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A novel genome-wide association method to uncover biosynthetic loci underlying qualitative 

metabolic traits (designated as QT-GWAS) was developed and performed alongside a 

conventional quantitative metabolite GWAS (mGWAS). At least 26 of the associations found 

were supported by previous research and 8 associations involving three metabolic enzyme-

encoding genes (CYP706A5, UGT76C3 and SULT202B1) were newly confirmed, illustrating 

the power of the novel QT-GWAS. 
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ABSTRACT 

Although the plant kingdom provides an enormous diversity of metabolites with 

potentially beneficial applications for humankind, a large fraction of these metabolites 

and their biosynthetic pathways remains unknown. Resolving metabolite structures 

and their biosynthetic pathways is key to gaining biological understanding and to allow 

metabolic engineering. In order to retrieve novel biosynthetic genes involved in 

specialized metabolism, we developed a novel untargeted system-wide method in 

Arabidopsis thaliana, subjecting qualitative metabolic traits to a genome-wide 

association study (designated as Qualitative Trait GWAS or QT-GWAS), along with 

the more conventional metabolite GWAS (mGWAS) that considers the quantitative 

variation of metabolites. As proof of the validity of the QT-GWAS and mGWAS, 23 and 

15 of the retrieved associations were supported by previous research. Furthermore, 

seven gene-metabolite associations retrieved by QT-GWAS were confirmed in this 

study through reverse genetics combined with metabolomics and/or in vitro enzyme 

assays. As such, we established that CYTOCHROME P450 706A5 (CYP706A5) is 

involved in the biosynthesis of chroman derivatives, UGT76C3 is able to hexosylate 

guanine in vitro and in planta, and SULFOTRANSFERASE 202B1 (SULT202B1) 

catalyzes the sulfation of neolignans in vitro.  

INTRODUCTION 

Plant metabolism entails a complex network of biochemical pathways, in which 

enzymes perform conversions that connect a wide variety of structurally diverse 

metabolites. The diversity and abundance of metabolites can be considered as a 

phenotypic output of the genome (Contrepois et al., 2016). The plant metabolome can 

be classified into the primary and secondary/specialized metabolome. The former 

describes the collection of metabolites involved in processes essential for growth and 

development, whereas the latter comprises a specialized assortment of metabolites 

that allow the proper functioning and adaptation of an organism in a particular 

environment. Many metabolites in the specialized metabolome offer a use for 

humankind. They can lead to the development of medicines (Bishayee and Sethi, 

2016; Desborough and Keeling, 2017), or commercially valuable products such as 

cosmetics, dyes, and oils (Loza-Tavera, 1999; Shin et al., 2013; Rose et al., 2018; 
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Góral and Wojciechowski, 2020). They can also contribute attractive properties to food, 

improve feed quality (Ricachenevsky et al., 2019), and present agricultural benefits 

such as enhanced biotic (Fürstenberg-Hägg et al., 2013; Arbona and Gomez-

Cadenas, 2016; Chowański et al., 2016) and abiotic stress tolerance (Varela et al., 

2016; Peng et al., 2017), enhanced yield (Steenackers et al., 2019), or improved 

interaction with beneficial organisms such as pollinators (Dudareva et al., 2013) or 

micro-organisms (Bouwmeester et al., 2019). Exploring the genetic mechanisms 

controlling the abundances of such metabolites is therefore crucial for both 

fundamental biological understanding and the engineering of plants to enhance 

metabolic traits.  

Because of the vast amount of both metabolites and the genes underlying their 

biosynthesis, systems-wide tools are often employed to unravel biosynthetic pathways 

of specialized metabolites (Desmet et al., 2021a). By exploiting natural genomic 

variation, genome-wide association studies (GWAS) permit the search for associations 

of genomic markers, such as single-nucleotide polymorphisms (SNPs), with 

phenotypic traits of interest. In case the traits are metabolite abundances, this 

procedure is referred to as metabolite GWAS (mGWAS). mGWAS has become a 

valuable tool for uncovering new and uncharacterized genes/pathways using either 

targeted or untargeted metabolomics. For example, in Arabidopsis thaliana 

(Arabidopsis), mGWAS led to the discovery of genes involved in biosynthetic pathways 

of both primary (Strauch et al., 2015; Wu et al., 2016; Angelovici et al., 2017) and 

specialized metabolism (Chan et al., 2010; Routaboul et al., 2012; Li et al., 2014). An 

mGWAS study on Arabidopsis employed under different environmental conditions led 

to a list of 70 candidate genes putatively involved in the metabolism of several 

metabolic classes, of which five genes were experimentally validated by means of 

reverse genetics (Wu et al., 2018). mGWAS has been successfully used to discover 

genes controlling natural variation of metabolite abundances in crop plants such as 

rice (Chen et al., 2014; Dong et al., 2015; Matsuda et al., 2015; Chen et al., 2016; 

Brotman et al., 2021), maize (Wen et al., 2014; Wen et al., 2015; Chen et al., 2016; 

Baseggio et al., 2020), wheat (Chen et al., 2020; Shi et al., 2020) and tomato (Nunes-

Nesi et al., 2019; Alseekh et al., 2020; Tohge et al., 2020). 

In mGWAS, the number of loci that significantly contribute to the variation in metabolite 

abundance is often lower for specialized metabolites than for primary metabolites 
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(Fernie and Tohge, 2017). Because of the highly polygenic basis underlying primary 

metabolism, loci determining variation in primary metabolism are often of relatively 

small effect (<30% for a given locus) (Schauer et al., 2008; Wen et al., 2015; Wu et al., 

2016; Knoch et al., 2017), whereas for specialized metabolism, loci with larger effect 

sizes (>30%) can often be identified (Chen et al., 2014; Wen et al., 2014; Luo, 2015), 

suggesting that the abundance of such specialized metabolites is predominantly 

affected by only a small number of major genes. Many specialized metabolites are 

decorated derivatives of common core structures (Morreel et al., 2014; Wang et al., 

2019). Because many of the genes involved in this variety of decorations are 

conserved only among the most closely related species, specialized metabolism 

pathways are likely the result of neo-functionalizations following tandem gene 

duplications (Moghe and Last, 2015). This allows the creation of novel specialized 

metabolites of which the abundance is affected mostly by those specific duplicated 

genes. Furthermore, specialized metabolic pathways tend to be less subjected to 

natural selection compared with primary metabolic pathways. In primary metabolism, 

a major selective pressure is generally enforced by the large metabolic flux 

requirements inherent to the crucial role of primary metabolites. This high selective 

pressure ensures high precision of metabolic conversions and catalytic efficiency of 

enzymes in primary metabolism (Mukherjee et al., 2015). Genes underlying primary 

metabolism therefore tend to be highly conserved across the plant kingdom (Weng, 

2014). In contrast, the selective pressure on specialized metabolism drives the 

variation in secondary metabolites rather than flux increases (Mukherjee et al., 2015). 

For example, when a particular specialized metabolite is no longer required for a 

specific subpopulation of a certain species to thrive (e.g., when the species enters a 

new niche), this metabolite could completely disappear in that subpopulation as a 

result of the accumulation of mutations in biosynthetic genes for that specialized 

metabolite. Such metabolites then represent distinct features in a natural population, 

only occurring in specific accessions (Sotelo-Silveira et al., 2015). The 

presence/absence of such a metabolite can be considered as a qualitative rather than 

a quantitative trait. The absence of a qualitative metabolic trait can be expected to 

show monogenic inheritance, considering that a knock-out mutation in one of the 

biosynthetic genes, will result in the loss of that metabolite. Such inheritance facilitates 

the discovery of the underlying genes (Kushalappa and Gunnaiah, 2013). In addition, 

because of their major effect, it is reasonable to hypothesize that, when subjecting 
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qualitative metabolic traits to genetic analysis, biosynthetic genes can readily be 

identified. For example, surveying leaf sinapate ester profiles from 96 Arabidopsis 

accessions demonstrated that the Pna-10 accession, which accumulates 

sinapoylglucose instead of sinapoylmalate, is a natural deletion mutant of SNG1 

encoding sinapoylglucose:malate sinapoyltransferase (Li et al., 2010). Similarly, a 

novel flavonol phenylacyltransferase gene (FPT2) has been identified based on a 

targeted study of saiginols present only in a subset of the analyzed accessions (Tohge 

et al., 2016). The absence of flavonol 3-O-gentiobioside 7-O-rhamnoside in 42 out of 

81 analyzed Arabidopsis accessions led to the identification of an acyl-glucose-

dependent glucosyltransferase (BGLU6) (Ishihara et al., 2016). This rather limited 

number of examples illustrates that analyses of qualitative metabolic traits (metabolic 

traits that are absent in part of the studied population) can pinpoint enzyme-encoding 

genes that underlie these metabolic conversions. Here, we performed an untargeted 

association analysis of 4,479 qualitative metabolic traits (Qualitative Trait GWAS or 

QT-GWAS) and 1,147 quantitative metabolic traits (mGWAS) obtained from liquid-

chromatography–mass spectrometry (LC-MS) chromatograms with 250K SNPs of 183 

Arabidopsis accessions. Both methods enriched for genes labelled with “metabolic 

process" related GOterms, but QT-GWAS did so more significantly. When focussing 

on associations involving characterised metabolites, we found 30 valid associations 

retrieved by the QT-GWAS of which 23 were supported by previous research and 

seven (involving the three genes UGT76C3, CYP706A5 and SULT202B1) were newly 

confirmed in this study. Our results show that through an untargeted QT-GWAS, valid 

gene–metabolite associations can be retrieved at the level of enzyme-encoding genes 

involved in metabolic conversions, and can retrieve new associations not found by 

mGWAS. This is, to our knowledge, the first time an untargeted GWAS approach has 

been combined with qualitative metabolic traits.  

RESULTS 

LC–MS based metabolic profiles 

An LC–MS analysis was performed on methanol extracts prepared from 14-day-old 

seedlings belonging to 183 accessions (Supplemental Table 1). A total of 5,082 

metabolic features (peaks) was detected across all chromatograms (Supplemental 

Data Set 1), of which 603 were detected in all accessions. The other 4,479 features 
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that were below the detection limit (ion intensity of 500 in this study) in at least 1 of the 

183 accessions were considered as qualitative traits. Features with an average 

abundance above 500 and that were present in at least 100 accessions (to reduce the 

false-positive rate resulting from too-small sample sizes and to ensure a continuous 

distribution of quantitative traits across the used population), were selected as 

quantitative traits (Wu et al., 2018). Based on the applied filtering, 1,147 of the 5,082 

features were selected as quantitative traits, 702 of which could be identified as both 

qualitative and quantitative traits in this study (Figure 1).  

Associations between qualitative metabolic traits and SNP data 

SNP data were used from a previously published 250K SNP data set (Horton et al., 

2012) for the 183 selected Arabidopsis accessions. SNPs that were monomorphic in 

all accessions were removed from the data set. Significant associations of qualitative 

features with SNPs were retrieved by a Fisher’s exact test using a P-value <10-6 

threshold. Of the 4,479 qualitative features, 709 features (16%) were involved in 

53,464 associations. After a filtering step to remove (i) redundant associations between 

a particular feature and SNPs that are located within a 20-kb window (10 kb up- and 

10 kb downstream of the most significant SNP) based on the average linkage 

disequilibrium (LD) size in Arabidopsis (Kim et al., 2007), and (ii) redundant 

associations between a particular SNP and features representing the same metabolite 

[most metabolites are represented by multiple features in LC-MS (Mahieu et al., 2016)], 

515 features (hereafter referred to as metabolites) remained that were involved in 

2,931 associations (Figure 1A, Supplemental Data Set 2). MS/MS spectra were 

recorded for 140 of the 515 metabolites, of which 57 were tentatively characterized 

(Supplemental Table 2) using the DynLib spectral database (Desmet et al., 2021b). 

The metabolites were characterized as glucosinolates (13 metabolites), 

(neo)lignans/oligolignols (11, of which 5 were found to be sulfated); flavonoids (6), 

jasmonates (5), organic acids (4), aromatic polyketides (3), phenylpropanoids (3), 

benzenoids/coumarins (2), lipids (2), purines (2), an amino acid (1), and others (5). 

From the 515 metabolites, 397 (77%) were associated with one locus and 118 (23%) 

with multiple loci (Figure 2). Here a locus is defined as the 10-kb upstream and 10-kb 

downstream region of the associated SNP based on the average size of LD in 

Arabidopsis. Considering loci with 10 or more associated metabolites (threshold based 
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on the observed elbow in Supplemental Figure 1) as pleiotropic loci, 23 such loci (L1-

23) of the 2931 loci were found of which 1, 2, 1, 4, and 15 loci mapped on 

chromosomes 1 to 5, respectively (Figure 3, Supplemental Table 3). The pleiotropic 

locus L17 showed 83 associations, the highest number of associations of all loci in this 

data set, of which seven involved characterized glucosinolates, known to be affected 

by the METHYLTHIOALKYLMALATE 1 (MAM1), MAM2 and MAM3 genes within this 

locus (Textor et al., 2004). 

Associations between quantitative metabolic traits and SNP data 

Next, we investigated the continuous variation of metabolic features in our data set. 

For the 1,147 quantitative features, the average abundance across the five replicates 

of each accession was calculated, and these averages were then subjected to a 

quantitative mGWAS following the EMMAX procedure (Kang et al., 2010). A genomic 

locus was considered as significantly associated with a particular feature, when at least 

1 SNP in that locus showed a P-value <10-6 (the most significant SNP is then defined 

as the lead SNP) and at least an additional 5 of 40 SNPs in a region upstream and 

downstream of the lead SNP showed a P-value ≤10-3. When such associations were 

retrieved, an associated locus was defined as the window of SNPs still in LD (showing 

a significant association) with the lead SNP. In this way, 288 quantitative traits (of which 

71 were also defined as qualitative traits), estimated to correspond to 248 metabolites 

after feature grouping, were associated with 577 loci (Figure 1, Supplemental Data 

Set 3). Of the 248 metabolites, 31 could be characterized, all of which were also 

present in the QT-GWAS data set. The characterized metabolites contained 

glucosinolates (10), jasmonates (5), (neo)lignans/oligolignols (4), organic acids (3), 

flavonoids (2), phenylpropanoids (2), purines (2), aromatic polyketides (2), and an 

amino acid (1). Of the quantitative traits, 223 (90%) had only one significant 

association, whereas 25 (10%) showed multiple associations (Figure 2). 

For the mGWAS, six pleiotropic loci could be identified (involved in associations with 

ten or more metabolites; Supplemental Figure 2, Supplemental Table 4). Two of the 

six pleiotropic loci were shared with the QT-GWAS (L5 and L17). The four other 

pleiotropic loci (L24-27) were all situated on chromosome 5, surrounding the pleiotropic 

MAM locus (L17). Both L5 and L17 showed associations with glucosinolates and are 

both known to contribute to natural variation in glucosinolates (Kliebenstein et al., 



9 
 

2001; Kroymann et al., 2001). Possibly, the association of various glucosinolates to 

L24-27 could be explained by the existence of an extended LD block surrounding the 

MAM locus in L17 (Chan et al., 2010), resulting in SNPs, which are further away from 

the MAM locus, to still be associated with glucosinolates. A detailed overview of the 

loci and corresponding associated characterized metabolites can be found in 

Supplemental Table 4. 

Gene Ontology term enrichment and overlap analysis 

To investigate whether the loci associated with the metabolic traits were enriched in 

genes involved in metabolic processes, a GOterm enrichment was performed for both 

approaches, using the PANTHER webtool. For the qualitative approach, 103 GOterms 

in the ‘biological process’ category were significantly enriched (Bonferroni corrected P-

value <0.05), not counting the unclassified category. Of these, twenty two GOterms 

(21%), related to various metabolic processes (Supplemental Table 5). For the 

quantitative approach, 25 GOterms were significantly enriched, of which five involved 

metabolic processes (20%). Of these 25 GOterms, all but one (‘seed development’ – 

GO:0048316) were also enriched in the QT-GWAS (Supplemental Table 6). 

Consequently, all GOterms involving metabolic processes that were enriched in the 

mGWAS were also enriched in the QT-GWAS. Notably, all of these metabolic GOterms 

were more significantly enriched in the QT-GWAS, although the fold-changes of the 

enrichments were of similar size (Supplemental Table 7).  

Of the 702 traits that were selected as both qualitative and quantitative metabolites, 71 

traits yielded associations for both QT-GWAS and mGWAS. QT-GWAS and mGWAS 

retrieved 2556 and 529 unique genes for these 71 traits. Of these genes, 167 were 

retrieved by both methods. The overlap coefficient (Szymkiewicz–Simpson coefficient; 

the ratio of the intersection of both gene sets and the size of the smallest gene set, 

here the mGWAS genes) is 0.32. This indicates that only 32% of the genes retrieved 

by mGWAS (the smallest set) overlapped with the genes retrieved by QT-GWAS, 

suggesting that the QT-GWAS is able to retrieve new associations not found by 

mGWAS.  
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Proof of concept 

Knowing the structure of a metabolite facilitates the search for candidate enzyme-

encoding genes involved in its biosynthesis (e.g., glycosylated metabolites associated 

with genes encoding glycosyltransferases) – in many cases not even requiring full 

metabolite annotation if key functional groups can be identified. Therefore, all 

associations in the filtered QT-GWAS data set involving the 57 characterized 

metabolites were investigated (758 associations out of 2,931 associations, Figure 1; 

Supplemental Data Set 4). In order to pinpoint enzyme-encoding genes involved in 

metabolic processes, the QT-GWAS data set was further filtered for genes labeled with 

GOslim categories (high level summaries of related GOterms) related to metabolic 

processes. In this way, 291 associations with 34 metabolites remained. Of this 

selection, at least 23 associations involving 21 of the 34 metabolites were supported 

by published research (Table 1, Supplemental Results), demonstrating that the QT-

GWAS approach allows to pinpoint enzyme-encoding genes affecting the biosynthesis 

of the associated metabolites. Similarly, in the mGWAS data set, 67 associations out 

of the 577 involved the 31 characterized metabolites. After filtering for genes labeled 

with GOslims related to metabolic processes, 62 associations remained involving the 

31 metabolites (Supplemental Data Set 5). Of these 62 associations, at least 15 

associations involving 14 of the 31 characterized metabolites were supported by 

published research (Table 1, Supplemental Results). Twelve of the supported 

associations overlapped between QT-GWAS and mGWAS.  

Retrieving new candidate genes involved in metabolic pathways 

Guided by structural information of the associated metabolites, seven associations 

involving three genes were selected for validation through comparative metabolome 

profiling of knockout mutants and/or in vitro enzyme assays. Of these seven validated 

associations, five were also retrieved by the mGWAS.  

CYP7065A, a gene involved in chroman biosynthesis 

Chroman derivatives are heterocyclic compounds sharing a chroman 

(benzodihydropyran) backbone. Chromans constitute various important plant 

metabolites such as tocopherols, known for their vitamin E activity. In addition, the 

chroman skeletal structure occurs in specialized metabolites such as flavonoids (Jiang 
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et al., 2020). In the characterized qualitative data set, the second most significant 

association (P-value = 7.12 x 10-26) in the QT-GWAS with characterized metabolites, 

was found between 6-hydroxy-2-methoxy-2-(pentane-2',4'-dione-5'-C-hexoside)-

chroman (metabolite 48) and SNP 4_7310453 located in the 3' UTR of AT4G12310 

(Supplemental Data Set 4, Figure 4A and 4B). This gene encodes a cytochrome P450 

monooxygenase (CYP706A5) and was also identified as part of a pleiotropic locus 

(locus L7, Figure 3, Supplemental Table 3). Two neighboring genes, AT4G12300 and 

AT4G12320, also encode CYP706A proteins (CYP706A4 and CYP706A6, 

respectively). Furthermore, the locus contains two copper amine oxidase genes 

(AT4G12280 and AT4G12290). However, these two genes do not show expression at 

the seedling stage according to external datasets and were therefore excluded as 

candidate genes to be involved in the metabolism of metabolite 48. According to the 

ATTED-II database (Obayashi et al., 2022), CYP706A5 is strongly co-expressed with 

CYP706A6, suggesting they may be involved in the same metabolic pathway. Via QT-

GWAS, also the abundances of an isomer of metabolite 48, i.e. metabolite 49, as well 

as of 6-hydroxy-2-methoxy-2-(2'-propanone-C-hexoside)-chroman (metabolite 37, 

Figure 4A), were associated with SNPs located in locus L7 (SNP 4_7309739, P-value 

= 3.44 x 10-23 and SNP 4_7310453, P-value = 1.12 x 10-23, respectively; Figure 4C and 

4D). In addition, metabolites 48 and 49 were also associated with SNP 4_7310453 

located in L7 via mGWAS (Table 1, Supplemental Data Set 5). No significant 

association was found for metabolite 37 via mGWAS. Q-Q plots for metabolites 48, 49 

and 37 show a tail reflecting the small P-values of significantly associated SNPs and 

the SNPs in LD, as can be expected (Supplemental Figure 9). Nevertheless, the plots 

suggest an inflation of the P-values for QT-GWAS which could be the result of 

population structure. In conclusion, CYP706A4, A5 and A6 were considered as 

candidate genes underlying the variance in abundance of metabolites 48, 49 and 37.  

In order to confirm the effect of L7 on the abundances of the chroman derivatives 37, 

48 and 49, one homozygous T-DNA insertion mutant was obtained for CYP706A4 

(cyp706a4; Figure 4E) and one for CYP706A5 (cyp706a5; Figure 4E). No T-DNA 

insertion mutant was available for CYP706A6. The reduction in expression of 

CYP706A4 and CYP706A5 was confirmed by RT-qPCR in the corresponding mutant 

lines (Figure 4F), while the expression of the three other CYP706A genes was not 

altered (Supplemental Figure 3). Comparative metabolite profiling of seedling 
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metabolic extracts from each of the homozygous mutants revealed significant 

reductions for metabolites 37, 48 and 39 in cyp706a5, but not in cyp706a4 (Figure 4G, 

Supplemental Data Set 6-7). These results support the hypothesis that the CYP706A5 

is involved in the production of chromans 37, 48 and 49, as predicted by the QT-GWAS 

approach.  

UGT67C3, a gene involved in guanine glycosylation 

Guanine is one of the five essential nucleobases that make up part of the building 

blocks of nucleic acids and are ubiquitous in all known life forms. Nucleobases such 

as guanine can be taken up from the environment (Girke et al., 2014) or can be 

released from nucleotides or nucleic acids (Barbado et al., 2018). Little is known about 

guanine biosynthesis and metabolism, especially in plants. Based on MS/MS spectral 

data, two metabolites were characterized as guanine hexoside derivatives (metabolites 

28 and 22; Figure 5A). In the QT-GWAS data set, the variations in both guanine 

hexoside pools were significantly associated with SNP 5_1776009 located in L28 on 

chromosome 5 (Figure 5B and 5C). This locus contains seven enzyme-encoding 

genes: DEOXYHYPUSINE SYNTHASE (DHS, AT5G05920), GUANYLYL CYCLASE 

1 (GC1, AT5G05930), and five UDP-GLYCOSYLTRANSFERASE genes (UGT76C1-

5). DHS is involved in hypusine synthesis from peptidyl-lysine, whereas GC1 is 

described to catalyze the formation of guanosine 3',5'-cyclic monophosphate (cGMP) 

from guanosine 5'-triphosphate (GTP) (Ludidi and Gehring, 2003; Duguay et al., 2007). 

UGT76C1 (AT5G05870) and UGT76C2 (AT5G05860) are described cytokinin UGTs 

(Šmehilová et al., 2016). UGT76C4 (AT5G05880) and UGT76C5 (AT5G05890) are 

known nicotinate UGTs (Wang et al., 2011; Li et al., 2015). The function of UGT76C3 

(AT5G05900) has not been reported yet. In addition, the most significantly associated 

SNP is located in the coding sequence of UGT76C3, implying UGT76C3 is the most 

likely candidate glycosyltransferase involved in the biosynthesis of the guanine 

hexoside derivatives. Analogous to the chroman derivatives, Q-Q plots for metabolites 

22 and 28 show a tail reflecting the small P-values of significantly associated SNPs 

and the SNPs in LD, and indicate some inflation of the P-values for QT-GWAS 

(Supplemental Figure 10). The associations of L28 with metabolites 28 and 22 were 

also retrieved in the mGWAS (Table 1). 
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To independently confirm the association between the UGT76C3 candidate gene and 

metabolites 22 and 28, two homozygous T-DNA insertion lines were obtained for 

UGT76C3 (ugt76c3-1 and ugt76c3-2, Figure 5E). The reduced UGT76C3 expression 

in the ugt76c3 mutant lines was confirmed by RT-qPCR (Figure 5F), whereas the 

expression of the other UGT76C genes was not altered (Supplemental Figure 4). 

Comparative metabolite profiling of ugt76c3-1 and ugt76c3-2 versus WT seedling 

samples showed that metabolite 28 was completely absent in both mutants and 

metabolite 22 was significantly decreased in both mutants (ANOVA; PFDR <0.05) 

(Figure 5G and 5H, Supplemental Data Set 8-9). Root tissues of both mutant lines and 

WT plants were subjected to metabolic profiling, given the relatively high expression of 

UGT76C3 in roots (based on external datasets and RT-qPCR, Supplemental Figure 

4). These results were in agreement with the seedling metabolic profiling 

(Supplemental Data Set 10-11). These results support that UGT76C3 is causal for the 

natural variation in the abundance of the associated guanine hexoside derivatives in 

Arabidopsis seedlings and suggest that the glycosylation of guanine, the first step of 

the proposed metabolic pathway, is catalyzed by UGT76C3 (Figure 5D). 

To further investigate whether UGT76C3 catalyzes the glycosylation of guanine as 

suggested (Figure 5D), UGT76C3 was expressed in E. coli and purified as GST-

tagged UGT76C3 recombinant protein (GST-UGT76C3) for enzymatic assays. 

Guanine was incubated with GST-UGT76C3 in the presence of UDP-glucose as a 

sugar donor. In contrast to the negative control, the GST-UGT76C3 reaction product 

gave rise to one peak at m/z 312.1, which was consistent with the theoretical 

monoisotopic mass of the guanine glucoside [M-H]- ion (C11H14N5O6
–; 312.09441 Da) 

(Figure 5I). The MS/MS fragmentation spectrum further showed a neutral loss of 

162 Da, corresponding to the loss of a hexose (minus H2O) moiety, indicating that the 

glucose moiety and guanine are N-linked, not C-linked. These observations 

demonstrate that UGT76C3 can catalyze the N-glycosylation of guanine in vitro. 

SULT202B1, a gene involved in neolignan sulfation 

Sulfation of flavonoids has been reported in various studies (Teles et al., 2018) and 

several underlying genes have been reported in Arabidopsis (Klein and Papenbrock, 

2004; Hashiguchi et al., 2014). However, genes responsible for the sulfation of 

neolignans remain unknown. Three sulfated neolignans, sulfo-G(8-O-4)FA (G stands 
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for coniferyl alcohol and FA for ferulic acid, metabolite 21) and its isomer (metabolite 

29), and sulfo-G(8-O-4)SA (SA stands for sinapic acid, metabolite 44) were 

characterized in this study (Figure 6A). In the QT-GWAS data set, metabolites 21 (SNP 

3_16490051; P-value = 7.37 x 10-8, Figure 6B) and 44 (SNP 3_16487258; P-value = 

4.92 x 10-7, Figure 6C), were associated with locus L29 that contains four genes: a 

nitrate transporter (NRT2.6; AT3G45060), a sulfotransferase (SULT202B1; 

AT3G45070) and two nucleoside triphosphate hydrolases (AT3G45080 and 

AT3G45090). The sulfotransferase SULT202B1 has been reported to operate on 

flavonoids (Gidda and Varin, 2006; Hashiguchi et al., 2013). The associations of 

metabolites 21 and 44 with L29 suggest that SULT202B1 could potentially act upon 

neolignans as well. Alternatively, the association could be the result of competition 

between neolignans and flavonoids for conjugation. Q-Q plots for metabolites 21 and 

44 show a less profound tail, compared to the chroman and guanin derivatives under 

investigation as a result of the less significant associations (Supplemental Figure 11). 

In the mGWAS, an association between locus L29 and metabolites 21 and 29 

(Figure 6, B and D) could be retrieved, but not with metabolite 44, even though it was 

selected as quantitative trait as well. 

To test whether SULT202B1 is active on G(8-O-4)FA or G(8-O-4)SA as predicted, 

recombinant GST-tagged SULT202B1 was produced in E. coli and purified for in vitro 

enzyme assays with chemically synthesized G(8-O-4)FA and G(8-O-4)SA 

(Supplemental Methods). G(8-O-4)FA and G(8-O-4)SA were tested as potential 

substrates (see methods), whereas the flavonol galangin was used as a positive 

control. As previously reported, SULT202B1 displayed activity towards galangin 

(Gidda and Varin, 2006). When incubated with G(8-O-4)FA, the SULT202B1 reaction 

product gave rise to two peaks exhibiting an m/z value and fragmentation spectrum 

corresponding to sulfo-G(8-O-4)FA (Figure 6E). Similarly, two sulfo-G(8-O-4)SA peaks 

were observed when G(8-O-4)SA was incubated with SULT202B1 (Figure 6F). These 

observations illustrate that SULT202B1 can catalyze the sulfation of G(8-O-4)FA and 

G(8-O-4)SA in vitro.  

We assessed the effect of population structure correction for qualitative metabolites 

whose associations were supported by previous research or validated in this study 

through ASRgwas (Table 1). As expected, for all tested traits, the associations 

retrieved by QT-GWAS were less significantly detected by ASRgwas. Notably, 19 out 
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of the 30 validated associations retrieved by QT-GWAS were no longer deemed 

significant by ASRgwas (p-values > 10-6) even though they have been experimentally 

validated in this study or were supported by previous research. These results suggest 

population structure correction is in some cases too conservative and could overlook 

the identification of real associations, as also noted by (Klasen et al., 2016). We 

visualized the potential influence of population structure on the associations retrieved 

by QT-GWAS, through Uniform Manifold Approximation and Projection for Dimension 

Reduction (UMAP, (McInnes et al., 2020)) (Supplemental Figure 5, Supplemental 

Results, Supplemental Methods).  

 

DISCUSSION 

QT-GWAS and mGWAS both retrieve loci involved in the biosynthesis of 

specialized metabolites and are partially complementary 

Several studies have illustrated that targeted genetic analyses of qualitative metabolic 

traits, only present in a subset of a population of accessions, can efficiently pinpoint 

biosynthetic genes (Li et al., 2010; Ishihara et al., 2016; Tohge et al., 2016). Such 

discoveries are highly important both for fundamental knowledge and to open up 

possibilities towards metabolic engineering. By performing an untargeted association 

analysis through Fisher’s exact tests of 4,479 qualitative metabolic traits and 250K 

SNPs in Arabidopsis, we retrieved 2,931 significant associations with 515 metabolites 

(11% of all qualitative traits defined here). In comparison, mGWAS yielded 577 

associations involving 248 (22% of 1147) quantitative metabolites. Considering that  

QT-GWAS and mGWAS picked up at least 23 and 15 literature-supported 

associations, respectively, both mGWAS and QT-GWAS methods are valid 

approaches to retrieve associations involved in the biosynthesis of specialized 

metabolites. The complementarity of both methods is illustrated by the observation that 

only twelve of the supported associations overlapped between both methods. Of the 

eight novel associations confirmed in this study, only five were retrieved by both 

methods.   

The complementarity between both approaches could be explained by the fact that the 

QT-GWAS differentiates between genotypes in which the trait is absent and those 
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expressing the trait, whereas mGWAS narrows associations down to those genotypes 

affecting the trait quantitatively rather than qualitatively. Nevertheless, the 

complementarity could also in part be explained by the different selection criteria for 

qualitative and quantitative traits. However, for the traits that were selected both as 

quantitative and qualitative traits, the two methods yielded different results in 

agreement with the different statistical strategies of both methods (only 32% of the 

genes overlapped based on the Szymkiewicz–Simpson coefficient). For example, QT-

GWAS was able to retrieve a correct association between 6-hydroxy-2-methoxy-2-(2'-

propanone-C-hexoside)-chroman (metabolite 37) and CYP705A6 and between sulfo-

G(8-O-4)SA (metabolite 44) and SULT202B1, which were not retrieved by mGWAS at 

the current threshold, even though both metabolites were also selected as quantitative 

traits for the mGWAS. QT-GWAS was able to retrieve 11 associations that were 

supported by previous research that were not retrieved by mGWAS, despite the fact 

that the involved metabolites were used as input in both methods. Analogously, 

mGWAS yielded three literature-supported associations that were not found by QT-

GWAS. The complementarity could (in part) be the result of the exclusion of rare alleles 

(minor allele frequency <5%) from mGWAS. Such alleles were not excluded from the 

QT-GWAS.  

An enrichment for ‘metabolic process’-related GOterms was observed for both the 

mGWAS and the QT-GWAS. The QT-GWAS showed a more significant enrichment 

for all 5 ‘metabolic process’-related GOterms that were enriched in the mGWAS, and 

also for 17 additional ‘metabolic process’-related GOterms that were not enriched in 

the mGWAS. These results further support that the novel QT-GWAS is indeed able to 

retrieve genes involved in metabolism.  

Novel enzyme–metabolite associations 

In order to further demonstrate the validity of the QT-GWAS approach, candidate 

genes of unknown function were selected from genomic loci associated with 

characterized metabolites and subjected to reverse genetics. Comparative metabolic 

profiling of the T-DNA insertion mutant in candidate CYP706A5 versus the WT showed 

that the abundance of the associated chroman derivatives 37, 48 and 49 were 

significantly reduced in cyp706a5, indicating that CYP706A5 is involved in the 

biosynthesis of these metabolites. Furthermore, these metabolites were not differential 
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in cyp706a4, indicating that the functions of CYP706A4 and CYP706A5 are not 

redundant. Metabolites 37, 48 and 49 have previously been reported to be highly 

abundant in leaf vacuoles of Arabidopsis (Dima et al., 2015). Moreover, the putative 

structures of the associated metabolites 37, 48 and 49 resemble polyketide synthase 

derailment products, because of their putative polyketide like nature (Yamaguchi et al., 

1999; Jiang et al., 2006; Lim et al., 2016). Most polyketide synthases are promiscuous 

in the number of elongation steps, causing some polyketide intermediates to derail, 

resulting in heterocyclic truncation products (Lim et al., 2016). Although the 

involvement of CYP706A5 in the production of metabolites 37, 48, and 49 was 

demonstrated by reverse genetics, the identity of its in vivo substrate remains unclear.  

Similarly, the metabolite profiling of T-DNA insertion lines in UGT76C3, located in L28, 

confirmed the involvement of the UGT in the production of metabolites 22 and 28, as 

predicted by both the QT-GWAS and mGWAS. The biosynthesis of metabolites 22 and 

28 could potentially start from the hexosylation of guanine by UGT76C3 (Figure 5D). 

This hypothesis is supported by the in vitro enzyme assay, which illustrates that 

UGT76C3 is indeed capable of catalyzing the glycosylation of guanine in vitro. This is, 

to our knowledge, the first time that guanine glycosylation has been reported in plants. 

Here, guanine (benzoyl) hexoside (metabolite 28) and guanine (benzoyl)sulfo-

hexoside (metabolite 22) were detected, instead of guanine hexoside. A possible 

reason is that guanine hexoside is rapidly conjugated with benzoate and/or sulfate. 

This may also explain why guanine hexoside has not been reported yet in other 

organisms. The guanine (benzoyl) hexoside and guanine (benzoyl) sulfo-hexoside 

could possibly be storage molecules, as molecules are frequently hexosylated for 

storage in the vacuole (Dima et al., 2015; Le Roy et al., 2016; Desmet et al., 2021b). 

Because UGT76C3 is highly expressed in roots, it could play a role in storage of excess 

guanine. Guanine has been shown to be taken up from the environment (Girke et al., 

2014), but could also play a role as a nitrogen storage form in nitrogen-poor or -

fluctuating environments (Mojzeš et al., 2020).  

The QT-GWAS and mGWAS suggested that in addition to flavonoids, SULT202B1 

could also catalyze the sulfation of neolignans, based on the observed associations 

with metabolites 21, 29 and 44. This hypothesis was confirmed by in vitro enzyme 

assays. This is, to our knowledge, the first report of an enzyme capable of catalyzing 

the sulfation of neolignans in vitro. The sulfation of neolignans could serve to improve 
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their solubility in water, which could possibly alter their sequestration and/or transport 

to the vacuole or cell wall (Routaboul et al., 2012). Alternatively, sulfation of specialized 

metabolites, such as neolignans, could be the result of an adaptation to a specific 

environment. For example, a strong correlation was observed between the occurrence 

of sulfated flavonoids and plants growing near aquatic environments rich in mineral 

salts. Hence, the binding of sulfate to flavonoids and neolignans could be a mechanism 

for deactivation of excessive inorganic sulfate (Li et al., 2014). 

QT-GWAS and mGWAS generate valuable databases 

The QT-GWAS and mGWAS data sets retrieved a total of 26 literature-supported 

associations. Furthermore eight novel associations were confirmed here. These results 

illustrate that both methods lead to valuable gene–metabolite associations. In the QT-

GWAS data set, 1,057 associations involved unknown metabolites and contained 

genes categorized under GOslims categories related to metabolic processes (Figure 

1). In the list of QT-GWAS associations with characterized metabolites, at least 30 of 

the 291 associations (10%) involving metabolic genes were validated (23 through 

previous research and seven in this study). Extrapolating this percentage to the 

unknown associations, at least another 106 associations are promising leads. 

Analogously, in the mGWAS data set, 450 associations involved unknown metabolites 

and contained genes labeled with GOslims related to metabolic processes. In the 

mGWAS associations with characterized metabolites, 21 of the 62 associations (34%) 

involving metabolic genes were validated (15 through previous research and six in this 

study). Extrapolating this percentage to the unknown associations, at least 153 

associations are predicted as promising leads. The 1,057 and 450 ‘metabolic process’-

related loci involving unknown metabolites in QT-GWAS and mGWAS, respectively, 

can be mined further for additional candidate genes, which could be subjected to a 

combination of reverse genetics and metabolite profiling to investigate whether the 

abundance of the associated unknown metabolite is affected in the mutant. The identity 

of the potential substrate can be obtained through (partial) metabolite characterization, 

in case MS/MS spectral fragmentation data allows elucidation, isotope labeling 

(Simpson et al., 2021) or through purification and NMR analysis of the unknown 

metabolite. 



19 
 

METHODS 

Plant growth and experimental setup 

Seeds of 183 A. thaliana accessions (Supplemental Table 1) were sown on MS-agar 

plates (0.5X Murashige and Skoog medium, 0.5% (w/v) sucrose, 1.2% (w/v) plant 

tissue agar), and stratified at 4°C for five days. Based on a randomize block design, 

14-day-old seedlings (five replicates per accession) were then transferred to 96-well 

plates (MultiScreen, Merck Millipore) with two seedlings per well in 1 mL liquid MS-

medium (0.5X MS medium, 0.5% (w/v) sucrose). The 96-well plates were placed in a 

growth chamber for 12 days (21°C, 16 h light/8 h dark with 120 μEs-1m-2). For 

metabolite extraction, the growth medium was removed by vacuum filtration and 

samples were quenched with 1 mL dry-ice-cold methanol. After heating the samples 

to 70°C for 15 min, the methanol extract was collected in a receiver plate using a 

vacuum manifold. Subsequently, 500 μL of the collected extract was cleaned with a 

Sep-Pak C18 96-well plate (Waters), dried in a vacuum concentrator and suspended 

in 50 μL ultrapure water. The 250K SNP data was obtained from from the Gregor 

Mendel Institute (available on github: https://github.com/Gregor-Mendel-

Institute/atpolydb/tree/master/250k_snp_data).  

All T-DNA insertion lines in this study were obtained from the SALK collection through 

the Nottingham Arabidopsis Stock Centre and homozygous mutants were identified by 

PCR amplification using T-DNA and gene specific primers (Supplemental Table 11). 

The Columbia-0 (Col-0)  accession was used as WT.  

Metabolite profiling and data processing 

To obtain the metabolic profiles of all 183 A. thaliana accessions, each replicate (10 μL 

injected) was analyzed via negative ionization mode using a ultrahigh performance 

liquid chromatography (UHPLC) system hyphenated to electrospray ionization (ESI)-

quadrupole-time of flight (QTOF)-MS (Acquity UPLC system coupled to a Synapt High 

Definition MS, Waters Corporation, Manchester, UK, Supplemental Methods). T-DNA 

insertion lines were analyzed on a Vion QTOF-MS (Waters Corporation, Manchester, 

UK, Supplemental Methods). 

Peak grouping on the recorded LC–MS peaks was performed following Morreel et al. 

(2014) to estimate the number of detected metabolites. Statistical tests were performed 

https://github.com/Gregor-Mendel-Institute/atpolydb/tree/master/250k_snp_data
https://github.com/Gregor-Mendel-Institute/atpolydb/tree/master/250k_snp_data
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in R version 4.0.0 (R Core Team, 2020). Data were transformed as described 

previously (Desmet et al., 2021b). Significant differences in the feature abundances 

between the T-DNA mutant lines and the WT were obtained following a one-way 

analysis of variance (ANOVA; lm() function) followed by Tukey honestly significant 

difference [HSD; TukeyHSD()] post hoc tests (α=0.05). The ANOVA model P-values 

were subjected to a false discovery rate [FDR, PFDR<0.05; p.adjust()] correction.  

MS-based structural elucidation 

In addition to MS/MS spectra recorded via QTOF-MS, MSn spectra were generated via 

reversed-phase UHPLC-ESI-Fourier transform ion cyclotron resonance (FTICR)-MS 

(Accela UHPLC system coupled to an LTQ FT Ultra, Thermo Scientific, Bremen, 

Germany) using the same separation conditions as mentioned for the QTOF-MS-

based analyses. MS settings were as previously described (Desmet et al., 2021b). The 

MS/MS and MSn spectra mutually aligned and interpreted using RDynLib (Desmet et 

al., 2021b). Spectral interpretation was further assisted using CSI:FingerID (Dührkop 

et al., 2015) and competitive fragmentation modeling (CFM)-ID (Allen et al., 2014), and 

by applying previously published MS fragmentation pathways (Morreel et al., 2006; 

Morreel et al., 2010a; Morreel et al., 2010b; Desmet et al., 2021b) (Supplemental 

Methods). 

GWAS of qualitative traits (QT-GWAS) 

LC–MS processed features were converted to binary traits and subjected to Fisher 

exact tests using R version 4.0.0 [R Core Team, 2020; see “Qualitative GWAS.R 

available on Github”]. Whenever a feature was absent in more than half of the 

replicates for a particular accession (3 or more out of 5), the feature was considered 

absent in that accession. Some 4,479 features remained for the QT-GWAS (after 

removing features either present or absent in all 183 accessions). Using the 250K SNP 

data set , cosegregation analysis between the presence/absence of a feature and the 

presence/absence of a SNP was performed with Fisher exact tests [fisher.test(); -

log10(P-value) >6] ( see “Qualitative GWAS.R”). To accommodate for multiple 

hypotheses testing a P-value threshold of P-value < 10-6 was selected to define 

associations as significant. All scripts are made available at Github 

(https://github.com/mabro7766/QT). Manhattan and Q-Q plots were generated with the 

“qqman” package in R (Turner, 2014).  
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GWAS of quantitative traits (mGWAS) 

mGWAS was performed on metabolite abundances measured in the 183 selected A. 

thaliana accessions. m/z signals with an average abundance lower than the detection 

limit of 500 were put to missing. The analysis was limited to those metabolites where 

at least 100 accessions had a value above the detection limit. Only SNPs were 

considered with a minor allele fraction (MAF) of at least 0.05. The association study 

was performed analogous to Kang et al. (2010), see Supplemental Methods for 

detailed descriptions. To accommodate for multiple hypotheses testing correction a P-

value threshold of P-value < 10-6 was selected to define associations as significant. All 

scripts are made available at Github (https://github.com/mabro7766/mGWAS).  

Comparative GOterm analysis and overlap coefficient 

Gene Ontology data was obtained from TAIR (https://www.arabidopsis.org/). A 

GOterm enrichment was performed using the PANTHER webtool 

(http://pantherdb.org/) for both QT-GWAS and mGWAS. The inputted genes included 

duplicates, [genes occurring in more than one association were included in the 

enrichment as many times as they showed associations (13,795 genes for the QT-

GWAS and 3,535 genes for the mGWAS)]. Enrichment was assessed versus all 

Arabidopsis genes present in the database through Bonferroni-corrected Fisher’s 

exact tests. The overlap coefficient (Szymkiewicz–Simpson) was calculated as ratio of 

the intersection and the size of the mGWAS gene set (equation 1). 

(1) 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

min (|A|,|B|)
 

Gene expression analysis via RT-qPCR and external datasets 

Shoot or root tissues of 2-week-old Arabidopsis seedlings were collected and 

immediately frozen in liquid nitrogen. Six plants were pooled per biological replicate 

and three replicates were harvested per line. All plant materials were disrupted in 2-

mL Eppendorf tubes using a Retsch MM300 mill (20 Hz, 3-mm bead). Total RNA was 

extracted using ReliaPrep RNA Tissue Miniprep System (Promega). A total of 1 µg 

RNA was used as a template for cDNA synthesis using the qScript cDNA SuperMix 

(Quantabio). RT-qPCRs were performed using SYBR® Green Mix (Roche) in the 

Lightcycler® 480 System (Roche). Arabidopsis UBIQUITIN CONJUGATION ENZYME 

9 (UBC9, AT4G27960) and UBC21 (AT5G25760) genes were used as reference 

http://pantherdb.org/
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genes. Gene expression of AT4G12280, AT4G12290, AT4G12300, AT4G12310, 

AT4G12320, and AT5G05900 was checked via eFP browser (Winter et al., 2007).  

Enzymatic assays 

In vitro enzymatic assays of UGT76C3 were performed as described (Peng et al., 2017) 

enzymatic assays of SULT202B1 were conducted as described (Hashiguchi et al., 

2013). Recombinant GST-tagged red fluorescent protein (RFP) was used as negative 

control. For recombinant protein expression and purification see Supplemental 

Methods. 

LC–MS analyses of the reaction mixtures were performed on an Acquity UPLC system 

coupled to a Synapt-XS high resolution MS (Waters Corporation, Manchester, UK). 

Ten µL reaction product was injected and analyzed as described for “Metabolite 

profiling and data processing” with the following altered parameter settings: 

desolvation temperature was set to 550°C, the desolvation gas flow was set to 800 L/h 

and transfer collision energy was set to 4 V. 
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Figures 

 

Figure 1: Schematic overview of the qualitative and quantitative traits and their 

recorded associations. A, 4,479 qualitative metabolic traits were used as input for 

the QT-GWAS. Associations were retrieved for 709 qualitative traits, estimated to 

correspond to 515 metabolites, of which 57 were characterized and 458 remained 

unknown. 2,173 associations were retrieved for the unknown metabolites, of which 

1,057 involved loci encoding enzymes labeled with ‘metabolic process’-related GOslim 

categories. The 57 characterized metabolites were involved in 758 associations. In this 

dataset, 291 loci contained genes labeled with ‘metabolic process’-related GOslim 

categories. At least 23 of these associations were confirmed or supported by previous 

research and seven (involving three loci) were newly confirmed in this study. B, 1,147 

quantitative traits were used as input for the mGWAS. Associations were retrieved for 

288 of estimated to correspond to 248 metabolites. Of these metabolites, 31 were 

characterized and 217 remained unknown. The unknowns were involved in 510 
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associations of which 450 encompassed loci containing genes labeled with ‘metabolic 

process’-related GOslim categories. The 31 characterized metabolites were involved 

in 67 associations. In this dataset, 62 loci contained genes labeled with ‘metabolic 

process’-related GOslim categories, of which at least 15 were confirmed or supported 

by previous research and six (involving 3 loci) were newly confirmed in this study. In 

total, eight new associations were confirmed in this study of which five overlapped 

between the two methods.  
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 Figure 2: Distribution plot of the number of associations per metabolite retrieved 

for the 515 metabolites in the QT-GWAS (blue) and the 248 in the mGWAS 

(green). Of the 515 metabolites associated in QT-GWAS, 397 show an association 

with one locus, 118 with two or more loci. In mGWAS, 223 metabolites showed an 

association with one locus and 25 to multiple loci. 
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Figure 3: Overview of the pleiotropic loci (> 10 associations) obtained with the 

QT-GWAS. For each locus, the number of associations is represented in dark blue, 
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the negative logarithmic P-value with base 10 (-logP) of the association in green. The 

dashed line represents the cut-off of ten associations to qualify as a pleiotropic locus. 

Pleiotropic loci are numbered according to Supplemental Table S3. A locus is defined 

as the region 10-kb upstream and 10-kb downstream of the most significant SNP (lead 

SNP) associated with a particular metabolite. 
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Figure 4: Overview of the CYP706A locus and its associated metabolites. A: 

putative structure of associated metabolites 48, 49 and 37. B, C, D: Manhattan plots 

of metabolites 48, 49 and 37 respectively, for QT-GWAS (upper panel) and mGWAS 

(lower panel): the x-axis represents the location of the recorded SNPs on the genome, 

the y-axis represents the negative logarithmic P-value for the association of each SNP 

to the respective metabolites. E. Schematic representation of CYP706A4 and 

CYP706A5; intronic regions are represented by a line, exonic regions are indicated in 

black and UTR regions in white; T-DNA insertion locations of the mutant lines are 

indicated by the triangles; Scale bar indicates 100 basepair. F. Relative expression of 

CYP706A4 and CYP706A5 as determined by RT-qPCR, primers are indicated by the 

arrows. G. Comparative metabolite profiling shows a significant reduction in the 

abundance of metabolites 37, 48 and 49 in cyp706a5 uniquely. Data are presented as 

mean ± standard deviation, n = 5; ND, not detected. *** P-value <0.001 
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Figure 5: Overview of the UGT76C locus and its associated metabolites. A: 

putative structure of associated metabolites 28 and 22. The sugar moiety is N-linked, 
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but its exact position and that of the substituents R1 and R2 are unknown. B and C: 

Manhattan plots of metabolites 28 and 22 respectively, for QT-GWAS (upper panel) 

and mGWAS (lower panel): the x-axis represents the location of the recorded SNPs 

on the genome, the y-axis represents the negative logarithmic P-value for the 

association of each SNP to the respective metabolites. A schematic representation of 

the candidate gene (UGT76C3) in L28 is shown and the most significantly associated 

SNP is marked in red within the gene. D. Proposed pathway for the biosynthesis of 

metabolites 28 and 22 in which UGT76C3 catalyzes the first step, namely the 

hexosylation of guanine. E. Schematic representation of UGT76C3; intronic regions 

are represented by a line, exonic regions are indicated in black and UTR regions in 

white; insertion locations of the mutant lines are indicated by the triangles. F. Relative 

expression of UGT76C3 as determined by RT-qPCR, primers are indicated by the 

arrows. G and H. Comparative metabolite profiling shows a significant reduction of 

metabolites 28 and 22 in both mutant lines. Data are presented as mean ± SD, n = 5; 

ND, not detected. ***P-value < 0.001, **0.001 < P-value < 0.01. I. In vitro enzyme 

assays show the conversion of guanine to guanine glucoside in the UGT76C3 reaction 

exclusively (left panel). GST-tagged RFP was used as negative control. MS/MS 

spectral data confirmed the characterization of m/z 150.1 as guanine (right upper 

panel) and m/z 312.1 as guanine glucoside (right lower panel). 
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Figure 6: Overview of the SULT202B1 locus and its associated metabolites. A. 

Putative structure of associated metabolites 21, 29 and 44. The exact position of the 

sulfate group could not be determined based on MS/MS spectral data. B, C and D: 

Manhattan plots of metabolites 21, 44 and 29 respectively, for QT-GWAS (upper panel) 

and mGWAS (lower panel): the x-axis represents the location of the recorded SNPs 

on the genome, the y-axis represents the negative logarithmic P-value for the 

association of each SNP to the respective metabolites. The candidate gene 

(SULT202B1) in L29 is shown. E and F: Chromatograms of in vitro enzymatic reactions 

of SULT202B1 with chemically synthesized G(8-O-4)FA and G(8-O-4)SA, respectively. 

GST-tagged RFP was used as negative control. MS/MS spectral data confirmed the 

characterization of two m/z 469.073 products (peaks 1 and 2) as sulfo-G(8-O-4)FA and 

two m/z 499.090 products (peaks 3 and 4) as sulfo-G(8-O-4)SA. 
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TABLES  

Table 1: Overview of associations supported by literature and newly confirmed 

associations for QT-GWAS, mGWAS, and ASRgwas (population structure 

correction for qualitative metabolites). “No.” refers to the corresponding metabolite 

number as used in the text and Supplemental Table S2. “NA” indicates that no 

association was recorded for the corresponding method. FA, ferulic acid; SA, sinapic 

acid, ISF, detected as in-source fragment.  

Gene Metabolite name No. 
P-value 

QT-GWAS mGWAS ASRgwas 

Associations confirmed by previous research       

DAAR1 acetyl-(iso)leucine  18 1.10 x 10-27 1.86 x 10-26 7.41 x 10-11 

MAM1/2/3 3-methylsulfinylpropyl glucosinolate  1 1.58 x 10-8 NA 0.019 
 3-oxathiolesulfinylpropyl glucosinolate  2 NA 3.03 x 10-7 NA 
 butyl glucosinolate  6 4.03 x 10-8 2.17 x 10-9 0.022 
 3-methylsulfinylbutyl glucosinolate  7 1.48 x 10-12 NA 1.85 x 10-6 
 methylbutenyl glucosinolate  8 NA 2.86 x 10-7 NA 

 glutathionylated methylsulfinylhexyl 
glucosinolate 

15 3.47 x 10-13 NA 1.54 x 10-5 

 sulfohydroxyimidazolone-G(8-O-4)FA 17 3.56 x 10-11 NA 2.17 x 10-3 
 dihydroxynonenyl glucosinolate 20 NA 9.64 x 10-7 NA 
 phenylpropyl glucosinolate  23 2.24 x 10-17 NA 6.06 x 10-5 
 4-benzoyloxybutyl glucosinolate  40 1.92 x 10-10 8.67 x 10-18 8.55 x 10-9 

  7-methylthioheptyl glucosinolate  47 1.38 x 10-8 2.69 x 10-7 4.80 x 10-4 

AOP3 3-oxathiolesulfinylpropyl glucosinolate  2 8.14 x 10-12 8.92 x 10-7 5.95 x 10-5 

  4-O-sulfo-G(8-O-4)FA (isomer) 29 2.48 x 10-7 NA 9.24 x 10-6 

GSL-OH/2OG 
glutathionylated methylsulfinylhexyl 
glucosinolate 

15 3.14 x 10-8 NA 9.00 x 10-5 

 sinapoyl-(4-O-hexosylsinapoyl)-hexose  34 9.30 x 10-9 NA 8.78 x 10-4 

  sinapoyl hexose(8-8)Sred 42 4.13 x 10-9 NA 5.01 x 10-5 

BGLU6 
quercetin-3-O-hexosyl(1->6)hexoside-
7-O-deoxyhexoside 

19 5.72 x 10-23 5.80 x 10-10 3.60 x 10-4 

 kaempherol-3-O-hexosyl(1-
>6)hexoside-7-O-deoxyhexoside  

25 1.49 x 10-24 9.13 x 10-9 2.09 x 10-11 

 isorhamnetin-3-O-hexosyl(1-
>6)hexoside-7-O-deoxyhexoside 

27 3.50 x 10-25 NA 3.32 x 10-11 

Associations supported by previous research         

GH3 
12-hydroxy-4,5-didehydrojasmonoyl 
glutamine hexoside 

24 1.50 x 10-15 4.62 x 10-19 2.71 x 10-11 

 12-hydroxy-4,5-didehydrojasmonoyl 
glutamine hexoside (isomer) 

26 2.34 x 10-19 2.19 x 10-14 4.18 x 10-5 

 12-hydroxy-4,5-didehydrojasmonoyl 
glutamine hexoside (isomer) 

30 1.25 x 10-15 1.94 x 10-17 2.79 x 10-8 

 12-hydroxy-4,5-didehydrojasmonoyl 
glutamine 

45 6.04 x 10-20 4.68 x 10-9 4.54 x 10-5 

  
malonyl (2-hydroxy-4,5-
didehydrojasmonoyl glutamine)  

46 1.06 x 10-12 1.65 x 10-10 8.19 x 10-5 

SCPL13/8/9 sinapoyl-(4-O-hexosylsinapoyl)-hexose  34 3.96 x 10-9 NA 7.00 x 10-4 

Newly confirmed associations         
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CYP706A5 
6-hydroxy-2-methoxy-2-(2'-propanone-
C-hexoside)-chroman 

37 1.12 x 10-23 NA 2.88 x 10-11 

 6-hydroxy-2-methoxy-2-(pentane-2',4'-
dione-5'-C-hexoside)-chroman 

48 7.12 x 10-26 7.41 x 10-13 5.11 x 10-12 

  
6-hydroxy-2-methoxy-2-(pentane-2',4'-
dione-5'-C-hexoside)-chroman (isomer) 

49 3.44 x 10-23 1.03 x 10-17 1.02 x 10-12 

UGT76C3 guanine (benzoyl) sulfohexoside  22 3.25 x 10-14 1.37 x 10-14 5.11 x 10-4 

  guanine (benzoyl) hexoside 28 1.17 x 10-17 1.02 x 10-7 2.25 x 10-9 

SULT202B1 sulfo-G(8-O-4)FA 21 7.37 x 10-8 2.55 x 10-12 6.07 x 10-7 
 sulfo-G(8-O-4)FA (isomer) 29 NA 1.40 x 10-10 NA 
 sulfo-G(8-O-4)SA  44 4.92 x 10-7 NA 3.43 x 10-5 

 


