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Abstract 33 

Significance: Hydrogen sulfide (H2S) is a multitasking potent regulator that facilitates plant 34 

growth, development, and responses to environmental stimuli. 35 

Recent Advances: The important beneficial effects of H2S in various aspects of plant 36 

physiology aroused the interest of this chemical for agriculture. Protein cysteine persulfidation 37 

has been recognized as the main redox regulatory mechanism of H2S signaling. An increasing 38 

number of studies, including large-scale proteomic analyses and function characterizations, 39 

have revealed that H2S-mediated persulfidations directly regulate protein functions, altering 40 

downstream signaling in plants. To date, the importance of H2S-mediated persufidation in 41 

several abscisic acid signaling-controlling key proteins has been assessed as well as their role 42 

in stomatal movements, largely contributing to the understanding of the plant H2S-regulatory 43 

mechanism. 44 

Critical Issues: The molecular mechanisms of the H2S sensing and transduction in plants 45 

remain elusive. The correlation between H2S-mediated persulfidation with other oxidative 46 

posttranslational modifications of cysteines are still to be explored. 47 

Future Directions: Implementation of advanced detection approaches for the spatiotemporal 48 

monitoring of H2S levels in cells and the current proteomic profiling strategies for the 49 

identification and quantification of the cysteine site-specific persulfidation will provide insight 50 

into the H2S signaling in plants. 51 

 52 

Keywords: hydrogen sulfide, persulfidation, abscisic acid, stomatal movement  53 
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Introduction 55 

 56 

 Sulfur is the 10th most abundant chemical element in the universe and is essential for all 57 

living organisms (Räisänen, 2005). It occupies a unique position in the reduction–oxidation 58 

(redox) biology due to its availability to reach many distinct oxidation states, ranging from –2 59 

to + 6 (Fig. 1). As the planet got oxidized, sulfate (+6) became the most abundant inorganic 60 

form of sulfur on earth. Hydrogen sulfide (H2S), the most reduced inorganic form of sulfur (-2) 61 

(Fig. 1), is a colorless, but flammable, gas, smelling of rotten eggs that is naturally released 62 

from volcanic emissions or other geothermal activities and from decaying plant and animal 63 

proteins. 64 

 As H2S is a weak acid with the dissociation constants pKa1 of 6.9 (Pomeroy, 1941) and pKa2 65 

of between 12 and 17 (Ellis and Golding, 1959, Meyer et al., 1983), it can be dissociated into 66 

hydrosulfide (HS¯) and sulfide (S2¯) anions in aqueous solutions. H2S usually stands for all 67 

species, including H2S, HS¯, and S2¯ (Paulsen and Carroll, 2013). Nevertheless, in solutions at 68 

an approximately physiological pH of 7.4, H2S releases negligible amount of S2¯ and exists 69 

primarily as HS¯(Hughes et al., 2009). Given the basic chemical properties of H2S and HS¯ 70 

with the lowest oxidation state of −2, they both can only be oxidized. Whereas H2S is a 71 

gasotransmitter that can diffuse freely across cellular membranes, HS¯ needs specific ion 72 

channels to move between different subcellular organelles or cells (Kabil and Banerjee, 2010). 73 

Accordingly, the H2S and HS¯ might regulate cellular functions differently. H2S, HS¯, and S2¯, 74 

together with various chemically reactive forms of cysteine thiols (see below) and other sulfur-75 

containing compounds that either reduce or oxidize biomolecules, can be classified as reactive 76 

sulfur species (RSS). 77 

 H2S has been implicated in the origin of life (Filipovic et al., 2018; Olson and Straub, 2016). 78 

Life began 3.8 billion years ago (bya) in a anoxic and ferrous ion (Fe2+)-rich ocean. 79 

Cyanobacteria, the first photosynthetic oxygen-generating organisms, are believed to have then 80 

evolved and contributed to the Great Oxygenation Event around 2.5 bya (Demoulin et al., 2019; 81 

Fournier et al., 2021; Planavsky et al., 2014). Along with the slightly increased oxygen level, 82 

sulfur oxidized to sulfate, which was further reduced to sulfide by ubiquitous Fe2+ present in 83 

the ocean, greatly increasing the H2S level and, consequently, leading to a anoxic and sulfidic 84 

ocean (Cortese-Krott et al., 2017). The first eukaryotes appeared and adapted under this 85 

condition using H2S as their major energy source (Olson and Straub, 2016). Green algae, one 86 

of the earliest photosynthetic eukaryotes of the Plantae kingdom that contained primary 87 

chloroplasts, derived from endosymbiosis with cyanobacteria, are assumed to have evolved as 88 
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early as 1.0 bya (Tang et al., 2020). The combined activity of cyanobacteria and algae 89 

tremendously increased the level of ambient oxygen approximately 0.6 bya, sequentially, land 90 

plants have evolved. The antioxidant enzymes, such as superoxide dismutase (Cannio et al., 91 

2000; Miller, 2012), catalase (Zamocky et al., 2008), glutathione peroxidase (Margis et al., 92 

2008), peroxiredoxins (Dietz, 2011; Knoops et al., 2007), thioredoxins (TRXs) (Balsera and 93 

Buchanan, 2019), and glutaredoxins (GRXs) (Alves et al., 2009), were already present in an 94 

anoxic and high H2S environment as early as 2.0 bya (Cortese-Krott et al., 2017). Therefore, 95 

these redox regulation systems most probably evolved primarily to use H2S as energy source or 96 

to deal with RSS, which was later amended to regulate reactive oxygen species (ROS) (Olson 97 

and Straub, 2016; Cortese-Krott et al., 2017). Along with the evolution and increasing 98 

complexity of organisms, the ancient mechanisms of H2S metabolism and regulation had to be 99 

adapted. For example, the sulfate transport system in chloroplasts has been suggested to 100 

undergo several adaptions, spanning the evolution of green algae, liverworts, and flowering 101 

plants (Kopriva et al., 2015; Mendoza-Cózatl et al., 2005; Takahashi et al., 2012). In brief, H2S 102 

metabolism as well as regulatory mechanisms in living organisms have evolved as the result of 103 

environmental adaptation, while the fundamental principles might remain conserved (Yamasaki 104 

and Cohen, 2016). 105 

 Besides its implied vital role in evolution, H2S has been recognized as a potent signaling 106 

molecule in the regulation of critical cellular processes (Wang, 2002, 2014). Increasing 107 

evidence has shown that H2S is not only involved in plant growth, development, reproduction 108 

processes (Baudouin et al., 2016; Chen et al., 2011; Ma et al., 2021), and promotion of 109 

nodulation in the rhizobium-legume symbiosis (Zou et al., 2019), but also facilitates tolerance 110 

to various environmental stresses, such as drought (Jin et al., 2011; Shen et al., 2013), salinity 111 

(Christou et al., 2013; Li et al., 2014a), heavy metals (Fu et al., 2019, Zhang et al., 2020b), and 112 

extreme temperatures (Du et al., 2021; Li et al., 2012). Furthermore, H2S has been reported to 113 

improve the quality maintenance during postharvest storage of fruit (Ge et al., 2017; Hu et al., 114 

2012), vegetables (Li et al., 2014b), and flowers (Zhang et al., 2011). Given the important 115 

beneficial effects of H2S in multiple aspects of plant physiology, exogenous H2S seems to be a 116 

promising biotechnological strategy with a great agronomic interest. 117 

 Numerous studies have uncovered the positive physiological impact of H2S on plants 118 

(Corpas, 2019; Corpas and Palma, 2020; Zhang et al., 2021), but how plants sense and transduce 119 

H2S signals remains elusive. H2S can modify proteins through posttranslational modification 120 

(PTM), a process named persulfidation. Persulfidation on critical proteins plays an important 121 

role in activating downstream signaling as demonstrated by both proteomic analyses and 122 
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functional characterizations (Aroca et al., 2015, 2017b, 2021a, 2021b; Fu et al., 2020a; 123 

Laureano-Marín et al., 2020; Zivanovic et al., 2019). Recently, H2S-induced protein 124 

persulfidation has been found to regulate stomatal movements in the abscisic acid (ABA) 125 

signaling pathway (Chen et al., 2020; Shen et al., 2020; Zhou et al., 2021), contributing to the 126 

understanding of the molecular mechanism of H2S signaling in plants. 127 

 In this review, we provide a wide perspective of H2S in plants, including H2S biosynthesis, 128 

exogenous application, endogenous detection methods, and the mechanisms and identification 129 

strategies for protein persulfidation. We further give insights into the molecular mechanisms of 130 

persulfidation in the regulation of ABA-mediated stomatal closure by highlighting several 131 

recent functional studies. 132 

 133 

H2S biosynthesis in plants 134 

 135 

 Plants generate H2S endogenously through several biosynthesis pathways in different 136 

subcellular organelles (Fig. 2). The major H2S source is associated with the photosynthetic 137 

sulfate assimilation pathway in chloroplasts. Plants take up sulfate from the environment 138 

through sulfate transporters (Takahashi et al., 2011), a protein class with high sulfate affinity 139 

that facilitates sulfate trafficking across membranes, into the chloroplasts, where H2S is mainly 140 

generated through sulfur metabolism. Sulfate is reduced by ATP sulfurylase to form the 141 

adenosine 5’-phosphosulfate (APS) intermediate that is further reduced to sulfite by the APS 142 

reductase. H2S is then produced from sulfite in the reaction catalyzed by sulfite reductase 143 

(Takahashi et al., 2011) (Fig. 2). H2S reacts with O-acetylserine (OAS), generating cysteine via 144 

catalyzation by OAS (thiol)lyase (OAS-TL) (Fig. 2). Based on an in vitro activity assay, OAS-145 

TL has been suggested to catalyze the reverse reaction to break down cysteine into H2S and 146 

OAS (Burandt et al., 2001). However, negligible amounts of H2S were formed when compared 147 

to the cysteine production, indicating that the OAS-TL reaction is a net H2S-consuming reaction 148 

(Bloem et al., 2004). Moreover, the production of endogenous H2S in planta by OAS-TL 149 

remains unclear. In plants, the main OAS-TLs responsible for cysteine synthesis are the 150 

cytosolic OAS-TL A1, the chloroplastic OAS-TL B, and the mitochondrial OAS-TL C (Fig. 2). 151 

Recently, the H2S level was found to be higher in an oas-tl a1 mutant than that of wild-type 152 

Arabidopsis thaliana plants, confirming the major biological function of OAS-TL in cysteine 153 

biosynthesis rather than in H2S generation (Li et al., 2018). 154 

 Cysteine desulfhydrase (CDes) was the first studied H2S-producing enzyme (Harrington and 155 

Smith, 1980; Tishel and Mazelis, 1966). Because of its ubiquitous activity in various 156 



 

6 
 

physiological processes of different plant species (Zhao et al., 2020), CDes is considered to be 157 

the most critical enzymatic source of H2S in plants. There are two type of CDes: L-CDes that 158 

degrades L-cysteine and D-CDes that uses D-cysteine as substrate. In the cytosol, L/D-cysteine 159 

is catalyzed by L/D-CDes to produce H2S, NH3, and pyruvate (Fig. 2). L-CDes 1 (DES1), an 160 

OAS-TL homolog located in the cytosol, had originally been thought to have a function similar 161 

to that of OAS-TL A1, until its CDes activity had been proven (Álvarez et al., 2010). The 162 

Arabidopsis DES1 gene is ubiquitously expressed at all developmental stages in plants 163 

(Laureano-Marín et al., 2014) and its function has been extensively investigated in the context 164 

of H2S signaling in ABA-mediated stomatal movement (see below). Moreover, the nitrogenase 165 

Fe–S cluster (NifS), localized both in chloroplasts and mitochondria, is also a putative H2S-166 

producing enzyme due to its L-CDes-like activity (Pilon-Smits et al., 2002; Van Hoewyk et al., 167 

2008). In addition, the mitochondrial β‐cyanoalanine synthase (CAS) detoxifies cyanide that 168 

appeared in the cells to β‐cyanoalanine in the presence of cysteine, along with the production 169 

of H2S (Hatzfeld et al., 2000) (Fig. 2). 170 

 In mammals, 3-mercaptopyruvate sulfurtransferase (MST) that belongs to the 171 

sulfurtransferase (STR) family, is one of the most important H2S-producing enzymes, but 172 

information about MST in plants is scarce. Recently, two Arabidopsis MSTs, the mitochondrial 173 

STR1 and the cytosolic STR2, were characterized by means of an in vitro activity assay, 174 

revealing their H2S-producing capability in the presence of reducing systems, such as TRXs 175 

and GRXs (Moseler et al., 2021). Nevertheless, the in planta contribution to H2S biosynthesis 176 

from STR1 and STR2 awaits to be further investigated. 177 

 178 

Exogenous H2S application in plants 179 

 180 

 Currently, investigation of the physiological roles of H2S is mainly based on studies applying 181 

exogenous H2S donors. To date, various H2S donors have been developed (Powell et al., 2018; 182 

Yang et al., 2022) and have been widely used in plant studies (Corpas, 2019; Corpas and Palma, 183 

2020; Liu et al., 2021). Here we provide a short discussion and an update on the these donors. 184 

 Sulfide salts, such as sodium hydrosulfide (NaHS) and sodium sulfide (Na2S), are inorganic 185 

compounds that release H2S by hydrolysis. To date, NaHS is the most popular and widely 186 

applied H2S donor in various plant species (Corpas, 2019; Corpas and Palma, 2020; Liu et al., 187 

2021). The use of NaHS as H2S donor has greatly improved our understanding of the biological 188 

function of H2S, but the NaHS shortcoming is that it does not mimic the biological effects of 189 

the physiological H2S generation. Indeed, NaHS hydrolyzes immediately in aqueous solutions 190 
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and instantaneously releases large amount of H2S, HS−, and S2− species, a process very different 191 

from the endogenously slow and continuous H2S enzymatic production. Therefore, chemicals 192 

with a slow H2S-releasing rate are required. 193 

 The morpholin-4-ium 4-methoxyphenyl(morpholino) phosphinodithioate (GYY4137) is 194 

such a slow releasing H2S compound that had initially been synthesized and evaluated with a 195 

vasodilatorory and antihypertensive activity (Li et al., 2008). Due to the commercial availability 196 

and application feasibility, GYY4137 is the most widely used H2S donor, besides from sulfide 197 

salts in the mammalian field (Powell et al., 2018). In plants, GYY4137 often applied in parallel 198 

with NaHS that has similar effects. For example, similarly to NaHS, GYY4137 application 199 

could induce stomata closure in Arabidopsis (García-Mata and Lamattina, 2010; Honda et al., 200 

2015) and Nicotiana tabacum (tobacco) (Papanatsiou et al., 2015) and could improve growth 201 

of Pisum sativum (pea), Lactuca sativa (lettuce), and Raphanus sativa (radish) (Carter et al., 202 

2018). 203 

 Recent environmentally friendly slow H2S-releasing chemicals, dialkyldithiophosphates and 204 

disulfidedithiophosphates, have been shown to improve the growth of Zea mays (maize) plants, 205 

hinting at potential applicability in agriculture (Brown et al., 2021; Carter et al., 2019). Another 206 

novel H2S donor is a class of nitric oxide (NO)–hydrogen sulfide-releasing hybrid (NOSH) 207 

compounds that release NO and H2S simultaneously, which was designed for its extreme 208 

effectiveness in growth inhibition of human cancer cell lines (Kodela et al., 2012). NOSH and 209 

its aspirin hybrid (NOSH-aspirin) that additionally releases acetylsalicylic acid have been 210 

shown to improve drought tolerance of Medicago sativa (alfalfa) (Antoniou et al., 2020), 211 

suggesting NOSH might be a promising plant priming agent against environmental stresses. 212 

 H2S has been reported to act as electron donor for respiration and to contribute to ATP 213 

production in mitochondria of prokaryotes (Sakurai et al., 2010) and in a variety of species, 214 

such as California killifish (Fundulus parvipinnis) (Bagarinao and Vetter, 1990), marine mussel 215 

(Geukensia demissa) (Doeller et al., 1999, 2001; Parrino et al., 2000), sandworm (Arenicola 216 

marina) (Vökel and Grieshaber, 1997), chicken (Gallus gallus) (Yong and Searcy, 2001), and 217 

human (Homo sapiens) (Goubern et al., 2007). A mitochondria-specific H2S donor, (10-oxo-218 

10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide (AP39) 219 

(Le Trionnaire et al., 2014) can be used as a useful tool to specifically investigate the biological 220 

function of H2S in mitochondria. AP39 was initially used in murine microvascular endothelial 221 

cells, had an antioxidant and cytoprotective impact under oxidative stress conditions (Szczesny 222 

et al., 2014), and later improved the mitochondrial function in the nematode Caenorhabditis 223 

elegans (Fox et al., 2021). H2S is certainly tightly linked to the mitochondrial electron transport 224 
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chain (ETC) activity in the above mentioned species. However, the knowledge of this aspect in 225 

plants remains modest. Recently, AP39 was applied in Arabidopsis to investigate stomata 226 

movement (Pantaleno et al., 2023). In addition to the induction of stomatal closure, AP39 could 227 

modulate mitochondrial ETC activity and redox homeostasis of guard cells, providing the first 228 

piece of evidence that H2S modulates mitochondrial energetics in plants. 229 

 230 

In vivo detection of H2S in plants 231 

 232 

 The important physiological functions of H2S have attracted attention in plant research, 233 

compelling the development of detection techniques in living cells, tissues, and different 234 

organisms, but the direct detection of endogenous H2S in plants remains a challenge. Traditional 235 

detection methods for H2S, such as colorimetric assays (Siegel, 1965), gas chromatography 236 

(Hannestad et al., 1989), high-performance liquid chromatography (Shen et al., 2011), 237 

polarographic H2S sensor (Doeller et al., 2005), and ion-selective electrode (ISE) (Li et al., 238 

2000), typically require sample destruction and are limited to in vitro detection. Fluorescent 239 

probes are emerging as tools for the noninvasive study of reactive species in situ in different 240 

biological systems, because of their high cell permeability and specificity. Different fluorescent 241 

approaches, including chemical and genetically encoded probes, have been used for H2S 242 

detection (Chen et al., 2012; Chen et al., 2013b; Lin et al., 2015; Liu et al., 2011a; Youssef et 243 

al., 2019). Despite the considerably fewer reports in plants than in the mammalian field, 244 

fluorescent probes are considered effective and noninvasive tools for the real-time detection 245 

and imaging of H2S in plants. 246 

 As the methods for H2S detection have been extensively reviewed (Filipovic et al., 2018; 247 

Kong et al., 2022; Lin et al., 2015; Luo et al., 2022; Zeng et al., 2021; Zhao et al., 2020), we 248 

will discuss the fluorescent probes recently used to discover endogenous H2S in different plant 249 

species and organisms. In general, the various strategies can be categorized in three groups 250 

based on the reaction types, namely azide/nitro/nitroso reduction, copper sulfide precipitation, 251 

and nucleophilic reaction‑based methods (Luo et al., 2022). The fluorescent probes used in 252 

plant studies are mainly based on azide reduction and nucleophilic reaction (Fig. 3). 253 

 254 

AzMC 255 

 256 

The azide reduction-based chemical probe, 7-azido-4-methylcoumarin (AzMC), is 257 

commercially available. The strong electron-withdrawing ability of the azide group of AzMC 258 
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quenches its fluorescence, whereas H2S reduces the azide to amine, thus turning on the 259 

fluorescence (Kong et al., 2022). Initially, AzMC has been used in photoaffinity labeling of the 260 

substrate-binding site of the human phenol sulfotransferase (Chen et al., 1999) and later for H2S 261 

detection in living cells and cardiac tissues (Chen et al., 2013a). In plants, AzMC was first 262 

applied to measure the H2S level in tomato (Solanum lycopersicum) guard cells in response to 263 

ethylene signal transduction upon osmotic stress (Jia et al., 2018), Recently, this probe has been 264 

utilized to determine H2S levels in Arabidopsis guard cells from wild-type and des1 mutant 265 

plants, which are deficient in cytosolic H2S generation due to the lack of DES1, in response of 266 

ABA-induced--stomatal closure (Shen et al., 2020; Zhang et al., 2020a). The ABA-induced H2S 267 

accumulation in guard cells of wild-type plants was abolished in the des1 mutant plants, 268 

whereas the H2S donor NaHS could clearly induce H2S in plants of both genotypes (Fig. 3), 269 

indicating that DES1 is responsible for the sensitivity of ABA-induced stomatal closure (Zhang 270 

et al., 2020a). 271 

 272 

SiND-ANPA-N3 273 

 274 

Another azide reduction-based chemical probe is the silicon nanodots-4-azido-N-alanine-1,8-275 

naphthalimide (SiND-ANPA-N3). This probe contains three moieties, the two-photon 276 

fluorophore dye N-alanine-1,8-naphthalimide, the azido adduct responsible for reduction-277 

activated fluorescence, and the attached silicon nanodot (SiND) that increases water solubility 278 

and cell permeability. This probe has been tested in the inner-layer epidermal tissues of onion 279 

(Allium cepa) and evaluated as a potential probe for H2S detection in aqueous media and living 280 

cells (Fu et al., 2020b) (Fig. 3). 281 

 282 

WSP-1 283 

 284 

 The Washington state probe-1 (WSP-1) is a nucleophilic reaction-based chemical probe (Liu 285 

et al., 2011a) that contains a pyridyl disulfide moiety and a fluorophore group. H2S reacts with 286 

the pyridyl disulfide and generates a persulfide intermediate that undergoes a spontaneous 287 

intramolecular cyclization to release the fluorophore. By using WSP-1 in tomato roots, an 288 

increased level of H2S was detected upon an exogenous NO donor treatment, which was 289 

inhibited  by applying the NO scavenger cPTIO (Li et al., 2014c) (Fig. 3). Until now, WSP-1 290 

was utilized for endogenous H2S detection in the roots of turnip (Brassica rapa) and the H2S 291 

level decreased upon selenium treatment (Chen et al., 2014) (Fig. 3). 292 
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 293 

SSP4 294 

 295 

The nucleophilic reaction-based sulfane sulfur probe, sulfane sulfur probe 4 (SSP4), has been 296 

developed based on the original design of the SSP1 and SSP2 probes (Chen et al., 2013b). 297 

Sulfane sulfur reacts with the nucleophilic thiols in the nonfluorescent SSP4 to form a persulfide 298 

intermediate that reacts with electrophilic ester groups, leading to spontaneous intramolecular 299 

cyclization and release of the fluorophore. Recently, SSP4 has been used for endogenous H2S 300 

detection during the root nodule symbiosis in the legume Lotus japonicus and an increased level 301 

of H2S has been observed during nodulation (Fukudome et al., 2020) (Fig. 3). SSP4 is 302 

commercially available and has a relatively high selectivity and sensitivity to sulfane sulfurs. 303 

However, sulfane sulfur probes are not specific for H2S, because they also react with persulfides 304 

and polysulfides. 305 

 306 

SSNIP 307 

 308 

Another sulfane sulfur probe that shares a thiophenol moiety and an ester linker with the SSP4 309 

probe is attached to an near-infrared (NIR) fluorophore, designated sulfane sulfur NIR probe 310 

(SSNIP). The SSNIP probe has been tested in Arabidopsis roots (Fig. 3) during different growth 311 

stages (Jiang et al., 2019). 312 

 313 

HBTP-H2S 314 

 315 

 The 2-(2-hydroxyphenyl) benzothiazole-based H2S probe, HBTP-H2S, is a recent NIR 316 

fluorescent probe and contains a dinitrophenyl (DNP) ether that undergoes thiolysis under 317 

nucleophilic attacks by H2S, releasing the fluorophore. This NIR fluorescent probe has been 318 

applied for in situ bioimaging of endogenous H2S in rice (Oryza sativa) roots and revealed an 319 

increased level of H2S under Al3+ and flooding stresses (Wang et al., 2021) (Fig. 3). 320 

 321 

Genetically encoded H2S sensors 322 

 323 

 Since 2012, reaction-based genetically encoded fluorescent H2S sensors have been studied 324 

and a probe based on p-azidophenylalanine (pAzF) was originally developed and tested by 325 

expressing the cpGFP-Tyr66pAzF in Hela cells (Chen et al., 2012). This pAzF-based genetic 326 
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probe has been optimized by modification with pAzF of the chromophore of a circularly 327 

permutated, superfolder green fluorescent protein (cpsGFP) to derive the cpsGFP-pAzF, which 328 

subsequently served as a Förster resonance energy transfer acceptor to an enhanced blue 329 

fluorescent protein EBFP2 (Youssef et al., 2019). Thus far, the H2S genetic probe has not been 330 

utilized in plant research, whereas other genetic sensors, such as HyPer or the roGFP series for 331 

hydrogen peroxide (H2O2) sensing, and SoNar or Peredox for NADH/NAD+ sensing (Müller-332 

Schüssele et al., 2021), have been extensively used for monitoring the redox states in living 333 

plant cells. The development or application of genetic probes for real-time H2S monitoring in 334 

plant research would be greatly beneficial for understanding the H2S-regulatory mechanisms in 335 

plants. 336 

 337 

H2S signaling via protein persulfidation 338 

 339 

 Protein persulfidation, also called S-sulfhydration, as a type of oxidative PTM of cysteines, 340 

has been increasingly recognized as the main redox mechanism directly regulating diverse 341 

biological processes in H2S signaling, such as protein function, structure, and subcellular 342 

localization. Protein cysteine thiols (–SH) are very susceptible to H2O2 and can undergo 343 

different oxidative PTMs. Initially, thiol reacts with H2O2 to form sulfenic acid (–SOH) (Allison, 344 

1976) that is intrinsically unstable and an intermediary en route to other PTMs. In the presence 345 

of H2O2
 excess, –SOH forms the relatively more stable sulfinic acid (–SO2H) and sulfonic acid 346 

(–SO3H) (Cremlyn, 1996), which are generally considered to cause protein overoxidation (Fig. 347 

4). The –SO3H formation is irreversible, whereas –SO2H can be reduced via an ATP-dependent 348 

reaction by sulfiredoxin of certain proteins (Akter et al., 2018; Biteau et al., 2003). Alternatively, 349 

–SOH can react with proximal –SHs from proteins and with glutathione (GSH), forming 350 

intra/intermolecular disulfide (–SS–) (Nagy and Winterbourn, 2010, Turell et al., 2021) and S-351 

glutathione adduct (–SSG) (Turell et al., 2008), respectively (Fig. 4). Disulfides and glutathione 352 

adducts can be enzymatically reduced to –SH by thiol reductases, so-called redoxins, such as 353 

TRXs and GRXs (Huang et al., 2018; Willems et al., 2021). Besides H2O2, reactive nitrogen 354 

species, which mainly refer to NO, trigger the formation of S-nitrosothiols (–SNO) (Hess et al., 355 

2005) that can also be reduced by redoxins. 356 

 H2S reacts with oxidized, not reduced, thiols, –SOH, and disulfides specifically, to form 357 

persulfides (–SSH) (Cuevasanta et al., 2015). The kinetics of the H2S reactions with low-358 

molecular weight albumin disulfides and –SOH have been determined. The rate constant of H2S 359 

with –SOH for the formation of persulfides is 270 M-1s-1, significantly higher than that of 360 
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disuldfides (0.6 M-1s-1), implying that the formation of protein persulfides might mainly occur 361 

through reaction of H2S with –SOH. However, extremely high reaction rates of protein 362 

disulfides with H2S have been detected in some special cases, such as human sulfide quinone 363 

oxidoreductase (Cuevasanta et al., 2017). Furthermore, protein disulfides are relatively more 364 

stable than the labile –SOH in the environment; hence, the generation of protein persulfides via 365 

the H2S reaction with disulfides cannot be excluded. Persulfides might be formed by reaction 366 

of H2S with –SNO or –SSG (Francoleon et al., 2011; Iciek et al., 2015; Mishanina et al., 2015), 367 

but this reaction mainly remains hypothetical and needs further investigation. 368 

 Protein persulfides can be oxidized by H2O2 to form perthiosulfenic acid (–SSOH), 369 

perthiosulfinic acid (–SSO2H), and perthiosulfonic acid (–SSO3H). In contrast to the hardly 370 

reversible –SO2H and irreversible –SO3H formed upon H2O2 overoxidation, the corresponding 371 

–SSH and its oxidative derivatives can be reduced by redoxins (Dóka et al., 2020; Filipovic, 372 

2015; Ju et al., 2016; Wedmann et al., 2016) (Fig. 4). 373 

 374 

Protein persulfidation detection in plants 375 

 376 

 In the past decade, a variety of detection methods for efficient persulfidation labeling and 377 

identification have been developed to investigate the H2S signaling executed via persulfidation. 378 

Protein persulfidation can be directly detected by means of mass spectrometry (MS), because 379 

of the mass increase of 31.972 Da by the addition of one sulfur atom, but is difficult to 380 

distinguish from other modification, such as –SO2H due to the addition of two oxygen atoms 381 

(mass increase of 31.99 Da). Thus, specific labeling with chemical probes is required to 382 

persulfidation detection. Initially, a modified biotin switch method had been applied in human 383 

cells, in which methyl methanethiosulfonate (MMTS) was believed to specifically block –SH, 384 

whereafter –SSH was targeted and enriched with N-[6-(biotinamido) hexyl]-3’-(2’-385 

pyridyldithio)propionamide (biotin-HPDP) (Mustafa et al., 2009). In plants, this method was 386 

first utilized in Arabidopsis leaf extracts and 106 persulfided proteins were identified (Aroca et 387 

al., 2015). However, because the reactivity toward MMTS of SSH was higher than that of thiols 388 

(Pan and Carroll, 2013), this method was questioned and should be used with caution. 389 

 The most challenging aspect of persulfidation detection is the discriminative labeling from 390 

thiols, because of their similar reactivity to commonly used reagents through alkylation, such 391 

as maleimide, N-ethylmaleimide (NEM), and iodoacetamide (IAM) (Pan and Carroll, 2013). 392 

Due to their greater nucleophilicity, persulfides react even much faster than thiols to thiol 393 

labeling reagents (Cuevasanta et al., 2015). Nevertheless, because alkylation of thiols yield 394 
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thioethers, whereas persulfides generate disulfides, many thiol label-based detection 395 

approaches have been exploited based on this characteristic. 396 

 At first, a fluorescent probe, designated red maleimide, had been used to study the 397 

persulfidation of the p65 subunit of mice NF-κB (Sen et al., 2012). Both −SH and −SSH are 398 

labeled with red maleimide and followed with dithiothreitol (DTT) reduction, so that only the 399 

labeled −SSH, namely the R−S−S−maleimide-red adducts, are reduced (Fig. 5A). The protein 400 

samples are subsequently separated by gel electrophoresis and detected by in-gel fluorescence. 401 

The loss of fluorescence can be calculated for evaluation of the persulfidation level. This 402 

method revealed the persulfidation of recombinant human glyceraldehyde-3-phosphate 403 

dehydrogenase (GAPDH) protein at Cys150, which enhances its catalytic activity (Gao et al., 404 

2015). 405 

 Later, another thiol label-based probe, a maleimide compound containing a peptide arm, 406 

designated maleimide peptide (MalP, 1.95 kDa), was used to study the persulfidation of the 407 

iron-sulfur cluster machinery in mammalian proteins (Parent et al., 2015). Similarly as with the 408 

red maleimide fluorescent probe, both −SH and −SSH are labeled with MalP and only the 409 

labeled −SSHs are further reduced by the subsequent DTT incubation and release the 410 

succinimide-peptide moiety (the product of the maleimide reaction with a sulfhydryl). As a 411 

result, the mobility shift in the protein migration can be detected by sodium dodecyl sulfate-412 

polyacrylamide gel electrophoresis (SDS-PAGE) (Fig. 5A). 413 

 The two aforementioned approaches offered many advantages, such as relative application 414 

simplicity and radiometric read outs (−SSH versus −SH) giving extra quantification 415 

information. Nevertheless, these method are restricted to biochemical characterizations and are 416 

rather not applicable to large-scale MS-based proteomic analyses. 417 

 A MS-coupled thiol labeling-based proteomic approach, termed biotin thiol assay (BTA), 418 

had initially been utilized for mapping protein persulfidation in mammalian cells by means of 419 

maleimide-biotin (Cuevasanta et al., 2015), maleimide-PEG2-biotin (Gao et al., 2015), or 420 

iodoacetyl-PEG2-biotin (Dóka et al., 2016, 2019). In this method, −SH and −SSH are first 421 

labeled with biotin-tagged alkylating reagents that are sequentially enriched on an avidin 422 

column, whereafter the labeled −SSHs are selectively eluted by reduction via DTT or tris(2-423 

carboxyethyl)phosphine (Fig. 5B). By labeling the eluted persulfide-derived thiols by isotope-424 

labeled (D5, heavy) or normal (H5, light) maleimide, a quantitative analysis under different 425 

conditions could be achieved (Gao et al., 2015). Recently, a BTA assay combined with the 426 

iodoacetyl isobaric tandem mass tag system allowed the quantitative cysteine site-specific 427 

identification of persulfidation (Gao et al., 2020). 428 
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 Additionally, a ‘tag-switch’ method was developed for persulfidation detection (Zhang et 429 

al., 2014). Here, methylsulfonyl benzothiazole (MSBT) was used to block both −SH and −SSH, 430 

whereafter solely MSBT disulfide adducts (–SS–MSBT) could react with cyanoacetate biotin 431 

(CN-biotin), hence designated ‘tag switch’ (Fig. 5C). This method was further improved by 432 

attaching cyanoacetate with the fluorescent BODIPY moiety (CN-BOT) or the Cy3 dye (CN-433 

Cy3), so that persulfidation could be visualized in situ by fluorescence confocal microscopy or 434 

in-gel fluorescent detection from the cell lysates (Kouroussis et al., 2019; Wedmann et al., 435 

2016). In plants, the ‘tag switch’ method was applied in wild-type and des1 mutant Arabidopsis 436 

plants (Aroca et al., 2017a). In total, 2,015 and 2,130 persulfidated proteins were identified in 437 

the wild-type and des1 plants, respectively, suggesting that a large fraction of the Arabidopsis 438 

proteome undergoes persulfidation even under nonstressed conditions (Aroca et al., 2017a). 439 

Recently, the application of the ‘tag switch’ method on Arabidopsis root tissue identified 5,214 440 

–SSH proteins (Jurado-Flores et al., 2021). 441 

 A variant of this tag-switch method for the –SSH identification is called the ‘dimedone 442 

switch’ assay (Zivanovic et al., 2019) (Fig. 5C). In this assay, –SSH, –SH, and –SOH first react 443 

with 4-chloro-7-nitrobenzofurazan (NBF-Cl), whereafter a dimedone-based probe, such as a 444 

biotin-conjugated analog DCP-Bio1 (Poole et al., 2007) or azide-conjugated analog DCP-N3, 445 

selectively switches with –SS–NBF disulfides. The biotin-tagged persulfides are subsequently 446 

enriched and identified by MS and by in-gel fluorescence or confocal microscopy when DCP-447 

Bio1 and DCP-N3 and Cy5-alkyne click mix are used, respectively (Zivanovic et al., 2019). 448 

This dimedone switch method recently applied in Arabidopsis revealed persulfidaton of Cys103 449 

of the autophagy-related protein 18a, thereby activating its phospholipid-binding activity in a 450 

reversible manner and, hence, regulating autophagy under endoplasmic reticulum stress (Aroca 451 

et al., 2021a). 452 

 Currently, a direct persulfidation detection method was developed for proteomic analysis by 453 

labeling –SSH at pH 5.0 by means of an alkyne-linked IAM, N-propynyliodoacetamide (IPM) 454 

(Fu et al., 2020a) (Fig. 5D). Given the lower pKa of persulfide (4.3) than that of thiol (8.29), 455 

persulfides maintain a relatively high reactivity at pH 5.0 when compared to protonated thiols. 456 

Hence, efficient labeling of –SSH can be achieved by labeling proteome extracts with IPM at a 457 

low pH, resulting in disulfide adducts (SS-IPM), in addition to thioether adducts (S-IPM) due 458 

to the unavoidable –SH labeling. IPM-labeled peptides are further biotinylated by reaction with 459 

Az-UV-biotin reagents through a click reaction, the addition of biotin facilitating peptide 460 

enrichment. Two types of probe‐modified peptides, including the disulfide forms derived from 461 

–SSH and the thioether forms derived from –SH, can be analyzed by MS (Fu et al., 2020a). 462 
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 463 

H2S-mediated persulfidation in ABA-regulated stomatal movement 464 

 465 

 Stomata are pores on the epidermis of plant leaves surrounded by a pair of guard cells. 466 

Stomatal movement regulates gas and water exchange between the plants and the environment 467 

and is important for plant growth, development, and response to environmental stimuli (Kim et 468 

al., 2010). That H2S induced stomatal closure and participated in ABA signaling was first 469 

evidenced by application of NaHS in epidermal strips of Vicia faba (broad bean), Arabidopsis 470 

thaliana and Impatiens walleriana (impatiens) (García-Mata and Lamattina, 2010). In contrast, 471 

H2S was reported to cause stomatal opening in Arabidopsis (Lisjak et al., 2010) and pepper 472 

(Capsicum annuum) (Lisjak et al., 2011). The reason of the opposite effects of H2S on stomata 473 

movement remains inconclusive. However, an increasing number of studies subsequently 474 

revealed that H2S is a key regulator of stomatal closure triggered by different environmental 475 

stresses, such as drought (Jin et al., 2017), cold (Du et al., 2019), and mediated by 476 

phytohormones, such as ABA that accumulates under drought stress (Jin et al., 2013), ethylene 477 

(ET) (Hou et al., 2016; Liu et al., 2011b), salicylic acid (SA) (He et al., 2020), and jasmonic 478 

acid (JA) (Deng et al., 2020) (Fig. 6). To date, the H2S signaling function has been best 479 

characterized in the ABA-regulated stomatal movement. ABA has been generally recognized 480 

as eliciting the DES1 expression in guard cells that increases the endogenous level of H2S, 481 

because DES1-mediated H2S production is required for downstream NO signaling (Scuffi et 482 

al., 2014) and respiratory burst oxidase homolog (RBOH)-dependent H2O2 signaling (Scuffi et 483 

al., 2018) to activate stomatal closure (Fig. 6). Besides DES1 and RBOH (Shen et al., 2020), 484 

ABSCISIC ACID INSENSITIVE 4 (ABI4) (Zhou et al., 2020), and SNF1-RELATED 485 

PROTEIN KINASE2.6 (SnRK2.6), also known as Open stomata 1 (OST1) (Chen et al., 2020), 486 

have also been found as key proteins involved in H2S signaling in ABA-regulated stomatal 487 

movement (see below). In addition, by means of pharmacological and genetic approaches, 488 

phospholipase D and mitogen-activated protein kinase 4 were shown to participate in H2S-489 

mediated guard cell signaling (Scuffi et al., 2018) and to be an important downstream signal of 490 

H2S in stomatal movement in response to drought stress, respectively (Du et al., 2019). 491 

 Persulfidation on several key proteins in plants have been characterized, such as the critical 492 

antioxidant enzyme ascorbate peroxidase 1 (Aroca et al., 2015), the moonlighting cytosolic 493 

GAPDH protein (Aroca et al., 2017b), the autophagy-related protein 4 (Laureano-Marín et al., 494 

2020) and 18 (Aroca et al., 2021a). For a recent review, see Aroca et al. (2021b). Here, we focus 495 
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on the most recent proteins, i.e., DES1, RBOHD, OST1, and ABI4, that are involved in H2S 496 

signaling in ABA-regulated stomatal closure (Fig. 7). 497 

 The ABA level in guard cells under normal conditions remains low, but increases upon stress 498 

stimuli. When ABA is absent, the protein phosphatase type 2C (PP2C) binds to the SnRK2.6 499 

kinase domain and inhibits the kinase activity by dephosphorylation. In the presence of ABA, 500 

it binds to the ABA receptor PYRABACTIN RESISTANCE/PYR-LIKE/REGULATORY 501 

COMPONENT OF ABA RECEPTOR (PYR/PYL/RCAR) to form a complex that binds to 502 

PP2C and inhibits the catalytic activity of PP2C (Fig. 7), thereby activating SnRK2.6 because 503 

of its dissociation from PP2C and autophosphorylation (Soon et al., 2012). The activated 504 

SnRK2.6 then transmits the ABA signal by phosphorylating downstream factors, such as 505 

RBOH, ultimately inducing rapid ROS production and cellular Ca2+ influx and activating 506 

specific ion channels that trigger stomatal closure (Fig. 7). 507 

 ABA induces the DES1 expression transcriptionally through an unclear mechanism, thereby 508 

inducing the H2S production in guard cells (Scuffi et al., 2014). The ABA-induced H2S 509 

production results in the persulfidation of SnRK2.6 at Cys131 and Cys137, which are adjacent 510 

to the catalytic loop of the kinase and the pivotal phosphorylation site Ser175 (Chen et al., 2020) 511 

(Fig. 7). Persulfidation of SnRK2.6 promotes its activity and interacts with the transcription 512 

factor ABA response element-binding factor 2 (ABF2) that enhances the cytosolic Ca2+ 513 

signaling. Persulfidation of SnRK2.6 at Cys131 and Cys137 alters its protein structure, hence 514 

bringing the Ser175 residue closer to the phosphate-acceptor Asp140 and improving its activity 515 

(Chen et al., 2021). In contrast, NO negatively regulates ABA signaling in guard cells by 516 

inhibiting SnRK2.6 through formation of -SNO at Cys137 (Wang et al., 2015). 517 

 SnRK2 phosphphorylates the downstream transcription factor Related to ABI3/VP1-Like 1 518 

(RAV1) to inhibit the expression of ABI4 (Feng et al., 2014). ABI4 has been considered as a 519 

versatile activator or repressor of its downstream target genes (Wind et al., 2013). The DES1-520 

mediated H2S production has been reported to induce the persulfidation of ABI4 at Cys250, 521 

which is essential for the ABI4 function in the regulation of plant responses to ABA (Zhou et 522 

al., 2021). The persulfidation of ABI4 at Cys250 enhances its transactivation activity on 523 

Mitogen-Activated Protein Kinase Kinase Kinase 18 (MAPKKK18), thereby activating a 524 

MAPK cascade (Fig. 7). Furthermore, transactivation of DES1 could be mediated by ABI4 525 

persulfidation, hinting at the existence of a regulatory loop. 526 

 In addition, we recently demonstrated that H2S-mediated persulfidation is involved in ABA 527 

signaling in guard cells by directly regulating the activity of both ROS and H2S-producing 528 

enzymes (Shen et al., 2020). Upon ABA treatment, DES1-mediated H2S triggers its 529 
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autopersulfidation at Cys44 and Cys205, leading to a burst of H2S in guard cells. The 530 

accumulation of H2S further induces the persulfidation of RBOHD Cys825 and Cys890, 531 

enhancing the RBOHD activity and leading to ROS overproduction (Fig. 7). NO was 532 

demonstrated to negatively regulate Arabidopsis RBOHD by forming -SNO at Cys 890 during 533 

the hypersensitive response in plant immunity (Yun et al., 2011). Nevertheless, NO-mediated 534 

modifications on RBOHD still need to be investigated regarding the impact on the ABA 535 

signaling in guard cells. Here, the interplays between H2S, ROS, and NO involved in the 536 

regulatory ABA signaling mechanism in guard cells occur most probably through redox PTMs 537 

of key proteins. 538 

 539 

Summary and Perspectives 540 

 541 

 In the past decades, numerous studies revealed the multitasking capacity of H2S that is 542 

involved in many physiological and pathological processes in mammals (Dilek et al., 2020; 543 

Kimura et al., 2012; Murphy et al., 2019; Shatalin et al., 2011) and growth, development, and 544 

response to environmental stimuli in plants (Baudouin et al., 2016; Chen et al., 2011; Jin et al., 545 

2013, 2017; Li et al., 2014a; Zou et al., 2019). Nevertheless, our current knowledge on the 546 

molecular mechanisms by which H2S executes its signaling function remains limited. The 547 

emerging studies focusing on H2S-mediated persulfidations in plants, especially the recently 548 

reported cases showing the key function of persufidation in ABA-regulated stomatal 549 

movements, have greatly contributed to the understanding of the H2S regulatory mechanism in 550 

plants. Although several aspects regarding H2S signaling in plants still await to be assessed, we 551 

believe that they will be solved in the near future by the application of advanced techniques, 552 

such as quantitative proteomics, real-time imagining, and structural biology. 553 

 Intra/inter disulfide formation and S-glutathionylation are known to be the major redox 554 

mechanisms that protect –SH from overoxidation, with GSH being the most important low 555 

molecular weight antioxidant in the cells. Recently, the reaction rate of SOH with H2S has been 556 

reported to be 2700 M-1s-1 (Cuevasanta et al., 2015), which is much faster than that of –SH 557 

(21.6 M-1s-1) or that of GSH (2.9 M-1s-1) for the formation of disulfides and -SSG, respectively 558 

(Turell et al., 2008). In addition, increased persulfidation has been observed as a response to 559 

H2O2 stress in mammalian cells (Wedmann et al., 2016), indicating that the persulfidation 560 

chemistry involves the preferential addition of H2S to a –SOH protein. Furthermore, H2S might 561 

play an important role as an antioxidant through persulfidation in protecting thiols from 562 

irreversible overoxidations, such as –SO3H. To compare the antioxidant role of H2S-mediated 563 
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persulfidation with that of others PTMs, such as GSH-mediated S-glutathionlyation, several 564 

features need to be taken into account, including the cellular concentration of H2S in the 565 

microenvironment. The concentrations of H2O2 and GSH in plant cells have been well 566 

documented (Cheeseman, 2006; Hasanuzzaman et al., 2017; Smirnoff and Arnaud, 2019) and 567 

measurements at a spatiotemporal resolution of H2O2 and GSH have been improved by means 568 

of genetically encoded sensors (Niemeyer et al., 2021; Nietzel et al., 2019; Ugalde et al., 2021a, 569 

2021b, 2022). Unfortunately, the information on the cellular H2S content is scarce. Although 570 

the available H2S fluorescent probes provide useful tools to detect H2S production in situ, the 571 

noninvasive application of chemical fluorescent probes in planta for real-time H2S 572 

measurements remains a challenge because plant tissues are rather rigid. In our opinion, the 573 

implementation of genetic sensors for spatiotemporal monitoring of H2S levels in cells would 574 

greatly advance our understanding of H2S signaling in plants. 575 

 Besides GSH, ascorbate, another abundant antioxidant in plant cells, occurs in all subcellular 576 

compartments with particularly high levels in the chloroplasts (Smirnoff and Wheeler, 2000). 577 

Ascorbate-GSH cycle has been recognized as one of the major redox regulation pathways to 578 

detoxify H2O2 in plant cell (Foyer and Noctor, 2011). Although ascorbate was thought to 579 

selectively reduce –SNO formation and had been used extensively for the –SNO protein 580 

identification in proteomic studies (Willems et al., 2021), it has been found to also reduce –581 

SOH of several proteins, including 1-Cys Prx (Monteiro et al., 2007) and the thiol-specific 582 

antioxidant enzyme 2 (Anschau et al., 2020) from Saccharomyces cerevisiae and papain from 583 

Mus musculus (Zito et al., 2012). Therefore, concern about the selectivity of ascorbate toward 584 

–SNO in terms of proteomic analysis is increasing. More importantly, these findings hint at an 585 

alternative pathway of thiol redox regulation via ascorbate. As H2S is known to react with –586 

SOH to form –SSH, ascorbate might presumably affect persulfidation of certain proteins 587 

indirectly via reduction of –SOH. Nevertheless, the direct correlation between ascorbate and 588 

H2S-mediated persulfidation remains elusive. In addition to ascorbate itself, ascorbate 589 

peroxidase (APX), the enzyme catalyzing the conversion of H2O2 into H2O in the presence of 590 

ascorbate, undergoes several types of thiol-based PTMs. The enzymatic activity of cytosolic 591 

APX1 in Arabidopsis is enhanced by NO-triggered –SNO formation (Begara-Morales et al., 592 

2014; Yang et al., 2015) or H2S-induced –SSH formation (Aroca et al., 2015) at Cys32. Large-593 

scale proteomic studies revealed that tAPX and sAPX from chloroplast were also sensitive to 594 

thiol modifications (Huang et al., 2019, Wei et al., 2020). However, which are the exact types 595 

of thiol-based PTMs and how they regulate the biological function of chloroplastic APXs still 596 

await to be explored by functional analysis. 597 
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 To better understand the function of H2S-mediated persulfidation, it is crucial to find out the 598 

occupancy of –SSH and its correlation with other thiol-based PTMs. Such a correlation was 599 

evidenced by a comparative analysis based on proteomics data between –SSH and –SOH or –600 

SH events in mammalian studies (Fu et al., 2020a; Zivanovic et al., 2019) and between –SSH, 601 

–SOH, and –SNO in Arabidopsis (Aroca et al., 2021b; Zhang et al., 2021; Zhou et al., 2020). 602 

Likewise many thiol-based PTMs, –SSH sites have been mapped at the whole-proteome level 603 

in mammals (Fu et al., 2020a), but remain uncharted territory in plants. Adoption of advanced 604 

proteomic profiling strategies for identification and quantification of the complete repertoire of 605 

persulfidation-undergoing Cys sites in plants will prove a promising future endeavor. 606 
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Figure legends 1136 

 1137 

FIG. 1. Sulfur oxidation states in some biologically relevant compounds. The oxidation 1138 

states of sulfur in different organic and inorganic compounds range from –2 to +6. R refers to 1139 

the remainder of the molecule and symbolizes the variable side chain in protein structures. 1140 

 1141 

FIG. 2. H2S biosynthesis in plant cells. H2S is produced in different subcellular organelles in 1142 

the plant cells via various enzymes. The assimilated sulfate in plant cells is transported to the 1143 

chloroplasts, where the sulfate is reduced first to APS, then to sulfite that is subsequently 1144 

reduced to sulfide (H2S) via SiR. Sulfide can be further catalyzed by OAS-TL in the presence 1145 

of OAS to generate cysteine. In chloroplasts, this reaction is catalyzed by OASB, while the 1146 

same reaction is catalyzed by OASA1 in the cytosol and by OASC in mitochondria. In the 1147 

cytosol, L-cysteine and D-cysteine are degraded by L-CDes and D-CDes, respectively, to 1148 

produce H2S, pyruvate, and NH3. Thus far, DES1 is the best H2S-producing enzyme. NifS has 1149 

been suggested to catalyze cysteine to H2S in chloroplasts and mitochondria. In mitochondria, 1150 

CAS catalyzes the reaction of cyanide and L-cysteine to produce H2S and β‐cyanoalanine. 1151 

Abbreviations: APS, adenosine 5’-phosphosulfate; CAS, β‐cyanoalanine synthase; DES1, L-1152 

cysteine desulfhydrase 1; D-CDes, D-cysteine desulfhydrase; H2S, hydrogen sulfide; L-CDe, L-1153 

cysteine desulfhydrase; NH3, ammonia; NifS, nitrogenase Fe–S cluster; OAS, O-acetylserine; 1154 

OAS-TL, O-acetylserine (thiol)lyase; SiR, sulfite reductase. 1155 

 1156 

FIG. 3. H2S detection with fluorescent probes in plants. Various fluorescent probes have 1157 

been used to visualize and determine the H2S level in different plant species. In the chemical 1158 

structures, the red star highlights the reaction moiety for H2S and the yellow color marks the 1159 

fluorophore group. AcMZ is a azide (N3)-based chemical probe, used to determine the H2S level 1160 

in guard cells induced by ABA in wild-type Arabidopsis (accession Columbia-0 [Col-0]), but 1161 

not in des1 mutant plants, whereas the H2S donor NaHS induced H2S production in the guard 1162 

cells of both genotypes (Zhang et al., 2020a). Another azide-based probe, SiND-ANPA-N3, had 1163 

been tested in inner-layer epidermal tissues of onion (Fu et al., 2020b). A nucleophilic reaction-1164 

based chemical probe, WSP-1, containing a pyridyl disulfide moiety as H2S reaction sites, has 1165 

been used in tomato roots to determine H2S induction upon nitric oxide donor and scavenger 1166 

treatments, and in the root of turnip for the observation of H2S production repression upon 1167 

selenium treatment (Chen et al., 2014). Two sulfane sulfur probes, SSP4 and SSNIP, both 1168 

contain thiophenol moiety. The SSP4 probe has been used to reveal the H2S production during 1169 
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symbiosis in the nodules of Lotus japonicus (Fukudome et al., 2020). SSNIP is a recent NIR 1170 

probe used in Arabidopsis roots (Jiang et al., 2019). The most recent fluorescent probe applied 1171 

in plants is the NIR-based probe, HBTP-H2S, showing an increased H2S level upon Al3+ and 1172 

flooding stresses (Wang et al., 2021). Abbreviations: ABA, abscisic acid; AcMZ, 7-azido-4-1173 

methylcoumarin; Al3+, aluminum ion; BF, bright field; HBTP-H2S, 2-(2-hydroxyphenyl) 1174 

benzothiazole- based H2S probe; H2S, hydrogen sulfide; NIR, near-infrared; SiND-ANPA-N3, 1175 

silicon nanodots-4-azido-N-alanine-1,8-naphthalimide; SSP4, sulfane sulfur probe 4; SSNIP, 1176 

sulfane sulfur near-infrared probe; WSP-1, Washington State probe-1. 1177 

 1178 

FIG. 4. Overview of cysteine thiols undergoing different oxidative posttranslational 1179 

modifications. Protein cysteine –SH reacts with H2O2 to form –SOH that can be further 1180 

oxidized by H2O2 to –SO2H and –SO3H, both considered protein overoxidations. Via an ATP-1181 

dependent reaction –SO2H can be reduced by SRX, whereas –SO3H is an irreversible 1182 

modification. The –SOH protein can react with –SH or with GSH to form –SS– or –SSG, 1183 

respectively. The proteins –SS– and –SSG can be reduced by redoxins, including TRXs and 1184 

GRXs. The protein cysteine –SH reacts with NO to form –SNO that can also be reduced by 1185 

redoxins. H2S reacts with –SOH and –SS– to form –SSH, which has been suggested to be 1186 

formed also by the reaction of H2S with –SNO or –SSG. The protein –SSH can be oxidized by 1187 

H2O2 to form –SSOH, –SSO2H, and–SSO3H and –SSH and its oxidative derivatives can be 1188 

reduced by redoxins. Abbreviation: GSH, glutathione; H2O2, hydrogen peroxide; H2S, hydrogen 1189 

peroxide; NO, nitric oxide; –SH, thiol; –SOH; sulfenic acid; –SO2H, sufinic acid; –SO3H, 1190 

sulfonic acid; SRX, sulfiredoxin; –SS–, intra/intermolecular disulfides; –SSG, glutathione 1191 

adduct; –SSOH, perthiosulfenic acid; –SSO2H, perthiosulfinic acid; –SSO3H, perthiosulfonic 1192 

acid; –SNO, S-nitrosothiol. 1193 

 1194 

FIG. 5. Persulfidation detection approaches. (A) Red maleimide and MalP methods. Both –1195 

SH and –SSH are initially labeled, but only the labeled –SSH can be reduced by DTT. In the 1196 

red maleimide method, –SSH is detected by SDS-PAGE and displays fluorescence loss. As the 1197 

Mal-P labeling results in an molecular mass increase of 1.95 kDa, –SSH is discovered as a 1198 

decreased mobility shift in SDS-PAGE. (B) BTA method for proteomic analysis. Both –SH and 1199 

–SSH are labeled with maleimide-biotin and enriched by streptavidin magnetic beads. The 1200 

enriched –SSH proteins are eluted by DTT reduction, digested with trypsin, and subjected to 1201 

MS analysis. (C) Tag switch and dimedone switch methods. In the tag switch method, MSBT 1202 

is used to block both –SH and –SSH, the latter forming –SS–MSBT that further reacts with CN-1203 
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biotin to be biotinylated, which is further enriched by streptavidin AP, digested by trypsin, and 1204 

subjected to MS analysis. Alternatively, CN-BOT and CN-Cy3 are used instead of CN-biotin 1205 

to visualize –SSH in situ by confocal microscopy and in-gel fluorescent detection, respectively. 1206 

In the dimedone switch assay, NBF-Cl reacts with –SSH, –SH, and –SOH, whereafter DCP-1207 

Bio1 or DCP-N3 is added to selectively switch with the –SS–NBF adducts. When DCP-Bio1 1208 

is utilized, the –SSH proteins are subsequently enriched with streptavidin AP and identified by 1209 

MS. When DCP-N3 and the Cy5-alkyne click mix are applied, the –SSH is detected by in-gel 1210 

fluorescent assay or with confocal microscopy. (D). Direct labeling method at low pH for 1211 

proteomic analysis. Both –SH and –SSH are labeled by IPM at pH 5.0, resulting in proteins 1212 

with S-IPM and SS-IPM adducts that are further digested by trypsin. The digested peptides are 1213 

biotinylated by a click reaction with Az-UV-biotin reagents, enriched by streptavidin AP, 1214 

cleaved by UV light to remove the biotin moiety, and subjected to MS analysis. Abbreviations: 1215 

AP, affinity purification; Az-UV-biotin, UV cleavable biotin-azide; BTA, biotin thiol assay; 1216 

CN-biotin, cyanoacetate biotin; CN-BOT, cyanoacetate with fluorescent BODIPY moiety; CN-1217 

Cy3, cyanoacetate with Cy3-dye; DCP-Bio1, dimedone-based biotin-conjugated analog; DCP-1218 

N3, dimedone-based azide-conjugated analog; DTT, dithiothreitol; IPM, N-1219 

propynyliodoacetamide; MalP, maleimide-peptide; MSBT, methylsulfonyl benzothiazole; 1220 

NBF-Cl, 4-chloro-7-nitrobenzofurazan; SDS-PAGE, sodium dodecyl sulfate-polyacrylamide 1221 

gel electrophoresis; –SH, thiol; –SSH, persulfide; –SOH, sulfenic acid. 1222 

 1223 

FIG. 6. Simplified scheme of H2S-triggered stomatal closure in ABA-regulated stomatal 1224 

closure under drought stress. Under drought or cold stress, ABA or other phytohormones, 1225 

such as ET, SA, and JA, accumulate in the cells and regulate stomatal movement via H2S 1226 

signaling. ABA induces the expression of DES1, increasing the H2S production. DES1-1227 

catalyzed H2S signals activate downstream H2O2 and NO signaling to trigger stomatal closure. 1228 

Abbreviations: ABA, abscisic acid; DES1, L-cysteine desulfhydrase 1; ET, ethylene; H2S, 1229 

hydrogen sulfide; H2O2, hydrogen peroxide; JA, jasmonic acid; NO, nitric oxide; SA, salicylic 1230 

acid. 1231 

 1232 

FIG. 7. H2S-triggered persulfidation in ABA-regulated guard cell movement. When ABA 1233 

is present, it binds PYR/PYL/RCAR to form a receptor complex that interacts with and inhibits 1234 

the catalytic activity of PP2C, activating SnRK2.6. SnRK2.6 undergoes H2S-triggered 1235 

persulfidation, thereby promoting its activity and interaction with ABF2. SnRK2 1236 

phosphphorylates downstream the transcription factor RAV1, hampering the expression of 1237 
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ABI4, whereas DES1-mediated H2S production induces ABI4 persulfidation that enhances its 1238 

transactivation activity on MAPKKK18, thereby initiating a MAPK cascade. DES1-mediated 1239 

H2S triggers its autopersulfidation, leading to a H2S burst. The H2S accumulation induces 1240 

RBOHD persulfidation, thereby increasing its activity and leading to ROS overproduction. The 1241 

ROS accumulation increases the Ca2+ influx, contributing to stomata closure in response to 1242 

ABA. Abbreviations: ABA, abscisic acid; ABF2, ABA response element-binding factor 2; 1243 

ABI4, ABA insensitive 4; Ca2+, calcium cation; DES1, L-cysteine desulfhydrase 1; H2S, 1244 

hydrogen sulfide; MAPK, mitogen-activated protein kinase; MAPKKK18, MAPK kinase kinase 1245 

18; PP2C, protein phosphatase type 2C; PYR/PYL/RCAR, PYRABACTIN 1246 

RESISTANCE/PYR-LIKE/REGULATORY COMPONENT OF ABA RECEPTOR; RAV1, 1247 

ABI3/VP1-like 1; RBOHD, respiratory burst oxidase homolog D; SnRK2.6, SNF1-RELATED 1248 

PROTEIN KINASE2.6; ROS, reactive oxygen species. 1249 
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