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Abstract
In this paper, we explore the feasibility of irony detection in Dutch social media. To 
this end, we investigate both transformer models with embedding representations, 
as well as traditional machine learning classifiers with extensive feature sets. Our 
feature-based methodology implements a variety of information sources includ-
ing lexical, semantic, syntactic, sentiment features, as well as two new data-driven 
features to model common sense. Based on patterns in the syntactic structure of 
tweets, we aim to model the presence of contrasting sentiments, a phenomenon that 
is known to be indicative of verbal irony and sarcasm. Feature selection, as well as 
voting ensemble techniques were implemented to enhance the classification perfor-
mance. The final systems reach F1-scores up to 0.79, which are promising results for 
a task as difficult as irony detection. Besides a quantitative analysis, this paper also 
describes a thorough qualitative analysis of the system output. Although lexical cues 
appear to be very important to express irony, our analysis also revealed the need for 
more advanced modeling of common-sense knowledge to detect more subtle exam-
ples of irony.
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1  Introduction

Although direct, clear and unambiguous language is highly praised in scientific liter-
ature, people are not always straightforward in their day-to-day communication and 
social interactions. People use figurative language for all kinds of creative purposes, 
be it to nuance or emphasize what they are saying, disguise their intentions or for 
sheer fun. By willfully violating Grice’s conversational maxims (Grice, 1975) and 
providing literally wrong or useless information, people indicate that an utterance 
should be interpreted figuratively because there is a different implicit meaning. Figu-
rative language is especially common on social media, where people are at liberty to 
express their thoughts as they like, for instance by using figurative speech. Although 
irony is a well-known and common example of figurative language, recognizing and 
understanding it remains a complex task. Hence it has been a popular research topic 
in the domains of linguistics, psycho-linguistics and, over the past decade, also in 
natural language processing (del Pilar Salas-Zárate et al., 2020).

When people say something ironically, they do not intend to convey the literal 
meaning of an utterance, but rather something else (usually the exact opposite). 
Observe the following example:

Example 1  Aaah, don’t you just love that awesome feeling when you stub your stu-
pid toe against the table :)

The lexical cues at the start of the utterance (“aaah, don’t you just love”) already 
give away that the tweet is intended ironically. However, even without these cues, 
one can still tell that nobody could be genuinely happy about stubbing their toe. 
This is a typical case of verbal irony, where irony as a figure of speech is realized 
in text1. In verbal irony, a person often expresses an exaggerated positive sentiment 
about an unpleasant or painful situation. This negative situation can be considered 
the “target” of the ironic evaluation, hence from now on, we will use the term “irony 
targets” to refer to these situations. Such a contrast between the sentiment of an eval-
uation on the one hand, and the implied or underlying sentiment of the target on the 
other hand, is known to be an important indicator of irony (Riloff et al., 2013).

In some cases, this sentiment contrast is clear in the text because the target is 
described with words that are inherently linked to a clear sentiment (such as “stupid” 
in this case). In many other cases, such explicit sentiment words are not necessarily 
present in the text and the reader needs common-sense knowledge to understand the 
implicit sentiment of the target in order to determine the sentiment contrast and con-
sequently recognize the irony. As humans, we know which situations or events are 
pleasant or not because we likely experienced them ourselves. However, connecting 
this common-sense knowledge to a string of text is not trivial from a computational 
point of view, as language grows and continuously adapts to reflect our society or 

1  Based on previous research (Wilson & Sperber, 2012; Sulis et al., 2016) we consider sarcasm to be a 
specification of verbal irony, where sarcasm has a stronger negative connotation and is intended to ridi-
cule, insult or hurt someone.
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culture and because word connotations may be context-dependent. Combining 
strings into a longer sequence for instance, can alter the meaning of its constituents, 
e.g.: “walking your dog” generally has a positive connotation, while a longer target 
such as “walking your dog in the rain” becomes negative instead.

In the previous paragraphs, we explained how irony is verbalized from an intui-
tive human perspective. But to what extent can automatic systems detect irony in 
Dutch social media texts and which challenges still remain? Related research for 
irony detection almost exclusively focuses on English, but recently, the scope has 
extended to include more languages, such as French, German, Italian (Cignarella 
et al., 2020) and Arabic (Farha et al., 2022). However, it seems that the state of the 
art for low-resource languages such as Dutch still lags behind. Focusing on Dutch 
not only allows us to investigate to what extent methodologies for English can be 
ported to Dutch, but it also helps diversify the pool of researched languages and 
allows for more comparative future research.

To answer our main research question, we conducted an exhaustive set of experi-
ments for Dutch irony detection using transformer-based architectures relying 
on text embeddings (Sect.  4) and SVM classifiers with a wide variety of features 
(Sect. 5). Both architectures are optimized and combined into an ensemble (Sect. 6). 
In addition, we present a novel approach to model implicit sentiment by detect-
ing syntactic structures as irony targets and predicting their prototypical sentiment 
(Sect. 7). Besides a quantitative analysis, this paper also presents a thorough qualita-
tive analysis of the output of the systems (Sect. 8). Through this manual evaluation, 
we gained insights on the performance, strengths and weaknesses of the different 
models. Finally, we summarize our findings, hypothesize about possible improve-
ments to the state-of-the-art methodologies and present our suggestions for future 
research in the conclusion (Section 9).

2 � Related research

As irony is an inherently subjective and complicated use of implicit language, its 
automatic detection is still far from perfect and therefore attracts much research 
attention. Early research into the detection of irony and sarcasm already recognizes 
the presence of lexical cues for irony detection. This was analyzed in detail by Kreuz 
and Caucci (2007), who suggest that lexical cues, usually in the form of interjec-
tions, rhetorical statements and formulaic expressions, could be a valuable tool for 
automatic detection. Although this pattern-based methodology had its merits and 
led to some of the first lexical (bag-of-word) approaches for automatic irony detec-
tion, it was only the first step in developing advanced feature-based classification 
systems. Davidov et  al. (2010) and Tsur et  al. (2010) worked on improving these 
lexical pattern features by considering the frequency and relevance of words (i.e. 
content words versus function words). Beside this, they expanded the feature set 
with syntactic features and trained a KNN (K Nearest Neighbours) model. Further 
additions included sentiment lexicon features and emoticons as affective sentiment 
information (González-Ibánez et  al., 2011; Barbieri et  al., 2014; Bouazizi & Oht-
suki, 2015). Although sentiment polarity information is confirmed to be particularly 
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helpful for irony detection, features referring to emotional dimensions (i.e. “fear”, 
“joy”, “anger”, with the exception of “love”) seem to play only a minor role (Farías 
et al., 2016).

Most of these features focus on identifying irony through the expression of an 
ironic evaluation. However, some researchers also investigated the target of these 
evaluations (i.e. what or who is the evaluation about?). Riloff et al. (2013) started 
modeling irony by searching for sentiment contrasts (i.e. positive against negative 
polarities) between an explicit evaluation, which could be either one out of 26 posi-
tive verb phrases or 20 predicative expressions they proposed as typical evaluations, 
and a described situation with implicit sentiment. Such situations were identified 
as a part of the text containing up to 3-grams that matched pre-specified syntactic 
patterns. This initial rule-based iteration of a sentiment clash was bootstrapped to 
an SVM with uni- and bi-grams. Van Hee et al. (2018) incorporated a broader ver-
sion of the sentiment clash, which covers significantly more patterns and situations, 
into an extensive feature-based classifier. This system for English irony detection 
included not only lexical but also syntactic, sentiment lexicon and semantic (topic) 
features, which were proven useful in related research (e.g. [Liebrecht et al., 2013)].

While (Hee, 2017) was developing advanced feature-based models, Ghosh and 
Veale (2016) started introducing neural networks to the issue of irony detection. In 
their work, Long Short-Term Memory (LSTM) and convolutional neural networks 
(CNN) no longer used engineered features as input for their classifiers, but instead 
leveraged the information from word embeddings. For the irony detection task at 
SemEval 2018, researchers used both feature-based approaches with traditional clas-
sifiers, such as SVMs, Random Forest and Maximum Entropy, as well as neural 
architectures with word and sentence representations (Hee et al., 2018). While both 
methodologies were still in use, the latter (neural representation approaches) gener-
ally attain higher classification scores. The best performing competitors enhanced 
the input to their neural architecture by appending handcrafted features to the vector 
of static word embeddings. The features they employed most notably include senti-
ment and syntactic information (e.g. PoS-tags), as well as sentence embeddings (Wu 
et al., 2018).

With the dawn of Bidirectional Encoder Representations from Transformers 
(BERT) (Devlin et  al., 2018), using multi-headed self-attention (Vaswani et  al., 
2017) neural network architectures could better account for the surrounding con-
text and were further optimized to make the most of embedding representations. 
Pre-trained BERT models that are afterwards fine-tuned traditionally start from 
tokenized text mapped to the model’s vocabulary and, after going through the hid-
den layers, end with a linear layer for text classification. To improve the perfor-
mance of the final system, the embeddings of such pre-trained BERT models are 
often used as the input for other neural networks, similarly as this was done for pre-
viously mentioned static word embeddings. In recent research, transformer embed-
dings have been enhanced as input for neural networks (CNN, LSTM) in a variety of 
ways. While some techniques use a sequential approach and enrich the embeddings 
by first processing them through multiple neural architectures, others stay closer to 
the traditional approach and append information to the embedding vector. By mak-
ing use of embedding vectors (Potamias et  al., 2020) attempt to capture semantic 
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relations and encode contextual information with a CNN before classifying the 
enriched input with an LSTM. An example of the second technique is the study by 
Cignarella et al. (2020), who append syntactical information in the form of Part-of-
Speech (PoS) n-grams to the embedding vectors with the intention to make a neural 
LSTM classifier more aware of syntactical patterns. Both approaches can also be 
combined. Babanejad et al. (2020), for instance, used two trained transformer mod-
els with a dedicated affective feature component to improve the contextual aware-
ness of the basic embeddings while also adding affective sentiment information. Du 
et al. (2022) took this approach one step further by using one CNN to extract seman-
tic features and combining those with contextual information as input for a second 
CNN to create emotional features. Next, all these features were used as the input to a 
bi-directional LSTM.

Combining different architectures and imbuing the system with additional (senti-
ment or syntactic) features has a positive impact on the classification scores. How-
ever, it is not always clear how the modifications improve the final system and lit-
erature describing the limitations of current systems is scarce. With the proposed 
research, we aim to investigate the feasibility of irony detection using both trans-
former models as well as feature-based approaches, and investigate the contributions 
of the various sources of information.

In previous work, we explored irony detection in Dutch social media from a 
quantitative perspective (Maladry et al., 2022). We provided the preliminary results 
for a traditional machine learning classifier combining syntactic, semantic, and lexi-
cal features with rule-based sentiment clash information. Additionally, these results 
were compared to those of the first BERT model fine-tuned on our data set. In this 
paper, we refine the methodologies and explore the benefits and limitations of vary-
ing feature groups and architectures by thoroughly analyzing the systems from both 
a quantitative and qualitative perspective.

3 � Data description

For our experiments, we used the same corpus as in Maladry et al. (2022), which 
was originally gathered by Hee et al. (2016). The data was collected using the Twit-
ter API, searching for tweets that contained irony-related hashtags, such as #sar-
casme, #ironie and #not.2

The corpus consists of 5566 tweets and has a balanced label distribution. The 
non-ironic tweets (2783 instances) were posted by the same users who posted the 
ironic tweets. Although most labeled corpora are exclusively based on the pres-
ence of irony-related hashtags, this entire corpus was manually annotated by sev-
eral annotators. This is relevant because 6% of tweets with an irony hashtag were 
annotated as non-ironic, and would thus receive the wrong label when labeled 
automatically. Out of 2783 non-ironic tweets, 217 (or 4% of the total data set) 

2  The methodology used to gather and annotate this Dutch corpus is exactly the same as for the corpus 
used in Task 3 at SemEval 2018 for irony and sarcasm detection in English (Hee et al., 2018).
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still contained the irony hashtags, while the other 2566 do not contain any irony 
hashtags. As one might expect, the search strategy with irony hashtags has the 
downside that some of the annotated tweets were only clearly ironic because of 
the irony hashtag, like in this example:

Example 2  NL: zo moeilijk is het toch niet? #sarcasme

EN: it’s not that hard is it? #sarcasm

As we aim to develop an irony detection system that does not rely on markers 
like hashtags, all irony hashtags are removed from all tweets for training and eval-
uation. Consequently, some of the ironic tweets could, technically, not be identi-
fied as ironic. For that reason, the annotators were instructed to indicate whether 
they considered the hashtag essential in order to identify a tweet as ironic (which 
was the case in 53% of the ironic tweets). There are a several possible approaches 
when working with such a data set. First, one could choose to ignore this down-
side and train and evaluate on all tweets. Secondly, one could remove all ironic 
tweets that did require the irony hashtags to be labeled correctly, which would 
lead to a corpus size reduction from 2783 ironic tweets to a mere 1308. Thirdly, 
one could train on all ironic tweets but evaluate solely on the ironic tweets that 
did not require the irony hashtag. Given that all of these approaches have their 
disadvantages, we opted for the first approach, keeping as much of the data as 
possible. Nonetheless, it is of paramount importance to take these irony hashtags 
into consideration when manually inspecting the system output. This way, we can 
optimize the amount of usable data and still account for the important downside 
of this search strategy (which does not have any efficient alternatives yet).

Besides differentiating between ironic and non-ironic tweets, the manual anno-
tation allowed us to indicate different types of irony in the corpus. The first type 
of irony is probably the most well-known and most common form: verbal irony 
by clash. As was noted by Riloff et al. (2013), ironic and sarcastic tweets tend to 
contain a contrast between positive and negative sentiments. Usually, this is pre-
sented by an (unexpectedly) positive evaluation of a negative situation or event. 
For this type of verbal irony, the contrast is present in the text itself. The second 
type of irony is situational irony. This type of irony refers to something that hap-
pens in the real world that goes against the expectations. Often, these expecta-
tions are not literally included in the text and require common sense-knowledge. 
In some cases, a text can refer to the weather at the time or any kind of event 
(which may be hard to identify because only a reference is found in the text). The 
last type of irony was generally described as other verbal irony and intended to 
be a safety-net to catch types of irony that the annotator deemed ironic but could 
not fit in one of the two other categories. A tweet like “@someuser Gosh, this 
politician posted something stupid again, I didn’t expect that. #sarcasm” includes 
an ironic contrast that is verbalized in the text but also requires some assumptions 
that require some situational knowledge or common sense.
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Most ironic tweets, 2201 or 79% of the ironic half of the corpus and 40% of 
the total data set, were labeled as ironic by clash. Situational irony is the least 
common type of irony in our data set and contributed only 190 tweets, 7% of the 
ironic tweets and 3% of the total data set. The remaining 392 tweets, 14% of the 
ironic tweets and 7% of the total data set, were tagged as other verbal irony. In 
Figure 1, we present an overview of the label distributions in our data set.

When indicating that a tweet was ironic by clash, the annotators were asked 
to select the “target” of the irony. In the first version of the data set by Hee et al. 
(2016) the targets were only annotated in a shallow form, as strings of text with-
out any restriction in length or syntactic format. As a result, the annotators some-
times indicated the target as minimally as possible with only one or two words. 
At other times they opted for the longest possible interpretation of the target to 
make sure it was fully included. Since one of the goals of this paper is to take a 
first step in the direction of automatic extraction of these targets by using syntac-
tic patterns, we decided to re-annotate all tweets that are ironic by clash to con-
tain the longest and most specific target strings. In the ironic by clash set, 1524 
targets were annotated, out of which 1511 were unique. For a large part (61%) of 
the tweets that were considered ironic by clash, annotators were able to indicate 
one or multiple irony target(s). This comes down to 24% of the entire data set 
containing such a target.

As test set across all experiments, we held out 20% (1113 tweets) of the total 
data. In the experiments with traditional classifiers, the remaining 90% (4453 
tweets) was used as training data. We did not use a held-out development set for our 
traditional classifiers but used 10-fold cross-validation on the training set for optimi-
zation. When fine-tuning our transformer models, however, we did hold out 10% of 
the training data (445 tweets) as development set for optimization.

Fig. 1   Label distribution in percentage relative to the complete data set. Non-ironic labels are presented 
in blue, while ironic labels are shown in green
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In the next section, we discuss our methodology for transformer approaches to 
showcase the performance of models with embedding representations without com-
bining them with additional syntactic or affective information. Then, we explore 
how specific types of information (both grouped into thematic feature sets and com-
bined) can be useful for irony detection in traditional statistical classifiers and as 
part of an ensemble approach.

4 � Transformers architectures with embedding representations

4.1 � Fine‑tuned transformers

Since state-of-the-art results for text classification are often achieved by either trans-
former models or neural classifiers that can leverage the embeddings from those 
transformers, we fine-tuned a selected set of monolingual and multilingual models 
for irony detection in Dutch. In a first set of experiments, we used a Dutch mono-
lingual BERT model, known as BERTje (Vries et  al., 2019) and fine-tuned it for 
irony detection (Maladry et al., 2022). In our experiments, we expand upon this and 
evaluate both pre-trained monolingual and multilingual RoBERTa models. Below, 
we summarize the pre-trained models we tested for our experiments:

•	 BERTje (Vries et  al., 2019), a monolingual Dutch BERT-base model trained 
with data from 5 corpora (one containing fiction novels (Books), two news cor-
pora: TwNC (Ordelman et al., 2007) and Web news, the multi-genre SoNaR cor-
pus without social media data (Oostdijk et al., 2013) and a Wikipedia dump from 
October 2019).

•	 Robbert (Delobelle et al., 2020), a monolingual Dutch RoBERTa model trained 
on the Dutch OSCAR corpus (a filtered CommonCrawl corpus) containing text 
from websites (not specifically social media).

•	 XLM RoBERTa—base (Conneau et  al., 2019), the base version (with 250M 
parameters) of the multilingual RoBERTa model trained on a clean Common-
Crawl corpus in 100 languages.

•	 XLM RoBERTa—large (Conneau et  al., 2019), the large version (with 560M 
parameters) of the multilingual RoBERTa model trained on a clean Common-
Crawl Corpus in 100 languages.

•	 XLM RoBERTa—Twitter (Barbieri et al., 2022), a model based on XLM Rob-
erta-base that was further trained with 192M tweets. This is the only model that 
specifically includes Twitter data.

To counteract overfitting, we held out 10% of the training set and evaluated the 
model on this validation set after each epoch. As long as the F1-score on our 
validation set kept improving, we saved subsequent models. With this setup for 
fine-tuning, most of our pre-trained models reach close to their maximum vali-
dation F1-scores before epoch 15. In some cases, the model was not saved for a 
number of epochs before improving on the validation data. Table 1 presents the 
best results of each final model fine-tuned on the irony data set. The RobBERT 
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and XLM RoBERTa - Twitter models reached their best F1-scores even long 
before the 10th epoch. We assume these models train faster because they have 
fewer “barriers” to transfer across. By this we mean a transfer from multilingual 
to monolingual, from general-domain to domain-specific or both. On the one 
hand, RobBERT was already pre-trained on Dutch monolingual data, so only 
needs to be adapted for the social media domain. On the other hand, XLM-RoB-
ERTa - Twitter model was pre-trained on domain-specific data so only has to be 
adapted to Dutch. As Dutch is already one of the languages of the multi-lingual 
model, the transfer is not as hard, which is likely why it took even fewer epochs 
to fine-tune. In other words, transferring cross-domain had to be trained for 5 
epochs and transferring from multilingual to monolingual only took 3.

Performance-wise, RobBERT outclasses BERTje by 3% F1-score. The multi-
lingual XLM RoBERTa - base model does not outperform the monolingual Rob-
BERT, even after fine-tuning for more epochs. This suggests that the inclusion 
of (possibly ironic) multilingual data during pre-training does not outweigh the 
advantages of training a language-specific model. Pre-training the model on the 
social media domain, for XLM RoBERTa - Twitter, does improve model perfor-
mance for this task and even seems to have a more significant impact than keep-
ing a model language-specific. We should mention, however, that the difference 
in impact may be overestimated as the domain-specific model is cross-lingual 
and does include Dutch. The language-specific models, on the contrary, do not 
include any data from the social media domain.

Finally, the best performing of these models is XLM RoBERTa - large. Fine-
tuning of the additional parameters on our data set significantly amplified the 
model’s ability to detect irony. A downside of this model is that it did take 
longer to train, since the model not only has more parameters to fine-tune but 
also takes around 10 epochs to reach the optimal weights. Furthermore, based on 
the results of the other pre-trained transformers, a language and domain-specific 
model with additional parameters (which currently does not exist) would likely 
be an even better fit for the task.

Table 1   Classification results for each of the fine-tuned transformer models

The scores are macro-averaged on the held-out test set of 1113 tweets
Bold signifies the highest scoring model (in 2 for each category)

Precision Recall F1 Accuracy Epoch

BERTje 0.7101 0.7099 0.7089 0.7089 11
Robbert 0.7418 0.7419 0.7412 0.7412 5
XLM RoBERTa - base 0.7385 0.7377 0.7379 0.7385 15
XLM RoBERTa - Twitter 0.7537 0.7491 0.7493 0.7511 3
XLM RoBERTa - large 0.7762 0.7706 0.7708 0.7727 12
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4.2 � Language model embeddings in statistical classifiers

An alternative approach to fine-tuning the embeddings from a pre-trained language 
model is to use these embeddings as input for a classifier. In related research, the 
classifier mounted on top of the embedding is a usually a neural network. Meth-
odologically, we believe there’s little difference between fine-tuning the weights of 
a neural classifier and those of a transformer, as long as no additional information, 
such as Part-of-Speech n-grams (Cignarella et al., 2020) is added to the embedding 
vectors. We instead propose a traditional classifier to leverage the sentence represen-
tations from the different pre-trained transformer models. Embeddings have already 
been used as input for an SVM before by Rohanian et al. (2018), as part of SemEval 
2018 Wu et al. (2018). For an honest comparison to the fine-tuned models, we use 
the embeddings from the same pre-trained transformer models.

Our system setup includes two classifiers, logistic regression (LR) and a lin-
ear SVM. The logistic regression classifier was trained with a C-parameter of 0.1 
and l2 (ridge regression) for regularization. The SVM is a linear SVM model with 
squared hinge loss, tolerance of e-05 and l2 penalty. These models were obtained 
by using TPOT (Le et al., 2020) as an optimization tool for both model and param-
eter choices. We ran the TpotClassifier genetic programming algorithm for 5 genera-
tions with a population size of 15 on our 10-fold cross-validated training set with 
weighted F1 as scoring metric. We optimized the models for the embeddings of 
each pre-trained transformer and found these two model for multiple source embed-
dings. Then, we trained and tested both optimized models for each of the embedding 
sources.

Table 2 tells us that the two classifiers, SVM and LR, perform comparably across 
the board, with LR, the simpler classifier, performing slightly better. As for the 
embeddings, those extracted with the domain-specific XLM RoBERTa - Twitter 
model were the most informative, followed by those of the language-specific mod-
els RobBERT and BERTje. The embeddings from XLM RoBERTa - large, the best 

Table 2   Macro-averaged 
classification scores on the 
held-out test set for SVM 
and Logistic Regression with 
embeddings from pre-trained 
language models as input

Bold signifies the highest scoring model (in 2 for each category)

Precision Recall F1 Accuracy

Logistic regression
 BERTje 0.6383 0.6380 0.6381 0.6388
 RobBERT 0.6457 0.6458 0.6457 0.6460
 XLM RoBERTa - base 0.5801 0.5794 0.5773 0.5777
 XLM RoBERTa - Twitter 0.7044 0.7033 0.7034 0.7044
 XLM RoBERTa - large 0.6186 0.6186 0.6186 0.6190

SVM
 BERTje 0.6428 0.6427 0.6427 0.6433
 RobBERT 0.6483 0.6483 0.6483 0.6487
 XLM RoBERTa - base 0.5801 0.5794 0.5773 0.5777
 XLM RoBERTa - Twitter 0.6997 0.6990 0.6992 0.6999
 XLM RoBERTa - large 0.6087 0.6088 0.6083 0.6083
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model for fine-tuning thanks to its high parameter count, performed poorly as the 
system does not seem to make use of the larger feature count.

In the end, integrating the embeddings into a traditional classifier results in a loss 
of about 7%, when comparing the best models from Table 2 to Table 1. For perfor-
mance, domain and language-specificity of the pre-training data remain relevant fac-
tors for both system setups.

5 � Traditional feature‑based classifiers

5.1 � Baseline system and feature engineering

Traditional machine learning approaches remain potent competitors to neural net-
works and transformer models, given that we can provide relevant features for the 
task. In Maladry et al. (2022) and Hee (2017), for example, a support vector classi-
fier with an extensive feature set still achieved competitive F1-scores. For this paper, 
we experiment with further improving our baseline model for irony detection by 
expanding the feature set, while also filtering out the less relevant features with fea-
ture selection and optimizing different types of classifiers. As we also want to locate 
where our models still make mistakes, we do not limit ourselves to the search for the 
best-performing model, but complement this with more understandable classifiers. 
Some classifiers, such as the SVM algorithm with the rbf kernel, do not provide any 
feature importances or weights that indicate which features influenced the system’s 
decision-making. Decision Tree-based systems, such as Random Forest, Bagging 
techniques and ExtraTree models tend to reach similar levels of performance but 
also provide insights into feature importance. To estimate both the highest quanti-
tative performance and the influence of separate feature subsets, we set up experi-
ments with two types of algorithms: SVM classifiers, which benefit more from high 
feature counts and a Decision Tree, which is a less complex approach that works 
better with fewer features but is more interpretable.

Lexical features constitute the largest feature subset, of which the n-gram fea-
tures are the most basic ones. Our subset of 30,785 n-gram features combines both 
word n-grams for n-values of 1 to 4 and character n-grams for 3–4 (in both cases we 
set the minimal frequency to 3). Besides this, we count the occurrences of specific 
forms of creative language use, such as flooding in tokens (adding unnecessary vow-
els to a word i.e. “goood”), flooding in punctuation (duplicating punctuation, i.e. 
“...”), the use of hashtags, and fully capitalized tokens (i.e. “BAD”).

The (shallow) Syntactic feature subset makes use of Part-of-Speech tagged input. 
For each type of tag, there is a binary feature to indicate whether the tag is present, 
a ternary feature (indicates whether it occurs “not”, “once” or “more than once”) 
and a frequency counter. In addition to the Part-of-Speech tags, we did the same for 
named entities (words referring to people, locations, organizations, etc.). Finally, we 
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included a more complex engineered feature named “temporal clash”3. This feature 
keeps track of the tense of each verb in a tweet and is triggered when a text is written 
in two different tenses, such as the past and present tense.

Sentiment Lexicon features check each tweet to search for polarity words based 
on existing sentiment lexicons. For each lexicon, the features keep track of the num-
ber of positive, negative and neutral words and also calculate a sentiment score for 
the entire tweet by summing the sentiment values of the individual retrieved words. 
This was done with the help of four lexicons that contain words, phrases, emoji’s 
and emoticons: the Duoman Lexicon for subjective adjectives based on the NRC 
Jijkoun and Hofmann (2009), PATTERN (Smedt & Daelemans, 2012), the Hogen-
boom Emoticon Lexicon (Hogenboom et al., 2013) and the Emoji Sentiment Rank-
ing (Kralj Novak et al., 2015).

The Semantic features capture the meaning of words instead of their form using 
information from background corpora. The first type of semantic features relies 
on creating Word2Vec (Mikolov et  al., 2013) clusters that consist of words with 
similar meanings. One of the clusters that result from this contains “cursus” (EN: 
“course”),“academie” (EN: “academy”), “conferentie” (EN: “conference”) and “les-
geven” (EN: “teaching”), which are clearly all words that are related to an educa-
tional or academic context. If a tweet contains a word that occurs in this cluster, the 
feature for this cluster is activated (i.e. its feature value is ‘1’). The 800 semantic 
clusters were generated with the Word2Vec (Mikolov et al., 2013) algorithm using 
a continuous bag-of-words approach, a vocabulary size of 100 words and a window 
size of 5, settings which were experimentally defined. While there are pre-trained 
versions of this algorithm, we trained our own model using a Twitter background 
corpus that better represents the social media domain. This background corpus 
consists of ironic tweets (i.e. tweets that contain one of the aforementioned irony 
hashtags) and non-ironic tweets, which lack such hashtags. The distribution of this 
corpus by label is 20% ironic and 80% non-ironic tweets.4 In addition to the seman-
tic cluster features, we included a second type of semantic features, to which we 
refer as the language model features. While the cluster features are used to capture 
the meaning of individual words, the language model features are used to represent 
the meaning of the tweets as a whole. To this purpose, we trained two separate lan-
guage models using kenLM (Heafield, 2011). One of the models is trained exclu-
sively on ironic tweets and the other only using non-ironic tweets. Both background 
corpora were gathered in the same way as was done for the cluster features. The two 
binary language model features then predict whether a tweet better fits the ironic 
language model or the non-ironic language model. Additionally, two binary features 
are included that check whether the tweet contains any out-of-vocabulary tokens for 
either of the language models.

3  In past research, a similar feature has also been proposed by Reyes et al. (2013) and was used by Hee 
(2017).
4  During pre-processing, the irony hashtags were removed from the tweets, as they are also removed 
from all train and test samples.
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Finally, we propose two heavily-engineered variations of Sentiment Clash fea-
tures. One variation is binary between positive and negative sentiments, while the 
other is a numerical feature that shows how different the sentiments are. In most 
cases, this clash occurs between an explicit expression of positive sentiment towards 
a target with an implicit negative sentiment. The primary challenge for targets car-
rying prototypical or implicit sentiment is that they are (obviously) not explicitly 
defined in a text and do not have clear boundaries. However, thanks to the manual 
annotations, we have an idea what irony targets look like semantically and syntac-
tically. To determine the prototypical sentiment of a target string, we decided to 
consult Twitter as a potentially rich source of subjective content and estimated the 
general sentiment about the irony targets by gathering up to 500 tweets for each of 
our targets. This resulted in 1511 small background corpora. The prototypical senti-
ment was determined by performing sentiment analysis on the background corpora.5 
Finally, we counted the numbers of positive, neutral and negative tweets in each 
background corpus and used the distribution of these values as the representation 
of a target’s implicit sentiment. In Maladry et al. (2022), the prototypical sentiment 
of a target was reduced to the most prevalent sentiment of tweets in the background 
corpus containing that target. In this paper, we converted the distribution of senti-
ment values for each target into a vector. The values [0.15, 0.20, 0.65], for example, 
imply that, out of all background tweets collected for this particular target, 15% are 
positive, 20% are neutral and 65% are negative. This indicates an overall (or proto-
typical) negative sentiment towards the concept. To compare these implicit senti-
ment vectors to an explicit [pos, neut, neg] vector, we search across the sentiment 
lexicons, counting the numbers of all positive, negative and neutral entries and turn 
these into a vector of the same format as the implicit sentiment distribution. Tokens 
that are a part of the annotated target string do not contribute to the explicit senti-
ment vector and no tokens are counted twice if they would occur in two different 
dictionaries. In case of tweets not having a single token present in any of the senti-
ment dictionaries, the explicit sentiment defaults to a null-vector with 0 as the values 
for positive, neutral and negative sentiments. To calculate the (now numerical) value 
of the sentiment clash, we measure the cosine distance between the explicit lexicon-
based and the implicit data-based vectors. Since some tweets contain multiple tar-
gets, we consider the clash between each target and the explicit sentiment of the 
tweet without the target, and take the largest clash value as feature value for a tweet.6

5  Some of these background corpora only contained a single tweet or none at all. To make the implicit 
sentiment detection more reliable, we arbitrarily chose to implement a minimum corpus size of five 
tweets. This reduced the final number of background corpora to 1014.
6  We do not add up the different cosine distances because this would result in a large distance value for 
tweets with multiple targets. Even if we would average out the distances, this would still misrepresent the 
clash and reduce the significance of the biggest clash.
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5.2 � Feature selection

Given the large number of lexical features (>30,000), we determined feature infor-
mativeness using the mutual information metric. The primary goal of this selection 
procedure was to reduce the number of lexical features, but we extended the scope 
of our feature selection procedure to filter out all sub-optimal features. Since the 
clash features only have non-zero values for (some) ironic tweets, we already know 
that they have an informative value. As such, we would rather not optimize the sys-
tem specifically for these two features and removed the clash features from the equa-
tion during feature selection and parameter optimization. Using mutual information 
for feature selection is likely not the optimal choice when optimizing the feature set 
for one specific model, but it remains a solid and computationally efficient method 
for model-agnostic feature selection.

The feature count was gradually lowered from 30,000 features down to the top 
10 best features and tested for both an SVM classifier and a Decision Tree. For the 
SVM classifier, we scaled the feature values with a MinMaxScaler and used a C 
value of 2 with a gamma value of 0.0020 with the rbf kernel. For the Decision Tree, 
we l2-normalized the feature values and trained the model with a maximum depth of 
4, we set the minimum sample leaves to 15 and minimum sample split to 15.7

Fig. 2   Performance in F1-score for SVM and Decision Tree with gradually descending feature vector 
sizes (on log scale)

7  While we also experimented with grid-searching the optimal parameter values, the best cross-valida-
tion scores were attained by optimizing with TPOT (Le et al., 2020). The genetic tool optimized for 5 
generations with a population size of 10 on a 10-fold cross-validation of our training set with weighted 
F1-score as the scoring metric.
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The F1-score of the SVM classifier did not improve by filtering out features 
with lower mutual information. This setup attained the highest F1-score (72.44%) 
using the complete set of 30,000 features. Decreasing the feature count gradually 
decreases the F1-score down to 62.52% when only the 10 best features are included, 
as shown in Figure  2. The Decision Tree does not follow the same behavior and 
achieves its highest F1-score (66.68%) at 200 features. Increasing the feature count 
for this model does not improve the system’s F1-score. Compared to the SVM 
model, the Decision Tree performs better at all feature counts below 200 and worse 
when the feature count is over 200. The SVM, which is the more complex model, is 
able to leverage the additional information at higher feature counts, while the Deci-
sion Tree is confused by the addition of less relevant features.

The feature count of our SVM can easily be reduced to 5000, one sixth of the 
complete set, with only a minimal loss in performance of about 2%. At 5000 selected 
features, we are left with 4842 lexical, 18 syntactic, 20 sentiment lexicon and 120 
semantic features. The lexical feature subset still makes up the majority of the fea-
tures, followed by the semantic set. Taking this selection approach to the extreme 
and only using the 10 features with the highest mutual information, we still reached 
an F1-score over 60%, and thus a 10% drop in performance compared to the system 
with all features (Fig. 2).

The 10 features with the highest mutual information in our feature set are still 
mostly lexical (6 out of 10), however, they do represent some linguistic phenom-
ena such as flooding (“ooo”) and hyperboles (“such a”, “awesome”). Besides that, 
another lexical features is an indicator of what used to be a hyperlink or image. The 
most relevant syntactic feature is the adjective count, which indicates that ironic 
tweets tend to use more adjectives, which we assume is essential for the contrast-
ing positive evaluation of a negative situation. In a similar way, the positive tokens 
(and consequently the overall polarity score) from the PATTERN sentiment lexicon 
(Smedt & Daelemans, 2012) confirm that most ironic tweets seem positive on the 

Table 3   Macro-averaged 
classification scores on the 
held-out test set at different 
steps in our feature selection 
experiments

Precision Recall F1 Accuracy

Systems without clash features
 30k SVM 0.7249 0.7243 0.7244 0.7251
 30k Tree 0.6745 0.6668 0.6603 0.6631
 200 SVM 0.6566 0.6566 0.6559 0.6559
 200 Tree 0.6728 0.6699 0.6668 0.6676

Systems with clash features
 30k SVM 0.7485 0.7487 0.7484 0.7484
 30k Tree 0.7752 0.7558 0.7477 0.7511
 200 SVM 0.7296 0.7250 0.7215 0.7224
 200 Tree 0.7680 0.7487 0.7403 0.7439
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surface.8 The most valuable semantic feature is the language model feature, which 
indicates whether the tweets are similar to the ironic tweets in our background cor-
pus. We compared the best features based on mutual information to the those based 
on feature importance in the Decision Tree and found the same features were con-
sidered to be important.

After optimizing the parameters and performing feature selection, we finally 
also added the clash features (based on the full annotated target strings) as features 
for the Decision Tree and SVM models. The best Decision Tree (with 200 features 
+ the two clashes) managed to catch up to the SVM (with 30k features + the two 
clashes), as shown in Table 3. In the next section, we evaluate the different feature 
sets separately and include the clash features (based on the annotated targets) as one 
of them.

5.3 � Feature subset models

Mutual information only provides one perspective on feature importance. Differ-
ent machine learning algorithms use different metrics besides mutual information 
to tweak feature weights and can thus perform better or worse with the same fea-
ture set. Since linguistic features are strongly intertwined / overlap, single feature 
importances might cause us to focus too much on individual words and overlook 
more general patterns. Based on mutual information, the lexical feature for “ooo”, 
for example, is found to be an important feature. However, based on this feature, we 
cannot tell if it was important as an interjection, as flooding, flooding of an interjec-
tion or the actual lexical trigger for “ooo”. To estimate how well the system can 

Table 4   Macro-averaged 
classification scores for 
Decision Tree and SVM systems 
for each feature group on the 
held-out test set

The models for each feature set are grouped together and are indi-
cated in the same color

Precision Recall F1 Accuracy

all lex SVM 0.7077 0.7073 0.7075 0.7080
all lex Tree 0.6325 0.6320 0.6306 0.6307
5k lex SVM 0.6813 0.6795 0.6795 0.6810
5k lex Tree 0.6363 0.6352 0.6331 0.6334
semantic SVM 0.6548 0.6549 0.6548 0.6550
semantic Tree 0.6872 0.6873 0.6872 0.6873
syntactic SVM 0.5989 0.5898 0.5829 0.5948
syntactic Tree 0.5750 0.5739 0.5732 0.5759
sentlex SVM 0.6161 0.5622 0.4979 0.5508
sentlex Tree 0.6216 0.6171 0.6111 0.6137
clash SVM 0.7880 0.6557 0.6029 0.6442
clash Tree 0.8026 0.6948 0.6574 0.6846

8  Maladry et al. (2022) hypothesized that a system for irony detection might look for positive tweets as a 
naive shortcut.
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leverage the information in each of our feature groups, we trained classifiers for each 
of our feature subsets (lexical, syntactic, semantic, sentiment lexicon and our two 
clash features). Given the large size of the lexical feature set, it was reduced in size 
to a maximum of 5000 features.

In Table 4 the lexical features confirm their potency for irony detection, reaching 
an F-score of 71% with Support Vector Machines. Syntactic features and the senti-
ment word counts do not seem to be particularly useful, barely reaching F-scores of 
60%. Surprisingly, the semantic features even bested the performance of the lexical 
features. While the SVM classifiers achieve better results with lexical and semantic 
features, the Decision Trees algorithms outperform them on the semantic, sentiment 
lexicon and clash feature sets.

6 � Ensemble model

Since the SVM and Decision Tree classifiers benefit differently from the different 
feature groups, it could have merit to train individual models for each of the feature 
sets and combine the outputs of each model in an ensemble system. The simplest 
way to achieve this is to combine them with majority voting. This means that each 
model votes to indicate whether the tweet is ironic or not, making the label with the 
most votes the final result of such a system. However, there are quite some perfor-
mance differences between the models trained on different feature groups, as shown 
in Table 4. Therefore, it makes more sense to weigh the vote of each system based 
on its classification performance on the training data. For the weights, we calculated 

Table 5   Classification scores for ensemble models with and without the two sentiment clash features

The baseline features are the lexical, semantic, syntactic and sentiment lexicon feature subsets, while 
XLM is the fine-tuned XLM RoBERTa - large model. The scores are macro-averaged on the held-out test 
set
Bold signifies the highest scoring model (in 2 for each category)

Precision Recall F1 Accuracy

Ensemble without clash features
 Full baseline 0.7105 0.7106 0.7105 0.7107
 Only semantic and lexical 0.7185 0.7183 0.7184 0.7188
 Semantic, lexical + XLM 0.7712 0.7699 0.7702 0.7709
 All baseline + XLM 0.7740 0.7726 0.7729 0.7736

Ensemble with clash features
 Full baseline 0.7613 0.7606 0.7592 0.7592
 Semantic and lexical /w clash 0.7800 0.7787 0.7771 0.7772
 Semantic, lexical and XLM 0.7846 0.7835 0.7838 0.7844
 Full baseline + XLM 0.7842 0.7839 0.7840 0.7844

SVM for reference
 SVM all features no clash 0.7249 0.7243 0.7244 0.7251
 SVM all features /w clash 0.7485 0.7487 0.7484 0.7484
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the average 10-fold cross-validated F1-score of each feature set system on our train-
ing set and replaced the binary classification output with the probabilities of the 
ironic / not ironic labels9. If a system with cross-validated F1-score of 69% would 
predict a tweet as ironic with a probability of 60%, the positive (‘ironic’) vote of that 
system would be 0.414 (0.69*0.60) while the negative vote (‘not-ironic’) would be 
0.276 (0.69*0.40). Using the probabilities of the labels also takes the certainty of 
the system into account, resulting in a more nuanced voting system.

In the same way as we left out features with lower mutual information, we could 
also leave out feature groups that perform worse on average, which may delude the 
feature set as a whole. We tested this by evaluating ensemble systems where we 
excluded some of the feature groups from the equation. As shown in Table 5, the 
combined system for lexical and semantic features slightly outperforms the ensem-
ble with all feature sets by less than 1%. However, if we compare this 71%, the best 
performance of the feature-based ensemble approaches, to the single SVM with all 
feature sets combined (Table 2), the latter still has a higher F1-score (72%).

Once we include the clash features as a separate feature group in the ensemble 
system, it not only catches up to the SVM with the complete feature set and clash 
(F1-score of 75%) but reaches 76%, as shown in Table  5. Most likely this is due 
to the fact that the informative sentiment clash features are no longer buried in the 
pile of less useful lexical features. Still, we should keep in mind that the sentiment 
clash features are currently still based on target annotations of ironic tweets. In Sec-
tion 4.1, we also evaluated several fine-tuned transformer models and attained the 
best results with the pre-trained XLM-Roberta - large model. This best system can 
be combined with the feature-based approaches with the same voting strategy. Doing 
so further improves the scores of the ensemble model, pushing it to the first place in 
our system ranking, as shown in Table 5. This showcases that ensemble techniques 
are a valuable way to combine the strengths of multiple different models into a better 
final output.

7 � Investigating syntactic parsing for automatic target extraction

In Sect.  5, we used the complete annotated targets to model a clash between the 
explicit sentiments of an ironic evaluation and the implicit sentiment of the evalu-
ated target experience. In a realistic irony detection scenario, however, we should be 
able to automatically extract these targets. Once we are able to extract the targets to 
gather a background corpus for, we already have a working methodology to infer the 
implicit sentiment. Before attempting fully automatic target extraction, we first need 
to know what the targets look like syntactically. To estimate the syntactic character-
istics of the targets, we propose a variety of patterns based on previous research.

9  The Support Vector Machines algorithm does not work with direct probability, we used Platt-scaling to 
reach an approximation as it is implemented in sklearn.
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First, we syntactically parse all tweets into a dependency tree with spaCy (Honni-
bal & Montani, 2017).10 Then, to find a match, we look for the intersection between 
the words in the tweet that match our syntactic pattern and the annotated targets 
strings. To illustrate this, the underlined words in the example below represent the 
words that match our syntactic pattern, while the words in bold were manually anno-
tated as the target. If we take the intersection in Example 3, we only keep “stubbing 
my pinky toe” as the match for our pattern.

Example 3  I love stubbing my pinky toe against the table

If the words matching a pattern do not coincide with the annotated target strings, 
the clash feature values for this pattern are always 0. Analogously, if there are no 
annotated targets, the values for the clash features are zero as well. There are no 
annotated target strings for all non-ironic tweets and 45% of all ironic tweets. This 
means that, for this paper, we focus on the coverage that these patterns could pro-
vide, which only impacts the recall of the syntactic pattern approach. While the 
broadest patterns are likely to overgenerate potential targets, this will affect the pre-
cision of the approach, which is not yet taken into consideration.

Past research for English already explored some basic patterns which we used as 
inspirations and guidelines for our own patterns. Van Hee et al. (2018) used content 
words, dependency heads and Verb-Object as patterns. These patterns turned out to 
be noisy and too generic to provide reliable implicit sentiment for a sentiment clash. 
Joshi et  al. (2016) used some very specific patterns for their rule-based extractor 
to detect the targets of sarcastic tweets. Some examples of patterns include named 
entities in addition to noun phrases containing positive adjectives, sentiment-bearing 
verbs and gerundial verb phrases. Our approach uses the insights of previous experi-
ments to compromise between the very specific patterns of Joshi et al. (2016) and 
the broader patterns of Van Hee et al. (2018). We propose the following list of five 
syntactic patterns using universal dependencies (De Marneffe et al., 2021) and Part-
of-Speech tags:

Table 6   Coverage (in %) of the syntactic parsing approaches for the 1511 unique annotated target strings

Bold signifies the highest scoring model (in 2 for each category)

Pattern Coverage Pattern Match Example

NounGroup 0.7889 [beautiful girl], [wild man]
Entities 0.1952 [Pope Francis], [John]
SVO 0.1754 [John kissed wife] [man hit keyboard]
VerbPattern 0.4408 [John kissed wife] [they danced on table]
VerbPhrase 0.4408 [bullying just continues] [and can’t get by!]
Combined 0.8068

10  We used the large news model for Dutch, available at https://spacy.io/models/nl .
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•	 NounGroup: nouns with all noun and adjective descendants (children, grand-
children).

•	 Named Entities: people, organizations, locations, etc.
•	 SVO: Subject-Verb-Object in the exact order.
•	 VerbPattern: a broader form of Subject-Object-Verb. Starting from the verb, 

optionally adds the subject, adpositions (in, to, over, etc.), objects (both direct 
and indirect) and adverbs. This pattern skips most stop words (such as arti-
cles) and adjectives linked to the subject.

•	 VerbPhrase: all verb phrases consisting of each verb with its direct descend-
ants in the parse tree. Whilst this overlaps a lot with the VerbPattern, this 
pattern is particularly useful for short tweets and robust against mistakes in 
dependency parsing.

As mentioned, the current goal is to maximize the coverage (i.e. recall) of our 
target extraction patterns. We present the coverage for each individual pattern and 
the combined set, along with some examples of pattern matches, in Table 6.

Out of 1511 unique annotated targets, the combined patterns were able to 
cover 1219 (81%). With these unique targets, we then inferred the implicit sen-
timent using sentiment analysis on the background corpora (cf. Section  5.1). 
Occasionally, the output of a syntactic pattern was nonsensical due to mistakes 
in parsing and POS-tagging as well as other unforeseen pattern matches. To fil-
ter these out, we doubled the lower bound of the corpus size for the annotated 
targets to 10 tweets. By doing so, we were able to provide an implicit sentiment 
for 1254 tweets. This is an improvement over the 1014 tweets with the annotated 
target patterns. The comparison between these setups is not entirely fair due to 
the increased lower bound, but if we had kept the same lower bound, the syntactic 
patterns would have covered even more targets.

With our pattern approach, we generate multiple matching targets (and implicit 
sentiments) for each annotated target. The target strings from these patterns often 
overlap. The SVO pattern, for example, always contains a NounGroup, because 
the subject is always a noun. More specific targets with more contextual informa-
tion should better capture the essence of the annotated targets and have a more 
appropriate implicit sentiment. The word “dog” is probably considered positive 
because it refers to a cuddly pet. However, the more specific target “walking your 
dog in the rain” has a negative implicit sentiment. If the choice between these two 
is available, we would prefer using the implicit sentiment of the most specific tar-
get. Therefore, we also refined the results with a filter where we only use the most 
specific targets and to which we refer as specific. This filter removes each target 
that is fully included in another target for the same tweet.

The inferred implicit sentiments of these targets are then matched with the 
explicit sentiment representations of the remaining words in the original tweet 
to calculate the binary and numerical clash values. The experiment appeared to 
be very successful: the new targets generated both more numerical (+197) and 
binary (+111) clashes. To measure the impact of the sentiment clash features 
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based on these syntactic patterns, we evaluated the performance with the same 
classifiers we used for the annotated clash subset in Section 5.3.

In Table 7, we present the results of the five individual patterns and both the refined 
and unrefined versions of the combined patterns as input for our SVM and Deci-
sion Tree classifiers. The improved coverage of the clash features results in a higher 
F1-score for the clash models. This improvement carries over to the ensemble model 
as well, where replacing the annotated clash model with the syntactically parsed clash 
model further improves the highest system performance from 78% to 79% F1-score. 
Removing the less specific targets actually hampers the performance of our system. To 
calculate the sentiment clash values, only the strongest contrast between implicit and 
explicit sentiments is kept for each tweet. This benefits systems with a larger number 
of implicit sentiments. This is also shown in the performance of the individual syntac-
tic patterns. The pattern with the highest coverage, NounGroup, achieves the highest 
F1-score, while the patterns with the lowest coverage, named entities and SVO, per-
form the worst.

Table 7   Classification scores 
(macro-averaged) for systems 
using only numerical and binary 
clash as features.

In this table, All Patterns - specific indicates that we filtered out the 
clash values for patterns that are included in other patterns

Precision Recall F1 Accuracy

Decision tree
 Entities 0.7678 0.5591 0.4545 0.5628
 NounGroup 0.8050 0.7009 0.6655 0.6909
 SVO 0.7507 0.5348 0.3990 0.5193
 VerbPattern 0.7679 0.5948 0.5083 0.5813
 VerbPhrase 0.7663 0.5896 0.4995 0.5759
 AllPatterns 0.8154 0.7261 0.6981 0.7170
 AllPatterns - specific 0.8012 0.6913 0.6527 0.6810
 Annotated 0.8026 0.6948 0.6574 0.6846

SVM
 Entities 0.2417 0.5000 0.3259 0.4834
 NounGroup 0.7685 0.5965 0.5112 0.5831
 SVO 0.7423 0.5026 0.3316 0.4861
 VerbPattern 0.7567 0.5565 0.4408 0.5418
 VerbPhrase 0.7559 0.5539 0.4359 0.5391
 AllPatterns 0.7802 0.6330 0.5693 0.6208
 AllPatterns - specific 0.8009 0.6904 0.6515 0.6801
 Annotated 0.7880 0.6557 0.6029 0.6442
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8 � Manual error analysis

8.1 � General overview

For our manual error analysis, we compared the annotated labels to the predictions 
made by the largest ensemble model, the three fine-tuned transformers (RobBERT, 
XLM RoBERTa - large and RoBERTa - Twitter), the separate feature subset models 
(as they were used in the ensemble) and finally the feature-based SVM classifiers 
(including and excluding the clash features both in annotated and parsed forms). The 
tweets were assessed in the same form as they are presented to the classifier models, 
anonymized and without any of the ironic hashtags. Additionally, we added the type 
of irony (ironic by clash, situational irony and other irony) and considered the anno-
tated target strings for the analysis.

During the evaluation, we were once again reminded of the difficulty of this task. 
For some tweets, the irony even eluded the human annotators. In others, the text 
does not contain enough context information to determine whether a tweet is ironic. 
Example 4 was labeled as not ironic but in fact requires more context to determine if 
the label is correct:

Example 4  NL: Bedankt voor de support op mijn video van vandaag! #Love

EN: Thanks for the support on my video today! #Love

Similarly, tweets labeled as ironic can be open to interpretation as well. When the 
text itself does not suffice, people can make an educated guess to fill in the missing 
contextual information (temporal knowledge about previous events) or imagine a sit-
uation where one could say this ironically. As such, there is no clear upper boundary 
for irony detection but a fluid continuum where people or systems that share more 
common knowledge with the author of a text will be more suited to detect irony.11 
In Example 5, the original text was unambiguously ironic because the user added an 
irony hashtag (#not, #sarcasme or #irony) but the text has become ambiguous after 
removing the hashtag.

Example 5  NL: Van je vrienden krijg je de beste adviezen.

http://​someu​rl.​com
EN: From your friends you get the best advice.
http://​someu​rl.​com

In general, the results are satisfactory and some predictions are even impressive. 
To illustrate this, all of the classifiers correctly predicted Example 6 as being ironic. 

11  Common knowledge could be seen as being part of the same generation, cultural background, subcul-
tures or even inside jokes.

http://someurl.com
http://someurl.com
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The author compares the regional dialect of a local rapper on television to an enrich-
ing language immersion. Without such world knowledge, even a human would not 
be able to tell with certainty whether tweet is ironic.

Example 6  NL: Na de opfrissing over de regel van drie, nu ook nog een snel taalbad 
AN met Slons... #reyerslaat

EN: after the refresher on basic arithmetic, we now also get a quick language 
immersion for standardized Dutch with Slons...#reyerslaat

The ironic tweets are generally related to a number of topics, the most prominent 
of which are politics, school, professional sports, public transport and the weather. 
This topic information is exactly what we attempt to capture with the semantic 
cluster features. However, the list of relevant topics seems to be a lot shorter than 
expected, which suggests it might already suffice to create clusters based on a list of 
about five topics.

Taking a closer look at the data revealed that ironic tweets often contain lexical 
triggers that help to recognize the irony. When reading Example 6, one can imag-
ine the author emphasizing and stressing these words when read out loud. Although 
these lexical trigger words or phrases do not contain any substantial meaning by 
themselves, they do contribute to the text by intensifying an evaluation and thereby 
giving away that it is intended ironically. Such lexical intensifiers and interjections 
hint at the possible ironic intention, but are by no means a definitive proof. As cul-
tural function words, it is difficult to translate them.12 Below, we present examples 
of words we consider to be lexical trigger words, their occurrences in the training 
corpus and how likely they are to occur in ironic tweets:

•	 geweldig (EN: great), 50 occurences (76% ironic)
•	 fijn (EN: fine/nice) 96 occurences (82% ironic)
•	 lekker (EN: fine/nice), 165 occurences (72% ironic)
•	 ...(suspension dots), 562 occurences (56% ironic)
•	 toch (EN: still/anyway), 205 occurences (64% ironic)

Some of these trigger words are even more likely to make a tweet ironic when they 
are used in conjunction with specific evaluation words.

•	 wat een verrassing (EN: what a surprise), 4 occurences (100% ironic).
•	 goed idee (EN: good idea), 4 occurrences (88% ironic).
•	 weer gezellig (EN: what a blast), 9 occurrences (78% ironic).
•	 zoveel zin in (EN: so looking forward to it), 6 occurrences (100% ironic).

12  In Flemish Dutch, for example, we would probably not use “lekker” (literally “tasty” but also used as 
a positive evaluation of pretty much anything) to denote irony in the way people from the Netherlands do 
it.
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Just like other strong, outspoken (and generally positive) evaluations, the exaggera-
tions give away the true sentiment of the author. Therefore, without further con-
text or common-sense knowledge, one could consider most expressions of intense 
sentiment or surprise as potential indicators of irony. These trigger words should 
already be captured by the lexical feature subset, which contains word and charac-
ter n-grams occurring at least three times in the training corpus. While we provide 
an English translation of these trigger words, it remains to be investigated whether 
their occurrence in ironic utterances is similar to Dutch. However, this is worthy of a 
separate investigation.

8.2 � False positives

Although exaggerated sentiments are important indicators for irony, they can just as 
well express an intense feeling. This makes genuine extreme sentiments prime can-
didates for misclassification. Based on Maladry et al. (2022), we expected the clas-
sifiers to look for abundantly positive sentiments as a shortcut for irony. This seems 
to be true to some extent, as we can see in the following non-ironic and wrongly 
classified tweets.

Example 7  NL: GOOAAALLLL JAMES RODRIGUEZ 5-3!!!!

Wat een geweldige wedstrijd!
EN: GOOAAALLLL JAMES RODRIGUEZ 5-3!!!!
What a great match!

Example 8  NL: Lekker hard “No More Drama” 

van Mary J Blige meebleren! Heerlijk!
EN: Bellowing along really loudly to “No More Drama” 
by Mary J Blige! I love it!

These examples suggest that the systems are using the intensity of the sentiment 
rather than its polarity. Although they are less common than the positive tweets, 
negative tweets, such as Example 9 and Example 10 were also predicted to be ironic 
while they were not.

Example 9  NL: vind u echt zo een arrogant gastje he >:-(

EN : I really think you are such an arrogant dude >:-(

Example 10  NL: Een hele lange schooldag overleven. >.<

EN: Surviving a very long day at school. >.<
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The classifiers also make mistakes on non-ironic tweets with mixed sentiments. 
A potential reason for this is that the contrast between the positive and negative ele-
ments, based on the sentiment lexicon features, in the tweets is similar to the senti-
ment clash we are modeling in our experiments. In Example 11 and Example 12, 
the authors share their positive experience about a situation that would usually be 
considered negative (i.e. doing an exam and working in a nursing home). In Exam-
ple 13, the contrast is of a temporal nature. After going through an annoying situa-
tion, the person shares his/her relief and positively evaluates the fact that the nega-
tive experience is over now or took a positive twist.

Example 11  NL: Waaah tentamen ging best wel goed

en nu heb ik vakantie en dat is leuk
EN: Waaah exam went pretty well
and now I have vacation and that’s nice

Example 12  NL: Complimenten van clienten maken je hele nacht goed

#nachtzuster #zorg #verpleeghuis #liefde
EN: Compliments from clients make your whole night good
#night nurse #care #nursinghome #love

Example 13  NL: Vanmiddag wordt mijn scherm gemaakt #zielsgelukkig

#al2dageninderouw
EN: This afternoon my screen will be fixed #sohappy
#beenmourningfor2days

8.3 � False Negatives

Whilst the lexical triggers are clearly useful for irony detection, they only clarify the 
underlying irony of the utterance. Despite the presence of such triggers, the systems 
still miss the irony of some texts. As shown with Examples 14 and 15, these tweets 
contain verbal irony with an explicit ironic evaluation. However, determining the 
implicit sentiment and the exact target requires further reasoning based on complex 
common sense:

Example 14  NL: Heerlijk al die #biologische #producten bij @alberthein in 

#plasticverpakking #dathelpthetmilieu
EN: Delicious all those #organic #products at @alberthein in
#plasticpackaging #thathelpstheenvironment

Example 15  NL: Dus goed idee om alarm via internet/mobiel
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te doen in de toekomst #stroomstoring #geenservice
EN: Such a good idea to do an alarm via the internet/mobile
in the future #power failure #noservice

To recognize the implicit sentiment, we need to know that plastic is harmful for 
the environment (Example  14), or that you cannot receive an online notification 
when you do not have service on your phone (Example 15). Alternatively, the hard-
est type of common sense requires knowledge about conversations and insight into 
what people would realistically say or not. For Example 16, we know every citizen 
has the right to vote, but we would never specifically emphasize that “this person 
probably” has that right, as this is a well-known fact relying on world knowledge.

Example 16  NL: @someuser en dit figuur heeft waarschijnlijk ook gewoon 
stemrecht...

EN: @someuser and this figure probably also just has the right to vote...

8.4 � Transformers versus feature engineering

The manual analysis did not reveal clear differences between the type of tweets mis-
classified by transformers or feature-based approaches. Both systems seem to rely on 
intensified sentiment (often presented by expressive and emphasizing lexical trig-
gers) to classify a text as ironic. Still, they struggles to identify whether the senti-
ment in such an intense utterance is genuine or ironic.

We did, however, notice some minor differences between both approaches. It 
seems that the feature-based approach depends more on detecting trigger words. 
This hypothesis is supported by the fact that tweets that contain flooded trigger 
words are not detected as ironic. Despite the fact that there is a feature that detects 
flooding (an alternative intensifier), this does not compensate for the missing lexi-
cal feature. Because of this, the following tweets were wrongly classified as being 
non-ironic:

Example 17  NL: Gooodmorning, vandaag introdag, wat leeeuk

EN: Gooodmorning, today introduction day, how niiiiice

Example 18  NL: @someuser ik maak huiswerk yessss

EN: @someuser I’m making homework yessss

At the same time, the feature-based approach does miss out on some tweets that 
contain obvious lexical triggers. Example  19 contains the lexical trigger “lekker” 
(EN: nice), which appears in ironic tweets for 66% of its 186 occurrences in the train 
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set. Similarly, the lexical triggers “wel weer” (EN: sure) are key to conveying the 
irony in Example 20. As we mentioned before, such n-grams should be a part of the 
lexical feature set as long as they occur at least 3 times in the training set.

Example 19  NL: @someuser Lekker dan.

EN: @someuser Well nice.

Example 20  NL: Nu.nl weet wel weer prioriteiten te stellen.

EN: Nu.nl sure knows how to prioritize.

8.5 � Value of sentiment clash

The sentiment clash features are one of the focus points of this paper. To investigate 
to which extent these features improve model performance, we compare the results 
of the systems with clash features to the systems without clash features. The pro-
totypical use-cases for the clash feature contain an explicit evaluation and have a 
target with a clear implicit sentiment. To our surprise, most of these ideal use cases 
were already classified correctly by all systems without the clash features, as shown 
in Example 21 and Example 22.

Example 21  NL: Het ene grote bedrijf na de andere gaat #failliet.

Lang leven investeringsmaatschappijen.
EN: One big company after another goes #bankrupt.
Long live investment companies.

Example 22  NL: #D66 is voor Amerikaans systeem. Iedereen straks 2-4 baantjes.

En nog niet kunnen rondkomen! Joepie! #wnl
EN: #D66 is for American system. Everyone soon 2-4 jobs.
And still can’t get by! YAY! #wnl

However, lexical triggers do not always suffice to detect irony. Despite the two clear 
trigger words “Fijn!” and “Handig”, the systems without the clash features (including 
the fine-tuned transformers) did not catch the irony of Example 23.

Example 23  NL: Fijn! iTunes afsluiten maar de muziek speelt wel verder!

#Handig #SluitAfTrut
EN: Nice! Close iTunes but the music just keeps playing!
#Useful #CloseBitch
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Due to the explicit positive evaluation and implicit negative sentiment, the systems 
with the clash features were able to identify a sentiment clash and detect the irony. 
Whilst the lexical triggers make the irony of a situation more explicit and serve a sup-
portive role in the expression of irony, the actual irony does rely on world knowledge of 
the target situation. In spoken language, the irony is made explicit through tone of voice 
and emphasis. Since these tools are not available in the text medium, we assume the 
lexical triggers serve as an alternative way to clarify the irony.

Sometimes, understanding the target requires complex numerical common sense. 
When specific numbers occur in the target, the data-driven approach does not general-
ize enough to determine the implicit sentiment, as illustrated by Example 24.

Example 24  NL: Wauw ik ken al 15 van de 110 woordjes en nog geen zinnen.

Gaat geweldig.
EN: Wow I already know 15 of the 110 words and no sentences yet.
Going great.

9 � Conclusion & future research

In the presented experiments, we thoroughly examined a variety of systems, rang-
ing from state-of-the-art transformer models to more traditional machine learning 
with feature-based classifiers. Our experiments show that fine-tuning a language 
and preferably also a domain-specific transformer model achieves the best single-
model results, with improved results at higher parameter counts. Our best per-
forming single model was a fine-tuned XLM-Roberta-large model, which attained 
an F1-score of 77%. Nevertheless, a more traditional feature-based SVM still 
reaches competitive results (72% without clash features). After assessing the dif-
ferent feature groups, we concluded that lexical and semantic feature groups are 
the most valuable sources of information.

Additionally, we developed two sentiment clash features that encode perti-
nent common-sense knowledge for irony detection. We infused our traditional 
approach with our sentiment clash features (reaching an F1 score of 75%). We 
then further combined all models, including not only feature subsets but also 
the fine-tuned transformer model, into a weighted ensemble model to achieve an 
F1-score of 78%. Using syntactic patterns, we optimized the coverage (i.e. recall) 
of our sentiment clash features and, once included into the ensemble, attained our 
best system performance (79%).

The manual error analysis solidifies the importance of the lexical feature set. 
All systems seem to rely heavily on recognizing iconic lexical triggers. However, 
the same triggers words are often also used to intensify sentiment. Consequently, 
genuine strong positive or negative sentiments were occasionally mistaken for 
irony. During our manual error analysis, we also investigated the usefulness of 
our sentiment clash features. This revealed that the prototypical tweets containing 
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clear verbal irony, for which we engineered sentiment clash features, are often 
already identified without those features. The sentiment clash features, did, how-
ever, improve the system when the situations or evaluations were more subtle. 
The lexical trigger mostly helps to make the ironic intention of the evaluation 
more explicit, which is especially useful for text, where vocal cues and emphasis 
are not available. In some tweets, the evaluated situation is hard to identify in 
the text. These cases (annotated as “other verbal irony”) often require complex 
common-sense reasoning.

For this work, we only considered the recall of our syntactic pattern approach, 
which is still anchored in the annotated targets. For future research, the syntactic 
pattern approach will be further developed in order to enable automatic extraction 
of evaluation targets from ironic and non-ironic tweets, while taking into account 
a good balance between recall and precision. Using the resulting targets as poten-
tial common-sense units, we aim to build new knowledge bases for any given 
domain, that can be further expanded and enhanced by adding additional reason-
ing mechanisms to create connections between the common-sense units. While 
we relied on our manual evaluation of the system outputs to investigate the limi-
tations of our systems, it would also be interesting to investigate how techniques 
based on attention weights (Abnar & Zuidema, 2020),game theory (Fernando 
et al., 2019) or integrated gradients (Sundararajan et al., 2017) can help explain 
the reasoning of transformer models. Such techniques can help us identify the 
“features” used by transformer models and possibly establish analogies between 
the reasoning of traditional feature-based and transformer-based systems.
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