. When it comes to metastasis, clusters are 136 

particularly effective at seeding secondary tumours51-53.  137 

 138 

Lineage specification and cell identity guide plasticity 139 

Epithelial cell identity dictates the tendency for EMP. Epithelial cell subtypes, although 140 

similar in function, differ in shape, size and multicellular organization. Furthermore, 141 

these subtypes vary in their transcriptional and chromatin landscapes, as well as their 142 

expression of receptors and rate-limiting downstream mediators, all of which can have 143 

an impact on EMP. Additionally, functional54 and histological55 resemblance between 144 

cancer cells and developing embryos was recognized over a century ago. It has since 145 

been hypothesized that cancer cells acquire malignant traits through reactivation of 146 

dormant developmental programmes56,57. As such, EMP can, in many cases, be 147 

regarded as the result of fully differentiated, mature cells revisiting previously travelled 148 

paths in their developmental landscape57-59.  149 
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 150 

Fig. 2| The developmental landscape guides EMP.  151 
a| During development, totipotent progenitors undergo consecutive cell fate decisions resulting in 152 
separate lineage trajectories. This process was visually depicted as a sphere rolling down a rugged 153 
landscape by C.H. Waddington1. Higher positions on the hill represent increased differentiation potency, 154 
and lower stability. Following a series of bifurcations (cell fate decisions) the cell reaches a stable and 155 
mature attractor state, represented by a valley. The lineage specification process and the cell’s identity 156 
continue to impact its plasticity. b| Epithelial-mesenchymal plasticity (EMP) can promote 157 
dedifferentiation and endow cells with increased stemness. Several reports give weight to the 158 
perspective that this is the result of cells revisiting previously travelled paths in their developmental 159 
landscape during EMP (yellow arrow)60-66. The distinct developmental landscape of one lineage 160 
compared with another may greatly facilitate (yellow arrow) or obstruct (red arrow with red ‘x’) EMP66. 161 
Following dedifferentiation as a result of EMP, cells may redifferentiate towards another lineage (blue 162 
arrow). In this case, EMP allows cells to travel developmental paths of other lineages. c| Genomic 163 
changes may result in an alternative developmental landscape, obstructing access to developmental 164 
states (arrow with red ‘x’), and/or stabilizing otherwise unoptimized attractors (green arrow). In this case, 165 
malignant EMP is the result of cells moving through alternative, unoptimized trajectories in 166 
Waddington’s landscape. As such, germ-line mutations in EMT-associated transcription factors (EMT-167 
TFs) result in aberrant embryonic development and somatic mutations acquired during tumour 168 
development may stabilize states with increased metastatic potential22. Similarly, epigenetic silencing 169 
of lineage-specific transcription factors during tumour progression may impede full differentiation.  170 
 171 

 Studies in support of such lineage-specific malignant progression have been 172 

accumulating60-66. Metastatic prostate cancer cells show reactivation of a 173 

developmental, ZEB1-dependent epigenomic programme61. Even within a single 174 

tissue, the cell of origin has a major impact on EMP displayed within a tumour65,66. 175 

Similarly, tumours resulting from KRAS Gly12Asp and p53 mutations in hair follicle 176 

stem cells were shown to be much more prone to display EMP than tumours arising 177 

from the same mutations in the interfollicular epidermis66. This difference persisted 178 

when epithelial tumour cells of both compartments were implanted in the same 179 

microenvironment. Subsequent analysis showed that this difference in EMP potential 180 

can be explained by transcriptional and chromatin-level priming in the healthy founder 181 

cells66. Additionally, the degree of differentiation affects EMP. In mice, hepatic 182 

progenitor cells transduced with H-Ras and SV40LT gave rise to significantly more 183 

mesenchymal-like tumours compared with hepatoblasts or adult hepatocytes 184 

transduced with the same oncogenes65. Complementary, functional loss of lineage-185 

specific transcription factors, through silencing or mutation, enables dedifferentiation 186 

and promotes EMP. For example, loss GATA3, which is required for luminal epithelial 187 
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cell commitment67, drives EMT in breast68-71 and bladder72 cancer. Similarly, loss of 188 

ELF573-75, FOXA76,77, or KLF478,79, key modulators in cell fate decisions and 189 

maintenance, promote EMT across cancers. 190 

 Similar to classical EMT, the endothelium, a mesoderm-derived, simple epithelium, 191 

can undergo an endothelial-to-mesenchymal transition (EndoMT). Here, 192 

microenvironmental stimulation results in the loss of typical endothelial markers and 193 

the acquisition of a mesenchymal or myofibroblastic phenotype80. Complete EndoMT 194 

has been proposed as an important mechanism in the pathogenesis of fibrotic 195 

disorders81-83. Additionally, recent single-cell transcriptomics upon myocardial injury 196 

has shown that certain endothelial cell populations may undergo a partial EndoMT 197 

before reverting to their original phenotype post infarction84. Such a transient, partial 198 

EndoMT facilitates regeneration of the vascular network, and the morphological 199 

changes that endothelial ‘tip’ cells undergo during sprouting angiogenesis to form 200 

novel vessels are similar to those displayed during ‘classical’ embryonic EMT. In 201 

prostate cancer, tumour-associated endothelial cells can drive osteoblastic bone 202 

metastasis through an endothelial-to-osteoblast transition85, which constitutes a 203 

specific type of EndoMT. Similarly, endothelial-to-osteoblast, as well as endothelial-204 

to-chondrocyte transitions have been proposed to drive fibrodysplasia ossificans 205 

progressiva86, a rare genetic disorder caused by mutations in the ACVR1 gene that is 206 

characterized by ossification of skeletal muscle and connective tissue86. Importantly, 207 

although the phenotypic changes and regulatory mechanisms between EndoMT and 208 

EMT seem similar, the downstream genes controlling cell–cell adhesion, cytoskeletal 209 

organization, extracellular matrix depositions and chemotaxis vary drastically 210 

dependent on the epithelial cell identity. 211 

 212 

The genome limits the phenome 213 

The plastic and reversible nature of EMP processes immediately denies that epithelial 214 

to mesenchymal shifts are directed by genetic changes. Rather, these shifts are 215 

governed by the epigenetic, (post-)transcriptional and (post-)translational 216 

machineries87. However, phenotypic plasticity ultimately remains constrained within 217 

the possibilities of the genotype. Several examples illustrate how somatic or germline 218 

mutations affect EMT in health and disease. 219 

 During embryogenesis, EMT-associated transcription factors (EMT-TFs) conduct 220 

a well-orchestrated harmony of morphogenetic movement. As EMT is essential for 221 
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development, mutations that affect the functionality of core EMT networks result in 222 

drastic developmental disorders88; for example, mutations in the core EMT-TFs ZEB2, 223 

SNAI2 (also known as SLUG) and TWIST1 can cause Waardenburg syndrome89, 224 

Mowat–Wilson syndrome90 and Saethre–Chotzen syndrome91,92, respectively. 225 

 During cancer progression, selection of clones with specific mutations and 226 

chromosomal aberrations leads to continuous tumour evolution. These genetic 227 

alterations conspire with the EMT regulatory mechanism, resulting in the survival of 228 

the fittest and most resistant cancer clones. RAS activation has been shown to induce 229 

EMT via receptor-mediated upregulation of the EMT-TFs SNAI193 (also known as 230 

SNAIL) and SNAI294 (also known as SLUG). p53 inhibits the oncogenic RAS 231 

circuit95,96. As such, loss of p53 and oncogenic Ras synergize during cancer 232 

progression to stimulate EMT93-98. As explained above, mutations in lineage-specific 233 

transcription factors can also promote EMP. Additionally, loss of other tumour 234 

suppressor genes, for example, IDH199,100, IDH299 and RB1101, has been shown to 235 

promote epithelial plasticity directly or indirectly via the (immune) microenvironment102. 236 

 Cystic fibrosis exemplifies how genetic perturbations can drive EMP through the 237 

microenvironment in adult pathologies. CFTR mutations directly drive TWIST1-238 

induced EMT in the airway epithelium103. At the same time, the lung environment of 239 

patients with cystic fibrosis is characterized by persistent infections104, chronic 240 

inflammation105, hypoxia106 and high levels of TGF-β107, which can then further 241 

enhance epithelial plasticity103. Similarly, tumour mutations can both promote or inhibit 242 

immune infiltration108. In turn, changes in the cellular composition of the tumour micro-243 

environment affects its permissiveness for EMP102. 244 

 Additionally, copy-number variations can influence EMP; copy number gain of the 245 

EMT-TF gene ZEB1 has been shown to promote EMP in prostate cancer109. Notably, 246 

loss of function of the protocadherin-encoding FAT1, one of the most frequently 247 

mutated genes across human cancers, stabilizes a hybrid EMT state that contributes 248 

to metastasis22. Whereas the previous section discussed how EMP can be the result 249 

of cells revisiting previously traversed paths in their developmental landscape (Fig. 250 

2b), this section highlights how mutations can reshape the EMP landscape by 251 

facilitating access to unoptimized attractor states in Waddington’s landscape (Fig. 2c).  252 

 253 
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Cellular history shapes the EMP landscape through EMT memory  254 

EMT processes are governed by hysteretic control mechanisms110 (Fig. 3). The term 255 

hysteresis describes phenomena in which the state of a system depends on its history 256 

and was first coined to describe the dependence of the magnetic moment on past 257 

changes in the magnetic field111. Similarly, how a cell reacts to EMT-inducing or MET-258 

inducing stimuli not only depends on the current stimuli but also on the history of that 259 

cell, for example, previous stimuli acting on that cell, past differentiation and 260 

dedifferentiation trajectories and the time of residence within the current cell state. For 261 

that reason, hysteresis is sometimes referred to as ‘cellular memory’. As with any 262 

traveller, cells ‘wandering’ through the EMP landscape are guided by their memories. 263 

 264 

Fig. 3| EMT is controlled by hysteretic control mechanisms. 265 
a| In the absence of hysteresis, the stimuli evoke a linear epithelial-mesenchymal transition (EMT) 266 
response and transitions between the epithelial and mesenchymal states are gradual. b) In the 267 
presence of hysteretic control mechanisms, EMT is characterized by non-linearity, and bistability or 268 
multi-stability. EMT and mesenchymal-epithelial transition (MET) trajectories do not overlap, but ,rather, 269 
form a hysteretic loop. c| If self-conserving feedback mechanisms are sufficiently strong, the 270 
mesenchymal phenotype can be maintained indefinitely, even after complete withdrawal for the stimuli 271 
which initially evoked it. d| As EMT and MET form distinct trajectories, it is possible for hybrid EMT 272 
states to be present in one direction, but not the other. e| Multi-stability in hysteretic systems is the 273 
result of self-sustaining signal-transduction circuits. In the simplest form, these are positive feedback 274 
loops (left) or double-negative feedback loops (right). f| Additionally, the acquisition of stable epigenetic 275 
marks, through DNA methylation, histone modification, or the incorporation of histone variants, 276 
contributes to EMT memory. These epigenetic changes can lag behind transcriptional and/or 277 
morphological changes.  This delayed response on one level compared with another results in a two-278 
tier mechanism in which an acute response, for example, transcriptional and/or morphological, is 279 
followed by a slower but more persistent memory response, for example, chromatin remodeling. As a 280 
result, the prolonged presence of an EMT stimulus after complete EMT may further stabilize the 281 
mesenchymal state and result in irreversible, or less reversible, EMT compared with shorter exposure.  282 
  283 



10 
 

 Hysteresis underlies non-linear responses and bistability (or multi-stability) 284 

perceived across epithelial-mesenchymal axes (Fig. 3a-d). Put simply, the stimulus 285 

required to transition from the epithelial to the mesenchymal state is greater than the 286 

stimulus necessary to maintain the mesenchymal state once reached. Bistability 287 

depends on self-conserving signal-transduction circuits112,113. In their simplest form, 288 

these circuits can be positive feedback loops or double-negative feedback loops (Fig. 289 

3e). If these feedback mechanisms are sufficiently strong, the cells may maintain their 290 

mesenchymal state indefinitely even upon complete withdrawal of the stimulus that 291 

initially evoked it112 . Besides such self-reinforcing feedback loops, the acquisition of 292 

stable epigenetic marks, through DNA methylation or histone modification, contributes 293 

to EMT memory114 (Fig. 3f). 294 

 Hysteresis implies that EMT and MET are asymmetric processes following distinct 295 

trajectories. Asymmetry between forward and backward processes is a key hallmark 296 

of hysteretic systems. This can be easily seen by plotting a dependent, EMT-marking 297 

variable as a function of an independent, EMT-inducing variable. On such a plot, 298 

forward and backward trajectories will not overlap, but rather form a so-called 299 

hysteresis loop (Fig. 3a-d). Time-course single-cell profiling supports this distinction 300 

between EMT and MET processes9,19,115. Indeed, studies show that mesenchymal 301 

cells can bypass some of the partial states transited during EMT and, instead, pass 302 

through a distinct MET state. Additionally, one study showed that of the three epithelial 303 

cell states present in untreated HCC827 lung cancer cells, only two were restored 304 

following consecutive EMT and MET19. Additionally, memory of EMT–MET cycles 305 

seems to have functional consequences, aiding metastasis115,116 or augmenting 306 

plasticity and stem cell-like properties117. 307 

 308 

Noise-driven stochastic state transitions facilitate plasticity 309 

Numerous cell lines display several EMP states in vitro12,118-124. Interestingly, sorted 310 

subpopulations and single cells often regenerate the phenotypic equilibrium of the 311 

parental culture12,120-123, albeit with a clone-dependent phenotypic distribution119,121. 312 

How can such phenotypic heterogeneity spontaneously arise in the absence of genetic 313 

or extrinsic perturbation? Several mechanisms can explain the observed phenotypic 314 

equilibria in in vitro isogenic cultures. Paracrine feedback loops may continuously 315 

balance the fraction of cells within each state125. Additionally, pattern formation 316 

mechanisms, for example, GREM1/BMP2-mediated reaction-diffusion126 or juxtracrine 317 
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Notch–Delta–Jagged signalling127, can restore phenotypic heterogeneity. However, 318 

even in the absence of active mechanisms, phenotypic heterogeneity can be 319 

maintained. Several studies point to a role for noise in driving stochastic cell state 320 

transitions122,128-131 (Fig. 4). If transition rates between phenotypic states are constant, 321 

the same phenotypic equilibrium will be restored regardless of the initial distribution as 322 

long as there is at least one direct or indirect path between any two states122 (Fig. 4c). 323 

 324 

Fig. 4| Noise-driven stochastic state transitions enable spontaneous emergence of 325 
phenotypic heterogeneity 326 
a| Cellular noise can be investigated using a dual-reporter system130. In this approach, two equivalent, 327 
independent reporter genes are placed in the same cell. In the absence of noise, expression of both 328 
reporters will correlate perfectly within cells and for each reporter, the same amount will be produced 329 
across cells. Extrinsic cellular noise, for example, through fluctuations in concentration, state or 330 
localization of biomolecules, and the random partitioning of biomolecules during cell division, will cause 331 
differences in expression between supposedly identical cells.  Intrinsic cellular ‘noise’, which results 332 
from the inherent stochasticity in biochemical processes, will result in a loss of correlation between the 333 
reporters within cells. Part a adapted with permission from ref. 128, AAAS. b| In the absence of sufficient 334 
noise or external inputs, no cell state transitions take place (upper). Amplified noise facilitates cellular 335 
escape from local minima in the energy landscape, allowing them to roam the landscape of epithelial-336 
mesenchymal plasticity (EMP) through stochastic state transitions (lower). c| If transition rates between 337 
multiple phenotypic states remain constant and if there is at least one direct or indirect path between 338 
any two states, equilibrium will be restored regardless of the phenotype distribution in the starting 339 
population, even in absence of active mechanisms. d| A weak sinusoidal signal is insufficient to reach 340 
the threshold required for activation of a biological process. Adding noise to this signal allows 341 
thresholding through so-called ‘stochastic resonance’132. EMT, epithelial-mesenchymal transition.  342 
  343 
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Stochastic cell state transitions require: 1) a source of noise133, 2) an 344 

amplification of this noise, which usually consists of small and transient fluctuations, 345 

in a manner to significantly affect the phenotype129, and 3) mechanisms to stabilize 346 

the phenotype once reached133. Noise can be both cell-intrinsic or cell-extrinsic 347 

depending on its source130 (Fig. 4a). Intrinsic noise results in differential expression of 348 

equivalent, independent reporters placed in the same cell130, for example, because of 349 

the inherent stochasticity in biochemical processes. By contrast, extrinsic noise 350 

causes differential expression between cells in a population130, which could be the 351 

result of fluctuations in the concentration, localization and general state of 352 

biomolecules. For example, the random partitioning of parent cell components across 353 

daughter cells during cell division is an important source of extrinsic noise that may 354 

drive EMT128,129 or MET134. As such, random partitioning of SNAI1 has been predicted 355 

to contribute to the phenotypic equilibrium perceived in cultured PMC42-LA breast 356 

cancer cells128. In any case, noise of sufficient amplitude will activate the 357 

corresponding signalling cascades, amplifying its signal and causing phenotypic 358 

transition. The resulting phenotype can then be stabilized through hysteretic 359 

mechanisms, as described above. 360 

 Increased noise facilitates spontaneous cell state transitions135,136. Metastable 361 

states can be conceived as local minima in an energy landscape. The depth of each 362 

minimum corresponds to the stability of the cell state. In the absence of noise or other 363 

input, cells cannot vacate their local minimum. Sufficient noise allows cells to 364 

overcome the hill, or energy barrier, between minima135,136 (Fig. 4b). As transitions 365 

from shallow to deep wells are less likely than the reverse, the relative stability of the 366 

different states determines the phenotypic equilibrium136. Additionally, noise may also 367 

facilitate state transitions that result from extrinsic signals. In a phenomenon termed 368 

stochastic resonance, noise can boost a signal that would otherwise be too weak to 369 

reach a change-inducing threshold (Fig. 4d)132. The main role of noise in the EMP 370 

landscape consists not of shaping the energy landscape itself but, rather of 371 

determining the transition rates between states. 372 

 Are noise-driven stochastic state transitions relevant to in vivo plasticity? One may 373 

argue that the influence of such noise decays in irrelevancy next to the more widely 374 

appreciated sources of phenotypic heterogeneity: genetic diversity and the 375 

microenvironment. However, spontaneous EMP in some cancer cell cultures partially 376 

recapitulates the phenotypic plasticity observed in vivo12,137, supporting the relevance 377 
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of stochastic mechanisms. Secondly, noise plays a crucial role in developmental 378 

pattern formation136,138,139 and cell-fate decisions140,141. Boundary formation during 379 

development happens not despite but, rather, due to noise-driven plasticity136,138,139. 380 

Thirdly, whereas noise implies randomness, the amplitude of said noise is strongly 381 

modulated by both evolutionary pressures as well as regulatory mechanisms138,142-145 382 

(Box 1). Only if the amplitude exceeds its optimal range does the resulting plasticity 383 

become disruptive to the organism138. Interestingly, the fast replication characteristic 384 

of cancer cells may increase stochasticity. Similarly, genomic damage increases cell-385 

to-cell variation in gene expression146. Lastly, stochastic cell state transitions provide 386 

advantages in unpredictable environments when compared with responsive cell state 387 

transitions147, for example, if cells do not possess the machinery to sense or respond 388 

to an external stressor or if cell survival requires transition to the resistant state prior 389 

to the environmental change141,147,148. As such, the distinction between stochastic and 390 

responsive transitions may prove essential in understanding the role of EMP in therapy 391 

resistance and immune escape. 392 

 393 

Box 1: the amplitude of cellular noise is regulated by both evolutionary pressures and 394 

regulatory mechanisms 395 

Although noise implies randomness, the amplitude of said noise is strongly modulated by both 396 
evolutionary pressures, as well as by regulatory mechanisms138,142-145. As this may seem paradoxical, 397 
we selected some of the key mechanisms by which cells regulate cellular noise to illustrate this point.  398 

Most genes are transcribed in transcriptional “bursts” — short periods of high transcriptional activity 399 
interleaved with long-lived periods in which no transcription takes place. This transcriptional bursting, 400 
which is thought to be caused by stochastic remodelling (opening and closing) of promoters142, is a 401 
major source of gene expression noise. Bursting kinetics are highly gene-specific149 and can be 402 
described in terms of burst frequency, and burst size (the average number of mRNAs produced during 403 
a single transcriptional burst). Besides transcriptional bursting, translational bursting may further 404 
contribute to gene expression variability. 405 

Cellular noise is controlled through a multitude of mechanisms, of which we selected three general 406 
examples. Firstly, promoter architecture has a major impact on gene expression noise. The presence 407 
of a TATA box, enhancer distance, and enhancer strength are crucial determinants of the bursting 408 
kinetics150. Large, infrequent burst will produce large variability in mRNA levels, whereas small, frequent 409 
bursts of transcription will produce less noise (see the figure, part a). Secondly, gene regulatory network 410 
(GRN) architecture can promote response robustness by decreasing noise in gene expression and 411 
signal integration. For example, incorporation of negative feedback loops in GRNs allows 412 
autoregulation, resulting in decreased noise compared with purely linear cascades151 (see the figure, 413 
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part b). Lastly, spatial compartmentalization enables more precise titration of biological components, 414 
filtering noise152 (see the figure, parts c,d). Phase separation buffers noise153 (see the figure, part c). 415 
Some biomolecules can undergo phase separation, creating membraneless compartments. By 416 
depleting excess biomolecule, one phase guards another from variability. For example, liquid-liquid 417 
phase separation153 as well as cluster formation154 were shown to reduce protein-level noise. Similarly, 418 
in aneuploid cells, protein aggregation was shown to function as a dosage-compensation mechanisms 419 
by depleting excess protein from the cytosol155. For biomolecules produced in one compartment but 420 
functional in another, concentration variability resulting from noisy production can be buffered by rate-421 
limiting transport between those compartments. For example, transcription is occurs in bursts, resulting 422 
in noisy RNA expression within the nucleus. However, a rate-limiting transport step averages the 423 
introduction of RNAs in the cytoplasm over time, resulting in decreased concentration fluctuations144 424 
(see the figure, part d). 425 

 426 

Regulatory mechanisms underlying EMP 427 

Where the previous sections discussed the general forces governing the EMP 428 

landscape, the following part delineates more specifically the molecular mechanisms 429 

that underlie EMP states and EMTs (Fig. 5). 430 

  431 
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 432 

Fig. 5: Several levels of regulation control the epithelial-mesenchymal transition 433 
(EMT) 434 
a| Epithelial-mesenchymal transition (EMT) is orchestrated by EMT-associated transcription factors 435 
(EMT-TFs). The core EMT-TFs include SNAI1/2, TWIST1 and ZEB1/2. b| The complex regulation of 436 
EMT-TFs occurs (in part) by post-translational modifications that affect the stability and degradation, 437 
the transcriptional activity and/or the nuclear translocation and accumulation of EMT-TFs156. c| Non-438 
coding RNAs (ncRNAs) contribute to EMT and mesenchymal-epithelial transition (MET). MicroRNAs 439 
(miRNAs) silence mRNAs; for example, the miR-200 family represses ZEB transcription factors, 440 
whereas the miR-34 family represses SNAI1.  Competitive endogenous RNAs (ceRNAs) can inhibit 441 
miRNA function by sequestering these miRNAs away from their targets157,158. Long non-coding RNAs 442 
(lncRNAs) combine base-pair complementation and RNA folding to enable interaction with both nucleic 443 
acids and proteins. LncRNAs modulate EMT on every level159,160.Non-coding RNAs can travel long 444 
distances in circulation. d| Epithelial splicing regulatory proteins (ESRPs) are key regulators of epithelial 445 
splicing programmes215. As such, they can drive EMT as well as contribute to maintaining the epithelial 446 
cell state. Conversely, loss of ESRPs can drive an EMT. EMT-TFs inhibit and are inhibited by ESRPs. 447 
Epigenetic remodelling drives alternative splicing by slowing RNA polymerase II (RNA Pol II), or by 448 
specific histone modifications that recruit splicing factors,  promoting the epithelial or mesenchymal 449 
phenotype. Consequently, crosstalk between the epigenome and the splicing machinery further 450 
modulates EMT216,217.  e| In epithelial cells, epithelial genes show an open, accessible chromatin 451 
structure while mesenchymal genes are packed in closed, inaccessible chromatin. Following EMT, the 452 
opposite is true. Regardless of epithelial or mesenchymal state, H3K27ac and H3K4me3 marks are 453 
associated with open chromatin while H3K27me3 and H3K9me3 marks are associated with closed 454 
chromatin. Chromatin containing both the H3K27me3 and H3K4me3 marks is in a poised state and can 455 
be quickly activated or repressed on stimulation. f| In epithelial cells, there is hypomethylation of 456 
epithelial promotors and hypermethylation of mesenchymal promotors. Following EMT, the opposite is 457 
true. g| EMT is linked to an increase in ribosome biogenesis and protein synthesis. Additionally, the 458 
actin-rich protrusion that aid migration in mesenchymal cells were shown to be hot spots for ribosomal 459 
protein (RP)-mRNA translation, increasing overall protein synthesis. Alternative translational events, 460 
such as internal ribosome entry site (IRES)-dependent translation and N6-methyladenosine (m6A) 461 
methylation of Snail mRNA, result in increased EMT-TF translation. h| Metabolic rewiring during EMT 462 
re-routes resources from proliferation to movement. EMT is associated with increased glycolysis and 463 
lipogenesis, but also mitochondrial dysfunction. Metabolic rewiring causes changes in bioactive 464 
metabolites which activate downstream signalling. Additionally, changes in lipid metabolism impact the 465 
cell membrane composition and, thus, its fluidity. Within a single tumour, cells may display diverse EMP 466 
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states whose functional characteristics are underpinned by distinct metabolic pathways. OxPhos, 467 
oxidative phosphorylation. 468 

 469 

EMT-TFs: master regulators of EMP 470 

EMT is regulated by EMT-TFs. Traditionally, five canonical EMT-TFs are recognized: 471 

ZEB1, ZEB2, SNAI1, SNAI2 and TWIST12-4 (Fig. 5a). Initially identified as key 472 

regulators during embryonic development161-166, later studies showed their 473 

involvement in cancer progression7,167-172 and fibrosis173-176. These EMT-TFs are key 474 

transcriptional regulators of EMT, acting as repressors of epithelial genes such as 475 

CDH1 (which encodes Cadherin-1, also known as epithelial cadherin or E-cadherin) 476 

by binding the E-box motifs in their promoters170,172,177,178. Additionally, EMT-TFs can 477 

activate transcription of mesenchymal markers by forming complexes containing other 478 

DNA-binding units179. Besides these five core EMT-TFs, many additional EMT-TFs 479 

have been recognized including FOXC2180, Homeobox protein goosecoid (GSC)181, 480 

KLF8182,  PRRX183,184, RUNX2185, SIX1186, TCF3 (also known as E47 or ITF1)187 and 481 

TCF4 (also known as E2-2 or ITF2)188.  482 

 Although forced expression of a single canonical EMT-TF is sufficient to induce 483 

a shift to a mesenchymal phenotype, EMT-TFs are not always redundant189-191. They 484 

show distinct spatiotemporal expression profiles during development and 485 

homeostasis189-191. Additionally, different EMT-TFs interact with distinct components 486 

of the epigenetic, transcriptional, and post-transcriptional machineries189,192. 487 

Moreover, complex  regulation of the SNAI, TWIST and ZEB families of EMT-TFs by 488 

post-translational modifications, such as acetylation, glycosylation, methylation, 489 

phosphorylation, sumoylation and ubiquitination,  directly affects the accumulation, 490 

degradation, stability, nuclear translocation or  transcriptional activity of these 491 

transcription factors156 (Fig. 5b). Furthermore, EMT-TFs have several pleiotropic 492 

functions that are, at least seemingly, unrelated to EMT190 (discussed further in ‘EMT-493 

TFs beyond epithelial plasticity’).  494 

Regulatory RNAs contribute to EMP regulation 495 

The many instigators of EMT and MET processes seem to converge on a doublet of 496 

EMT-TF–microRNA (miRNA) double-negative feedback loops3, which underlies the 497 

bistability of EMT (Fig. 6). These feedback loops concern the reciprocal inhibition 498 

between ZEB-family transcription factors and miR-200-family miRNAs193,194, and the 499 
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mutual inhibitory loop between SNAI1 and miR-34195,196. Epithelial states display high 500 

miR-200 and miR-34 expression, whereas mesenchymal states show increased EMT-501 

TF expression. Several competing models, for example, the ternary chimaera switch 502 

(TCS) model197 (Fig. 6a) and the cascading bistable switches (CBS) model198,199 (Fig. 503 

6b), have been proposed to elucidate how this core regulatory hub governs phenotypic 504 

transitions. The key difference between these models is that self-activation of ZEB1 is 505 

included in the TCS but not the CBS model. Both models predict a tri-stable system 506 

consisting of an epithelial state, a mesenchymal state, and a hybrid E/M state (Fig. 6c-507 

d). The TCS model postulates that such tri-stability is created solely by the ZEB1-miR-508 

200 loop, whereas the SNAI1-miR-34 loop acts as a monostable noise-buffering 509 

integrator197. By contrast, the CBS model proposes that both loops work as bistable 510 

switches. In that case, the SNAI1-miR-34 loop guides the transition from the epithelial 511 

state to the hybrid E/M state. The ZEB1-miR-200 switch then causes the transition to 512 

the final mesenchymal state198. 513 

 Upregulation of EMT markers can precede miR-200 downregulation157,198. This 514 

supposed anachronism can be explained through competitive endogenous RNA 515 

(ceRNA) action. ceRNAs compete for miRNAs, sequestering miRNAs from their 516 

targets158. As such, ceRNAs allow fast suppression of miRNA function. Indeed, 517 

integration of the 120 h miRNA half-life in the CBS model results in a bistable system 518 

consisting of an epithelial state and a hybrid E/M state157,200. Only upon integration of 519 

ceRNAs does transition towards the mesenchymal state become possible157. 520 

Integration of ceRNAs into EMP regulatory networks thus facilitates and accelerates 521 

state switching. The stoichiometry between competing miRNA response elements 522 

(MREs) and miRNAs is a critical parameter controlling both the stage of EMT and the 523 

reversibility of the EMT process. Indeed, the induction of a single highly expressed 524 

mRNA molecule, for example, FN1, has been shown to be sufficient to regulate 525 

EMT157. This dependence on stoichiometry also implies that the low miRNA 526 

environment found in some cancers facilitates ceRNA regulation201,202. 527 

 Long non-coding RNAs (lncRNAs) are a third class of regulatory RNAs that govern 528 

EMT. Combining base-pair complementation and RNA folding, lncRNAs can interact 529 

with both nucleic acids and proteins to modulate EMT on every level. The catalogue 530 

of lncRNAs that modulate EMT processes, and their varied mechanisms of action, 531 

have recently been reviewed elsewhere159,160. 532 
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 The effect of regulatory RNAs is not limited to the cell in which they are transcribed. 533 

Rather, regulatory RNAs may be captured from the environment as the cargo of 534 

exosomal vesicles203,204. For example, exosomal miRNAs from hypoxic stromal cells 535 

were shown to promote EMT and metastasis in lung cancer205. Similarly, exosomal 536 

lncRNAs facilitate or supress EMT in pancreatic206,207, gastric208, lung209 and 537 

bladder210 cancer. Importantly, exosomes may travel long distances in 538 

circulation203,204. As a result, regulatory RNA action is not constrained to the 539 

microenvironment of the cells expressing the RNAs. 540 

 The emerging role of regulatory RNAs (Fig. 5c) demands caution when studying 541 

EMT through gene-perturbation approaches. Genes whose function is disrupted at the 542 

protein level may maintain regulatory control through transcript-level MREs. Inversely, 543 

overexpressing protein-coding sequences disregards trans-regulatory functions of 544 

introns and 5’ or 3’ untranslated regions (UTRs). A better understanding of the 545 

interplay between regulatory RNAs and EMT holds diagnostic and therapeutic 546 

potential. lncRNAs often show very specific tissue- or condition-specific expression. 547 

As such, they may form promising therapeutic targets for anti-EMT therapies. 548 

Additionally, as exosomal non-coding RNAs can be readily assessed in liquid biopsies, 549 

they hold promise as non-invasive biomarkers for disease progression. 550 

 551 

DNA methylation and chromatin remodelling drive transitions and stabilize EMP 552 

states 553 

The modification of both DNA and its packing units, for example, by DNA methylation, 554 

histone post-translational modifications (PTMs) or the incorporation of histone 555 

variants, is a crucial mechanism underlying EMT processes192. Some of these 556 

epigenetic marks are readily reversible, as is required for plasticity. Other marks are 557 

relatively stable211, and thus contribute to hysteresis, or irreversible, such as 558 

epigenetic marks obtained during differentiation, which form the basis of cell identity. 559 

 Focal hypermethylation of the CDH1 promoter has long been recognized to be a 560 

hallmark of EMT212-214. Since then, more general trends have emerged. In general, 561 

EMT is associated with hypermethylation in the promoters of epithelial genes, and 562 

hypomethylation of mesenchymal genes and EMT-TFs (Fig. 5f). Additionally, key 563 

regulators of EMT, such as the EMT-TFs215-217 or the miR-200 family218-221, regulate 564 

and are regulated by DNA methylation. 565 
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 At the chromatin level, EMT is associated with a switch from more to less 566 

accessible chromatin in epithelial genes, and oppositely so for mesenchymal genes 567 

(Fig. 5e-f). Chromatin accessibility is strongly influenced by post-translational 568 

modifications on the histone H3 tail. Active chromatin is then mainly associated with 569 

H3K acetylation (H3Kac) and H3 trimethylated at K4 (H3K4me3)218, whereas 570 

repressed chromatin bears H3K27me3, H3K9me3 and DNA methylation192,218,221. 571 

Chromatin bearing both H3K27me3 and H3K4me3 is in a poised state and can be 572 

rapidly repressed or activated upon stimulation192. Additionally, it was recently shown 573 

that the histone mark H3K36me2 underlies the mesenchymal state across a variety of 574 

contexts, whereas its erasure determines the epithelial state222. Apart from H3 575 

modifications, acetylation of H2BK5 has been demonstrated to protect the epithelial 576 

phenotype in trophoblast stem cells as well as breast cancer cell lines223. 577 

Importantly, epigenetic reprogramming may also contribute to the execution of EMT 578 

by driving alternative pre-mRNA splicing (Fig. 5d). It is known that, expression 579 

changes in key splicing factors such as ESRP1/2 during EMT result in alternative 580 

splicing of different genes involved in functional aspects of EMT: polarity, migration 581 

and invasion and cytoskeleton organization224. Recently, however, it was shown that 582 

dynamic epigenetic changes in H3K27ac/me3 levels, as well as recruitment of HDAC1 583 

by ZNF827 to coding genomic regions, are at the basis of regulating alternative 584 

splicing during epithelial plasticity changes. Additionally, these chromatin-induced 585 

splicing changes are sufficient to initiate EMT225,226.  586 

 The incorporation of variant histones provides another mechanism through which 587 

epigenetic marks direct EMP227,228. EMT seems to cause a general decrease in 588 

canonical histones227. Additionally, specific histone variants seem to promote227 or 589 

supress EMT228. Important to understand is that replacing a histone erases the post-590 

translational modifications carried by that histone. As such, histone replacement 591 

contributes to the chromatin responsiveness essential for EMP. 592 

 Differences between chromatin landscapes of distinct epithelial cell types can 593 

explain how cell identity governs EMP modality. Indeed, in squamous cell carcinoma 594 

it was shown that the chromatin landscape of the cancer cell-of-origin strongly 595 

influences EMP propensity during further tumour development66. Similarly, 596 

reactivation of developmental epigenomic programmes was shown to underlie EMP 597 

and metastasis in prostate cancer61. These examples give weight to the long-held 598 

perspective that EMP is, in essence, the reactivation of developmental programmes.599 
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 Reversible, but persisting, epigenetic marks provide one mechanism for the 600 

establishment of EMT memory114,229. In cancer cell lines treated with therapeutic 601 

agents, DNA methylation was shown to be a causal factor underlying EMT-mediated 602 

therapy resistance217,230. Interestingly, such cell lines maintained their EMP state in 603 

the absence of therapeutic agents and only reverted to an epithelial state in the 604 

presence of demethylating agents. Such examples show that that DNA methylation 605 

plays an important role in the stabilization of certain EMP states. Additionally, an EMP 606 

state, once reached, may be stabilized by prolonged exposure to the stimuli that 607 

initially evoked it. Indeed, several studies report how a prolonged time of residence 608 

within an EMP state either slows or completely blocks the reversal to an epithelial 609 

phenotype upon withdrawal of stimuli19,114,116,231,232. Such phenomena can be 610 

explained by a two-tier mechanism in which an acute transcriptional response is 611 

followed by slower but more persistent epigenetic reprogramming (Fig. 3f). Indeed, 612 

during EMT, the generation of epigenetic marks can lag behind transcriptional 613 

changes, both in the case of both DNA methylation229 and histone modification232. 614 

Progressive generation of these epigenetic marks may then cause a gradual silencing 615 

of alternative states. Alternatively, epigenetic marks can regulate the thresholds for 616 

transcription factors to alter expression of their downstream targets231. In each case, 617 

epigenetic marks provide an EMT memory that stabilizes the current state114,229,231,232.  618 

 619 

Ribosomal and translational regulation of EMP 620 

Several pathologies link ribosomal functioning to type 1 and type 2 EMP233. 621 

Neurocristopathies, that is, disorders of neural crest delamination during 622 

embryogenesis, can result from mutations in canonical EMT-TFs89-92. However, other 623 

neurocristopathies result from ribosomal defects. For example, Diamond–Blackfan 624 

anaemia is linked to mutations in at least 14 ribosomal proteins (RPs)234-236, and 625 

Treacher–Collins syndrome is associated with defects in RNA polymerase I (RNA Pol 626 

I)237, or TCOF1238, which are both involved in rRNA transcription, as well as defects in 627 

RNA Pol III237, which is required for 5S rRNA and tRNA transcription. Similarly, several 628 

pathologies link type 2 EMT with translation. Sera of patients with systemic 629 

scleroderma, a disease characterized by fibrosis of the lungs and skin, frequently 630 

contain autoantibodies against RNA Pol III239 or fibrillarin240,241, a factor involved in the 631 

pre-processing of rRNA242. Moreover, other fibrosis-manifesting pathologies, such as 632 
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dyskeratosis congenita243, childhood cirrhosis244,245 and atrial fibrillation246, are linked 633 

to defects in ribosome formation. 634 

 Recently, elevated ribosome biogenesis was identified as a general feature during 635 

both in vivo and in vitro EMT247,248. This association is maintained across distinct EMT 636 

triggers and species. Intriguingly, although ribosomal biogenesis is generally cell 637 

cycle-dependent (being linked with cell proliferation and growth), EMT-associated 638 

ribosomal biogenesis coincided with a G1/S arrest. Enhanced rRNA synthesis during 639 

EMT is linked with chromatin remodelling and recruitment of RNA Pol I and SNAI1 to 640 

rDNA operons247. Interestingly, incorporation of external eukaryotic or prokaryotic 641 

ribosomes in somatic cells causes an upregulation of EMT-TFs249,250. Furthermore, 642 

mRNAs of RPs can show strong enrichment at the migrating edge of mesenchymal-643 

like cells251-253. EMT causes an upregulation of the RNA binding protein LARP6, which 644 

recruits RP-mRNAs specifically to cellular protrusions, transforming these protrusions 645 

into hotspots for RP-mRNA translation and, consequently, increasing overall protein 646 

synthesis254. 647 

 Additionally, several post-transcriptional mechanisms regulate EMP at a 648 

translational level during cancer progression233. N6-methyladenosine (m6A) 649 

methylation of SNAI1 mRNA by METTL3 enhances cap-independent translation of 650 

SNAI1253,255. Moreover, the ribosome-binding protein CELF1 attaches to the 3’ 651 

untranslated region of the SNAI1 mRNA, further enhancing translation256. 652 

Furthermore, YB-1, which is aberrantly expressed across cancers, promotes internal 653 

ribosome entry site (IRES)-mediated translation initiation of ZEB2, SNAI1 and 654 

TWIST257. Additionally, mTOR signalling, a regulator of cap-dependent translation, 655 

inactivates 4E-BP1, an inhibitor of the elongation factor elF4E, resulting in elevated 656 

expression of SNAI1, TWIST and vimentin in colorectal cancer cells258,259. Lastly, 657 

targeting translation, for example, with RNA Pol I inhibitors247 or by blocking ribosome 658 

export from the nucleus260, has been shown to inhibit EMT. Together these results 659 

underline the regulation of EMP at the translational level, and the possibility for 660 

therapeutic intervention at this level (Fig. 5g). 661 

 662 

Metabolic rewiring during EMP underlies functional changes 663 

EMP demands thorough rewiring of cellular metabolic networks261-265 (Fig. 5h). 664 

Importantly, although we distil general principles emerging across studies, the highly 665 
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complex nature of metabolic networks cautions against extrapolation from one context 666 

to another. 667 

 Dysregulated lipid metabolism modulates EMP261-264. Cancers display 668 

increased lipogenesis266-268, for example, through upregulation of fatty acid synthase 669 

(FAS)266-268. In turn, upregulation or inhibition of FAS promotes or supresses EMT, 670 

respectively269-276. Additionally, the lipid composition of the cell membrane dictates its 671 

fluidity. Membrane fluidity in turn determines cell motility277-281. As such, 672 

phosphatidylcholine282 and sphingosine-1-phosphate283-291, which liquify the 673 

membrane292,293, promote EMT. Conversely, ceramides278,288,294 and 674 

cholesterol280,281,295, which rigidify the membrane296,297, negatively affect EMT. 675 

Following this trend, fatty acids in mesenchymal-like cells are on average shorter282, 676 

and more unsaturated282,298. Lastly, aberrant synthesis of lipid signalling molecules 677 

can activate downstream signalling cascades; for example, the PPAR transcription 678 

factor family, activated by fatty acid ligands, inhibits EMT both in cancer cells299-302 679 

and in fibrosis303-307. Furthermore, eicosanoids regulate EMP; whereas prostaglandin 680 

E2 promotes EMT308-312, lipoxin A4 inhibits type 1313, type 2314-316 and type 3317,318 681 

EMT. 682 

 In cancer, the shift from oxidative phosphorylation (OxPhos) to aerobic 683 

glycolysis319 induces EMT through various mechanisms261-264. Firstly, increased 684 

glycolytic flux requires upregulation of key glycolytic enzymes and glucose 685 

transporters, both of which can induce EMT320-324. Importantly, metabolic enzymes can 686 

also drive EMT through non-metabolic means; for example, pyruvate kinase M2 drives 687 

EMT-associated gene transcription after translocation to the nucleus where it interacts 688 

with various transcription factors320,321. Secondly, cancers often display mitochondrial 689 

dysfunction, impairing OxPhos and further enhancing EMT325-328. Thirdly, secretion of 690 

acidic, glycolytic products, such as lactic acid results in acidification of the 691 

microenvironment, further promoting EMT329-333. In this manner, EMT in cancer once 692 

again echoes early development: in the neural crest334 and the presomatic 693 

mesoderm335,336, glycolysis and OxPhos are associated with EMT and MET, 694 

respectively337. 695 

 The parallels between cancer-associated and EMP-associated metabolic rewiring 696 

described above — that is, increased glycolysis and lipogenesis, and reduced OxPhos 697 

— suggest that cancer cell metabolism favours EMP. Even so, different EMP states 698 

display distinct metabolic activity338-340. For example, catalytic activity of 699 
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phosphoglycerate dehydrogenase (PHGDH) supports cancer cell proliferation in triple-700 

negative breast cancer. However, loss of PHGDH re-routes glycolytic intermediates 701 

towards the hexosamine-sialic acid pathway, resulting in sialylation of αvβ3 integrin, 702 

which drives EMT and metastasis338. Highly migratory, mesenchymal-like breast 703 

cancer cells showed increased glycolysis compared with slower, more epithelial-like 704 

cells with increased OxPhos339. Similarly, whereas enhanced nucleotide synthesis is 705 

crucial for cancer cell proliferation, pyrimidine catabolism seems to support the 706 

mesenchymal state340. As cells undergoing EMT redeem proliferative capacity for 707 

migratory ability, the associated metabolic rewiring may be understood as the re-708 

routing of resources from growth to motility. 709 

The interplay between EMP and metabolism provides therapeutic 710 

opportunities. As distinct EMP states show distinct nutrient dependencies, depletion 711 

of certain nutrients might enable targeting of mesenchymal-like cells. Alternatively, 712 

pharmacological disruption of key nodes in the metabolic network may supress EMP 713 

and, thus, limit tumour progression262,264,341.  714 

 715 

Phenotypic stability factors stabilize hybrid EMT states 716 

Whereas complete EMT is a rare event in cancer, partial EMT is much more 717 

prevalent4,342. The resulting hybrid E/M state possesses properties distinct from cells 718 

at either end of the EMT spectrum. First, hybrid states show enhanced stemness, as 719 

has been thoroughly reviewed343,344. In cancer, hybrid E/M cells are enriched in 720 

circulating tumour cells (CTCs)345,346 and display enhanced metastatic 721 

potential18,22,23,342,347. Additionally, CTCs must weather a variety of environments 722 

before seeding at secondary tumour sites. During this journey, the hybrid state may 723 

provide a survival advantage through its intrinsic adaptability348 or through the 724 

formation of CTC clusters50,349,350. 725 
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 726 

Fig. 6: Phenotypic stability factors interact with the core regulatory EMT network to 727 
stabilize the hybrid EMT state 728 
Regulators of epithelial–mesenchymal transition (EMT) and mesenchymal–epithelial transition (MET) 729 
processes converge on a core regulatory circuit consisting of the ZEB–miR-200 and the SNAI1–miR-730 
34 double-negative feedback loops. Epithelial states (E) display high miR-200 and miR-34 expression, 731 
whereas mesenchymal states (M) show increased EMT-associated transcription factor (EMT-TF) 732 
expression. Phenotypic stability factors (PSFs) act as molecular brakes by impeding complete transition 733 
to a mesenchymal state and stabilizing hybrid (H) epithelial and mesenchymal states. a, b| The ternary 734 
chimaera switch (TCS) model198, which includes self-activation of ZEB1 (panel a), and the cascading 735 
bistable switches (CBS) model197, which does not (panel b). Factors that promote the epithelial or 736 
mesenchymal phenotype are marked in green or red, respectively. Differences between the models are 737 
marked in blue. Both models predict a tri-stable system consisting of an epithelial, mesenchymal, and 738 
hybrid EMT state. Part a adapted with permission from ref. 184, PNAS. Part b adapted with permission 739 
from ref. 185, AAAS. c, d| Bifurcation diagrams to plot cell state transitions in function of an EMT-740 
inducing signal. Importantly, these bifurcation diagrams are the result of deterministic models, not 741 
incorporating stochastic events. c| Bifurcation diagram of the CBS model198. Black lines display stable 742 
states, red lines represent unstable states. Dotted lines with arrows represent transitions between 743 
states. The diagram shows hysteretic features as there is an asymmetry between transitions during 744 
increasing versus decreasing TGF-β. In the CBS model, the mesenchymal state, once reached, may 745 
be maintained indefinitely (as is shown here) depending on the strength of the endogenous TGF-β 746 
production. Part c adapted with permission from ref. 185, AAAS.  d| Bifurcation diagrams and mean 747 
residence times for the TCS model in the absence and presence of a phenotypic stability factor (PSF)351 748 
(panel d): incorporation of a PSF in increases the range of parameters in which the hybrid EMT state 749 
exists. Additionally, in the presence of a PSF, a range of parameters exists which allows for the 750 
presence of a monostable, hybrid EMT population. Lastly, using stochastic models to simulate cell state 751 
transitions, PSFs increase the time that cells spend, on average, in the hybrid state. We believe the 752 
networks and diagrams presented are of value as they illustrate the general mechanisms of the PSFs. 753 
Part d adapted with permission from ref. 351, IOP. e| Simplified circuit focussing on the miR-200-ZEB 754 
inhibitory loop with incorporation of common network motifs which can stabilize the hybrid EMT 755 
phenotype352 (in grey). The dotted feedback loop ending in a circle represents that these factors may 756 
display autoregulatory behaviour, either self-activating or self-inhibiting behaviour. These network 757 
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motifs can be used to identify additional PSFs. Notably, factors which form a double-negative feedback 758 
loop with MiR-200 instead of ZEB1 do not stabilize the hybrid EMT phenotype. Similarly, whereas 759 
factors inhibiting both ZEB1 and miR-200 promote a hybrid phenotype, factors activating both ZEB1 760 
and miR-200 are unable to do so. Part e is adapted from ref. 343, CC BY 4.0. 761 

 762 

Several mediators, termed phenotypic stability factors (PSFs) have been 763 

shown to stabilize hybrid E/M states (Fig. 6d-e). These PSFs can be thought of as 764 

molecular brakes, delaying the progression from a hybrid E/M state to a fully 765 

mesenchymal state. Examples include the OVOL transcription factor family352,353, 766 

NUMB354, NUMBL354, NFATC1355, NRF2356,357 (also known as NFE2L2), GRHL2352,358, 767 

the p63 protein isoform ΔNP63α222,359, miR-145/OCT4352 and the classical EMT-TF 768 

SNAI2360. PSFs generally modulate the EMP landscape in three major ways (Fig. 6d). 769 

First, the presence of each PSF individually has been shown to increase the range of 770 

parameters in which hybrid E/M states exist. Second, considering solely the core 771 

regulatory network, populations of hybrid cells will always co-exist with fully epithelial 772 

or mesenchymal states. Inclusion of several PSFs independently in the EMP-773 

governing regulatory network allows for the presence of monostable hybrid 774 

populations in certain conditions. Last, in environments enabling coexisting 775 

populations of hybrid states with epithelial and/or mesenchymal states, several 776 

individual PSFs have been shown to increase the time that individual cells spend, on 777 

average, in the hybrid state351. Common network motifs to identify additional PSFs 778 

were proposed352 (Fig. 6e). 779 

 780 

 Targeting factors that stabilize hybrid E/M states could dissolve CTC clusters and 781 

reduce stemness and plasticity of CTCs, consequently preventing metastatic 782 

outgrowth. Knockdown of a single of the above-mentioned PSF is sufficient to cause 783 

a shift towards full EMT. For example, independent knockdown of GRHL2352, 784 

OVOL2352, NUMB354, NUMBL354, NFATC1355, or NRF2357 in H1975 non-small cell lung 785 

cancer cells caused a shift from a hybrid E/M state to a mesenchymal state. As such, 786 

the non-redundant character of these factors may prove them good candidates for 787 

therapeutic strategies seeking to disrupt the partial EMT phenotype and prevent 788 

metastasis. 789 

 790 
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EMT-TFs beyond epithelial plasticity 791 

The role of the so-called EMT-TFs is not restricted to epithelial cells. These 792 

transcription factors are abundantly expressed, and play essential roles in, several 793 

other lineages including neurons361-363, myocytes364,365, adipocytes366, haematopoietic 794 

cells367-369 and melanocytes370,371. Strikingly, the functions of downstream targets 795 

identified in these lineages are largely overlapping with those observed during 796 

classical EMT; genes involved in cell adhesion, migration, chemotaxis and growth 797 

factor receptors. An additional parallel in these lineages is that aberrant upregulation 798 

of EMT-TFs is sufficient to drive oncogenic transformation, and is associated with 799 

increased stem cell properties and resistance to therapy275,372-375.  800 

Whereas EMT-TFs work in concert during classical EMT, loss or gain of 801 

different EMT-TFs in other lineages can result in different, sometimes opposing 802 

phenotypes. As such, EMT-TFs demonstrate overlapping but distinct functions 803 

depending on the intracellular and microenvironmental context372,376-378. This 804 

pleiotropism presents an opportunity: the plasticity of EMP-displaying cancer cells 805 

could be exploited to force transdifferentiation towards non-malignant, post-mitotic cell 806 

types. Indeed, the induction of adipocyte differentiation in EMP-displaying breast 807 

cancer cells was shown to significantly repress invasion and metastasis in vivo379. This 808 

example highlights how a better understanding of the hierarchy of and coordination 809 

between EMT-TFs may teach us how to manipulate the EMP landscape for 810 

therapeutic purposes. Additionally, this precedent begs the question of how we 811 

distinguish EMP from other types of cellular plasticity. 812 

 813 

Conclusions and future perspectives 814 

In recent years, a surge in the use of single-cell profiling methods has driven new 815 

insights in the EMP field. Such methods have enabled the identification and 816 

characterization of distinct transition states across the EMP spectrum9,11-21. 817 

Additionally, time-course analysis has made clear that EMT and MET are distinct, 818 

asymmetric processes9,19,115. The functional characteristics associated with MET 819 

states, or the ‘EMP memory’ retained after concurrent EMT and MET transitions, may 820 

be vital in understanding and tackling metastasis.  821 

 To tackle the ever-increasing complexity of gene regulatory networks mediating 822 

EMP, some researchers have turned to systems biology approaches. These 823 
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approaches allow large-scale modelling and simulated perturbations of gene 824 

regulatory networks, driving the generation of new hypotheses. Additionally, 825 

mathematical modelling allows the study of phenomena which are difficult to 826 

investigate experimentally, for example, the dynamics of cell state transitions127-827 
129,157,197,198,231, the stabilization of partial EMT states222,352-360, or the effects of noise 828 

on cellular plasticity128,129,134,136,138,139.  829 

 Key questions remain regarding the link between EMP and malignancy. Is a certain 830 

EMP state required for therapy resistance or metastasis? Is it the plasticity itself or the 831 

population-level heterogeneity that confers these EMP-associated characteristics? 832 

Which of the many states or transitions should we target therapeutically? Additionally, 833 

new questions emerge from novel insights. For example, to what extent does cellular 834 

noise drive pathological EMP? And, might this noise be targeted therapeutically? 835 

Importantly, whereas dozens of individual EMP programmes have been analysed in 836 

depth, the search for unifying principles, consistent across systems, continues.  837 
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