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Abstract

In the plant sciences, results of laboratory studies often do not translate well to the field. To

help close this lab-field gap, we developed a strategy for studying the wiring of plant traits

directly in the field, based on molecular profiling and phenotyping of individual plants. Here,

we use this single-plant omics strategy on winter-type Brassica napus (rapeseed). We

investigate to what extent early and late phenotypes of field-grown rapeseed plants can be

predicted from their autumnal leaf gene expression, and find that autumnal leaf gene

expression not only has substantial predictive power for autumnal leaf phenotypes but also

for final yield phenotypes in spring. Many of the top predictor genes are linked to develop-

mental processes known to occur in autumn in winter-type B. napus accessions, such as

the juvenile-to-adult and vegetative-to-reproductive phase transitions, indicating that the

yield potential of winter-type B. napus is influenced by autumnal development. Our results

show that single-plant omics can be used to identify genes and processes influencing crop

yield in the field.

Author summary

In the face of world population growth and climate change, the development of crops

with increased yield and stress resilience is more urgent than ever. A major bottleneck in

this process is translating the results of lab experiments to the field, in part because plant

growth conditions in a lab are very different from field conditions. Here, we assess the

merits of an alternative approach in which data is generated directly in the field, thereby

bypassing the translation step. We profiled the gene expression and trait variability of a

population of genetically (nearly) identical rapeseed plants grown in the same field, and
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used machine learning models to link the individual plants’ gene expression to their phe-

notypic traits. We find that the plants’ yield traits in spring can be predicted to a consider-

able extent from gene expression profiled > 5 months earlier in autumn. More

importantly, we find that the top predictors in these models function in processes known

to affect autumnal plant growth and development. This shows that our single-plant omics

approach can be used to identify genes and processes influencing crop yield in the field.

Introduction

One of the major aims of molecular biology research is to unravel how genes influence pheno-

types. This usually involves applying perturbations to the genome or growth environment of

an organism of interest and analyzing the ensuing molecular and phenotypic responses. Gen-

erally, well-chosen perturbations are applied in a controlled experimental setting, and techni-

cal and biological replicates are performed to allow for sufficiently powerful analyses despite

noise in the data. Noise in this context may refer to measurement errors, noise due to uncon-

trolled factors in the experimental setup, or noise due to cellular or environmental stochasti-

city. The main purpose of avoiding or averaging out such noise is to facilitate causal

interpretation of the link between a perturbation and its molecular and phenotypic effects.

It is becoming increasingly clear however that data noise caused by uncontrolled experi-

mental factors and even purely stochastic effects can be a valuable source of information,

instead of merely a nuisance. Several studies have shown that stochastic gene expression noise

in single cells can be used to infer regulatory influences [1–3]. Gene networks are also increas-

ingly inferred from single-cell gene expression datasets in which differences among cells are

not purely due to stochastic effects in an otherwise homogeneous cell population, but reflect

additional uncontrolled heterogeneity among cells, e.g. in the temporal progression of a cell

differentiation program [4–10].

In addition, several studies have investigated the information content of ‘noise’ datasets in

which the profiled entities are multicellular individuals rather than single cells. Bhosale et al.
[11] found that gene expression noise among individual Arabidopsis thaliana plants grown

under the same conditions harbored as much information on the function of genes as gene

expression responses to controlled perturbations. The dataset analyzed by Bhosale et al. [11]

was however not ideal because it contained data on plants of three different accessions grown

in six different labs [12], causing lab and accession effects that had to be removed computa-

tionally to uncover the individual plant noise of interest. Recently, a study on a cleaner A. thali-
ana seedling dataset confirmed that gene expression noise among individuals of the same

background grown under the same lab conditions contains useful information on gene func-

tions and regulatory relationships [13].

A common denominator in the aforementioned studies is that even under controlled con-

ditions, each cell or individual is subject to a set of stochastic or other perturbations that escape

experimental control, and that these uncontrolled perturbations, like any perturbations, gener-

ate responses that contain valuable information on the wiring of gene networks. Although

most studies to date focused on the information content of noise under controlled lab condi-

tions, there is no reason to believe that ‘noise’ datasets generated under less controlled condi-

tions would be less valuable. On the contrary, studies performed in a more natural setting in

which organisms are subject to uncontrolled perturbations may yield information that cannot

easily be recovered from experiments under controlled lab conditions.
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In the plant sciences for instance, controlled growth conditions in a laboratory are generally

very different from field conditions, in which plants are subject to a plethora of highly variable

environmental cues that often have non-additive phenotypic effects [14–21]. Results obtained

in the laboratory therefore often translate poorly to the field [14, 22–26]. Narrowing this lab-

field gap is essential to speed up the development of new crop varieties and optimized agricul-

tural practices, both of which are direly needed in view of the current challenges posed by

world population growth, land use and climate change. One option to narrow the lab-field gap

is to make lab conditions more field-like [22], but the decreased experimental control this

implies challenges traditional experimental design practices to e.g. ensure reproducibility.

Another option is to perform interventional experiments in the field rather than the lab, but

controlled interventions in a field may be costly and the level of control that can be achieved is

often limited [22]. Observational ‘uncontrolled perturbation’ studies on the other hand can

easily be set up in the field. Observational data come with their own array of challenges how-

ever, e.g. that many of the perturbations influencing the study subjects may remain unob-

served and hence unknown, and that it is generally much more challenging to establish cause-

effect relationships from observational data [27]. Nevertheless, even purely correlational data

generated in the field may help narrow the lab-field gap in plant sciences.

To assess the information content of plant molecular responses to uncontrolled perturba-

tions occurring in a field environment, we previously generated transcriptome and metabo-

lome data on the primary ear leaf of 60 individual Zea mays (maize) plants of the same genetic

background grown in the same field [28]. Similar to what was found for lab-grown A. thaliana
plants [11], the transcriptomes of the individual field-grown maize plants were found to con-

tain as much information on maize gene function as transcriptomes profiling the response of

maize plants to controlled perturbations in the lab. In addition, we found that the single-plant

transcriptome and metabolome data had better-than-random predictive power for several

phenotypes that were measured for the individual plants, and the prediction models also pro-

duced sensible candidate genes for these phenotypes [28]. However, only a few phenotypes

were measured in this study, and they were either closely associated with the material sampled

for molecular profiling, not fully developed or both.

Here, we investigate in more detail how much phenotype information can be extracted

from the transcriptomes of single plants subject to uncontrolled perturbations under field con-

ditions. To this end, we profiled the rosette-stage leaf transcriptome of individual field-grown

plants of the winter-type accession Darmor of Brassica napus ssp. napus (rapeseed), an impor-

tant oilseed crop [29]. Additionally, a wide range of phenotypes was measured for all plants

throughout the growing season. We find that the autumnal leaf transcriptomes of the individ-

ual plants do not only have predictive power for autumnal leaf phenotypes but also for yield

phenotypes measured more than 5 months later, such as silique count and total seed weight.

Furthermore, we find that many of the genes that feature prominently in our predictive models

are related to developmental processes known to occur in autumn in winter-type Brassica
napus, in particular the juvenile-to-adult and vegetative-to-reproductive phase transitions.

Our results suggest that micro-environmental variations across the field cause a gradual

buildup of developmental differences among plants that ultimately result in yield differences at

the end of the growing season.

Results

Field trial, expression profiling and phenotyping

One hundred Brassica napus plants of the winter-type accession Darmor were grown in a field

in a 10x10 equispaced grid pattern with 0.5 m distance between rows and columns (Fig 1). On
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November 28, 2016, the eighth rosette leaf (leaf 8) of 62 non-border plants was harvested, and

the harvested leaves were expression-profiled individually (see Methods and S1 Data). After

leaf sampling, the plants were allowed to overwinter and set seed in spring. 62 phenotypes

were recorded for all plants, ranging from rosette areas and individual leaf measurements in

autumn to root and shoot measurements at harvest the following spring (S1 Data). Likely

because of the low planting density, many of the plants developed one or more secondary

inflorescence stems at ground level, which is not usually observed for B. napus grown under

lab conditions or in the field at agronomically relevant planting densities. These secondary

stems (further referred to as side stems) were harvested separately from the primary inflores-

cence stem with its cauline secondary inflorescences (further referred to as stem 1). Several

yield phenotypes were measured for both stem 1 and the entire shoot (i.e. stem 1 plus side

stems), including dry weight, seed weight, seed count and silique count. Cauline secondary

inflorescence stems on stem 1 and tertiary inflorescence stems on the side stems (both further

referred to as branches) were also counted, and branch counts are reported for both stem 1

and the entire shoot (the latter being the sum of branch counts on stem 1 and the side stems).

Shoot growth phenotypes such as the time of maximum shoot growth, the maximum shoot

growth rate and the end of shoot growth were derived from plant height time series data

through curve fitting (see Methods). Several phenotypes were defined as ratios of other pheno-

types, e.g. the ratio of total seed weight to shoot dry weight and the ratio of the total number of

seeds to the total number of siliques per plant.

Exploratory data analysis

Principal component analysis (PCA) suggests that there are no clearly separated subpopula-

tions of plants with distinct expression or phenotype profiles (Fig 1). A few relative outliers are

visible however, e.g. plants 03C and 04G in the phenotype PCA plot (Fig 1C), both small plants

that yielded few seeds (S1 Data). Single-nucleotide polymorphism (SNP) analysis of the RNA-

seq data (see Methods) did not uncover signs of substantial genetic substructure in the plant

population (S1 Fig).
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Fig 1. Field trial layout and PCA plots for gene expression and phenotypes. A. Plants were sown on a 10x10 equispaced grid with 0.5 m between rows and columns.

Plant identifiers combine a number indicating the row (01–08) and a letter indicating the column (A-H) in which the plant was sown. Only plants with leaf 8 gene

expression and phenotype profiles are labeled, border plants and grid positions at which no plants emerged are indicated by grey squares. B. Plot of the first two

principal components of the leaf 8 gene expression dataset, after normalization and RNA-seq batch correction (see Methods). C. Plot of the first two principal

components in the phenotype dataset. Individual plants in B and C are colored according to the color gradient in A, with similar coloring of plants indicating spatial

proximity in the field.

https://doi.org/10.1371/journal.pcbi.1011161.g001
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On the other hand, mapping of the field coordinates on the expression and phenotype PCA

plots (Fig 1) and analysis of the correlation of the distance between plants in transcriptome or

phenotype space with the physical distance between plants in the field (S2 Fig) suggest that there

is spatial structure in the data. However, the levels of only 140/76,808 transcripts (0.18%) and 1/41

phenotypes (2.44%, root system width) were found to be significantly spatially autocorrelated

across the field (Moran’s I, Benjamini-Hochberg (BH) adjusted permutation test p-values (q-val-

ues)� 0.05, S2 Data and S3 Fig). In a previous study on a similar number of field-grown maize

plants [28], 14.17% of transcripts were found to be significantly spatially autocorrelated at

q� 0.01, which is considerably more than the 0.18% recovered here at q� 0.05. This is mostly

due to differences in the way Moran’s I values and their significance were calculated in the present

study versus Cruz et al. [28] (use of a queen contiguity-based spatial weight matrix and permuta-

tion-based testing for determining p-values in the present study, versus an inverse distance-based

spatial weight matrix and parametric testing in Cruz et al. [28], see Methods and S2 Data) and to

a stronger effect of BH p-value adjustment for B. napus than for maize (76,808 transcripts were

tested for B. napus versus 18,171 for maize). Using the method from Cruz et al. [28] on the present

dataset yields 5,371/76,808 (6.99%) significantly spatially autocorrelated transcripts and 2/41

(4.88%) significantly spatially autocorrelated phenotypes at q� 0.05 (S2 Data). The Spearman

rank correlations between the Moran’s I values obtained by both methods are 0.8761 and 0.8645

for gene expression profiles and phenotype profiles, respectively. Although the method from Cruz

et al. [28] yields more significant spatial autocorrelations, we consider the method using non-

parametric permutation testing to be more reliable, as the parametric method assumes a normal

distribution of the Moran’s I value under the assumption of no spatial autocorrelation, which

does not always hold. The results presented below are therefore based on the method using a

queen contiguity-based spatial weight matrix and permutation-based testing.

To assess whether some functional classes of genes have on average a stronger or weaker

spatial autocorrelation signal than other classes, regardless of the statistical significance of the

Moran’s I values, two-sided Mann-Whitney U (MWU) tests [30] were performed on the tran-

script list ranked in order of decreasing Moran’s I value. Genes involved in e.g. photosynthesis,

translation, the response to abiotic stimuli, response to cytokinin, regulation of circadian

rhythm, photoperiodism and the vegetative to reproductive phase transition were found to

have a significantly higher Moran’s I on average than other genes (MWU q� 0.05, S2 Data).

This suggests that there is spatial patterning in the data, but that its discovery may be ham-

pered by a lack of statistical power due to the small size of the field trial.

Most continuous phenotypes and high-count discrete phenotypes (e.g. seed and silique

counts) are at least approximately normally distributed (Anderson-Darling and Shapiro-Wilk

normality tests, p> 0.01, S3 Data), with the exception of five ratio phenotypes (seeds per

silique, seeds per silique stem 1, seed weight/dry weight stem 1, total seed weight/shoot dry

weight and branches per stem), leaf count (74 DAS) and two shoot growth phenotypes (time

of max shoot growth and end of shoot growth). Many of these phenotypes exhibit relative out-

liers that may influence normality testing results (S4 Fig). When removing outliers (see Meth-

ods), four additional phenotypes (seeds per silique, seeds per silique stem 1, stem 1 seed

weight/stem 1 dry weight, total seed weight/shoot dry weight) were found to be approximately

normally distributed (Anderson-Darling and Shapiro-Wilk normality test, p> 0.01, S3 Data).

Some phenotypes were found to be more variable across the field than others. Dry weight,

seed and silique phenotypes at harvest are the most variable, with coefficients of variation

(CVs) between 43.7% and 51.9% (S3 Data). Taproot length also has a high CV (42.8%). Plant

height (278 DAS) and shoot growth parameters exhibit the lowest CV values (< 7%). Most

ratio phenotypes also have relatively low CV values (� 20.3%), with the exception of siliques

per branch (35.3%), siliques per branch stem 1 (35.0%) and branches per stem (33.6%). When
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removing outliers, the CV of some of these ratio phenotypes is further reduced, notably for

seed weight stem 1/dry weight stem 1 (20.3%! 9.5%), total seed weight/shoot dry weight

(18.1%! 8.9%), seeds per silique (19.5%! 14.7%) and seeds per silique stem 1 (19.4%!

14.6%). Leaf and branch phenotypes generally exhibit intermediate CVs. Whereas leaf 8 fresh

weight (81 DAS), leaf 8 area (81 DAS), total branch count and rosette area (42 DAS) have a

CV� 30%, other leaf 8 and leaf 6 phenotypes and branch count stem 1 exhibit a CV in the

range 19.1%-23.2%, and leaf 8 chlorophyll content (81 DAS) has a CV of only 12.5%.

Gene expression also exhibits substantial variability across the field. Ignoring genes

expressed in less than 10 samples, the median gene has an expression CV of 34.2% (S3 Data).

To investigate whether some classes of genes vary more in expression than others across the

field, we ranked B. napus genes based on a normalized version of their expression CV

(normCV, see Methods and S3 Data). MWU tests [30] were performed to assess whether any

Gene Ontology (GO) biological processes are represented more at the top or bottom of the

normCV-ranked gene list than expected by chance (S3 Data). As observed in earlier studies on

populations of lab-grown Arabidopsis thaliana Col-0 plants [31] and field-grown Zea mays
B104 plants [28], genes involved in photosynthesis and responses to biotic and abiotic stimuli

were found to be on average more variably expressed than other genes, while genes involved in

housekeeping functions related to protein, RNA and DNA metabolism were found to be on

average more stably expressed across the field (S3 Data). To what extent high gene expression

variability is due to either variability in the levels of external stimuli experienced by the indi-

vidual plants or due to a higher intrinsic noisiness of a gene’s expression levels (on the scale of

entire leaves) is unclear. Some categories of genes with more variable expression across the

field, such as genes involved in photosynthesis or response to abiotic stimuli, also exhibit

higher Moran’s I values on average, suggesting that their variability may be linked to external

stimuli that are spatially patterned. On the other hand, most genes with highly variable expres-

sion do not exhibit strong spatial patterns (S5 Fig), which indicates that their expression vari-

ability may be caused by intrinsic stochastic factors, or alternatively by extrinsic factors that

are not spatially autocorrelated at the field sampling resolution employed.

Linking phenotypes to the leaf 8 expression profiles of single genes

In order to get an overall view on which leaf 8 gene expression profiles significantly relate to

which phenotypes, linear mixed-effects (lme) models were used to assess the relation between

each gene expression profile and each phenotype separately (further referred to as single-gene

models). lme models were used for this instead of ordinary linear models because they can

take into account spatial autocorrelation effects (see Methods), which can bias significance

testing in ordinary linear models [32]. Between 11,986 and 14,032 gene expression profiles,

out of 76,808, were found to be significantly associated (q� 0.05) with leaf 8 phenotypes such

as leaf 8 length, width, area and fresh weight (Table 1 and S4 Data). That leaf 8 phenotypes

yield more associated genes than other phenotypes is not surprising, given that leaf 8 was used

for gene expression profiling. Next to leaf 8 phenotypes, also other leaf and rosette phenotypes

feature more associated genes than non-leaf phenotypes, except for leaf 6 length (74 DAS). The

gene sets associated with leaf phenotypes are generally significantly enriched (hypergeometric

test, q� 0.05) in genes involved in e.g. response to biotic and abiotic stimuli (salt), photosyn-

thesis, circumnutation, cell wall biogenesis, amino acid metabolism and response to sulfate

and nitrogen starvation (S5 Data). Additionally, leaf phenotype-related gene lists show signifi-

cant enrichment, notably among transcription factors, in genes involved in dorsal/ventral,

adaxial/abaxial and radial pattern formation, phloem, xylem and procambium histogenesis,

and meristem development (S5 Data).
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Table 1. Numbers of significant gene expression-phenotype associations.

All genes Transcription factors

Phenotype # Significant Most significant q # Significant Most significant q
leaf 8 length (76 DAS) 14032 BnaC07g39340D 4.35E-14 453 BnaA05g33840D 4.44E-09

leaf 8 width (76 DAS) 13695 BnaC07g39340D 1.62E-15 429 BnaA05g33840D 6.98E-09

leaf 8 width (81 DAS) 13605 BnaA02g18860D 1.37E-12 420 BnaA05g33840D 1.36E-08

leaf 8 fresh weight (81 DAS) 12989 BnaC07g39340D 5.79E-12 412 BnaAnng02740D 4.17E-08

leaf 8 area (81 DAS) 12569 BnaC07g39340D 1.29E-13 408 BnaAnng02740D 1.64E-08

leaf 8 length (81 DAS) 11986 BnaA01g14450D 6.39E-14 383 BnaA05g27750D 5.25E-08

leaf count (74 DAS) 10442 BnaC04g49060D 1.86E-07 313 BnaA05g33840D 2.16E-06

rosette area (42 DAS) 7196 BnaC09g39140D 7.14E-06 212 BnaA06g39930D 1.06E-04

leaf 6 width (74 DAS) 5386 BnaA09g04980D 2.05E-05 184 BnaA05g27750D 2.76E-04

time of max shoot growth 3498 BnaC06g28860D 7.29E-07 89 BnaC04g03950D 5.42E-06

total shoot dry weight 1859 BnaA05g29010D 1.37E-06 76 BnaCnng05590D 2.36E-04

total shoot dry weight (w/o seeds) 1802 BnaA05g29010D 8.88E-07 68 BnaAnng37500D 4.89E-04

dry weight stem 1 1612 BnaA05g29010D 2.79E-06 72 BnaC01g37260D 5.87E-05

dry weight stem 1 (w/o seeds) 1611 BnaA05g29010D 6.82E-06 75 BnaA08g12050D 3.13E-04

total seed weight 1598 BnaA06g35450D 1.02E-05 66 BnaCnng05590D 6.05E-05

total seed count 1545 BnaA06g35450D 9.10E-06 63 BnaCnng05590D 1.12E-04

seed weight stem 1 1539 BnaA05g29010D 1.65E-05 66 BnaC01g37260D 1.65E-05

total silique count 1520 BnaA06g35450D 3.92E-05 64 BnaCnng05590D 7.12E-04

seed count stem 1 1449 BnaC01g37260D 2.58E-05 67 BnaC01g37260D 2.58E-05

leaf 6 length (74 DAS) 1345 BnaA09g04980D 2.37E-04 34 BnaA02g18720D 8.39E-03

silique count stem 1 1248 BnaA05g29010D 6.32E-05 56 BnaC01g37260D 6.32E-05

branch count stem 1 1110 BnaA06g35450D 2.52E-04 39 BnaC01g37260D 1.95E-03

siliques per branch stem 1 593 BnaA01g17100D 2.24E-03 29 BnaC01g37260D 2.48E-03

total seed weight/shoot dry weight 458 BnaC09g50070D 2.24E-05 13 BnaC04g55440D 4.81E-04

seed weight stem 1/dry weight stem 1 280 BnaA03g50380D 8.90E-04 6 BnaC03g62970D 3.39E-03

branch count stem 1/length stem 1 240 BnaAnng11300D 8.22E-03 5 BnaC01g37260D 4.04E-02

seeds per silique stem 1 233 BnaC05g45470D 8.73E-04 9 BnaC04g03950D 4.42E-03

seeds per silique 112 BnaA08g07570D 9.01E-04 3 BnaC04g03950D 1.43E-02

plant height (278 DAS) 99 BnaA06g34140D 7.20E-04 5 BnaC01g37260D 2.48E-02

total branch count 89 BnaA06g35450D 2.39E-03 1 BnaCnng05590D 5.82E-03

root system width 4 BnaA01g06800D 7.53E-03 0 - -

siliques per branch 3 BnaAnng39720D 2.22E-02 0 - -

branches per stem 0 - - 0 - -

taproot length 0 - - 0 - -

leaf 8 chlorophyll content (81 DAS) 0 - - 0 - -

max shoot growth rate 0 - - 0 - -

end of shoot growth 0 - - 0 - -

rosette lesions (74 DAS) 0 - - 0 - -

leaf 6 lesions (74 DAS) 0 - - 0 - -

leaf 8 lesions (76 DAS) 0 - - 0 - -

stem count 0 - - 0 - -

Table legend: For any given phenotype, results are reported on the complete gene set (n = 76,808; ‘All genes’ columns) and on the set of transcription factors (n = 2,521;

‘Transcription factors’ columns). In both cases, the results shown include (from left to right) the total number of significant gene expression-phenotype associations

(q� 0.05), the most significant gene and its q-value.

https://doi.org/10.1371/journal.pcbi.1011161.t001
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Interestingly, appreciable numbers of gene-phenotype associations were found as well for

several phenotypes that are only distantly related in space and time to the leaf 8 material pro-

filed for RNA-seq. In particular seed, silique and shoot dry weight phenotypes yielded high

numbers of associated genes, ranging from 1,859 genes for total shoot dry weight to 1,248

genes for the silique count on stem 1 at harvest (Table 1 and S4 Data). Many of the gene sets

associated with these phenotypes are enriched in genes involved in nitrate assimilation, super-

oxide metabolism, circumnutation, circadian rhythm, response to biotic and abiotic stimuli

(cold, salt, water deprivation), response to nutrient levels (nitrogen, sulphate and phosphate

starvation), and, in particular among transcription factors, phosphate ion homeostasis, histone

modification, regulation of the vegetative to reproductive phase transition and floral organ

morphogenesis (S5 Data). 1,110 genes were found associated with the branch count on stem

1, with GO enrichments similar to those obtained for dry weight, silique and seed phenotypes

(S5 Data). In contrast, the total branch count phenotype only yields a set of 89 associated

genes (Table 1 and S4 Data), which is however also strongly enriched in e.g. superoxide

metabolism and salt stress genes. The fact that the total branch count is composed of cauline

secondary inflorescence stems on stem 1 and tertiary inflorescence stems on the side stems

may render this phenotype less relevant. No genes were found associated (q� 0.05) with tap-

root length and only four with root system width, suggesting that autumnal leaf 8 gene expres-

sion may not contain a lot of information on root phenotypes. On the other hand, given the

difficulty of recovering intact root systems from the soil, it is not excluded that root measure-

ment errors may have influenced these results.

Phenotypes with very low CV such as leaf 8 chlorophyll content (81 DAS), the maximum

shoot growth rate and end of shoot growth yielded no significantly associated genes, suggest-

ing that the biological variation of these phenotypes is limited and that the observed variation

may be dominated by technical noise (Table 1 and S4 Data). The phenotype with the lowest

CV on the other hand, the time of maximal shoot growth (CV = 0.6%), features 3,498 signifi-

cant leaf 8 gene expression correlates. The associated gene set is strongly enriched in genes

involved in e.g. cell wall biogenesis and response to biotic stimuli (S5 Data). For plant height

(278 DAS) (CV = 6.8%), 99 associated genes are found with minor GO enrichments.

Ratio phenotypes exhibit between 0 and 593 associated genes. In particular the branches

per stem and siliques per branch ratios do poorly (0 and 3 associated genes, respectively). Both

involve the total branch count, which is itself only associated with 89 genes. Ratios involving

the branch count on stem 1 on the other hand yield between 240 and 593 associated genes.

One potential reason for ratio phenotypes having at most a few hundred gene associations is

that ratios suffer from increased error levels due to the propagation of measurement errors

from both the numerator and denominator. This may be particularly problematic for ratios of

highly correlated variables such as the seeds per silique and seed weight/dry weight phenotypes

(both for stem 1 and the entire shoot), which exhibit a low CV and likely have even lower true

biological variation. No genes were found associated at q� 0.05 with qualitative or low-count

discrete phenotypes such as rosette lesions (74 DAS), leaf 6 lesions (74 DAS), leaf 8 lesions (76

DAS) and stem count (i.e. stem 1 plus the number of side stems).

Leaf and final yield phenotypes of individual field-grown B. napus plants

can be predicted to a considerable extent from their autumnal leaf 8

transcriptome

Most phenotypes feature many significantly related gene expression profiles (Table 1). To

assess to what extent phenotypes can be predicted from the entire leaf 8 transcriptome, we

used models using all gene expression profiles as predictive features, or a sizeable subset
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thereof (further referred to as multi-gene models). As the feature space (76,808 gene expres-

sion profiles) is huge compared to the number of samples (62 plants), simply using ordinary

linear models or lme models with all gene expression values as features makes no sense, as

there’s a myriad different ways to perfectly explain a given phenotype for 62 plants from

76,808 gene expression profiles. Most of these models will be seriously overfit and will general-

ize badly to unseen data. Instead, we used elastic net [33] and random forest [34] models. Elas-

tic net (enet) is a regularized regression method that uses a penalty on the sum of feature

coefficient magnitudes (L1-norm, as in lasso) and an additional penalty on the magnitude of

the coefficient vector (L2-norm or Euclidean norm, as in ridge regression) to shrink the feature

coefficients and limit the amount of features used to explain an outcome variable, with the pur-

pose of reducing overfitting and hence enhancing the generalizability of the resulting model to

unseen data. Random forest (RF) reduces overfitting by training a ‘forest’ of decision trees, in

which each tree is trained on a dataset sampled with replacement from the original data, and at

each tree split only a random subset of features are taken into account as possible predictors.

The predicted outcome for a given input is then taken to be the average of the output of the dif-

ferent trees in the forest. The main reason for using both enet and RF models is that the former

can only capture linear relationships in the data, while the latter can also capture non-linear

effects.

Models were learned using either the set of all genes (n = 76,808) or the (much smaller) set

of all transcription factors (TFs, n = 2,521) as features. In both cases, to further reduce the

number of features used to train the machine learning models, we used a priori feature selec-

tion to select subsets of features that are potentially interesting. As different feature selection

techniques may have different biases, we used three different feature selection techniques,

namely HSIC lasso [35], a Spearman correlation filter and a filter selecting only genes with

median rlog gene expression > 0 (see Methods).

To assess to what extent the models generalize to unseen data, the enet and RF models were

trained in a 10-fold cross-validation setup (i.e. the data was split in 10 data subsets, each set

was selected in turn as the test set, the model was trained on the remaining 9 sets and applied

to the test set, see Methods). To assess the variance of the test set predictions, the 10-fold cross-

validation procedure was repeated 9 times with different splits, giving rise to 90 test sets and 9

test set predictions per plant for each combination of phenotype, model type (RF or enet),

potential feature set (all genes or TFs) and feature selection technique. The best model for a

given phenotype and potential feature set was taken to be the one with the highest median test

R2 value across all 90 test sets for continuous and high-count phenotypes (see Methods), or

the highest median test accuracy for qualitative or low-count discrete phenotypes (Table 2 and

S6 Data).

Not surprisingly, leaf 8 phenotypes, which are most closely related in space and time to the

material sampled for transcriptome profiling, are the most predictable. Except for the leaf 8

chlorophyll content at sampling time (81 DAS), which features very poor prediction perfor-

mance, the median test R2 scores for leaf 8 phenotypes range from 0.48 to 0.70 when using all

genes as potential features. Other leaf-related phenotypes such as leaf 6 width (74 DAS, median

test R2 = 0.38), rosette area (42 DAS, median test R2 = 0.23) and leaf 6 length (74 DAS, median

test R2 = 0.07) are comparatively less predictable.

Surprisingly, many of the final seed, silique and shoot dry weight phenotypes are more pre-

dictable from the autumnal leaf 8 transcriptome than leaf 6 and rosette phenotypes, with seed

weight on stem 1 rivaling the leaf 8 phenotypes in terms of median test R2 value (Table 2, S6

Data and Figs 2 and S6). All seed weight, seed and silique count and shoot dry weight pheno-

types have median test R2 values in the range [0.35, 0.51] for the all-genes models, which is in

all cases higher than the 95th percentile of test R2 values obtained from single train-test splits
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Table 2. Best-performing multi-gene and single-gene models for each phenotype.

All genes Transcription factors Single gene

Continuous and

high-count

phenotypes

Feature

sel.

Model

type

Median

test R2

Median

pooled

PCC

Feature

sel.

Model

type

Median

test R2

Median

pooled

PCC

Top gene Median

test R2

Median

pooled

PCC

CV

leaf 8 width (76

DAS)

median enet 0.70 * 0.87 median enet 0.64 * 0.84 BnaC04g39580D 0.67 0.83 2.32E-

01

leaf 8 width (81

DAS)

median enet 0.65 * 0.86 median enet 0.65 * 0.84 BnaA02g18860D 0.62 0.83 2.32E-

01

leaf 8 area (81

DAS)

median enet 0.63 * 0.83 median enet 0.58 * 0.81 BnaCnng33420D 0.60 0.81 3.70E-

01

leaf 8 fresh

weight (81 DAS)

median enet 0.59 * 0.81 median enet 0.53 * 0.78 BnaCnng33420D 0.58 0.79 3.88E-

01

seed weight stem

1

spearman enet 0.51 * 0.77 median enet 0.53 * 0.78 BnaA05g29010D 0.42 0.67 4.51E-

01

leaf 8 length (76

DAS)

spearman rf 0.51 * 0.80 median enet 0.53 * 0.79 BnaC07g39340D 0.58 0.80 2.21E-

01

leaf 8 length (81

DAS)

spearman rf 0.48 * 0.78 spearman enet 0.51 * 0.78 BnaC01g17020D 0.52 0.81 2.11E-

01

seed count stem 1 spearman enet 0.47 * 0.72 median enet 0.43 * 0.73 BnaA06g20870D 0.38 0.61 4.71E-

01

silique count

stem 1

median enet 0.46 * 0.74 median enet 0.45 * 0.72 BnaA05g29010D 0.37 0.66 4.37E-

01

total seed count spearman enet 0.45 * 0.73 median enet 0.38 * 0.71 BnaC03g60710D 0.39 0.61 4.78E-

01

dry weight stem 1 spearman enet 0.44 * 0.73 median enet 0.39 * 0.70 BnaA05g29010D 0.40 0.70 4.83E-

01

dry weight stem 1

(w/o seeds)

hsic-5000 enet 0.42 * 0.69 spearman enet 0.35 * 0.64 BnaA05g29010D 0.39 0.69 5.19E-

01

total seed weight spearman enet 0.42 * 0.74 median enet 0.40 * 0.70 BnaA06g35450D 0.41 0.69 4.69E-

01

total shoot dry

weight

spearman enet 0.41 * 0.71 median enet 0.31 * 0.68 BnaA09g48720D 0.41 0.67 4.89E-

01

leaf 6 width (74

DAS)

median enet 0.38 * 0.68 hsic-5000 rf 0.07 0.51 BnaC03g15540D 0.35 0.61 1.91E-

01

total silique count median enet 0.38 * 0.68 median enet 0.36 * 0.68 BnaC04g21390D 0.40 0.63 4.56E-

01

siliques per

branch stem 1

hsic-5000 enet 0.37 * 0.67 hsic-5000 rf 0.14 0.51 BnaC04g21390D 0.25 0.60 3.50E-

01

total shoot dry

weight (w/o

seeds)

spearman enet 0.35 * 0.66 spearman enet 0.29 0.62 BnaA06g05150D 0.40 0.69 5.13E-

01

leaf count (74

DAS)

median rf 0.24 * 0.66 median rf 0.40 * 0.72 BnaA01g34700D 0.38 0.70 1.12E-

01

rosette area (42

DAS)

median enet 0.23 * 0.59 median enet 0.36 * 0.68 BnaC05g30740D 0.33 0.64 3.00E-

01

branch count

stem 1

spearman rf 0.19 0.56 median enet 0.11 * 0.52 BnaA10g29560D 0.38 0.56 2.00E-

01

siliques per

branch

spearman enet 0.16 0.49 spearman enet -0.01 0.36 BnaA08g09860D 0.12 0.53 3.53E-

01

plant height (278

DAS)

median enet 0.12 * 0.47 spearman enet 0.16 0.51 BnaC07g25920D 0.34 0.63 6.81E-

02

total branch

count

median rf 0.10 0.40 median enet 0.17 * 0.57 BnaA09g48720D 0.26 0.59 3.42E-

01

(Continued)
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Table 2. (Continued)

All genes Transcription factors Single gene

Continuous and

high-count

phenotypes

Feature

sel.

Model

type

Median

test R2

Median

pooled

PCC

Feature

sel.

Model

type

Median

test R2

Median

pooled

PCC

Top gene Median

test R2

Median

pooled

PCC

CV

branch count

stem 1/length

stem 1

median rf 0.07 0.39 median rf -0.06 0.23 BnaC05g15590D 0.22 0.55 1.58E-

01

leaf 6 length (74

DAS)

median enet 0.07 * 0.45 median rf 0.06 0.43 BnaA09g04980D 0.31 0.64 1.96E-

01

max shoot

growth rate

median rf 0.03 0.41 hsic-5000 rf -0.02 0.34 BnaA10g21770D 0.15 0.50 6.75E-

02

root system

width

median rf 0.01 0.36 median rf 0.17 * 0.56 BnaC07g01150D 0.17 0.56 2.16E-

01

time of max

shoot growth

median rf -0.02 0.38 hsic-5000 rf 0.20 0.57 BnaA05g08250D 0.15 0.56 6.45E-

03

taproot length spearman rf -0.02 0.26 median enet -0.09 0.18 BnaA04g17830D 0.16 0.50 4.28E-

01

branches per

stem

median rf -0.09 0.26 hsic-5000 rf -0.12 0.21 BnaC03g42190D 0.13 0.51 3.36E-

01

leaf 8 chlorophyll

content (81 DAS)

median enet -0.14 -0.35 median enet -0.12 -0.40 BnaA03g40350D 0.09 0.46 1.25E-

01

seeds per silique median rf -0.14 -0.18 median enet -0.17 -0.31 BnaC03g38990D -0.09 0.22 1.95E-

01

seeds per silique

stem 1

median enet -0.15 -0.31 median enet -0.15 -0.08 BnaC01g44890D -0.05 0.40 1.94E-

01

seed weight stem

1/dry weight

stem 1

median enet -0.18 -0.09 median enet -0.16 -0.39 BnaC09g50070D -0.13 0.58 2.03E-

01

total seed weight/

shoot dry weight

median enet -0.19 -0.08 median enet -0.17 -0.39 BnaA02g15500D -0.12 0.33 1.81E-

01

end of shoot

growth

hsic-5000 rf -0.22 0.02 median rf -0.29 -0.17 BnaA05g09440D 0.04 0.45 1.02E-

02

Qualitative and

low-count

phenotypes

Feature

sel.

Model

type

Median

test

accuracy

Feature

sel.

Model

type

Median

test

accuracy

leaf 8 lesions (76

DAS)

hsic-5000 enet 0.67 hsic-5000 rf 0.67

rosette lesions (74

DAS)

median rf 0.50 spearman enet 0.46

leaf 6 lesions (74

DAS)

median enet 0.33 spearman enet 0.50

stem count median enet 0.33 hsic-5000 enet 0.50

Table legend: Results are shown for models including all genes as potential features (‘All genes’ columns), models including only TFs as potential features

(‘Transcription factors’ columns) and models using a single gene as feature (‘Single gene’ columns). For the best all-genes and TF models for continuous or high-count

discrete phenotypes, columns from left to right indicate the feature selection technique used (median = selection of features with median rlog gene expression > 0,

spearman = Spearman correlation, hsic-5000 = HSIC lasso, see Methods), the model type (enet or RF), the median test R2 and the median pooled Pearson correlation

coefficient (PCC, see Methods). Stars in the median test R2 column indicate that the median test R2 score on real data is higher than the 95th percentile of test R2 scores

on permuted data (S6 Data). For qualitative and low-count phenotypes, the median test accuracy was used as a performance metric instead of the median test R2 (see

Methods). Single-gene model columns include the best-performing gene and the corresponding median test R2 and median pooled PCC. All single-gene models are

cross-validated lme models with spatial error structure. The CV column contains the coefficients of variation for the phenotypes.

https://doi.org/10.1371/journal.pcbi.1011161.t002
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on 90 datasets in which the phenotype values were permuted (S6 Data). In other words, the

model for the real data train-test split with median test R2 outperforms 95% of the models for

comparable train-test splits on randomized data. Note that this serves only as an indication of

model performance on real versus randomized data, not as a formal test assessing whether the

median test R2 score on real data is significantly higher than expected at random. The latter

would require the 9 times repeated 10-fold cross-validation setup used on the real data to be

used on each of the permuted datasets as well (instead of the single train-test split per permuta-

tion used here), which is computationally prohibitive.

Interestingly, seed count and weight, silique count and dry weight phenotypes measured

for stem 1 are generally slightly more predictable than the corresponding phenotypes mea-

sured for the entire shoot, with median test R2 score differences between stem 1 and total

shoot phenotypes in the range [0.02, 0.09] for the all-genes models and [0.05, 0.13] for the TF

models. This suggests that gene expression levels in leaf 8 of the rosette may be more predictive

for phenotypes of stem 1 (i.e. the primary inflorescence stem and its cauline secondary inflo-

rescences) than for phenotypes measured on the whole shoot (i.e. including the secondary

inflorescence stems branching at ground level).

Root phenotypes, branching phenotypes, final plant height (278 DAS) and shoot growth

phenotypes are generally poorly predictable (Table 2). Plant height and shoot growth pheno-

types are likely poorly predictable because they show little variation across the field (S3 Data),

increasing the risk that measurement error outweighs biological variation. Also taproot length

and root system width may suffer from measurement errors. The total branch count and

branch count stem 1 phenotypes on the other hand have a high CV and likely limited measure-

ment error, suggesting that leaf 8 gene expression profiles may contain less information on

these branching phenotypes than on leaf, seed, silique and dry weight phenotypes.
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Fig 2. Predictions versus observations for the best-scoring leaf and yield phenotypes. A. Predicted versus measured values for leaf 8 width (76 DAS),

using the all-genes model with the best median test R2 score (enet + median feature selection, Table 2). B. Predicted versus measured values for seed

weight stem 1, using the all-genes model with the best median test R2 score (enet + Spearman feature selection, Table 2). Vertical grey lines range from the

minimum to the maximum predicted value for a given plant across all model repeats, and colored dots represent predictions for the repeat with the

median pooled R2 score (i.e. the R2 score of the pooled test set predictions in the repeat concerned). Different marker colors indicate the 10 different test

sets in this repeat. Perfect predictions are located on the dashed diagonal line in each panel. Similar plots for other phenotypes are presented in S6 Fig.

https://doi.org/10.1371/journal.pcbi.1011161.g002
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Most phenotypes calculated as ratios of other phenotypes are very poorly predictable, even

if the constituent phenotypes have high prediction performance values. For instance, the

median test R2 value for seeds per silique (total seed count divided by total silique count) in the

best all-genes model is negative (-0.14), whereas both total seed count and total silique count

have median test R2 values� 0.38 (Table 2). In many cases however, the numerator and

denominator phenotypes of a ratio are highly correlated, leading to a derived phenotype with a

small range that may be dominated by noise propagated from measurement errors in the con-

stituent phenotypes rather than biological variability. The number of siliques per branch on

stem 1 and the entire shoot are notable exceptions with high CV values and reasonable predic-

tion performance in the best all-genes models (Table 2). The latter ratio phenotypes are highly

correlated with the number of siliques on stem 1 (PCC = 0.92) and the entire shoot

(PCC = 0.72), respectively, indicating that the number of siliques per branch is an important

determinant of silique count, in addition to the number of branches (PCC between total

branch count and total silique count = 0.87, PCC between branch count stem 1 and silique

count stem 1 = 0.82).

The best all-genes model and best TF model generally have comparable performance for

leaf 8 phenotypes, seed count and weight phenotypes, silique count phenotypes and branch

count phenotypes, with median test R2 differences (median test R2 of best all-genes model—

median test R2 of best TF model) for these phenotypes in the range [-0.07, 0.08] (Table 2). In

most of these cases, the median test R2 score of the all-genes model is slightly higher than that

of the TF model, but whether these differences are significant is hard to assess, as a commonly

accepted framework for assessing the significance of out-of-sample R2 differences between

models is currently lacking. The R2 differences between the best all-genes and TF models for

dry weight phenotypes range from 0.05 to 0.10, suggesting that all-genes models may perform

slightly better than TF models for these phenotypes. Among the other phenotypes for which

either the best all-genes or best TF model has a median test R2 score higher than the 95th per-

centile of test R2 values obtained on permuted data (S6 Data, stars in Table 2), the best all-

genes models for leaf 6 width (74 DAS) and siliques per branch stem 1 have a substantially

higher median test R2 score than the corresponding best TF models (R2 difference = 0.31 and

0.23, respectively), while the best TF models for leaf count (74 DAS), rosette area (42 DAS)

and root system width have a higher R2 score than the corresponding best all-genes models (R2

difference = -0.16, -0.13 and -0.16, respectively). In summary, the all-genes and TF models

exhibit similar overall performance, in particular for the most predictable phenotypes. This

indicates that, from the perspective of quantitative phenotype prediction, most of the informa-

tion present in the complete gene expression dataset is also present in the TF gene expression

data subset.

To compare multi-gene models, with either all genes or all TFs as potential features, to sin-

gle-gene models in terms of phenotype prediction performance, we used the same repeated

cross-validation setup as used for the multi-gene models to calculate median test R2 scores and

median pooled PCC values for single-gene models (lme models with spatial structure, see pre-

vious section). Cross-validation scores were calculated for each of the 100 genes most signifi-

cantly associated with a given phenotype (lowest q-value for gene coefficient in lme model, S4

and S6 Data).

For leaf 8 phenotypes, the best multi-gene models and best single-gene models have compa-

rable median test R2 scores (ΔR2 in the range [-0.05, 0.03], with ΔR2 = max(median test R2 of

best all-genes model, median test R2 of best TF model)−median test R2of best single-gene

model, Table 2). In other words, multi-gene models offer no benefit over single-gene models

for quantitative prediction of leaf 8 phenotypes. Single- and multi-gene models also have com-

parable prediction performance for many of the yield traits measured on the entire shoot, such
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as total seed weight, total seed count, total silique count and total dry weight with and without

seeds (ΔR2 in the range [-0.05, 0.06], Table 2). There is also little difference in prediction per-

formance for the dry weight of stem 1 with and without seeds (ΔR2 = 0.04 and 0.03, respec-

tively). Many of the seed and silique traits related to stem 1 on the other hand (seed weight,

seed count and silique count on stem 1, the number of siliques per branch on stem 1) are

somewhat better predicted by multi-gene models than by single-gene models (ΔR2 in the

range [0.09, 0.12], Table 2). This indicates that several distinct gene expression patterns may

be relevant for quantitative prediction of stem 1 seed and silique traits.

For several other phenotypes, single-gene models outperform multi-gene models, some-

times with a wide margin, e.g. for plant height (278 DAS) (ΔR2 = -0.18), branch count on stem

1 (ΔR2 = -0.19) and leaf 6 length (74 DAS) (ΔR2 = -0.24). This suggests that the multi-gene

models are vulnerable to overfitting. In particular phenotypes with low single-gene model per-

formance tend to exhibit a multi-gene model performance that is even lower, suggesting that

the extent of multi-gene model overfitting is inversely correlated with the proportion of trait

variance explained by single genes. An alternative explanation for the observation that the best

single-gene models sometimes outperform the corresponding multi-gene models may be the

‘winner’s curse’ effect, also known as selection bias [36], whereby the apparently best-perform-

ing single-gene models may overestimate prediction performance.

For most ratio phenotypes, both the multi-gene and single-gene models have very poor pre-

diction performance, in particular when the numerator and denominator phenotypes that

make up the ratio are very highly correlated. In these cases, the denominator is essentially

already a good predictor of the numerator. To assess whether any gene expression profiles con-

tain additional information on the numerator given knowledge of the denominator, we used

alternative single-gene models with a log link (see Methods) to predict the numerators of the

seeds per silique ratio on stem 1 and the branches per stem ratio (seed count stem 1 and total

branch count, respectively) conditioned on their denominator (silique count stem 1 and stem

count, respectively). These models are not suited for making predictions in practice, given the

need to know the denominator, but they may indicate whether prediction of the ratio based on

gene expression is at all feasible and if so, which genes may be important. If no genes are found

to be predictive for the numerator (and hence the ratio) conditioned on the denominator,

then attempts to predict the ratio phenotype unconditionally are likely to be unsuccessful. For

both seeds per silique stem 1 and branches per stem, the fitted coefficients and residuals look

reasonable for the best predictor genes (S7 and S8 Figs). The corresponding models succeed in

suppressing a few of the more extreme residuals of the base model (without gene expression

effect), without improving predictions for most other plants. However, no gene coefficients

were found to be significantly different from zero for either phenotype after BH correction

(q� 0.05), neither in models assuming constant error variance nor in models with heterosce-

dastic and/or spatially covarying error structures (see Methods). This indicates that the poor

performance of the original multi-gene and single-gene models for these phenotypes is to be

expected.

Top predictors for leaf phenotypes

The best multi-gene prediction performance scores were obtained for leaf 8 phenotypes. To

assess whether the genes featuring most prominently in the multi-gene models for leaf pheno-

types make biological sense, we focused on the top-10 predictor lists of the TF-based models

for leaf 8 length and width (76 DAS and 81 DAS), fresh weight (81 DAS) and area (81 DAS),

and leaf 6 length and width (74 DAS) (S6 Data). As these leaf phenotypes are generally highly

correlated (PCC between leaf 8 phenotype in the range [0.78,0.97], PCC between leaf 8 and
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leaf 6 phenotypes in range [0.45, 0.60]), many of the most important predictors (TFs) in the

random forest and elastic net models are shared among phenotypes. We therefore grouped the

top-10 predictor lists for the different phenotypes in two sets, one for the RF models (Fig 3,

n = 42) and one for the enet models (S9 Fig, n = 35). The rationale for looking at the TF mod-

els instead of the models built on all genes is that TFs are more likely than the average gene to

have been functionally characterized to some extent, and are more likely to be causally

involved in phenotype regulation (although it needs to be stressed that our analysis remains

entirely correlational). Given the relative lack of experimentally determined gene functions in

B. napus, most of the functional interpretation given below and in S7 Data for B. napus genes

is based on experimentally determined functions of likely orthologs in A. thaliana (see

Methods).

Many of the top TF predictors for leaf phenotypes have A. thaliana orthologs that have

known functions in leaf development or exhibit overexpression, knockout or other mutant

phenotypes related to leaf development (details in S7 Data). Both the RF and enet top predic-

tor lists contain BnaCnng05590D and BnaA05g33840D, putative orthologs of the homeodo-

main leucine zipper class I (HD-ZIP I) gene ARABIDOPSIS THALIANA HOMEOBOX 1
(AtHB1/AT3G01470). The enet top predictor list for leaf phenotypes also contains another

HD-ZIP I gene, BnaC02g43700D, which is putatively orthologous to AtHB5 (AT5G65310) or

AtHB16 (AT4G40060). Both AtHB1 and AtHB16 exhibit mutant phenotypes related to leaf

development, seed yield and the timing of the vegetative-to-reproductive phase transition

(S7 Data).

The RF and enet top predictor lists also contain several other HD-ZIP genes.

BnaA06g18550D in the RF top predictor list is putatively orthologous to the A. thaliana
HD-ZIP III gene REVOLUTA (AtREV/AT5G60690), which is involved in regulating postem-

bryonic meristem initiation [37] and several polarity-associated growth processes in A. thali-
ana, including abaxial-adaxial patterning in leaves [38] (S7 Data). Additionally,

BnaC06g05240D and BnaA06g01940D in the RF top predictor list are HD-ZIP III genes puta-

tively orthologous to AtHB8 (AT4G32880) or AtHB15 (AT1G52150). AtHB8 and AtHB15 are

thought to have effects on postembryonic meristem initiation that are antagonistic to the

effects of AtREV [39], and to function prominently in vascular development, possibly antago-

nistically [40–43]. Furthermore, the enet top predictor list includes the HD-ZIP II gene

BnaC03g02700D, putatively orthologous to AtHAT3 (AT3G60390), AtHAT14 (AT5G06710),

AtHB17 (AT2G01430) or AtHB18 (AT1G70920). AtHAT3 is known to be involved in leaf abax-

ial/adaxial patterning [44], and to be regulated by AtREV [45].

Both the RF and enet top predictor lists prominently feature putative orthologs of A. thali-
anaWUSCHEL RELATED HOMEOBOX (AtWOX) genes: BnaA05g27750D (RF and enet) and

BnaC05g41930D (enet). Both genes are putatively orthologous to AtWOX5 (AT3G11260) or

AtWOX7 (AT5G05770). Next to roles in root development, AtWOX5 is known to also have

functions in leaf development (S7 Data).

Not all transcription factors in the RF and enet models are equally important for all leaf

phenotypes. BnaCnng06440D (AtMYB60/AT1G08810) for instance has higher RF and (to a

lesser extent) enet importance scores for leaf 8 area (81 DAS) and leaf 8 fresh weight (81 DAS)

than for other leaf phenotypes. Its likely A. thaliana ortholog AtMYB60 is involved in regulat-

ing stomatal opening, and its expression is downregulated under drought [46] (S7 Data). A

second TF in the RF models with higher importance for leaf 8 area (81 DAS) and leaf 8 fresh

weight (81 DAS) than for other leaf phenotypes is BnaC06g36000D (AtHB33/AtZHD5/

AT1G75240). Its likely ortholog AtHB33 codes for a zinc-finger homeodomain TF downregu-

lated in response to abscisic acid (ABA), which e.g. induces stomatal closure [47]. A third TF

in the RF models with mildly higher importance for leaf 8 area (81 DAS) and leaf 8 fresh
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Fig 3. Top predictor genes in RF models of leaf phenotypes. A clustered heatmap of the z-scored gene expression profiles of the top genes for predicting leaf

phenotypes is shown centrally (blue-red color scale, Ward.D2 hierarchical clustering). The leaf phenotypes concerned and their z-scored profiles across plants

are shown at the bottom (dark blue-yellow heatmap with plant identifiers at the bottom). For each of these phenotypes, the top-10 most important genes

(highest median gini importance across all 90 cross-validation splits) of the RF model with the highest median test R2 score are included on the figure (gene

identifiers are shown at right). The mostly dark blue score panel to the left of the expression heatmap shows the median gini importance scores of the selected

genes in each of the selected phenotype models, normalized to the maximum importance score per model to make the color scales of the different models

(columns) comparable. The mostly yellow frequency panel to the left of the score panel shows the frequencies at which genes were selected as features across all

90 cross-validation splits of a given model. Grey squares in the score and frequency panels indicate that a given gene was not selected as a feature in a given

model. The phenotypes in the score and frequency panels are identified by numbers (1–8) on top of the panels, corresponding to the numbers associated with

the phenotypes in the bottom phenotype panel. On top of the score panel, the feature selection techniques used in the best-scoring RF models for each

phenotype are shown (median = selection of features with median rlog gene expression> 0, spearman = Spearman correlation, hsic-5000 = HSIC lasso, see

Methods), as well as the corresponding test and pooled R2 scores rounded to the nearest 0.1 and then multiplied by ten (e.g. a test R2 score of 0.38 would be

denoted as 4). Genes that are also found in the top-10 enet predictor lists for leaf phenotypes (S9 Fig) are highlighted in red, while genes that are also found in

the top-10 enet or RF predictor lists for yield phenotypes (Figs 4 and S10) are highlighted in blue. Genes found in both the top-10 enet predictor lists for leaf

phenotypes and the top-10 enet or RF predictor lists for yield phenotypes are highlighted in magenta.

https://doi.org/10.1371/journal.pcbi.1011161.g003
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weight (81 DAS) is BnaCnn59450D, whose putative orthologs AtSHN2 (AT5G11190) and

AtSHN3 (AT5G25390) have been linked to regulation of stomatal density and drought

response [48] (S7 Data).

Both the RF and enet top-10 lists feature several orthologs of A. thaliana NUCLEAR FAC-
TOR Y, SUBUNIT A (AtNF-YA) genes (putative A. thaliana orthologs in parentheses):

BnaAnng02740D (AtNF-YA2/10, AT3G05690/AT5G06510, RF), BnaA10g24470D (AtNF-YA2/

10, AT3G05690/AT5G06510, RF and enet), BnaC06g33980D (AtNF-YA3/8, AT1G72830/

AT1G17590, enet) and BnaC01g37260D (AtNF-YA5/6, AT1G54160/AT3G14020, RF). All four

genes are negatively correlated with leaf phenotypes in the field expression dataset (S4 Data).

NF-Y transcription factor complexes are heterotrimers, consisting of A, B and C subunits, that

function in various developmental programs and abiotic stress responses in plants [49]. Vari-

ous AtNF-YA gene family members were previously found to function in the regulation of leaf

size, drought resistance or the juvenile-to-adult (vegetative) phase change (S7 Data).

Interestingly, several of the top-TFs recovered in the multi-gene models for leaf phenotypes

are linked to the regulation of flowering. Plant NF-Y complexes for instance are known to also

function in the regulation of flowering time (S7 Data) [49]. It has been suggested that the pho-

toperiodic flowering regulator CONSTANS (AtCO) may compete with NF-YA subunits in the

NF-Y complex to form an alternative complex activating FLOWERING LOCUS T (FT) expres-

sion in A. thaliana, thereby promoting flowering [50]. AtHB1, AtHB16 and AtHB15, the A.

thaliana orthologs of several of the aforementioned B. napus HD-ZIP genes, have also been

linked to regulation of the juvenile-to-adult and/or vegetative-to-reproductive phase changes

[42, 51, 52]. Furthermore, both the enet and RF predictor lists contain BnaA06g39930D, a

putative ortholog of EARLY FLOWERINGMYB PROTEIN (AtEFM/AT2G03500) in A. thali-
ana. AtEFM is known to directly repress the expression of FLOWERING LOCUS T (AtFT,

AT1G65480) in the leaf vasculature, and is thought to mediate the effects of temperature and

light cues on the timing of the floral transition [53]. The RF predictor list additionally contains

BnaC05g31460D, a putative ortholog of AtJMJD5 (AtJMJ30, AT3G20810), the protein product

of which interacts with AtEFM to repress AtFT [53]. The RF and enet top predictor lists also

contain BnaA07g12050D, a putative ortholog of the floral homeotic gene APETALA2 (AtAP2/

AT4G36920) or the related AtTOE3 (AT5G67180). Both AtAP2 and AtTOE3 are known to

repress AGAMOUS (AtAG) expression during floral patterning [54].

In summary, 15/42 and 11/35 transcription factors in the RF and enet lists of top leaf phe-

notype predictors, respectively, have putative A. thaliana orthologs linked to leaf development

and patterning, the juvenile-to-adult phase change, the floral transition or drought response

(S7 Data).

Top predictors for seed, silique and shoot dry weight phenotypes

Next to leaf 8 phenotypes, also the seed, silique and shoot dry weight phenotypes (further referred

to as ‘yield’ phenotypes) of the individual plants at harvest (late spring) could be predicted to a

considerable extent from autumnal leaf 8 transcriptome data (see above). Similar to the leaf phe-

notypes, the yield phenotypes are highly correlated (PCC range [0.84–0.99]) and hence have a lot

of high-scoring RF and enet predictors in common (S6 Data and Figs 4 and S10). Furthermore,

these phenotypes are also significantly correlated with leaf phenotypes (PCC range [0.47, 0.74]),

leading to a substantial overlap between the top-10 predictor lists of yield and leaf phenotypes.

In particular, virtually all TF genes in the leaf top-10 predictor lists with links to the juve-

nile-to-adult or vegetative-to-reproductive phase changes and flowering also feature promi-

nently in the RF or enet top-10 predictor lists for yield phenotypes, including the AtHB1
ortholog BnaCnng05590D, the AtHB5/16 ortholog BnaC02g43700D, the AtAP2 ortholog
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Fig 4. Top predictor genes in enet models of yield phenotypes. A clustered heatmap of the z-scored gene expression profiles of the top genes for predicting

yield phenotypes is shown centrally (blue-red color scale, Ward.D2 hierarchical clustering). The yield phenotypes concerned and their z-scored profiles across

plants are shown at the bottom (dark blue-yellow heatmap with plant identifiers at the bottom). For each of these phenotypes, the top-10 most important genes

(highest median elastic net coefficients across all 90 cross-validation splits) of the enet model with the highest median test R2 score are included on the figure

(gene identifiers are shown at right). The mostly green-blue score panel to the left of the expression heatmap shows the median elastic net coefficients of the

selected genes in each of the selected phenotype models, normalized to the maximum coefficient per model to make the color scales of the different models

(columns) comparable. The mostly yellow frequency panel to the left of the score panel shows the frequencies at which genes were selected as features across all

90 cross-validation splits of a given model. Grey squares in the score and frequency panels indicate that a given gene was not selected as a feature in a given

model. The phenotypes in the score and frequency panels are identified by numbers (1–8) on top of the panels, corresponding to the numbers associated with

the phenotypes in the bottom phenotype panel. On top of the score panel, the feature selection techniques used in the best-scoring enet models for each

phenotype are shown (median = selection of features with median rlog gene expression> 0, spearman = Spearman correlation, hsic-5000 = HSIC lasso, see

Methods), as well as the corresponding test and pooled R2 scores rounded to the nearest 0.1 and then multiplied by ten (e.g. a test R2 score of 0.38 would be

denoted as 4). Genes that are also found in the top-10 RF predictor lists for yield phenotypes (S10 Fig) are highlighted in red, while genes that are also found in

the top-10 enet or RF predictor lists for leaf phenotypes (Figs 3 and S9) are highlighted in blue. Genes found in both the top-10 RF predictor lists for yield

phenotypes and the top-10 enet or RF predictor lists for leaf phenotypes are highlighted in magenta.

https://doi.org/10.1371/journal.pcbi.1011161.g004
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BnaA07g12050D and the AtNF-YA orthologs BnaAnng02740D, BnaA10g24470D,

BnaC06g33980D and BnaC01g37260D. Furthermore, like the top predictor lists for leaf pheno-

types, the enet top predictor list for yield phenotypes contains a putative ortholog of AtEFM,

but a different one (BnaAnng34750D) (S7 Data).

Furthermore, many of the top predictor TF genes for yield phenotypes that are absent from

the top-10 predictor lists for leaf phenotypes also have A. thaliana orthologs involved in pro-

cesses related to the floral transition and flowering. In the combined set of top-10 enet predic-

tors for shoot dry weight, seed and silique phenotypes (Fig 4, n = 29), five genes code for

AGAMOUS-LIKE MADS-box transcription factors: BnaC05g17630D (AtAGL104/

AT1G22130), BnaA02g15390D (AtAGL12/AT1G71692), BnaA02g00370D (BnFLC.A2, AtFLC/

AT5G10140), BnaA01g02900D (AtAGL16/AT3G57230), and BnaA09g53680D (AtAGL30/

AT2G03060). BnFLC.A2 is orthologous to A. thaliana FLOWERING LOCUS C (AtFLC), a key

repressor of the floral transition [55, 56]. Two AGAMOUS-LIKE genes feature in the combined

set of top-10 RF predictors for yield phenotypes (S10 Fig, n = 21): BnaA02g15390D
(AtAGL12/AT1G71692) and BnaA09g05500D (AtAGL8/AtFUL/FRUITFULL/AT5G60910).

AtFUL is thought to regulate the floral transition downstream of AtFT in the shoot apical meri-

stem, partially redundantly with AtSOC1 (AtAGL20, AT2G45660) [57, 58] (S7 Data).

The enet top predictor list also features BnaA09g18260D, a HD-ZIP II gene putatively

orthologous to JAIBA (AtJAB/AtHAT1/AT4G17460) or AtHAT2 (AT5G47370). AtJAB was

shown to be involved in male and female reproductive development and floral meristem deter-

mination in A. thaliana [59] (S7 Data). The enet top predictor list also contains the HD-ZIP
IV gene BnaA09g50360D (AtHDG2/AT1G05230). A combination of hdg2 and pdf2 null

mutant alleles in A. thaliana was shown earlier to produce flowers with sepaloid petals and car-

peloid stamens [60].

Furthermore, the gene BnaA08g12050D is ranked highly in both the enet and RF top pre-

dictor lists. The best candidate ortholog of this gene in A. thaliana is AtMYB3R1
(AT4G32730), coding for a regulator of cell proliferation that acts in a module with AtTSO1 to

balance cell proliferation with differentiation in developing roots and shoots [61].

BnaA08g12050D also features as a predictor for leaf 6 length (74 DAS) and leaf 8 area (81

DAS) in S9 Fig.

BnaC07g27110D and BnaC01g22040D in the enet predictor list are putative orthologs of

AtGATA16 (AT5G49300) and AtGATA17 (AT3G16870) or AtGATA17L (AT4G16141), respec-

tively. Evidence suggests these and other LLM-domain B-GATA transcription factors are

involved (at least partially redundantly) in the regulation of flowering time, silique length, seed

set and other developmental processes [62]. The enet top predictor list also contains

BnaC04g33670D and BnaA08g16860D, BZIP genes putatively orthologous to the A. thaliana
genes DRINKME (AtDKM/AtBZIP30/AT2G21230) and DRINKME-LIKE (AtDKML/AtB-
ZIP29/AT4G38900), respectively. AtDKM and AtDKML are negative regulators of reproduc-

tive development and growth (S7 Data). AtDKM was shown to interact in planta with several

regulators of meristem development, including WUSCHEL (AtWU), HECATE1 (AtHEC1),

the aforementioned JAIBA and NGATHA1 (AtNGA1) [63]. Interestingly, the RF top predictor

list contains a putative ortholog of NGATHA1 (AtNGA1/AT2G46870) or NGATHA2
(AtNGA2/AT3G61970), namely BnaA09g39540D. AtNGA1 and AtNGA2 are known to be

involved in gynoecium development [64, 65] and were recently shown to also have a function

in regulating shoot apical meristem development [66]. Another likely regulator of meristem

development, BnaC07g43590D, is found in the enet predictor list. BnaC07g43590D is most

likely an ortholog of ARABIDOPSIS RESPONSE REGULATOR 10 (AtARR10/AT4G31920) or

12 (AtARR12/AT2G25180), both known to directly activate the expression of WUSCHEL and

to play a role in shoot apical meristem regeneration and maintenance [67].
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In summary, 16/29 and 11/21 TF genes in the enet and RF lists of top yield predictors,

respectively, have putative A. thaliana orthologs linked to the juvenile-to-adult phase change,

the floral transition, flowering or regulation of meristem development.

Predicting final yield phenotypes from early growth phenotypes

As a baseline to assess the prediction performance of the molecular models, we trained models

predicting plant phenotypes in spring (mostly phenotypes at harvest) from single or multiple

autumnal leaf and rosette phenotypes. For these single- and multi-phenotype models, the

same modeling approaches were used as for the single- or multi-gene models, respectively (see

Methods).

Interestingly, many of the mature plant phenotypes can be predicted to a considerable

extent from phenotypes measured earlier in the growing season (Table 3 and S8 Data). In par-

ticular the models for phenotypes measured on the entire shoot (total seed, silique and branch

count, total seed weight, total shoot dry weight) perform surprisingly well. For most of these

Table 3. Best-performing multi-phenotype and single-phenotype models for mature plant phenotypes.

All early phenotypes Single early phenotypes

Mature plant phenotypes Model type Median test R2 Median pooled PCC Top phenotype Median test R2 Median pooled PCC

seed weight stem 1 enet 0.33 0.59 leaf 8 area (81 DAS) 0.32 0.63

seed count stem 1 rf 0.25 0.57 leaf 8 area (81 DAS) 0.26 0.61

silique count stem 1 enet 0.24 0.55 leaf 6 width (74 DAS) 0.22 0.53

total seed count rf 0.40 0.66 leaf 8 area (81 DAS) 0.44 0.71

dry weight stem 1 enet 0.26 0.57 leaf 8 area (81 DAS) 0.35 0.62

dry weight stem 1 (w/o seeds) enet 0.18 0.54 leaf 8 area (81 DAS) 0.30 0.59

total seed weight enet 0.45 0.68 leaf 8 area (81 DAS) 0.46 0.72

total shoot dry weight enet 0.38 0.67 leaf 8 area (81 DAS) 0.44 0.71

total silique count rf 0.36 0.63 leaf 8 area (81 DAS) 0.41 0.70

siliques per branch stem 1 enet 0.14 0.47 leaf 8 area (81 DAS) 0.07 0.48

total shoot dry weight (w/o seeds) enet 0.29 0.63 leaf 8 area (81 DAS) 0.37 0.68

branch count stem 1 enet 0.35 0.64 leaf 8 area (81 DAS) 0.34 0.65

siliques per branch enet -0.04 0.32 leaf 6 width (74 DAS) -0.07 0.36

plant height enet 0.23 0.58 leaf 8 length (81 DAS) 0.25 0.61

total branch count rf 0.40 0.69 rosette area (42 DAS) 0.38 0.65

branch count stem 1/length stem 1 rf 0.33 0.63 leaf 8 area (81 DAS) 0.22 0.56

max shoot growth rate enet 0.04 0.40 leaf 8 width (81 DAS) 0.04 0.41

root system width rf 0.04 0.42 leaf 8 length (81 DAS) 0.05 0.39

time of max shoot growth enet -0.01 0.53 leaf 8 width (81 DAS) 0.08 0.53

taproot length rf -0.02 0.33 leaf 8 width (81 DAS) 0.01 0.33

branches per stem enet -0.14 -0.22 leaf 8 lesions (76 DAS) -0.15 0.14

seeds per silique enet -0.17 -0.18 leaf 8 length (81 DAS) -0.07 0.18

seeds per silique stem 1 enet -0.15 -0.06 leaf 8 length (81 DAS) -0.04 0.23

seed weight stem 1/dry weight stem 1 enet -0.15 -0.40 leaf 8 lesions (76 DAS) -0.19 -0.19

total seed weight/shoot dry weight enet -0.16 -0.39 leaf 8 lesions (76 DAS) -0.18 -0.06

end of shoot growth enet -0.15 0.20 leaf 8 width (81 DAS) -0.12 0.30

Table legend: Results are shown for models including all early phenotypes as potential features (multi-phenotype models) and models using a single early phenotype as

feature (single-phenotype models). For the best multi-phenotype models, columns from left to right indicate the model type used (enet or RF), the median test R2 and

the median pooled PCC (see Methods). Single-phenotype columns include the best-performing early phenotype (‘Top phenotype’ column) and the corresponding

median test R2 and median pooled PCC. All single-phenotype models are cross-validated lme models with spatial error structure.

https://doi.org/10.1371/journal.pcbi.1011161.t003
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phenotypes, the performance of the early-phenotype models is only slightly less than that of

the best single-gene or multi-gene model, and the early-phenotype models for total seed weight

and total branch count even outperform the molecular models (ΔR2 = −0.04 and −0.14, with

ΔR2 = max(median test R2 of best multi-gene model, median test R2 of best single-gene model)

−max(median test R2 of best multi-phenotype model, median test R2 of best single-phenotype

model), Tables 2 and 3). Also for branching phenotypes related to stem 1 (branch count stem

1, branch count stem 1/length stem 1), the best early-phenotype models feature high predic-

tion performance scores. For other stem 1 phenotypes however (seed weight, seed count,

silique count and siliques per branch on stem 1, stem 1 dry weight with and without seeds),

the molecular models clearly outperform the early-phenotype models (ΔR2 in range [0.09,

0.23], Tables 2 and 3).

Most multi-phenotype models with appreciable prediction performance (median test R2 >

0.10), both for whole-shoot and stem 1 phenotypes, feature leaf 8 area (81 DAS) as the top pre-

dictor (Table 3). Leaf 8 area (81 DAS) is generally also the most predictive early phenotype in

the corresponding sets of single-phenotype models. The multi-phenotype models with the best

prediction performance scores, i.e. those for whole-shoot phenotypes and stem 1 branching

phenotypes (but not the other stem 1 phenotypes), generally also feature rosette area (42 DAS)

as a predictor of some importance (S8 Data). For total branch count, branch count stem 1 and

branch count stem 1/length stem 1, rosette area (42 DAS) is even the top predictor in either

the RF or enet model, or both (S8 Data). Rosette area (42 DAS) itself is only moderately pre-

dictable from the leaf 8 molecular data, which may explain why multi-phenotype models are

better at predicting these branching phenotypes than multi-gene models.

Our results indicate that the leaf 8 molecular data offer little benefit over early-phenotype

measurements for quantitative prediction of mature phenotypes measured on the entire plant.

On the other hand, the leaf 8 molecular data yields substantially better models than the early-

phenotype data for most mature stem 1 phenotypes. Often, the multi-gene models for stem 1

phenotypes are also slightly better than the multi-gene models for the corresponding whole-

plant phenotypes (see previous section). This suggests that the molecular makeup of the 8th

rosette leaf at the time of sampling contained more information on the development of the pri-

mary flowering stem and its cauline secondary inflorescences than on the development of side

stems at ground level. Early phenotypes on the other hand may contain more information on

whole-plant yield phenotypes than on phenotypes specifically related to stem 1.

Given that even the earliest of the autumnal phenotypes considered thus far, the rosette

area at 42 DAS, still has some predictive power for several yield phenotypes (median test R2 >

0.10 for total branch count, seed count, seed weight and silique count, total dry weight with

and without seeds, branch count stem 1 and branch count stem 1/length stem 1), we assessed

whether earlier rosette areas (v2, see Methods) are also predictive for these phenotypes (Fig 5

and S9 Data). Median test R2 scores were found to decrease when using earlier rosette areas as

predictors, with rosette areas measured� 28 DAS generally yielding low (< 0.10) and in many

cases negative median test R2 scores. When using the earliest rosette area (14 DAS) as predic-

tor, the median pooled R2 and PCC scores are however still in the ranges [0.05, 0.20] and [0.27,

0.45], respectively, indicating that even the earliest rosette area measurements contain some

information on final yield phenotypes (S9 Data).

Discussion

In this study, we used machine learning models to predict the phenotypes of individual B.

napus Darmor plants grown in the same field from rosette-stage leaf gene expression data. Our

results show that many plant phenotypes can be predicted to a substantial extent from leaf 8
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gene expression. Phenotypes closely related in time and space to the material sampled for

RNA-seq, in particular leaf 8 phenotypes, generally feature good prediction performance, in

accordance with results obtained earlier in a similar setup for maize [28]. Interestingly how-

ever, also many of the phenotypes measured at the end of the growing season, ~5.5 months

after leaf sampling for RNA-seq, feature high prediction performance. In particular seed yield,

silique and dry weight traits exhibit prediction performance scores in the same range as the

autumnal leaf and rosette phenotypes.

Azodi et al. [68] predicted several agronomically relevant mature plant traits (plant height,

grain yield and flowering time) in a population of maize inbred lines from genetic marker

data, whole-seedling transcriptome data and combinations thereof. Their transcriptome-based

models exhibited PCC scores between predicted and measured values in the range [0.50, 0.61]

for flowering time, [0.42, 0.51] for plant height and [0.47, 0.55] for 300 kernel weight [68]. In

the present study, the transcriptome-based (all-genes) models for mature plant traits in B.

napus (ignoring ratio phenotypes) exhibit median pooled PCC scores in the range [0.57, 0.77]

for seed phenotypes, [0.51, 0.74] for silique phenotypes, [0.56, 0.73] for shoot dry weight phe-

notypes, [0.40, 0.56] for branch count phenotypes, [0.40, 0.53] for plant height (278 DAS) and

[0.07, 0.36] for root phenotypes (Table 2 and S6 Data). Comparing the observed PCC ranges

of both studies suggests that mature traits of individual plants of the same line grown in the

same field are as predictable from early-stage transcriptome data as average mature traits in a

diversity panel. However, direct comparison of the PCC values across studies is complicated
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Fig 5. Predictive power of early rosette areas for yield phenotypes. In each subplot, median test R2 values are plotted for lme models predicting the

given phenotype from early rosette areas v2 (14–42 DAS, x-axis). Only mature phenotypes that can be predicted from rosette area (42 DAS) with a

median test R2 > 0.1 are shown. Blue lines are ordinary least-squares linear regressions, with shaded areas indicating 95% confidence intervals on the

trendline. Most phenotypes exhibit a rather dichotomous median test R2 profile with rosette areas v2 from 14 to 28 DAS yielding substantially lower

median test R2 values than rosette areas v2 from 32 to 42 DAS. Accordingly, linear model fits at 28 and 32 DAS are often poor.

https://doi.org/10.1371/journal.pcbi.1011161.g005
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by differences in the phenotypes predicted, prediction and scoring methodology and factors

affecting model training, scoring and overfitting potential such as the study population size

(388 lines in the maize study versus 62 B. napus plants in the present study) and the number of

potential model features (31,238 genes in the maize study versus 76,808 genes in the B. napus
dataset). Also the species difference and the tissue and developmental time point sampled for

RNA-seq (whole seedlings at the V1 stage for maize versus rosette leaf 8, 81 DAS, for B. napus)
may impact how well a transcriptome can predict a given phenotype. The most comparable

models are likely the whole-transcriptome-based random forest model for maize plant height,

with a PCC of 0.42 [68], and the median-filter all-genes random forest model for the height of

individual B. napus plants (without feature selection other than removing genes with rlog
expression > 0 in less than half of the samples, reducing the feature set to 55,166 genes), with a

median pooled PCC of 0.43 (S6 Data).

Given that the single-plant transcriptome data can quantitatively predict many plant phe-

notypes better than expected by chance, the top predictor genes may shed light on biological

processes that impact phenotypes in the field. Many of the top predictors in the TF models for

seed, silique and dry weight phenotypes for instance are known to function in the floral transi-

tion. From the perspective of our experimental setup, it makes sense that such genes are recov-

ered, as it is known that the floral transition starts in autumn in winter-type B. napus
accessions [69, 70], i.e. around the time that rosette leaves were harvested for RNA-seq in the

present field trial, and is set in motion to a large extent by systemic signals emanating from

leaves in Brassicaceae and other plant families [71–73].

Mechanistic interpretation of the correlational links between top predictor genes and phe-

notypes is however not straightforward. Putative orthologs of AtHB1 and AtHB16 are for

instance found among the top predictors positively correlated with both leaf and yield pheno-

types (Figs 4 and S10 and S4 Data), but upregulation of these genes in A. thaliana was previ-

ously found to lead to smaller and more serrated leaves [52, 74], to delay the vegetative-to-

reproductive phase transition and to result in siliques bearing fewer seeds [51, 52]. Some top

predictors that correlate negatively with yield phenotypes have putative A. thaliana orthologs

that are thought to function primarily as negative regulators of the floral transition in leaves,

e.g. AtNF-YA genes [50, 75], but others are putatively orthologous to a positive regulator of the

floral transition, such as AtFUL. Other floral transition regulators recovered as predictors in

our yield models, e.g. orthologs of AtFLC and AtEFM, do not by themselves exhibit a signifi-

cant positive or negative correlation with yield phenotypes.

Most likely, the associations recovered between individual plant phenotypes and autumnal

leaf gene expression patterns are due to developmental timing differences among the plants,

rather than reflecting the effects of upregulation or downregulation of specific regulators. In

the A. thaliana developmental gene expression atlas of Klepikova et al. [76], orthologs of pre-

dictors positively correlated with leaf size such as AtHB1 and AtHB16 (S4 Data) are more

highly expressed in mature A. thaliana leaves (at flowering), while orthologs of predictors neg-

atively correlated with leaf size such as AtREV, AtWOX5 and AtHAT3 are more highly

expressed in young leaves. This suggests that plants with low expression of AtHB1/16 orthologs

and high expression of AtREV/AtWOX5/AtHAT3 orthologs had a more juvenile (and hence

smaller) leaf 8 at the autumnal sampling time point, which explains the observed gene expres-

sion-leaf phenotype correlations. That autumnal leaf phenotypes and final yield phenotypes

have several developmental predictors in common (e.g. AtHB1) and that the autumnal leaf

phenotypes themselves are also predictive of yield indicates that the developmental differences

in autumn impacted final yield. These differences were not limited to differences in leaf devel-

opment, as evidenced by the fact that the predictor sets for both leaf and yield phenotypes also
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contain regulators of plant-wide developmental phase transitions occurring in autumn (juve-

nile-to-adult, vegetative-to-reproductive).

In summary, our results indicate that the yield potential of the individual plants was already

determined to a large extent by their developmental state at the time of leaf sampling in

autumn. Mendham and Scott [77] previously found that the size of winter-type B. napus plants

at the time of inflorescence initiation affects their yield potential, in the context of an experi-

ment assessing sowing date effects on yield. Our results show that even when sown on the

same date in the same field, individual winter-type B. napus plants of the same line display

developmental differences in autumn that correlate with yield differences in spring. Even if

only part of the variability in e.g. total seed weight (CV = 46.9%) observed in our trial is due to

autumnal effects on plant growth and development, the gains of mitigating such effects could

be substantial.

The question remains however what could have caused the developmental differences

among plants in the present field trial. One potential cause is differences in seed germination

and seedling emergence across the field. In wheat, it was established previously that relative

differences in seedling emergence date are strongly correlated with differences in final yield

[78]. Next to seed quality, many environmental factors are known to impact the timing of seed

germination and seedling emergence, including soil structure [79], soil temperature [80], sow-

ing depth [78, 80], soil water potential, oxygenation and light quality [81], and soil nutrients

[82]. The seedling emergence date was not recorded in the present field trial, but the closest

proxy that was measured, namely rosette area at 14 DAS, was found to be a bad predictor for

yield (Fig 5 and S9 Data), indicating that variation in seed germination and seedling emer-

gence across the field did not by themselves have a major impact on yield in the present trial.

The observation that later rosette areas are progressively better at predicting yield rather sug-

gests that developmental differences among plants accumulated over time. It should be noted

however that the variation in seedling emergence in the present trial was mitigated by prefer-

ential pruning of early- and late-emerging seedlings at every grid position (see Methods), ren-

dering our trial unsuited to assess the effects of seedling emergence on yield in general.

The observation that genes involved in the regulation of circadian rhythm, photoperiodism

and the vegetative-to-reproductive phase transition are on average more spatially autocorre-

lated in the autumnal gene expression dataset than the average gene suggests that spatially pat-

terned micro-environmental factors may be linked to the variability of developmental gene

expression in autumn, and ultimately yield variability in spring. That the phenotypes are influ-

enced by environmental factors is also suggested by the observation that the sets of genes asso-

ciated with leaf and yield phenotypes are heavily enriched in genes involved in responses to

abiotic and biotic stimuli and nutrient levels (S5 Data). The finding that developmental pro-

cesses feature more prominently in the TF-based phenotype prediction models than responses

to environmental stimuli indicates that micro-environmental variations among plants in the

present field trial may have influenced plant phenotypes mainly by influencing development.

More work is needed however to establish whether and how micro-environmental variability

impacts the growth and development of individual plants in the same field. To address this,

additional field trials need to be performed in which, next to the gene expression and pheno-

types of individual plants, also a range of environmental parameters is measured on the single-

plant level (e.g. soil structure and chemistry).

Additional single-plant field trials are also needed to assess to what extent the predictive

models, gene-phenotype and process-phenotype associations learned from the present field

trial generalize to other soils and meteorological conditions, other time points or tissues sam-

pled for RNA-seq, and other cultivars. Given the developmental nature of many of the top pre-

dictors in the current models, it is likely that our current prediction models, based on leaf gene
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expression data for a single field trial at a single time point, will not perform well when applied

on follow-up field trials, even when using the same cultivar in a similar field under roughly the

same climate conditions. Differences in weather conditions and other environmental factors

across trials may for instance influence the timing of developmental phase transitions, making

it all but impossible to sample the exact same developmental time window in follow-up trials.

If leaf gene expression were to be profiled at a slightly earlier or later developmental time win-

dow than in the present trial, the current top predictors may no longer be adequate phenotype

proxies and other genes that function earlier or later in e.g. the floral transition may become

relevant instead. The construction of robust prediction models will therefore likely require sin-

gle-plant data generated under a wide variety of field conditions and sampling schemes. We

want to emphasize however that quantitative prediction of single-plant phenotypes is not the

primary goal we envision for single-plant omics experiments. Rather, the primary aim is to

identify which biological processes, environmental factors and associated genes may influence

plant phenotypes in the field. In this respect, any additional genes and processes identified in

follow-up trials would add to our overall knowledge on how rapeseed plants grow in a field.

It is worth pointing out that the dataset generated in this study may also serve other pur-

poses than gene-phenotype association. Earlier, we have shown that field-generated single-

plant transcriptomics data can also be used efficiently to predict the function of genes [28].

Given the complex genome duplication history of B. napus [83], the combination of gene func-

tion prediction and gene-phenotype association may be particularly useful to shed light on

which B. napus genes in a (long) list of paralogs are most likely functionally orthologous to a

given A. thaliana gene, and how paralogs have diverged in function. This knowledge may in

turn be useful in the context of genetic engineering and breeding efforts to optimize yield and

stress tolerance in B. napus.

Materials and methods

Field trial setup

Seeds from the winter-type Brassica napus accession Darmor (BnASSYST-120) were sown in a

field in Merelbeke, Belgium (50˚58’24.9"N 3˚46’49.1"E) on September 8, 2016. Three seeds

were sown at ~2 cm depth at each of 100 points arranged in a 10x10 grid with 0.5 m spacing

within and between rows. Seedlings were thinned out to leave one seedling growing at each

grid point. Early- and late-emerging seedlings were pruned preferentially (based on visual

assessment) to make the remaining seedling population as homogeneous as possible. At two

points, no seedlings emerged.

Plots of Miscanthus sinensis, M. sacchariflorus and Miscanthus hybrids were grown to the

northeast and southeast of the B. napus field trial, and maize was grown to the northwest, at

distances > 5 m. The field plot was surrounded by chicken wire and covered by netting to

keep out birds and large herbivores. The netting was removed in spring when plants grew taller

than ~1 m. Additionally, perimeter fencing was used to protect the field trial and the mobile

weather station on site (see S1 Data for weather station data).

After germination, individual plant images were taken twice a week between September 22

and October 20, 2016 (9 time points) to assess the projected leaf area of the growing rosettes.

Nadir images were taken using a D90 camera (Nikon Inc., USA) equipped with a 35 mm lens

(AF-S DX Nikkor 35 mm F1.8G, Nikon Inc., USA) set at iso 200, f/8. The shutter speed could

vary to allow for a proper exposure, determined by the camera. The camera/tripod was posi-

tioned away from the sun to avoid shadows in the images taken. For each time point a grey cal-

ibration card (Novoflex grey card 15 x 20 cm, NOVOFLEX Präzisionstechnik GmbH,

Germany) was used to correct the white balance. This card was also used as reference to
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convert pixels to areas in cm2 (see below). The ground sampling difference (GSD) was 0.015

cm/pixel.

At 74 DAS, the length and width of leaf 6 (counting upward from the first true leaf) were

measured non-destructively, leaf 6 lesion and total rosette lesion severity were scored and the

number of fully emerged rosette leaves (area > ~2 cm2) was recorded. At 76 DAS, leaf 8 length

and width were measured and leaf 8 lesions were scored. The width of leaf blades was mea-

sured at the widest point. Leaf lengths were measured from the leaf tip to the point where the

petiole first lacked conspicuous laminar tissue (looking from the leaf tip toward the base).

Lesion severity was scored qualitatively on a scale from 0 (lesions cover at most five percent of

the leaf blade or rosette) to 2 (more than half of the leaf or rosette eaten).

At 81 DAS, on November 28, 2016, the eighth rosette leaves of 62 non-border plants (i.e.

the plants at all non-border locations where seedlings emerged) were harvested for RNA-

sequencing in a time span of ~1 hour (13:25–14:27). Leaves were cut off where the petiole first

lacked conspicuous laminar tissue (looking from the leaf tip toward the base) and washed with

DEPC-treated and sterilized water. The chlorophyll content of each leaf was measured at four

different positions on the leaf with a CCM-200 chlorophyll content meter (Opti-Sciences, Inc.,

Hudson, USA), and the average of these measurements was used in the analyses. Leaves were

then photographed twice against a white background with a piece of millimeter paper to assess

the image scale and perspective, a ruler, and color and greyscale references, the second time

covered with a glass plate to flatten them. Next, the midvein of every leaf was cut out using scis-

sors, and the residual leaf material was folded into a pre-weighed 50 ml tube. The filled 50 ml

tube and the midvein were weighed together to measure leaf fresh weight, after which the tube

was stored in liquid nitrogen on the field. The entire leaf processing pipeline, from cutting a

leaf to storing it in liquid nitrogen, was completed for each leaf in less than 5 minutes.

After leaf sampling, the plants were left to overwinter and set seed in spring. After bolting,

plant height was measured from ground level to the top of the primary flowering stem at 13

time points between 189 and 231 DAS (S1 Data). One of the plants sampled in autumn for

RNA-seq, 01C, did not survive until the end of the growth season. The remaining 61 non-bor-

der plants were harvested on June 13, 2017 (278 DAS), at which time ~50% of seeds had started

changing color from green to black but no significant pod shattering or seed predation had

occurred. Final plant height at 278 DAS was measured on the field, from ground level to the

top of the primary flowering stem. Afterwards, shoots were cut off and the root systems were

dug up. Taproot length was measured from ground level to the deepest root tip. Root system

width was measured perpendicular to the taproot at the root system’s widest point.

For each harvested plant, the primary flowering stem plus its cauline secondary inflores-

cences (stem 1) and the secondary inflorescence stems branching at ground level (side stems)

were dried in two separate bags in a well-ventilated, dry attic. The number of branches and

siliques per stem, the total shoot dry weight and the dry weight of stem 1 were measured on

dried plants. Seeds were recovered manually from the dried-out pods for stem 1 and the side

stems separately, and separated from dust and small pod debris using a customized seed aspi-

rator with vibration channel (Baumann Saatzuchtbedarf GmbH, Waldenburg, Germany). The

resulting seed batches for stem 1 and the side stems were weighed and counted using an elmor

C3 seed counter (elmor AG, Schwyz, Switzerland). Seed counts and weights are reported for

stem 1 and the entire plant (i.e. the sum of stem 1 and the side stems).

Determination of shoot growth parameters

Shoot growth parameters (time of maximum shoot growth tm, maximum shoot growth rate

and the end of shoot growth te) were derived by fitting a beta-sigmoid growth curve to the
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time series of 14 plant height measurements between 189 and 278 DAS [84]:

h tð Þ ¼ h0 þ hmax � h0ð Þ∗ 1þ
te � t
te � tm

� �

∗
t
te

� � te
te � tm

t < te

hðtÞ ¼ hmax t � te ðEq1Þ

With h(t) the plant height at plant age t, h0 and hmax the initial and final plant height at t = 0

and t = te, respectively, te the plant age at the end of growth and tm the plant age at the moment

of maximal growth. Before curve fitting, the time points in day of year (DOY) at which the

plant heights were measured were translated to plant ages t in growing degree days (GDD), i.e.

tðiÞ ¼
Pj¼i

j¼0
maxðTj � Tb; 0Þ with i the time point in DOY, Tj the average air temperature at j

DOY (S1 Data) and Tb = 5˚C a base temperature below which no growth is assumed to occur

[70, 85]. Optimization of the parameters h0, hmax, te and tm was done with the nls function in R

using the ‘port’ algorithm. The maximum shoot growth rate was obtained by calculating the

derivative of h(t) (Eq 1) at tm. After curve fitting, the values obtained for tm and te were con-

verted back from GDD to DOY and subsequently to DAS.

Image-based phenotyping

Leaf 8 areas (81 DAS) were estimated by segmenting the flattened leaf images taken at the time

of leaf harvest. The millimeter grid scale on each image was used to correct for perspective dis-

tortion and to create a uniform spatial resolution across the entire image of 100 pixels per cm.

Images were cropped to remove the grid scale and sample label. Segmentation was done by

training a U-Net convolutional neural network [86] on a small dataset of 25 images for which

random patches of foreground and background were annotated using VGG Image Annotator

(via) v:2.0.7 [87]. Random cropping, resizing, rotating (by multiples of 90 degrees), mirroring,

color-jittering and gaussian blurring were applied to artificially increase the training dataset

size. The training was done using the Adam optimizer [88] in Pytorch v:1.7.1 [89] with default

settings. The pixel-wise cross-entropy loss was back-propagated only for annotated regions of

each image. The learning rate was initially set to 1e-3 and was automatically halved as soon as

the minimal training loss stagnated for more than 3 epochs. The network was trained for 16

epochs. The trained network was validated by visually evaluating it on unseen images, and

then applied to all flattened leaf images.

Leaf 8 length and width at 81 DAS were measured on the flattened leaf images using ImageJ

v:1.50 [90]. For measuring leaf 8 length, the midvein was traced from the leaf tip to the cutting

point (i.e. where the petiole first lacked conspicuous laminar tissue) using the ImageJ seg-

mented line tool. Leaf 8 width was measured at the widest point.

For measuring the projected area of the rosettes photographed at 42 DAS (i.e. the rosette

imaging date closest to leaf sampling), a dedicated script was developed using the image analy-

sis software HALCON (version 13.0.1.1, MVTec Software GmbH, Germany). First, the images

were cropped to remove parts of adjacent plants visible on the pictures. To remove noise, both

a gentle Gaussian filter and a median filter were applied. Each RGB image was then converted

to the HSV color space, where the Hue channel was used to select the green plant parts using a

threshold range for the green pixels (34–80) defined based on trial and error. Care was taken

to also include the petioles. After this, a ‘closing_circle’ operator was used and remaining small

lesions (due to insect damage) were filled up using the ‘fill_up’ operator. Only the largest seg-

mented area was taken into account, to differentiate between the plant of interest and small

weeds nearby.
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The HALCON segmentation strategy worked well for the rosette images taken at 42 DAS,

but regularly produced segmentation errors for images of smaller rosettes taken closer to the

sowing date. An alternative segmentation approach was therefore used on rosette images

taken at 14, 18, 21, 25, 28, 32, 35 and 39 DAS (and 42 DAS as control). The main difficulty for

the earlier time points is distinguishing small rosettes from weeds and other distracting objects

occurring on the field. This requires an algorithm with a larger field of view than what a HAL-

CON script or standard U-net (see above) can provide. Instead, a standard pre-trained Dense-

Net M161 [91] was taken and augmented with additional bilinear upsampling layers after each

‘dense’ layer of the original algorithm. That is, the last feature layer of DenseNet was

upsampled with bilinear interpolation and a weighted sum was made with the higher resolu-

tion ‘dense’ features. This was repeated for each dense layer up to the original input resolution.

The network was trained for 175 epochs (final mean epoch loss = 0.01) on 54 hand-labeled

images (6 images per time point) using stochastic gradient descent (SGD) with momentum

(learning rate = 0.001 and momentum = 0.99). The learning rate was divided by 10 each time

the train loss plateaued for more than 4 epochs. Image rotations, mirroring and HSV augmen-

tations were used to augment the training data. The trained model was used to segment all

rosette images. After segmentation, a post-processing step was performed to remove seg-

mented parts of B. napus plants adjacent to the plant of interest and remaining weeds, using

scikit-image v: 0.19.2 [92]. Only the connected component closest to the centroid of the image

and other components within a 25-pixel distance of this central component (e.g. leaves of

which the stalk was segmented incorrectly because of a lower chlorophyll content) were associ-

ated with the plant of interest. Connected components with an area less than 10,000 pixels

were filtered out to eliminate small weeds. This approach was evaluated visually for all segmen-

tations and proved to work well for most plants. Segmentations with missing plant parts or

weeds that weren’t filtered out by this post-processing step were manually corrected. A grey

calibration card (Novoflex grey card 15 x 20 cm, NOVOFLEX Präzisionstechnik GmbH, Ger-

many) was used as a reference to convert pixels to areas in cm2. The projected rosette areas at

42 DAS estimated by this segmentation approach exhibit a Pearson correlation of 0.997 with

the areas estimated by the aforementioned HALCON script.

RNA sequencing

The frozen leaf samples for the 62 harvested non-border plants were grinded, and total RNA

was extracted using the guanidinium thiocyanate-phenol-chloroform extraction method using

TRI-reagent (Thermo Fisher Scientific) followed by DNA digestion using the RQ1 RNase-free

DNase kit (Promega). ds cDNA was prepared using the Maxima H Minus Double-Stranded

cDNA Synthesis Kit (#K2561, Thermo Fisher Scientific) to a concentration of ~17–38 ng/ul in

10mM Tris-Cl buffer (pH 8.5) at a minimum volume of 30ul. (~0.6–1.1 ug total). ds cDNA

samples were sent to the University of Missouri Genomics Technology Core, where library

preparation was performed (average insert size of 500 bp) using the Illumina TruSeq DNA

PCR-Free Library Prep Kit according to the protocol described in [93]. 250 bp paired-end

sequencing was performed at the Tufts University Genomics Core on an Illumina HiSeq 2500

machine in Rapid Run mode. The samples were sequenced in 3 batches (S1 Data).

The raw RNA-seq data was processed using a custom Galaxy pipeline [94] implementing

the following steps. First, the fastq files were quality-checked using FastQC (v:0.5.1) [95]. Next,

Trimmomatic (v:0.32.1) [96] was used to remove adapters, read fragments with average quality

below 20 and trimmed reads shorter than 125 base pairs. The trimmed and filtered reads were

mapped to the Brassica napus Darmor-bzh reference genome v:5 (https://www.genoscope.cns.

fr/brassicanapus/data/) [83] using HISAT2 v:2.0.5 [97] with default values for all parameters.
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Only the uniquely mapping reads or (in the case of multiple mappings) the best secondary

alignment were kept for the following analyses. The mapping files were quantified using

HTSeq v:0.6.1p1 [98] with the option ‘Intersection-union’, using the genome annotation of the

Brassica napus Darmor-bzh reference genome v:5 (https://www.genoscope.cns.fr/

brassicanapus/data/). No filtering steps were performed during preprocessing except for

removing genes that were not expressed in any samples. Counts were normalized across sam-

ples and batches using a modified regularized log (rlog) model of the DESeq2 [99] package in

R. Counts are still modeled in the same way as in the original rlog implementation, that is:

kij � NBðmij; aiÞ

mij ¼ sj � qij ðEq2Þ

log
2
ðqijÞ ¼ xj � βi

Where kij2N+ is the count of gene i in sample j, which is assumed to be sampled from a neg-

ative binomial distribution (NB) with estimated mean μij2R+ and estimated dispersion of the

ith gene αi. μij is taken as the expected count qij for a ‘typical’ library size (i.e. with a size factor

sj = 1), scaled by a library size normalization factor sj for sample j. Note that qij still contains

batch effects: xj2Rp is a vector of p = 65 predictors for sample j, including an intercept, 2

dummy variables for the smallest sequencing batches (1 and 3) that capture batch effects rela-

tive to the largest sequencing batch (2, the effects of which are absorbed in the intercept) and

dummy variables for each of the 62 plants that were sampled. βi2Rp contains the estimated

coefficients for those predictors for gene i. As in [99], an empirical Bayes shrinkage procedure

is used to estimate βi, using a flat prior for the intercept βi0 and the sequencing batch coeffi-

cients, and a zero-centered normal prior for each plant coefficient bipj
(with pj the index of the

plant corresponding to sample j), with prior variance estimated using quantile matching as

described in Love et al. [99]. There are only two differences compared to Love et al. [99]: the

first is the addition of two batch coefficients as fixed effects in the design matrix, and the sec-

ond is that log-fold changes used in the prior random effect variance computation are esti-

mated relative to the mean of each batch instead of to the mean of all samples. Once the model

is estimated, rlog counts are computed as in Love et al. [99], that is:

rlogij � bi0 þ bipj
ðEq3Þ

Note that all samples j belonging to the same plant (technical repeats) have the same value

for bipj
. The modified rlog transformation removes library size effects and batch effects, unites

technical repeats into one estimate and log-transforms the data (reducing heteroscedasticity)

in a single step. In addition, using random effects for each plant allows pooling information

from technical repeats while simultaneously basing variance estimates on all samples (includ-

ing samples without technical repeats). This method therefore makes maximal use of the avail-

able data. The resulting data is show in S11 Fig.

SNP detection and population structure analysis

Trimmed and filtered RNA-seq reads were aligned to the Brassica napus Darmor-bzh refer-

ence genome v:5 (https://www.genoscope.cns.fr/brassicanapus/data/) [83] using HISAT2

v:2.0.5 [97] with default values for all parameters. Genomic variants were detected for each

plant using NGSEP v:3.3.2 [100] on the aligned reads. For downstream analyses, we focused

on biallelic SNPs with a minimum genotype quality of 40 and called in at least 49 samples
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(80% of the population). Missing calls were imputed using Beagle v:5.1 [101] using default

parameters, and only SNPs with minor allele frequency (MAF)� 0.05 after imputation were

kept, resulting in a dataset of 23,188 SNPs.

A neighbor-joining tree was made based on the SNP dataset with TASSEL v:5.2.60 [102],

using 1-IBS (identity by state) as the distance measure while setting the distance from an indi-

vidual to itself to zero. The tree was rendered using the polar tree layout in FigTree v:1.4.3

[103].

Spatial autocorrelation analysis

Moran’s I was calculated for each gene (phenotype) as I ¼ n
w
ðx� �xÞTCðx� �xÞ
kðx� �xÞk2

. Where x is a column

vector of rlog gene expression (phenotype) values, n is the number of samples and w is the sum

of elements of the connectivity matrix C. For C a binary n×n queen contiguity-based spatial

weight matrix was chosen, meaning that neighboring horizontal, vertical and diagonal plants

are seen as connected. Note that C can differ from one phenotype to the next since not all phe-

notypes were available for all samples. For each gene (phenotype), the Moran’s I was recalcu-

lated on 105 random permutations of x to obtain an empirical null distribution, which was

then compared to the real Moran’s I to obtain a p-value. Finally, p-values were adjusted for

multiple testing across all genes (phenotypes) using the BH procedure [104]. All calculations

were done using the PySAL python library [105].

To assess the cause of the qualitative difference between the results obtained with the

method above on the present dataset and the results obtained with a different method on a

maize single-plant dataset in Cruz et al. [28], we also calculated Moran’s I values and their sig-

nificance as in Cruz et al. [28], using an inverse distance-based spatial weight matrix and

parametric testing as implemented in the R package ape v:5.7 [106]. p-values were again

adjusted for multiple testing across all genes (phenotypes) using the BH procedure [104].

Variance analysis

Principal component analysis was done on various normalized versions of the gene expression

count matrix and on the phenotype dataset (including qualitative phenotypes such as leaf 6

lesion severity (74 DAS) but excluding the plant height and rosette area time series except for

the final time points, i.e. plant height (278 DAS) and rosette area (42 DAS)), using the ‘prcomp’

function in the R stats package on the centered gene expression datasets and the ‘ppca’ method

in pcaMethods v:1.88.0 [107] on the z-scored phenotype dataset. Phenotype distributions were

plotted using the ‘histogram’ function in Matlab R2018b with probability normalization

option. Shapiro-Wilk and Anderson-Darling tests were performed using the ‘normalitytest’

script [108] and ‘adtest’ functions in Matlab R2018b, respectively. Outliers were defined as val-

ues more than three scaled median absolute deviations (MAD) away from the median, as is

default in the Matlab R2018b ‘isOutlier’ function. Outliers were only removed for the purpose

of calculating their effect on the phenotypes’ normality and coefficient of variation, all other

analyses used the complete phenotype dataset.

Normalized coefficients of variation (normCVs) for gene expression profiles were com-

puted on batch and library size corrected data (without rlog transform). Normalized counts

were obtained as xij ¼ kij=ðbibj
� sjÞ where bibj

is the batch effect for gene i in sample j as esti-

mated in the rlog calculation (see above). Since batch 2 is absorbed in the intercept, bibj
¼ 1 for

samples of batch 2. Contrary to the rlog transform, this method does not collapse technical

repeats, and they were instead collapsed by averaging (as in S11 Fig, panel B, but without the

log2-transform). From here on, variance analysis followed the same procedure as described in
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Cruz et al. [28]. Briefly, a trendline was fitted to the CV2 versus mean expression relationship

(omitting genes expressed in< 10 samples) using a generalized linear model of the gamma

family with identity link of the form CV2 xð Þ ¼ a=�x þ b, with fitting parameters a and b [109]

(S12 Fig). Code from the M3Drop R package [110] was used for this purpose. A normalized

CV accounting for the observed mean-variance relationship was then calculated as

normCVðxÞ ¼ log
2
ðCV2ðxÞ=trendð�xÞÞ where trendð�xÞ is the fitted value at the mean of x.

GO enrichment analysis

A Gene Ontology annotation for Brassica napus was generated using the TRAPID v.2.0 plat-

form [111] with default parameters on April 16, 2020. Transcript sequences parsed from the B.

napus Darmor-bzh reference genome annotation v:5 [83] using the gffread v.0.9.6 utility [112]

were used as input for TRAPID, and PLAZA 4.5 dicots [113] was used as the reference data-

base. GO enrichment p-values were calculated with hypergeometric tests and adjusted for mul-

tiple testing (q-values) using the BH procedure [104], either using custom R scripts or using

BiNGO v:3.0.3 [114]. GO categories gravitating toward the top or bottom of gene lists ranked

in order of decreasing Moran’s I or normalized CV were detected using two-sided Mann-

Whitney U tests (with genes belonging to the GO category of interest classified as group 1 and

other genes as group 2), as implemented in the ‘wilcox.test’ function in the R stats package

v:4.0.5, followed by BH p-value adjustment.

Ortholog inference

Putative A. thaliana orthologs of B. napus genes were identified in two steps. First, putative

orthologs of B. napus genes were identified in B. rapa and B. oleracea (source of the A and C

subgenomes of B. napus, respectively), based on best similarity hits returned by TRAPID v.2.0

[111] and on the syntenic relationships reported in Chalhoub et al. [83] and Sun et al. [115].

Second, putative A. thaliana orthologs of the identified B. rapa and B. oleracea genes were

retrieved from PLAZA 4.5 dicots [113], which provides orthology inferences integrating four

different lines of evidence: orthogroup inference within gene families using OrthoFinder

[116], orthology inference using gene tree-species tree reconciliation, orthology inference

from best DIAMOND [117] hits and their inparalogs, and positional orthology inference

through collinearity analysis [118]. The most likely A. thaliana orthologs of a given B. napus
gene were taken to be the putative orthologs that are most strongly supported across both

inference steps.

Single-feature phenotype prediction models

Single-gene models. Linear mixed-effects models [119] were used to test gene expression-

phenotype associations because they offer a robust statistical framework for significance test-

ing on small sample sizes, even in the presence of potential spatial autocorrelation patterns in

the data. Given a phenotype vector y and a vector x of a given gene’s z-scored expression values

across the field, we fit the following model:

y ¼ b0 þ b1x þ ε

ε � N ð0;SÞ ðEq4Þ

where β0 is the intercept (expected phenotype value if the gene is not expressed), β1 the gene

effect coefficient, and ε the residual error which is assumed to follow a multivariate normal
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distribution with a Gaussian covariance structure S given by:

Sij ¼ s
2

ε � n� Iij þ 1 � nð Þ � exp � dij
�

r

� �2
h i� �

ðEq5Þ

where dij is the physical distance between plant i and j on the field, s2
ε is the overall residual

phenotype variance, the nugget v (between 0 and 1) determines the proportion of the residual

variance that is independently and identically distributed (iid) as opposed to governed by spa-

tial autocorrelation, the range r determines how fast the residual phenotype correlation

between plants drops when the distance between them increases, and I is an identity matrix.

The same model form was used to predict final yield phenotypes, e.g. total seed weight, as a

function of one of the phenotypes measured early in the growing season, e.g. leaf 8 area (81

DAS). All parameters (β0, β1, σε, v, r) are estimated from the data by Restricted Maximum

Likelihood (ReML) estimation, implemented in the nlme package [120] in R. In some cases

the lme model didn’t converge and a regular linear model (lm) was used instead. p-values for

the β1 coefficients were determined using Wald tests and adjusted for multiple testing using

the BH procedure [104].

For each of the 100 genes with the lowest β1 q-value for a given phenotype, a 9-times

repeated 10-fold cross-validation scheme was used to assess the gene’s predictive power (see

section on multi-gene models for details). The median test R2 score across all 90 splits was

used as a measure of prediction performance. This enables fair comparison between the pre-

diction performance of single-gene and multi-gene models.

Single-phenotype models. The same linear mixed-effects modeling and cross-validation

strategy as used for the single-gene models was also used also to model spring phenotypes as a

function of autumnal leaf or rosette phenotypes. Leaf 6 and leaf 8 phenotypes and the rosette

area at 42 DAS were used as features for predicting all spring phenotypes. In a separate analy-

sis, also earlier rosette areas (14–42 DAS) were used as features, in order to assess how the pre-

dictive power of the projected rosette area for yield phenotypes evolves over time.

Alternative single-gene models for ratio phenotypes. For seeds per silique (on stem 1 or

the entire plant), the following alternative log-link model was fitted using the nlme package

[120] in R:

lnðEðn� dÞÞ ¼ b0 þ b1x ðEq6Þ

where� stands for the element-wise division of the numerator n, a vector containing the seed

count stem 1 for all plants, by the denominator d, a vector containing the silique count stem 1

for all plants. x is the expression profile of a given gene across plants. The numerator is

assumed to follow a normal distribution given the denominator d and the gene expression

profile:

n � N ðd � expðb0 þ b1xÞ;SÞ ðEq7Þ

Various error models S were tried out. For each gene, S is either a constant σ2 across all

plants estimated from the data, a spatially covarying error structure (using a Gaussian covari-

ance structure as for the other single-gene models, see above), a heteroscedastic error structure

with the error variance increasing linearly with the estimate, or a both spatially covarying and

heteroscedastic error structure. The parameters β0, β1, σ2 (and optionally the nugget and range

for spatial models) were estimated using the ‘ngls’ function in nlme. p-values for the gene

expression coefficients β1 were determined using Wald tests and adjusted for multiple testing

using the BH procedure [104].
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A similar model was used for the branches per stem phenotype:

lnðEððcþ nÞ � dÞÞ ¼ b0 þ b1x ðEq8Þ

where n is a vector containing the total branch count for all plants, d is a vector containing the

stem count for all plants, and c is an extra offset introduced to account for the amount of

branches per stem decreasing with increasing numbers of stems on a plant.

Multi-feature phenotype prediction models

Multi-gene models. Predictive models were made for each phenotype based on z-scored

rlog gene expression data, using either all genes or only transcription factors as potential fea-

tures. Random forest [34] and elastic net [33] models were constructed with scikit-learn

v:0.23.2 [121] using a 10-fold cross-validation scheme. Model learning on the training data in

each cross-validation split was done in two steps. First a feature selection model was used to

select promising features, and then a RF or enet model was built on the selected features.

Three methods were used as alternatives for feature selection. The first feature selection tech-

nique used was HSIC lasso [35] as implemented in the pyHSICLasso package [122], which

generally selected at most 200 genes. The second feature selection technique was a filter select-

ing gene expression profiles exhibiting a significant Spearman correlation with the phenotype

of interest (q� 0.01; if no features survived this filter, the threshold was set at p� 0.001). The

third feature selection technique was a filter selecting genes with rlog gene expression > 0 in at

least half of the samples (median rlog gene expression > 0). enet models were built using a

fourfold inner cross-validation loop to estimate the model hyperparameters. For RF models,

1000 trees were estimated (n_estimators = 1000) using bootstrapping (bootstrap = True), and
ffiffiffi
n
p

features (with n the total number of features) were considered when looking for the best

split (max_features = “auto”). The hyperparameters ‘max_depth’ (the maximum number of

nodes) and ‘min_samples_leaf’ (the minimal number of samples at each leaf node) were opti-

mized using a grid search with possible values (1, 2, 5, 10, 20, 50) and (1, 2, 5) for ‘max_depth’

and ‘min_samples_leaf’, respectively. Optimal hyperparameters were selected based on gener-

alization scores on out-of-bag (oob) samples (oob_score = True).

For each combination of phenotype, machine learning method and feature selection tech-

nique, 9 repeats of the aforementioned 10-fold cross-validation scheme were performed, giving

rise to 90 train-test data splits in total. For each split, an out-of-sample (oos) R2 score was com-

puted from the predicted and observed phenotype values in the test set, and the median oos R2

across all 90 splits (= median test R2) is reported as a measure of model prediction perfor-

mance. Alternative R2 values and PCC values were computed based on the combined set of

test predictions across all 10 splits of a cross-validation repeat. The medians of those R2 and

PCC values across the 9 cross-validation repeats for a given model are reported as the median

pooled R2 and median pooled PCC score of the model, respectively.

For both enet and RF models, genes of potential interest for a given phenotype were ranked

based on their median importance across the 90 cross-validation splits of the model version

with the highest median test R2 score (the difference between model versions being the use of

different feature selection techniques). For RF models, the gini importance of a gene was used

as its importance score. For enet models, the absolute value of a gene’s estimated model coeffi-

cient was used.

Models on permuted datasets. For all continuous and high-count phenotypes and for

both the ‘all genes’ and ‘transcription factors’ feature sets, models were trained and tested on

90 datasets in which the phenotype values were permuted, using the same machine learning

method and feature selection technique as for the model with the best median test R2 score on
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real data for the given phenotype and feature set. For each phenotype and feature set, one

model was trained per permuted dataset, using a single 90–10 train-test split mimicking one

fold of the cross validation setup used on real data.

Multi-phenotype models. For all phenotypes measured in spring, additional predictive

models were made based on z-scored data for 14 leaf and rosette phenotypes measured in the

preceding autumn. We used the same modeling approach as for the expression-based models

(RF and enet, 9 repeats of 10-fold nested cross-validation), except that the feature selection

step of the expression-based modeling protocol was skipped given the low number of potential

model features. In this respect, using enet models instead of a simple linear regression frame-

work is technically also unnecessary, but enets were used nevertheless to maximize compara-

bility of the early phenotype-based and expression-based modeling results.
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shoot meristem transcriptome during floral transition identifies distinct regulatory patterns and a leu-

cine-rich repeat protein that promotes flowering. Plant Cell. 2012; 24(2):444–62. Epub 2012/02/10.

https://doi.org/10.1105/tpc.111.092791 PMID: 22319055; PubMed Central PMCID: PMC3315226.

58. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T. Flowering-time genes modulate

meristem determinacy and growth form in Arabidopsis thaliana. Nat Genet. 2008; 40(12):1489–92.

Epub 2008/11/11. https://doi.org/10.1038/ng.253 PMID: 18997783.
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