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Dynamically Estimating Saturation Flow Rate at Signalized 

Intersections: A Data-Driven Technique 

Connected Vehicles (CVs) could enhance traffic management systems by 

providing detailed and real-time information. Theoretically, such information can 

be exploited for the provision of efficient movement of traffic, especially at 5 

intersections identified as the bottlenecks of traffic systems. Aimed at the same 

purpose, this paper uses the information of CVs to estimate the Saturation Flow 

Rate (SFR), particularly in the transition period during which CVs and 

conventional vehicles will coexist. To this end, we retain the advantages of data-

driven techniques to capture the underlying dynamics of SFR by considering the 10 

information of CVs as the only input. In this regard, we correlate the dynamic 

variations of SFR to the mutual interactions among the contributing parameters 

extracted from the limited pieces of CVs' information using a neural network. 

Comprehensive simulations under precisely designed settings in VISSIM show a 

hoped-for SFR estimation accuracy level, which can further augment intelligent 15 

intersection controller initiatives. 

Keywords: Dynamic saturation flow rate; Connected vehicles; Mixed traffic; 

Neural network; VISSIM 

Introduction 

With the soaring traffic congestion in urban areas, experts have been proposing traffic 20 

control methods to maximize the capacity of urban traffic networks. In this respect, by 

focusing on intersections as the critical bottlenecks of traffic and (particularly) using the 

information of Connected Vehicles (CVs)1 as the new source of information, traffic 

control methods have been continuously improved (Guo, Li, et al. 2019; Moradi et al. 

2022). However, despite the importance of the Saturation Flow Rate (SFR) in many of 25 

such emerging methods (see, for example, the models proposed in (He et al. 2014; Yang 

 

1 Connected vehicles are defined as vehicles that can communicate by any means. 
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et al. 2017; Moradi et al. 2021)), not much research has been done to enhance 

(accordingly) the quality2 of SFR estimation models. 

SFR determines the maximum flow rate (in a time unit) of a certain lane group if 

the associated traffic signal is constantly green (TRB 2010). In principle, SFR at a 

signalized intersection is a pivotal aspect of the capacity theory playing an important role 5 

in many efficiency indices, including delay and queue length. To date, three general 

approaches have dominated the methodologies applied to obtain SFR estimation models: 

(1) the adjustment approach, (2) the headway approach, and (3) the case-based approach. 

Models developed using the adjustment approach (proposed in the U.S. Highway 

Capacity Manual HCM) and its variants are perhaps the most frequently proposed SFR 10 

estimation models over the past few decades due to their structural expressiveness3. Such 

models statically include coefficients to reflect the impact of site-specific parameters on 

a defined base SFR per lane, see (Lin 1992; Milazzo et al. 1998; Bonneson 2005; Potts et 

al. 2007; Shao et al. 2011; Chen et al. 2012; Guo et al. 2012; Chen et al. 2014; Behbahani 

et al. 2017; Biswas et al. 2018) for detailed information regarding the effects of these 15 

parameters on a base SFR. To obtain a better estimation of SFR in special cases, 

modifications have been further carried out (locally) to address the heterogeneous 

characteristics of infrastructures, vehicles, and drivers (e.g., the model presented in (Qin 

et al. 2019) considered the effects of guideline markings, (Anusha et al. 2013) focused on 

the high proportion of two-wheelers, and (Akçelik 2008) evaluated the effects of drivers' 20 

 

2 The term quality can be interpreted by (1) fitness for the intended purpose, (2) meeting the 

needed precision, and (3) satisfying simplicity and generalization issues. 

3 This concept refers to the power of a model's structure to incorporate contributing elements and 

to be interpreted as such element. 
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culture). Furthermore, these models have also been extended to capture the interaction 

effects among influencing parameters to improve the estimation accuracy of SFR (see 

(Wang, Rong, Zhou, Chang, et al. 2020) as an example). 

The adjustment approach is based on static assignments that are well-suited for 

spatial constraints. While the spatial constraints of each specific intersection are, to a 5 

certain degree, responsible for SFR, the same intersection can have substantially different 

SFR values with respect to time-varying parameters resulting from dynamicity and 

stochasticity inherent in traffic (e.g., the current traffic composition, the flow pattern, the 

supply condition, and the temporal blockages, which all vary from time to time). To 

address this concern, several research studies have been conducted to estimate SFR by 10 

analyzing vehicles' real-time time-space information characterized by discharge headway 

values. For example, (Yang et al. 2013) and (Wang et al. 2018) proposed to use induction 

coil detectors and video detectors (respectively) as the data extraction tools to calculate 

the current discharge headway by applying an exponential smoothing method and the 

Dickey-Fuller test (respectively) to, eventually, approximate the current SFR. However, 15 

studies showed that models developed using the headway approach may result in an 

inaccurate estimation of SFR (Shao and Liu 2012), mainly due to the lack of 

expressiveness of this approach.4 

Concerning the issue of accuracy, research projects on the development of SFR 

estimation models under the consideration of specific microscopic traffic conditions have 20 

also been ongoing. As a case in point, (Saha et al. 2018) proposed a model based on 

Kriging variants by using data collected from different cities in India. In another case, a 

regression model estimating SFR has been developed using data collected from 

 

4 In this case, we are restricted to a single variable equation derived from the average headway. 
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Bangladesh (Hossain 2001). Such models generally result in more accurate estimations 

of SFR than those from models developed by the adjustment or the headway approach. 

However, taking all microscopic factors into account renders such case-based models 

computationally intensive with a concomitant effect on their generalizability and 

applicability. 5 

 

It can be seen from the above explanations that while previous models share a 

similar overall structure in terms of employing a set of data collected over a time period 

to estimate SFR, they differ from one another with respect to (1) how and in what detail 

they collect data and (2) in which way they estimate SFR using the collected data. 10 

Concerning the first difference, CVs are expected to have a high penetration rate in the 

near future, and are envisioned to provide much data in real-time for a low price (as 

opposed to traditional data collectors). Nevertheless, a limited effort to build SFR 

estimation models using the information of CVs has, to the best of the authors' knowledge, 

been reported in literature. Concerning the second difference, it appears from literature 15 

that not much research has been done to develop a model combining (1) expressiveness 

from the adjustment approach, (2) dynamicity from the headway approach, and (3) 

accuracy from the case-based approach. 

Given these research gaps, this study contributes to the literature by proposing a 

CV-based neural network model (which, from now on, we will refer to as CVN-SFR) to 20 

dynamically estimate the SFR of each lane by relying on CVs as the only source of 

information. In this case, note that there are studies using information of CVs to construct 

the fundamental diagram, see (Guo, Xiao, et al. 2019; Seo et al. 2019; Guo and Zhang 

2021). Such models can be used to macroscopically determine the maximum traffic flow 

without incorporating heterogeneity in the traffic composition, driving behaviors, or 25 

temporary obstacles (e.g., bus stops and pedestrians), to name only a few examples. 
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However, we aim to look at this issue microscopically to address the effects of temporal 

characteristics of traffic on SFR. In this respect, it should be pointed out that while 

previously proposed models could relate changes in SFR to spatial and site-specific 

parameters, the relationship between SFR and information of vehicles, in general, and 

CVs, in particular, is poorly understood. Accordingly, given the confirmed advantages of 5 

neural network models in handling different types of interactions when underlying 

dynamics are unknown (Karlaftis and Vlahogianni 2011), we employ neural network 

models to estimate SFR. Under this approach, first, we can leverage the expressiveness 

of CVN-SFR by using a network structure that consists of several hidden layers along 

with activation functions. Second, the resulting model, which is purely data-driven, can 10 

address the required dynamicity through the analysis of real-time information of CVs. 

Third, given a better understanding of underlying dynamics, CVN-SFR is expected to act 

in pursuit of maximizing the accuracy of SFR estimations. 

It is important to note that while CVs will become more prevalent in the near 

future, they will certainly coexist with conventional vehicles for an enduring time horizon 15 

due to the general characteristics of technology diffusion. Given this point and also 

considering that deploying traffic sensors (e.g., detectors) everywhere is neither cheap 

nor easy, it is particularly not a promising approach (at least in the near future) to look at 

such issues from a fully connected environment standpoint. Hence, CVN-SFR is 

developed under the assumption of incomplete and sparse data resulting from mixed 20 

traffic conditions (consisting of both CVs and conventional vehicles). To simulate this 

condition as realistically as possible, we use the microscopic simulator VISSIM as the 

data generating tool in this study due to its comparative advantages in modeling multiple 

types of vehicles in different road network configurations managed by distinct methods. 
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Based on the resulting data, we further use our model in a plethora of experiments to 

evaluate the accuracy of its estimations. 

The remainder of this paper is structured as follows. Section 2 defines the 

simulation settings used in the data generation processes. Section 3 focuses on the data 

collection processes and reveals the rationale behind the chosen parameters. Section 4 5 

explains the structure of our model and illustrates the core functionality of CVN-SFR. 

Finally, Section 5 enumerates the main conclusions. 

Simulation settings 

As mentioned, VISSIM is adopted here to generate traffic data comparable to what one 

may observe in real-world situations. This section details how this microscopic simulator 10 

has been prepared for this purpose by defining different types of intersections, which are 

dynamically loaded with widely differing traffic fleets. 

Defining intersections 

Defining all kinds of geometries and configurations for an intersection without resorting 

to any specific structure is difficult to achieve, if not impossible. However, simulating a 15 

general intersection structure under different assumptions can be regarded as a solution 

giving rise to the observation of many possible real-world situations. Accordingly, we 

define a typical four-leg intersection configuration as our base case to which different 

scenarios in terms of  

• the number of lanes in each leg,  20 

• speed limits with respect to different area types,  

• whether or not there are any parking slots, bus stops, walking (and bicycle) 
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signals, or zebra lines,  

• signal controller mechanisms  

are applied. 

In light of the latter, it should be mentioned that the drive to include different mechanisms 

for signal sequences in an intersection arises from the identified effect of internal conflict 5 

points on the value of SFR. To have an intuitive sense of this issue, we borrow the simple 

example provided by (Flötteröd and Rohde 2011) as is depicted in Figure 1. In this three-

leg intersection (where each leg has one lane), the applied intersection control method 

simultaneously gives the right-of-way (green light) to the north flow with a right-turning 

share and the south flow with a left-turning share. We assume that the capacity of the 10 

westbound link is fully used by the left-turning share of the south flow demand and the 

right-turning share of the north flow demand (i.e., queues of vehicles have been formed 

in the south and north legs). Accordingly, we can infer that if in conflict point A the north 

flow demand yields to the south flow demand (based on the priority rules and also 

differences with respect to the drivers' compliance to those rules), the larger share of the 15 

south flow demand will cross the intersection. 

 

Figure 1. A single-lane three-leg intersection where SFR is affected by internal conflicts. 
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Figure 2. The standard NEMA structure. 

 

Generally, given that different conflict points could appear under different mechanisms 

for signal sequences in an intersection, we define distinct types of intersections with 5 

respect to their control methods. To do so, we consider different sequences of the possible 

signal groups categorized using the standard NEMA (National Electrical Manufacturers 

Association) dual-ring structure shown in Figure 2. Based on this structure, straight and 

left-turning signal movements (which are labeled by even and odd numbers, respectively) 

form two groups, each of which consists of two rings. Using these groups and rings, the 10 

compatible signal groups can be identified (e.g., signal movements 1 and 6) and 

determined for the phase allocations (with and without permitted right-turning 

movements). 

Defining traffic fleets 

Characterization of traffic fleets is carried out here by (1) defining different types of 15 

vehicles, (2) designing multiple patterns of individual driving behavior, and (3) 

considering different mixes of vehicles controlled by different drivers. 

First, different types of vehicles are supplemented to the model. To do so, we 

define Heavy Goods Vehicles (HGVs), buses, passenger vehicles, motorcycles, and 

bicycles by considering different specifications in terms of maximum speed, maximum 20 

acceleration, maximum deceleration, and occupancy area. We also assume that the 
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effects of site-specific conditions of a given intersection (e.g., grade, weather, visibility, 

etc.) on the operation of vehicles have previously been reflected in the provided 

specifications. Moreover, to deal with the communication capability of CVs, we define 

and enable a Boolean attribute to discriminate between CVs and conventional vehicles in 

terms of the ability to send information. 5 

Second, we define different sets of driving behavior, including conservative, 

normal, and aggressive (turn-taking) models, to address the heterogeneity of drivers in 

terms of respecting the priority rules. To this end, we adjust the parameters of the car-

following, lane-changing, and lateral behavior settings available in VISSIM using defined 

ranges given in (AG 2018) to derive different behavior models. Then, every vehicle is 10 

randomly subjected to one of these driving behavior models to satisfactorily represent 

real-world observations in which each driver responds differently and unpredictably to 

the same stimuli. 

Third, we define the scenarios illustrated in Figure 3 to define different mixes of 

traffic fleets. Specifically, we separately consider scenario 1: a low proportion of two-15 

wheelers (i.e., both motorcycles and bicycles) and heavy vehicles (i.e., both HGVs and 

buses), scenario 2: an average proportion of heavy vehicles, scenario 3: a high proportion 

of heavy vehicles, scenario 4: a high proportion of HGVs, scenario 5: a high proportion 

of buses, scenario 6: an average proportion of two-wheelers, scenario 7: a high proportion 

of two-wheelers, scenario 8: a high proportion of motorcycles, and scenario 9: a high 20 

proportion of bicycles. For the sake of illustration in the above scenarios, we assume the 

2%, 12%, and 22% (respectively) proportion of each specific type of vehicles to represent 

the low, average, and high proportion (respectively) of that type of vehicles in traffic. 
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Figure 3. Different traffic fleet mixes configured for this study. 

Simulation and data generation 

For generating data, we first activate the dynamic traffic assignment option during the 

simulation in VISSIM, as this is expected to result in a more realistic distribution of traffic 5 

demand and supply. Then, by iteratively changing the arrival rates of different traffic 

fleets in each specific intersection, we simulate the flow of traffic and generate traffic 

data. 

Data collection 

This section is dedicated to reviewing the data collection processes of parameters 10 

(selected to train the model) in both the input and the output layers of the neural network. 

Data quality attributes 

The reliability of data-driven techniques, in general, and neural network models, in 

particular, tremendously depends on the amount and quality of the collected data. In other 

words, the performance of such models will significantly deteriorate if the collected data 15 

suffers from inaccuracy, scarcity, inconsistency, or irrelevancy. 

In reality, there is still a long way remaining to achieve such a goal of whole traffic 

data extraction through a number of CVs equipped with different kinds of sensors capable 
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of onboard data analysis. However, considering the increasing progress in the technology 

of CVs (Uhlemann 2015), it is not fictional to assume that CVs can transmit their own 

information to an information unit (i.e., V2I) accurately without failure. Accordingly, 

considering the effect of data inaccuracy may not be essential in this work. 

The issue of data scarcity, on the contrary, directly depends on the proportion of 5 

CVs in a traffic composition, as it is assumed here that only CVs can report data. As is 

shown in Figure 3, different percentages of CVs in various traffic compositions are used 

to ensure the robustness of the model in case of sparse data. To overcome data scarcity in 

case of a low proportion of CVs, we can (1) adopt approaches revealing the correlations 

among different pieces of CVs' data (e.g., correlation matrices (Gao et al. 2017) or 10 

principal component analysis (Abdi and Williams 2010)), or (2) embed auxiliary 

parameters to relate between estimations of CVN-SFR in different lanes and different 

cycles. The latter is selected here to be implemented due to its computational 

convenience. 

The issue of data inconsistency could become a major concern, especially after 15 

the commercialization of CVs by different companies at an affordable price. In that case, 

various sets of data notation and terminology utilized by different companies induce non-

homogeneities in datasets. Accordingly, to retain consistency among data residing in 

datasets, emerging data storing techniques should eventually be employed in data 

collection processes.5 However, we assume here that all pieces of data are consistent. 20 

 

 

5 A rigorous analysis of the transformation of CVs' data into a suitable form for data mining 

purposes is left for future research. 
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Finally, concerning the issue of data irrelevancy, we choose to conduct focus 

group discussions (Hennink 2013) aiming at finding the most relevant CVs' data in the 

context of SFR and ignore further details. The importance of this step is in the fact that 

pulling information from massive data is too expensive in terms of processing time, not 

to mention the required technological capacity that is lacking in many cases. According 5 

to the carried out sessions, among the available pieces of CVs' data in a time horizon with 

predetermined cycle durations, the followings are believed to have great promise and be 

practically accessible: 

(1) k

iN : total number of CVs in lane i  during cycle k  (where a cycle starts just 

after the beginning of the corresponding red time and ends before the signal 10 

turns red again). For example, see points 1 to 5 in Figure 4 ( k

iN = 5). 

(2) k

iB : total number of stop-and-go events of CVs in lane i  during cycle k . 

Points 6, 7, and 8 in Figure 4 highlight such events.   

(3) ikP : total number of CVs in lane i  at the end of cycle k . As an example, given 

points 9 and 10 in Figure 4, ikP  for this case is equal to 2. 15 

(4) 
ik

pD : distance of CV p  to the signal head of lane i  at the end of cycle k . Such 

variables are shown by arrows with numbers 11 and 12 in Figure 4.  

(5) 
ik

pV : speed of CV p  in lane i  at the end of cycle k . This information can be 

derived from the trajectory information of each CV, as is shown by points 13 

and 14 in Figure 4. 20 
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Figure 4. A time-space diagram of the trajectories of CVs at lane i  during cycle k . 

Input layer: the information of CVs  

In the ongoing effort to estimate SFR, we need to reformat the available pieces of CVs' 

data in such a way that they represent the mutual interaction between the time-invariant 5 

intersection parameters and the varying characteristics of traffic flows. To this end, we 

propose the input parameters as are enumerated below (from 1A  to 5A ): 

(1) 
1

k

i

k

ii I

N
A

N


=


;  

1A  is the number of CVs approaching the intersection through lane i  during cycle 

k  divided by the total number of CVs approaching the intersection (considering 10 

the set of all lanes I ) during that cycle. As 1A  gets values closer to 1 (0), it means 

that the relative demand in lane i  is higher (lower), compared to other lanes. 

Moreover, a value close to 1/ ( )n I  (where the notation n(I) indicates the number 

of elements in the set I) for 1A  implies that the current traffic demand is uniformly 

distributed among all lanes. Accordingly, this parameter is deemed to be related 15 

to the temporal characteristics of traffic in terms of the arrival pattern. Note that 
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arrival patterns could affect the way congestion grows in space and time. 

(2) 
2 /

k k

i i

k ki I
i i

B B
A

N N
=  ; 

2A is the average number of stop-and-go events (per CV) in lane i  during cycle 

k  as compared to the average number of stop-and-go events in all lanes in that 

cycle. This parameter is expected to, on the one hand, be related to the effects of 5 

bus stops, parking slots, and zebra lines, and on the other hand, reflect the internal 

constraints (originating from an intersection control method) or supply blockages. 

In fact, in a certain demand profile, there are generally more stops if traffic 

demand is subjected to (1) extra moving bottlenecks (e.g., bus stops, pedestrians, 

etc.) or (2) intersection internal and supply constraints, which both could 10 

considerably change SFR. 

(3) 
3 1

1
( ) /

ik

i

p
P ik

ikp pp
all ik

V
A P

V D=
=  ; 

3A  is the average of the product of each CV's normalized speed in lane i  at the 

end of cycle k  with the inverse of its scaled associated distance to the signal 

head.6 Considering the Greenshields fundamental relations (Kessels 2019), this 15 

parameter gives an implicit exhibition of flow and congestion in lane i , while also 

putting more weight on the speed of CVs closer to the intersection. Accordingly, 

in relation with other indicators describing congestion (e.g., 1A  and 2A ), 3A  can 

lead to the representation of the current traffic behavior at lane i  in terms of flow. 

 

6 Normalized speed refers to CVs' speed in lane i  divided by the allowable speed of CV p  in 

lane i  (labeled by 
i

p

allV ). 
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(4) 2

4 1 1 1

1 1 1
( ) / ( )

1

ik ik ik

i i i

p p p
P P Pik ik ik

p p pp p p
ik all ik all ik all

V V V
A

P V P V P V= = =
=  −  

−
   ; 

4A  is the standard deviation of the CVs' normalized speed in lane i  at the end of 

cycle k  multiplied by the inverse of the average of the normalized speed in lane 

i  at the end of cycle k .7 This is a formulation that is used to calculate the 

coefficient of variation measuring the dispersion of speed distribution. This 5 

parameter is used to deal with the heterogeneity of road users with respect to their 

operating differences. To better explicate the implications of this parameter, recall 

that we define different types of vehicles with different specifications, including 

speed. Accordingly, under a heterogeneous traffic fleet, there could be some 

temporary blocking events (meaning some vehicles cannot go towards an 10 

intersection with the desired speed) which will be highlighted by this parameter. 

(5) 
1

' ' ' 1
5 1

' ' ' 2

|| [ | ' ' 0 0] ||

|| [ | ' ' 0 0] ||

k k k

i i i k i

k k k

i i i k ii I

S i i i N P S
A

S i i i N P S

−

−



 →     
= 

 →      
; 

5A  is the ratio of the first norm of the vector consisting of all other SFR values 

except i  (labeled by '

k

iS ) to its second norm, multiplied by the ratio of 1k

iS −  to the 

sum of all SFR values at cycle 1k − . We have defined 5A  to relate between SFR 15 

of lane i  at cycle k  with (1) SFR of other lanes in cycle k  and (2) SFR of lane i  

at cycle 1k −  to contribute in the case of a low proportion of CVs. The defined 

parameter can make the connection with the SFRs of other lanes during the current 

cycle and with the SFR of the previous cycle. 

 

7 To calculate the standard deviation, we assume our available data as a sample space. 
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Output layer: the SFR results  

To calculate k

iS , many studies have used the concept of passenger car unit (Raj et al. 

2019) to deal with the issue of headway differences between different types of vehicles 

(see (Chand et al. 2017)). Despite the incurred complexity of this concept (Arasan and 

Arkatkar 2008), however, (Radhakrishnan and Mathew 2011) has found that using 5 

passenger car unit in a highly heterogeneous traffic flow might lead to an erroneous 

outcome. Accordingly, we alternatively use 

 3600

k
eg

k i
i k

e

TN
S

g
=   (1) 

which calculates k

iS  in terms of (vehs/lane)/h by considering the count of all vehicles 

k
eg

iTN  in lane i  crossing the stop line of the intersection during the associated effective 10 

green time at cycle k  (labeled by k

eg  and measured in seconds) (Saha et al. 2018). By 

doing so, we also incorporate the effect of lane width on SFR, which is especially 

important when the proportion of two-wheelers is relatively high. 

It should also be mentioned that in Equation (1), k

eg  refers to a time during which 

traffic may proceed at SFR. Theoretically, k

eg  starts after the start-up lost time (mainly 15 

occurring due to the shockwave phenomenon (Michalopoulos and Stephanopoulos 1981)) 

and lasts until the green time duration ends or there are fewer number of vehicles than a 

predefined threshold8 to discharge, whichever comes first (Tan et al. 2013). A schematic 

representation of k

eg  and 
k
eg

iTN  is provided in Figure 5. 

 

8 We assume a minimum of 5 vehicles as this threshold. 
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Figure 5. An illustration of the effective green time and the count of vehicles crossing the intersection during this 

time. 

Model development and evaluation 

This section first demonstrates how CVN-SFR is built, then evaluates its functionality, 5 

and finally clarifies its potential implications in the context of intersection and traffic 

management. 

Architecture of CVN-SFR 

Figure 6 represents a conceptual illustration of CVN-SFR. As is shown in this figure, the 

apparatus of CVN-SFR consists of three processes: (a) extracting the input parameters 10 

based on CVs' data at each cycle, (b) feeding these parameters into a defined neural 

network, and (c) checking whether or not the estimated SFR meets the accuracy 

requirement. Note that we have already explained the parameter extraction process (see 

Figure 6 (a)) in the previous section. The current section thus continues to provide insight 

into the latter two processes. 15 
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Figure 6. A conceptual representation of CVN-SFR. 

To define a neural network, we should first determine its neurons (also called 

nodes) characteristics. A neuron is the basic building block that takes an arbitrary number 

of input signals, performs a mathematical operation to each input, and results in an output 5 

signal. As is customary in the related literature, previously proposed activation functions 

(such as the sigmoid, hyperbolic tangent, and rectified linear unit functions (Lau and Lim 

2017)) can be employed in neurons as the mathematical operator to nurture the imitation 

capability. Among these functions, we select the sigmoid function (i.e., ( ) 1/1 af a e−= +

for any input, say a ) and the rectified linear unit (i.e., ( ) max(0, )h b b=  for any input, say 10 

b ). The drive to embed these functions in our model arises from the need to (1) ensure 

bounds on each input signal and (2) allow for positive SFRs only. Furthermore, we have 

also inserted bias units (
1HB , 

2HB , and YB  in Figure 6 (b) for neurons in the 1H , 2H , and 

Y  layers, respectively) into our model to add new dimensions in the computation 

processes with the capability of shifting the activation functions. 15 

Arranging the defined neurons and biases (whose possible magnitudes will be 

obtained from the learning algorithm) in series and parallel (and even both) along with 

considering links (whose weights will also be generated by the adopted learning 

algorithm) to connect neurons (with respect to their weights) will provide the ability of 

pattern recognition in a network as a whole. Accordingly, the vast set of neural network 20 
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architectures have been presented so far by defining different ways in which neurons are 

interrelated (e.g., feed-forward, recurrent, and convolutional neural networks, to name 

only a few (Brunton and Kutz 2022)). Among them, we adopt the feed-forward structure 

along with the assumption of a dense connection between the defined neurons to solve 

for the estimation of current SFR due to its reported power to deal with such prediction 5 

problems (Wang, Rong, Zhou, and Gao 2020). 

Working within a densely connected feed-forward network structure, we should 

now identify the necessary number of hidden layers and also the number of neurons in 

each hidden layer (i.e., the regularization of hyper-parameters). Determination of these 

parameters is not a straightforward task since it not only depends on the intended structure 10 

and the number of input and output units but also entails an analysis of the training 

samples and the training algorithm (e.g., K-fold cross validation) (Ke and Liu 2008). 

However, it has been proved that for many tasks (including such non-linear 

approximations), using shallow networks (consisting of one or two hidden layers) can 

give satisfactory predictions with sufficiently small error (Cai et al. 2019). Accordingly, 15 

by opting for a network with two hidden layers, we can use approximation methods 

previously proposed to estimate the appropriate number of hidden neurons (Gentile and 

Sznaier 2001; Vasilyev 2016). In particular, the authors of (Vasilyev 2016) used the 

minimal complexity principle to present (see Figure 6) 

 1
2

1

( ) ( ( ))
( )

( ) ( )

n Y R n H
n H

n X n H

  −
  

+ 
 (2) 20 

as a condition approximating the required number of hidden neurons in hidden layer 1

1( )n H  and hidden layer 2 2( )n H , with respect to the number of input parameters ( )n X , 

the number of output parameters ( )n Y , and the number of prevalent modes R . To 
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determine the number of prevalent modes, recall that we define four input parameters9 

(i.e., 1A  to 4A ) representing the different modes leading to the determination of SFR. This 

means that in each distinct mode, there is a specific arrangement of these parameters 

ordered according to their influence on SFR. Hence, by considering 4R = , ( ) 5n X = , 

and ( ) 1n Y = , we see that the condition presented in Equation (2) will be met by having 5 

four neurons in hidden layer 1 (i.e., 1( ) 4n H = ) and three neurons in hidden layer 2 (i.e.,

2( ) 3n H = ). All this taken into account, we use a network structure shown in Figure 6 (b) 

resulting in a total of 43 weights and biases to be optimized.10 

To this end, by reviewing the literature of neural networks with prediction 

purposes (Adya and Collopy 1998), we found that the widely used backpropagation 10 

algorithm (Hecht-Nielsen 1992) could be effectively applied as the learning algorithm in 

our network (Figure 6 (c)). In this algorithm, the computation starts with considering a 

random weight for each link (e.g., 
1
( , )X

HW a b  between neuron a  in the input layer and 

neuron b  in hidden layer 1 and also assigning random biases (e.g., 
1HB  inserted into 

hidden layer 1). Then, by selecting mean squared error as our loss function and gradient 15 

descent as the optimizer, this algorithm uses 

 

9 Note that 5A  is presented as an auxiliary parameter to boost the model's robustness. 

10 By using these approximations, we circumvent the need for a complex cross-validation for 

regularization. 



22 

 

 

2

1 2

2 2

2 1

1 22 1

( , ) ( ( )) '( ) ( )

( , ) ( ( )) '( ) ( ( , ) '( )) ( )

( , ) ( ( )) '( ) [( ( , ) '( )) ( ( , ) '( ))] ( )

( ( )) '( ) (

H k

Y i

H Hk

H i Yc H

H HX k

H i Y Hc H b H

k

Y i

W c d S h d h d h c

W b c S h d h d W c d h c h b

W a b S h d h d W c d h c W b c h b f a

B S h d h d h











 

 =  −  

 =  −    

 =  −      

 =  −  



 

2

2 2

2 1

1 22 1

)

( ( )) '( ) ( ( , ) '( ))

( ( )) '( ) [( ( , ) '( )) ( ( , ) '( ))]

Hk

H i Yc H

H Hk

H i Y Hc H b H

c

B S h d h d W c d h c

B S h d h d W c d h c W b c h b







 









 =  −   


 =  −     



 

(3) 

in each epoch to improve weights and biases (with respect to the previous iteration), in 

such a way that the minimum of the loss function can eventually be found. It should be 

mentioned here that in Equation (3), d, c, b, and a indicate node values in the output, 

hidden layer 2, hidden layer 1, and input layers, respectively. Given a (input), we further 5 

calculate these values by 
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Furthermore,   (in Equation (3)) stands for the learning rate. The learning rate specifies 

how much each weight and bias can change with reference to the observed error (Thota 

and Changalasetty 2013). In this regard, on the one hand, caution should be taken to use 10 

large learning rates, which may inhibit the minimization of the loss function at any one 

time, and on the other hand, it should be considered that very small learning rates can 
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incur computational burden. In our model, 0.01 =  turned out to be an appropriate 

learning rate according to the analysis of obtained loss values.11 

Results of CVN-SFR 

After adjusting the simulation settings based on the provided explanations, internal 

scripts12 (coded in COM interface) are used to run the simulation operation and data 5 

collection processes. Subsequently, several sequences of 9-hour simulations have been 

performed in a way that: 

• in each sequence of simulation, we combine a distinct intersection with a different 

proportion of CVs; 

• in each hour of a simulation run, we use a different traffic fleet. 10 

Prior to moving towards training and analyzing our model, there is a need to split 

collected data into training, validation, and test sets in order to (1) fit CVN-SFR through 

the use of the training set, (2) fairly assess the quality of CVN-SFR through the use of the 

validation set, and (3) evaluate the accuracy of the estimations of CVN-SFR in 

unprecedented (new) conditions through the use of the test set. Note that while both the 15 

validation set and the test set are not incorporated in the learning process, the validation 

set is obtained from similar experiments to that of the learning set, but on the other hand, 

the test set is obtained from different experiments in terms of intersections geometry and 

traffic fleets. Additionally, we aim to explore the effect of the penetration rate of CVs on 

 

11 The issue of computation speed is beyond the scope of this investigation. However, the 

interested readers can refer to (Andayani et al. 2017) for a method of accelerating a 

backpropagation algorithm. 

12 The scripts are available at https://github.com/HossseinMoradi/Project10 
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the accuracy of CVN-SFR estimations. The quantification of this matter is carried out by 

defining two test cases resulting in: Test set 1 where all vehicles are connected and Test 

set 2 in which the proportion of CVs is 10%. Figure 7 depicts a summary of the key 

attributes for each set. 

Given these sets, to deal with missing data (emerging due to the simulation of 5 

mixed traffic), we adopt the imputation technique (Little and Rubin 2019). The main 

principle of all variants of this technique is to replace missing data with other (but 

relevant) values, to make the whole data set exploitable as if it was complete. In our case, 

we use the defined auxiliary parameter ( 5A ) as a similarity score to improve the quality 

of values resulting from imputation with the mean approach. In this regard, while 10 

imputation with the mean approach (by itself) is efficient and valid for our data set (due 

to its perceivable analogy to a normal distribution) (Brown and Kros 2003), we have 

further applied a simple algorithm with which the stationary results of the mean approach 

are adjusted with respect to the relative value of the corresponding similarity score. Using 

these completed sets, our analysis yields the following results. 15 

 

Figure 7. Classification of data sets. 
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With respect to the learning process, Figure 8 (a) shows how the value of the loss 

function changes over epochs. According to this figure, the obtained loss value 

incrementally decreases until the minimum loss value has been met. At this time, the 

learning process has been completed, and the values of weights and biases have 

converged. Performing qualitative reasoning on Figure 8 (a) can bring up the following 5 

arguments: 

• According to the trajectory of the loss value, we can claim that the 

backpropagation algorithm equipped with the gradient descent optimizer and the 

defined learning rate has operated successfully. 

• According to the resulted minimum loss value, we can conclude that the 10 

developed network structure is able to satisfactorily relate the defined input 

parameters and SFR. 

 

 

Figure 8. Results of learning, validating, and testing processes of CVN-SFR. 15 
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With respect to the validation process, Figure 8 (b) highlights how accurate the 

trained model is in relation to the validation data set. Concerning this, we randomly 

selected data from the defined validation set and compared the predictions of CVN-SFR 

to the true SFR measurements. Carrying out this comparison, as is shown in Figure 8 (b), 

leads to the following arguments: 5 

• When the validation set and training set are drawn from the same population, the 

(unbiased) results of CVN-SFR are, to a large extent, close to the true values; 

• The set of input parameters proposed in this research can capture the dynamics of 

SFR under different intersection configurations and traffic fleet mixes. 

Furthermore, we have also compared all SFR measurements in the validation set 10 

with the associated predictions of CVN-SFR. This comparison shows that the average 

error of CVN-SFR in this set is 10.7% and 
2 0.81R = . In other words, we see that the 

accuracy of CVN-SFR is around 90% for the validation set, and also the input parameters 

can considerably show the dynamic change of SFR, which in turn confirm the above-

mentioned arguments, respectively. 15 

With respect to the test process, Figure 8 (c) and (d) are provided to reveal the 

accuracy of CVN-SFR when it is exposed to unprecedented conditions. In this regard, 

Figure 8 (c) and (d) are respectively dedicated to two extreme cases in our simulation 

scenarios, namely (1) the percentage of CVs in the traffic fleet is 100% and (2) the 

percentage of CVs in the traffic fleet is 10%. The obtained results are interpreted as 20 

supporting the following arguments: 

• In the case of fully connected traffic, the predictions of CVN-SFR are 

appropriately close to the true SFRs. Hence, our proposed model is able to predict 

SFR (per lane) based on the information of CVs in the intersection, without 

knowing the geometric properties of the intersection, the composition of the 25 
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traffic fleet, and the behavioral patterns of drivers. It is worth mentioning here that 

besides these random cycles, comparing all the CVN-SFR predictions with the 

corresponding SFR measurements in this set results in 15.3% as the average error, 

which, by considering the standard deviation of SFR measurements (see Figure 

7), can be considered as a significant improvement; 5 

• When the proportion of CVs is relatively low (10% in our case), the application 

of CVN-SFR leads to predictions with lower fidelity (i.e., by analyzing all cases, 

the average error is 27.4%). However, while the average of SFR predictions is 

still close to the average of SFR measurements, CVN-SFR has also captured the 

trend of SFR dynamics to an extent, something that conventional methods cannot 10 

do. Accordingly, even with a low proportion of CVs, CVN-SFR can outperform 

conventional SFR prediction models. 

To shed more light on the latter, we analyze Figure 8 (d) from another perspective, 

as is shown in Figure 9. In an ideal case, what conventional models would predict (by 

considering the geometric properties of the intersection, the general composition of the 15 

traffic fleet, and the behavioral patterns of drivers) equals the average SFR (i.e., 1335) 

shown in Figure 9. Note that while many of SFR measurements fall within a range around 

this average value, it is possible to observe a relatively much higher (e.g., point 1) or 

lower (e.g., point 2) SFR (in Figure 9), due to the effect of time-varying traffic parameters 

like approaching a high number of two-wheelers, on the one hand, or pedestrian 20 

obstructions, on the other. In this case, we see that while the average of the estimated 

SFRs (i.e., 1365) is close to that of true values, significant changes of SFR have also been 

captured by CVN-SFR to some degree (see predictions at points 1 and 2). Such 

comprehensions enable CVN-SFR to perform better than conventional SFR prediction 

models even with a low proportion of CVs. 25 
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Figure 9. The estimations of CVN-SFR under a low proportion of CVs. 

 

Finally, we carry out a sensitivity analysis to assess the influence of each input 

parameter on the predictions of CVN-SFR. In this regard, we train our model four more 5 

times, in each of which we have eliminated one of the defined input parameters ( 1A  to 

4A ) and, then, have used the same network structure as CVN-SFR for the training 

process.13 Figure 10 demonstrates the dynamicity and minimum value of the mean 

absolute error achieved by each of these models, as compared to CVN-SFR. According to 

this figure, it can be clearly seen that the minimum error has considerably increased in all 10 

cases. This observation justifies the necessity of using all the defined input parameters in 

the proposed model.14 

 

13 Each new model consists of 4 input neurons, 2 hidden layers with respectively 4 and 3 neurons, 

and $1$ output neuron. Furthermore, similar to CVN-SFR, these models use the squared error 

loss function, the gradient descent optimizer, and the learning rate equal to 0.01. 

14 It should be stressed here that 5A  is embedded to compensate sparse data in case of a low 

proportion of CVs. 
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Figure 10. Investigating the effect of each input parameter on the minimum mean absolute error. 

Future directions of CVN-SFR 

As is shown in the previous section, we proposed an SFR estimation model that 

circumvents the limitations of conventional models by resulting in dynamic and accurate 5 

estimations of SFR through the use of information of CVs. This model as such is useful 

in that it can, eventually, lead to more efficient utilization of intersections capacity, 

especially at intersections with traffic-responsive control mechanisms whose 

specifications are connected to time-dependent conditions (including SFR). In this regard, 

by focusing on emerging CV-based intersection control mechanisms (due to the analogy 10 

of their input with CVN-SFR as the representative of traffic-responsive control 

mechanisms, it is expected to see future integration of related research endeavors. 

It should however also be mentioned here that we have found CVN-SFR 

susceptible to errors when the communication zone (where vehicles send the related 

information of their approach to the corresponding intersection) is restricted due to 15 

reasons, such as (1) the limitations of the applied communication platform or (2) the 

limitations that might arise because of the intersection location against other traffic 
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network's settings.15 In such a situation, the results of each input parameter in different 

temporal conditions are too close and, accordingly, the defined set of parameters would 

have a loose connection to the dynamics of SFR. In fact, to correctly include the effects 

of each input parameter, CVN-SFR needs a minimum communication zone (that is 

different for each intersection with respect to factors like the proportion of CVs in traffic), 5 

which in turn might limit the applicability of this model. Accordingly, the other important 

problem to be further studied can be: how to extend CVN-SFR in order to make it resilient 

to the above-mentioned limitation. One solution could be using more (but harder to get) 

pieces of CVs' data that can provide more robust results. 

Conclusion 10 

As it is expected that more and more CVs will share urban roads with conventional 

vehicles, the appropriate use of CVs information to manage traffic flows has become a 

matter of significant importance. However, while a considerable number of CV-based 

intersection control mechanisms have been proposed in the literature, the relation between 

the real-time information of CVs and the current SFR at each lane of an intersection has 15 

still remained an open area of active research. Inspired by this issue, we have presented a 

novel data-driven model (labeled by CVN-SFR) to leverage the information of CVs for 

enhancing the accuracy and dynamicity of SFR estimations. 

To better explicate the implications of CVN-SFR, one should note that, apart from 

the dependence of SFR on the spatial constraints of an intersection, it is also sensitive to 20 

the time-varying parameters resulting from dynamicity and stochasticity inherent in 

traffic. Accordingly, the same intersection can have a different SFR with respect to 

 

15 For example, in dense networks where intersections are located very close to each other 
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parameters, such as the current traffic composition and the flow pattern. Concerning this 

point, the presented results in this paper have shown that CVN-SFR is capable of capturing 

such SFR dynamics 

• to a large extent in the case of a high proportion of CVs; 

• to some extent in the case of a low proportion of CVs. 5 

Further simulations reported in this paper have confirmed that each of the defined 

input parameters is an important component of CVN-SFR. In this regard, the carried-out 

sensitivity analysis has shown that the functionality of the model can become far from 

being optimal in the case of eliminating each input parameter. On the other hand, 

concerning situations where the communication zone is restricted, there is still room for 10 

improvement of CVN-SFR by probably introducing new parameters using other pieces of 

CVs' data. 
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