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Abstract—This study proposes a novel operation strategy for
wind farms’ optimal Frequency Containment Reserve (FCR) pro-
vision that simultaneously distributes FCR and optimally controls
wake formation. The power reserve allocation is dynamically
decided at the wind farm supervisory control level, consider-
ing the intermittent wind power and direction, grid frequency
stochasticity, and the aerodynamic complexity of the wake. A
two-stage stochastic programming approach supports decision-
making for an optimal contribution to day-ahead energy/FCR
markets considering sub-hourly wind power and grid frequency
uncertainty. Moreover, a novel method is used to reduce the
computational complexity by employing a data-driven surrogate
model of wake formation in the optimizer. This surrogate model
consists of a neural network trained on the Gauss-Curl-Hybrid
wake model in FLORIS. This deep learning approach allows
fast estimation of the wake control parameters, i.e., the optimal
yaw angles and axial induction factors. Then, a coevolutionary-
based multi-objective particle swarm optimization searches for
the optimal deloading of the WTs and maximizes the total
power production and kinetic energy while minimizing wake.
The performance of the proposed algorithm is evaluated on the
C-Power wind farm layout in the North Sea. Simulation results
demonstrate its effectiveness in improving the wind farm’s overall
performance for different operational conditions.

Index Terms—Wind energy, Deep learning, Axial induction
factor, Optimization, Flexible operation, Day-ahead market.

I. INTRODUCTION

THE European Union (EU) is dedicated to becoming the
global leader in decarbonizing the power system. Wind

power is essential in reaching the EU carbon-neutral target by
2050 [1]. However, effective integration of wind energy into
the power system can raise concerns about grid stability and
reliability due to the intrinsic stochastic nature of wind [2].
The primary reason for the blackout events on 9 August 2019
in the UK was the sudden decline in frequency beyond the
regulation capability of system inertia [3]. As a result, there
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is a significant demand from Transmission System Operators
(TSO) for wind energy sources to play an active role in
balancing the grid through market participation and provision
of ancillary services such as frequency control, which tradi-
tionally have been provided by conventional power plants.
[4]. Nevertheless, how to effectively incorporate the ability
to provide frequency support into the reliable and optimal
operation of the system, accurately schedule the products of
the frequency support, and efficiently distribute the power
reserve within wind farms (WF) are still open challenges. This
study aims to fill these gaps by proposing an optimal operation
strategy considering all mentioned criteria.

Ancillary markets and other grid-balancing mechanisms
have already been created for renewable energy sources in
European countries. The participation of wind energy in re-
serve markets in Great Britain and Spain is analyzed in [5],
and recommendations are made to support future development.
[6] also explored the potential of wind power to enter the
Swedish ancillary service markets, considering technical re-
quirements and the potential financial impacts on a WF. The
Belgian TSO has reported that offshore wind is expected to
play a significant role in the Belgian power system in the
near future [7]. Although wind energy has the capability to
enter these markets, still some uncertainty regarding optimal
contribution exists. A differentiated pricing scheme was used
in [8] to propose a market mechanism design for inertia and
primary frequency response, taking into account the energy
market in which the system operator will participate in the
joint market with a combined clearing process. While the
methods described in [8], [9] have not considered the day-
ahead scheduling, [9] leverages field-measured data to examine
the frequency support capacity of a WF, and discusses the
uncertainty of wind and frequency constraints. [10]–[12] dis-
cussed optimal bidding and scheduling strategies that optimize
hour-ahead, intraday, and day-ahead operations while incor-
porating a shared frequency regulation reserve plan for wind,
photovoltaic, and thermal power. However, these studies did
not take into account the real-time dynamic interactions inside
or between these energy sources. An advanced day-ahead
bidding strategy for wind power producers is proposed in [13],
considering the wind speed and system frequency uncertainties
as stochastic inputs and a confidence level on the real-time
reserve provision. In [14], optimal bidding strategies in the
real-time electricity market are investigated for wind power

https://orcid.org/0000-0002-0027-041X
https://orcid.org/0000-0002-0358-4350
https://orcid.org/0000-0002-3795-4241
https://orcid.org/0009-0005-4314-3575
https://orcid.org/0000-0003-0882-3493
https://orcid.org/0000-0001-7630-8579


IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 2

generation using a bi-level stochastic optimization framework
that maximizes profit by determining the optimal bidding
quantity. However, the optimal distribution of the scheduled
reserve among Wind Turbines (WT), taking into account
the aerodynamic complexity of these sources, has not been
considered by [13], [14].

Another critical element needed to facilitate wind inte-
gration into power systems is an advanced WF supervisory
operation strategy that guarantees the optimal provision, allo-
cation, and activation of power reserve in different operating
conditions [15]. In a two-stage economic dispatch model, [16]
and [17] incorporate wind power reserve but yet overlook the
optimal reserve allocation in WFs. More recent studies sug-
gested novel WF control strategies and approaches for enhanc-
ing the grid support, such as self-control via diode rectifier-
based high voltage alternating current (HVAC) transmission
system [18], error-based active disturbance rejection control
for WT power regulation [19], deloading and curtailment
methods [20], [21] that maintain an adequate power reserve
for delivering an automatic and fast response to the TSO’s
demands. [22] introduced a scheme for model predictive
control that harmonizes the functioning of offshore WTs and
offshore DC collection grid capacitors to offer rapid inertia
and primary frequency support. Nevertheless, the need for
power reserve and frequency support amplifies the intricacies
of WFs with linked aerodynamic systems, necessitating a more
comprehensive examination. Studies have been carried out
focusing on the aerodynamic coupling between WTs and their
wake formation, which creates a wind energy deficit between
the wind-leaving turbine (upstream WT) and the wind-arriving
turbine (downstream WT). This phenomenon makes it difficult
to determine exact energy extractions and justify the WFs’
optimal contribution to frequency regulations [23].

Further studies have focused on determining the effective-
ness of including inertial response and frequency control tech-
niques, considering the apparent limitations of WFs compared
to traditional power plants [24]–[26]. Applying these tech-
niques often reduces wind energy production by a certain level
of efficiency loss. [27] addressed harvesting maximum kinetic
energy during the deloading control strategy using a game
theory-based optimal control framework, which distributedly
adjusts WTs’ rotor speeds in a WF layout. Additional studies
propose coordinated control approaches for WFs providing
frequency control considering wake interactions inside the
WF. In [28], a coordinated WF operation strategy is proposed
that, instead of seeking to maximize the power generation of
WTs individually, ensures the maximization of the rotational
kinetic energy while maintaining the optimal WF’s overall
performance. A control algorithm is suggested in [29] to
distribute the power reserve, aiming to minimize the wake
effects and maximize the reserve capacity.

The mentioned studies either covered optimal bidding prob-
lems in the market or investigated WF optimal operation strate-
gies without considering wake effects or market constraints.
Although some research reveals optimization methods that can
coordinate WTs and enable them to provide ancillary services
optimally, time-efficient optimization approaches are lacking,
considering the high complexities involved in wake models. In

addition, the stochastic behavior of wind and grid frequency
forms a perpetually varying environment, requiring online
and dynamic strategies that can cope with high aerodynamic
complexity and variability. This study aims to overcome the
limitations of current approaches by developing an integrated
algorithm that can effectively tackle the primary challenges
associated with WF providing FCR, particularly when there
are no ideal energy storage systems in place. The proposed
algorithm will take an active approach to ensure that FCR pro-
vision is optimized at scheduling and activation levels. In [28],
[30] and [31], the FCR provision was optimally distributed in
a WF, taking into account wake interaction, using the Jensen
wake model. However, the wake or wake parameters were not
actively controlled as part of the optimization. The primary
novelty of this article is to integrate active control of the
wakes in the operation strategy, such that FCR distribution
and wake control are optimized simultaneously. However, the
integration of active wake control significantly increases the
complexity of the optimization problem compared to [28],
and [31]. This is resolved by the secondary novelty of this
work, i.e., using a data-driven surrogate model of the wake
formation in the optimizer, resulting in a computationally
efficient optimal operation strategy. Moreover, the Gauss-Curl-
Hybrid (GCH) wake model in the FLORIS wake simulator is
used to generate the dataset instead of the simplified Jensen
wake model. The contributions of this paper are three-fold:

1) A two-stage stochastic programming is proposed to
optimize the contribution of a WF to the day-ahead
energy and FCR markets while considering uncertainties
related to wind speed and grid frequency. The approach
involves using the Group Method of Data Handling
(GMDH), a data-driven time-series prediction technique,
to predict wind speed and grid frequency and calculate
expected values for different scenarios.

2) An optimization framework incorporating active wake
control is then suggested to dynamically distribute the
pre-scheduled optimal power reserve among the WTs,
restricted by optimal wake parameters (yaw angles and
axial induction factors), which are being calculated and
updated for varying operating conditions using a com-
putationally efficient approach involving deep learning
neural networks.

3) The integrated algorithm of optimal power reserve al-
location is realized by proposing an adaptive WT local
control system that can cope with the set points decided
at the supervisory control level to adjust the power re-
serve margin based on the optimally estimated deloaded
percentage.

The rest of this paper is organized as follows: § II propose
the formulation of the WF operation strategy. § III introduces
the stochastic programming framework for offering an optimal
FCR provision based on wind and grid frequency prediction.
§ IV formulates the optimal operation strategy and allocation
of power reserve by maximizing WF power production and
total kinetic energy. § V provides an overview of the outcomes
and results, while § VI summarises and concludes the paper.
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II. OVERVIEW OF THE WF OPERATION STRATEGY

The proposed operational strategy is shown in Fig. 1. The
presented concept relies on a two-step sequential framework.
In the primary step, a two-stage stochastic programming
problem estimates the WF’s optimal contribution to the day-
ahead energy and reserve markets, considering wind and grid
frequency uncertainties. In the first stage, the model deter-
mines the optimal decision variables P sch

e and P sch
r based

on the available information at the time of decision-making,
such as the forecasted wind power output v and the grid
frequency fe employing the Group Method of Data Handling
(GMDH), a data-driven time-series prediction technique. The
decision variables include the amount of energy and reserve
and the bids submitted to the market. In the second stage,
the model takes into account the uncertainties associated with
wind power generation and grid frequency, which can affect
the actual outcomes of the first-stage decisions. The model
considers a set of scenarios that represent different possible
realizations of these uncertainties and evaluates the outcomes
of the first-stage decisions under each scenario. The evaluation
criteria include the expected profit, the risk of violating the
reserve requirements, and the cost of deviation from the
scheduled energy and reserve productions. The final decision
is then made by considering the trade-off between the expected
profit and the risk of violating the reserve requirements while
ensuring the reliability of the WF operation.

Among different reserve products, this study only focuses
on Frequency Containment Reserve (FCR), formerly known as
the primary control, which helps maintain the stability of the
power grid by providing a rapid response to sudden changes in
frequency. The FCR provision is responsible for keeping the
power system’s frequency within an acceptable range, ∆f =
200 mHz around the nominal frequency of fref = 50 Hz, and
reacting proportionally to the frequency changes. Automatic
and manual Frequency Restoration Reserves (aFRR, mFRR)
are other ancillary services, formerly known as secondary and
tertiary control. Fig. 2 shows the provision and activation of
these services. The aFRR and mFRR are reserve capacities that

SYSTEM FREQUENCY
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Figure 2: Provision of ancillary services.

play a crucial role in maintaining the stability of the power
grid by restoring the system’s frequency to its nominal value in
the event of a disturbance. While the aFRR is automatically
activated, the mFRR requires manual activation. This study
considers FCR provision, which can introduce considerable
challenges on WFs integrated control systems.

Once an ideal reserve P sch
r has been determined in the

day-ahead market, the subsequent stage involves the utilization
of a second-layer optimization algorithm to actively allocate
the scheduled power reserve among the WTs. This process
involves the efficient computation of optimal wake parameters,
such as optimal yaw angles yopt

i and axial induction factors
aopt

i , through the use of an Adaptive Network-based Fuzzy
Inference System (ANFIS) framework. The ANFIS structure
is capable of learning and replicating the wake behavior of
the WF in various wind speeds, directions, and turbulence in-
tensities (TI). The allocation of power reserve will be realized
by sending WTs’ setpoints, i.e., deloaded rotational speed ωdl

i ,
and blade pitch offset θoffset

i , and deloaded power P dl
w,i, to the

WTs’ local control systems. After optimally deciding the WT’s
adjustable power reserve margin, the WT’s look-up table will
be adapted considering the estimated deloading percentage β.
Eventually, activating FCR will be carried out by responding to
frequency changes ∆f through an FCR supplementary control
loop.
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Figure 1: Proposed optimal operation strategy providing FCR.
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III. OPTIMAL FCR CONTRIBUTION

As mentioned, the proposed stochastic optimization frame-
work aims to determine the strategic bidding for the scheduled
reserve quantity in the day-ahead market at the market-
clearing price and in a non-price-making position. Once the
WF operator decides the bidding quantity, it will not be
allowed to change its decision the next day against the signed
corresponding transaction agreement. Therefore, a two-stage
stochastic optimization process is formulated to support the
decision-maker during the different stages considering the
market restrictions. This strategy helps the operator make an
optimal decision considering the day-ahead electricity and
reserve transactions (first stage) and aids in optimizing tomor-
row’s real-time operations (second stage).

The GMDH method, which is a form of nonlinear re-
gression, acts as a semi-supervised deep learning technique
that can self-organize the predictive distribution of stochastic
variables. By driving the optimal polynomial network struc-
ture, it can accurately reveal the approximated function and
predict future values based on historical datasets. The GMDH
time series prediction approach involves utilizing polynomial
functions to express the general relationship between delayed
inputs and output variables, known as the Volterra function se-
ries or the Kolmogorov-Gabor polynomial function expressed
by:

y = a0 +
m∑

i=1
aixi +

m∑
i=1

m∑
j=1

aijxixj +
m∑

i=1

m∑
i=1

m∑
k=1

aijkxixjxk

(1)
In the given equation, the response variable is represented by
’y’, while the vector of lagged time series to be regressed
is represented by ’x’. The letter ’m’ denotes the number of
variables, and the weighting factors are represented by the
coefficients a0, ai, aij and aijk. For this research, the quadratic
K-G polynomial has been utilized and represented in the
following form:

z = f(xi, xj) = b0 +b1xi +b2xj +b3xjxi +b4x2
i +b5x2

j (2)

The GMDH framework can be trained to learn the relation-
ship between different lags using a function f . To accomplish
this, a stochastic approximation algorithm is proposed, which
is based on a multilayer network. Each layer of the network
uses various component subsets of the polynomial function,
with the output of the last layer being used as input for the
next layer. The algorithm conducts regression polynomials of
all possible combinations of two independent variables from
a total of n inputs in the first layer. The minimum activation
function is a second-order polynomial, but higher orders can
be used to find the optimal complexity. A threshold is used
to limit the number of solutions and to find the best structure
based on an external criterion.

The grid frequency estimation is performed using the least-
squares regression method over a period of five years of
historical data from January 2015 to October 2019 with a
10-seconds time interval obtained from the website of the
Belgian TSO Elia [32]. The wind speed dataset for the same
period with a 15-minute sampling interval is obtained from a
global weather API [33]. The prediction horizon is set to 24

hours with five delayed inputs. Fig. 3 illustrates the stochastic
input parameters of the proposed problem. The quarter-hourly-
based average grid frequency is estimated using the K-means
algorithm that finds the average center of clusters located
outside of the deadband zone. Also, around 400 wind speed
scenarios are considered based on the historical data set. A
scenario reduction suggested in [34] is used to reduce the
computational complexity of the problem. The nonlinearity of
the available WF power production considering wind speed,
direct and turbulence intensity is estimated as follows:

Pwf =


0 MW , 0 < v < vci

w

a v3 + b v2 + c v + d MW , vci
w ⩽ v ⩽ vn

w

149.73 MW , vn
w ⩽ v ⩽ vcu

w

(3)

where vci
w , vcu

w and vn
w are respectively the cut-in, cut-out and

nominal wind speeds in m/s. Pwf is the WF total electrical
power in MW. a, b, c, and d are the parameters of a cubic
polynomial fitted to the data. A deep learning time-series
forecasting method is conducted using the GMDH to compute
each scenario’s expected value [35].
The bidding decision variables of electricity production P sch

e

and reserve P sch
r are first-stage decision variables that should

be scheduled a day before the activation. Once the WF owner
decides on the FCR contribution, it will not be allowed to
change its decision the next day. Therefore, the second stage
should consider the possible scenarios and their expected
values. The optimization framework and the constraints are:

max
[(

P sch
e · λsch

e + P sch
r · λsch

r

)
·∆T+

Es

(
(∆Pe(s) · λ∆e + ∆Pr(s) · λ∆r) ·∆T

)]
(4)

Pwf = Pr(s) + Pe(s) (5)

∆Pe =
∣∣Pe(s)− P sch

e

∣∣ ; ∆Pr =
∣∣Pr(s)− P sch

r

∣∣ (6)

∆Pe(s) · λ∆e = ∆P +
e (s) · λ+

∆e + ∆P −
e (s) · λ−

∆e (7)

∆Pr(s) · λ∆r = ∆P +
r (s) · λ+

∆r + ∆P −
r (s) · λ−

∆r (8)

P sch
r = 200mHz ·K (K is droop constant) (9)

Pr(s) = ∆f ·K ; ∆f = fe − fref (fref is 50 Hz) (10)

where Pr(s) and Pe(s) are stochastic parameters, λsch
e and

λsch
r are the electricity and reserve prices respectively. ES is

the probability of scenario s. ∆Pe
+(s), ∆Pe

−(s), ∆Pr
+(s)

and ∆Pe
+(s) are additional and deficiency of power injection

to the grid and reserve provision. λ−
∆e, λ+

∆e, λ−
∆r and λ+

∆r

are revenue and penalty for additional power and reserve
injected to the grid as well. The optimization will be carried
out for 24 hours, considering market parameters on a quarter-
hourly basis. ∆T is the time interval for electricity injection
and frequency regulation, i.e., 15 minutes. The TSO has
different mechanisms to penalize providers if they violate
their scheduled reserve contributions based on the contracted
agreement. The imbalance in energy settlement takes place in
real-time on a quarter-hourly basis. Consequently, the energy
provider gets a reduced revenue and penalty for its positive
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Figure 3: Stochastic parameters based on historical datasets.

and negative deviation at each settlement course when the
generated power is higher than the scheduled power as follows:

λ+
∆e = λsch

e − α ; λ−
∆e = λsch

e + α (11)

λ−
∆r = 0.2 ·Θ · λM

r ; λ+
∆r = 0 (12)

Θ = P sch
r − Pr

P sch
r

(13)

where α is an additional incentive component, which depends
on the average of the absolute values of the System Imbalance
(SI) of the current and the previous imbalance settlement
period [36]. Θ is the failure factor, which increases by the
difference between the scheduled FCR and the activated one,
i.e., Pr. λM

r is the total remuneration for the FCR awarded
for month M [37]. The objective function (4) is subject to the
following boundary conditions:
First stage:

0 ⩽ P sch
e ⩽ P max

wf ; 0 ⩽ P sch
r ⩽

P sch
e

2 (14)

P sch
e + P sch

r ⩽ P max
wf (15)

Second stage:
0 ⩽ Pe(s) ⩽ P av

wf ; 0 ⩽ Pr(s) ⩽ Pr(s)
2 (16)

∆P +
e (s) = Pe(s)− P sch

e if Pe(s) > P sch
e (17)

∆P +
r (s) = Pr(s)− P sch

r ·∆f if Pr(s) > P sch
r (18)

∆P −
e (s) = Pe(s)− P sch

e if Pe(s) ⩽ P sch
e (19)

∆P −
r (s) = Pr(s)− P sch

r ·∆f if Pr(s) ⩽ P sch
r (20)

where the piece-wise linearization of the Pwf given in (3) is
used to find the optimal solutions. The constraints (14) and
(15) limit the scheduled electricity and reserve contribution to
the WF’s maximum capacity. The constraints (16) restrict the
electricity and reserve activation to the available WF output
power. The half capacities in (14) and (16) guarantee the
upward and downward regulations when the grid frequency

drops or goes above 50 Hz, considering the deadband zone.
The constraints in (16) are the limitations for electricity
injection and reserve activation. The constraints (17) to (20)
are considered for penalizing the electricity extra injection/off-
takes and over/under reserve activations against the schedule.

IV. OPTIMAL OPERATION STRATEGY

A. Wind farm operation

When the total available power P av
wf is higher than the

scheduled power reserve P sch
r , the WF is able to deliver FCR

in response to the grid frequency variations. The extra power
that should be arranged among N WTs can be referred to as
the WF deloaded power:

P dl
wf = P av

wf − P sch
r ; P av

wf =
N∑

i=1
Pw,i(vi) (21)

and vi is the wind speed experienced by each turbine. The
electrical power of each WT and the rotor thrust can be
expressed as:

Pw,i = 1
2ρR2v3

i Cp(λi, θi) (22)

Fw,i = 1
2ρR2v2

i CT (λi, θi) (23)

where ρ is the air density and R is the blade length. CP (λi, θi)
and CT (λi, θi) are the power and thrust coefficients that vary
with the individual tip speed ratio λi = Rωi/vi and blade
pitch angle θi. An empirical Cp(λ, θ) equation can also be
found in literature [38], with an exponential form as follows:

CP (λ, θ) = c1

(
c2

λJ
− c3θ − c4

)
e

−c5
λJ (24)

1
λJ

= 1
λ + c6

− c7

θ3 + 1 (25)

where coefficients c1, ..., c6 for MW size WTs are 0.22, 116,
0.4, 5, 12.5, 0.088, and 0.035 respectively [39]. The thrust
coefficient is modeled by a second-order polynomial function
obtained from a wide range of simulations carried out using
the NREL 5-MW offshore baseline WT:

CT (λ, θ) = ε1 + ε2θ + ε3λ + ε4θ2 + ε5θλ + ε6λ2 (26)

where ε1, ..., ε6 are -0.1854, 0.0308, 0.161, 0.0002, -0.0133,
and -0.0054, respectively. These results are derived for the
robust fitness to the Least Absolute Residuals (LAR) with
0.9985 R-square and 0.067 RMSE.

B. Estimating wake formation

The conventional WF control approach relies on the WTs
operating in Maximum Power Point Tracking (MPPT) mode
without considering wake minimization strategies. However,
in this study, two major optimal control approaches are
considered, i.e., Axial Induction Control (AIC) and Wake
Redirection Control (WRC). The AIC strategy reduces the
upstream WTs’ thrust force and controls wake formation by
adjusting their axial induction factor by offsetting the blade
pitch angle or tip speed ratio. The WRC strategy aims to steer
the wakes away from downstream WTs by operating the WTs
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Figure 4: 5-MW WT Power and thrust coefficients.

Adaptive network-based fuzzy inference system (ANFIS)

Figure 5: The ANFIS structure, estimating optimal wake
parameters under AIC and WRC strategies.

with a yaw misalignment [40]. To achieve axial induction-
based control, the free-streamed WTs need to be operated
outside their aerodynamic maximum by increasing the blade
pitch angle or reducing the tip-speed ratio (operating at a
suboptimal working point). This reduces the WT power Pw

and the magnitude of the rotor’s thrust force, which depends
on the thrust coefficient. The power coefficient CP and thrust
coefficient CT of the 5-MW offshore turbine as a function
of the pitch angle and tip speed ratio are shown in Fig. 4.
The power and thrust coefficients can also be expressed as
functions of axial induction factor ai and nacelle yaw angle
yi (yaw misalignment) as follows:

CP = 4ai(cos yi − ai)2 (27)

CT = 4ai

√
sin2yi + (cos yi − ai)2 (28)

The derivation of (27) and (28) involves using the axial
momentum and the Glauert theory, which are widely used in
theoretical models for predicting WT performance [41], [42].
The energy extraction by the turbine blades causes a reduction
in the wind velocity at the turbine rotor disk. The average wind
velocity at the turbine can be calculated by the axial induction
factor ai ∈ [0, 1/3]. The maximum CP is determined by taking
the derivative of the power coefficient (27) with respect to ai

and setting it equal to zero ∂CP

∂ai
= 0. In accordance with

the Betz limit, CP,max = 16/27 is the maximum theoretically
possible rotor power coefficient [43]. Therefore, the maximum
CP can be achieved when ai = 1/3 and zero degrees yaw
misalignment yi. Accordingly, from (28), the thrust coefficient
for an ideal WT fully aligned with the wind, i.e., yi = 0,
is equal to 4ai(1 − ai). CT has a maximum of 1.0 when
a = 0.5 and the downstream velocity is zero. At maximum
power output a = 1/3, CT has a value of 8/9.

In order to identify optimal setpoints for WTs that provide

FCR, it is crucial to rapidly report the WF’s optimal aerody-
namic couplings and wake information. To accomplish this,
a deep learning approach has been proposed that can model
the WF’s flow fields and accurately approximate turbine wake
information. The Gauss-Curl-Hybrid wake model available in
the FlOw Redirection and Induction in Steady State (FLORIS)
simulation software is employed, which combines the Gaus-
sian wake model and the curl wake model to accurately predict
the wind speed deficit and turbulence intensity in the wake
of a WT. The model also considers the effects of ambient
turbulence and the coupling between CP and CT to maximize
power production while minimizing the wake effects with the
following objective function:

max
yi,ai

N∑
i=1

Pw,i(ai, yi, v, WD)

s.t. − 50.0◦ ≤ yi ≤ 50.0◦

0.0 ≤ ai ≤ 0.3333

(29)

Optimal yaw angles yopt
i and axial induction aopt

i factors are
estimated under AIC and WRC strategies in different wind
conditions. Furthermore, extensive simulations are carried out
offline to train and test the ANFIS structure shown in Fig.5.
After training the ANFIS model with the obtained dataset, it
can accurately replicate and mimic the complex wake deficits
of a W for a wide range of conditions, including wind
speeds, turbulence intensities, WDs, and turbine performance
parameters such as CP and CT . By using these inputs, the
model is capable of approximating the waked control operation
and predicting the optimal values of vi, yopt

i , and aopt
i for

individual turbines within the W. Using the ANFIS model to
estimate wake parameters allows for the rapid optimization of
W performance by finding the optimal setpoints for individual
turbines to contribute to frequency control reserves. Although
the contracted scheduled reserve cannot be changed and must
be respected hourly, the optimal allocation of power reserve
can be actively updated when the wind field and wake forma-
tion vary.

C. Deloading strategy

WFs can provide power reserve and frequency control
response (FCR) above nominal wind speeds. However, at wind
speeds below the rated value, it may be necessary to deload
some WTs to meet the promised FCR provision in case the
grid frequency drops and extra power needs to be injected into
the grid. Fig.6 shows that the deloaded operation of a WT can
be achieved by shifting the operating point to the left or right
of the maximum power point [44], [45]. This process creates
a reserve margin by varying the active power between P dl

and P MPPT, achieved by changing the rotor speed between
ωdl and ωMPPT. It is preferred to shift the operating point
to the right to prevent a decrease in kinetic energy, which
is beneficial for an inertial response, and restrict the wake
deficit while activating FCR. An adaptive look-up table is
included in the supplementary control loop, as shown in Fig. 1,
for estimating the deloaded power reference P dl, capture and
reflect the time-varying characteristic of the proposed power



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 7

Output
power (pu)

Rotational
speed (pu)

MPPT

Power regulation

Deloaded %

Right side

deloading

Left side

deloading

Figure 6: WT MPPT and deloaded power curves.

reserve, and to adjust the rotational speed dynamically. In
this method, the reserve margin β represents the deloading
percentage that specifies the upper limit of generated power
and the saving margin that must be maintained as a constant
power reserve. During low-frequency periods, utilizing the
generation margin thus created, the WT active power can be
controlled by varying the rotor speed between ωdl and ωMPPT.
The pitch control system will also be activated to adjust the
limitations of the axial induction factor aopt

i to restrict the
wake deficit. Moreover, the kinetic energy stored in rotating
masses of WTs can also be released for the inertial response
as further system support.

D. Optimization problem

The scheduled reserve capacity should be optimally dis-
tributed depending on the location of each turbine within a
farm and the airflow deficits caused by upstream turbines op-
erating with a higher rotational speed than MPPT. Therefore,
optimal rotor speed estimation can be achieved by considering
the conflict between maximum generated power, complex in-
teractions among WTs, and maximizing kinetic energy, which
can be formulated as follows:

Ew,i = 1
2Jiω

2
i (30)

where Ji is the inertia of each turbine. The objective of the
optimization problem is to maximize the total kinetic energy
of the WF Ew,i and the total output power of the WF

∑
Pw,i.

This can be achieved by operating some of the WTs in a sub-
optimal operation mode, such that minimum wake deflection
is produced. Consequently, the optimization problem for the
optimal deloading control of WTs is given by:

max
ωi,θi

{
f1, f2

}
ωi, θi ∈ R (31)

f1 =
N∑

i=1
Pw,i(vi, CP (ωi, θi)) , f2 =

N∑
i=1

Ew,i(ωi) (32)

s.t.
ωi ⩽ ωMPPT

i ⩽ ωdl
i ⩽ ωi (33)

θi ⩽ θoffset
i ⩽ θi (34)

CPw,i(ωi, θi) ⩽ CP (aopt
i , yopt

i ) (35)

CTw,i
(ωi, θi) ⩽ CT (aopt

i , yopt
i ) (36)

N∑
i=1

P dl
w,i =

N∑
i=1

Pw,i(vi)− P sch
r (37)

where Pw,i and Ew,i are given in (22) and (30) respectively.
Constraints (33) and (34) limit the deloaded rotational speed
and blade pitch angle offset to the allowable range. The
maximum rotor speed is determined by the DC-link voltage of
the power electronic converter, and the minimum rotor speed
corresponds to the optimal tip speed ratio in MPPT mode.
The constraints (35) and (36) ensure that the optimal power
coefficient and thrust force of each WT are limited by the
estimated optimal axial induction factors aopt

i and yaw angles
yopt

i for the current wake formation given by the ANFIS
model. These two constraints restrict the feasible space for
searching the optimal rotor speed and blade pitch offset based
on the unique wake formation caused by different scenarios
of wind speed, direction, and TI. The constraint (37) also
ensures maintaining the scheduled power reserve that has been
foreseen for the WF to provide in the day-ahead market, which
is discussed in (III). The optimal reserve allocation can be
achieved by acting individually on pitch and torque control,
ensuring sub-optimal operation for a given vi, yopt

i and aopt
i ,

which are estimated by the method discussed in IV-B.

Algorithm 1 WT optimal power reserve allocation

Require: given historical datasets of gird frequency and wind
speed, WF geometry, market clearance prices, system con-
straints, day-ahead forecasts, scenario selection.

Ensure:
for each hour τ of the operating day do

At the beginning of the τ th hour:
Estimate quarter-hourly grid frequency fluctuations.
Use k-means clustering:
selecting the cluster centroids to represent ∆f .
Find wind scenarios s1, . . . , sK from uncertainty set S.
Estimating the expected value EsK

of:
reduced set of scenarios for wind speed.
for k = 1, . . . , K do

Solve the second-stage problem:

zk = max g(Pe(s), Pr(s), EsK
)

Solve the first-stage problem:

max f(P sch
e , P sch

r ) + 1
K

K∑
k=1

zk s.t.(5− 20)

Solve the MINLP problem using a suitable solver.
end for
submit the optimized bid P sch

r for the 24-hour horizon.
During the whole hour:

for each τ ′ of the operating hour do
Measure v, TI, WD

Update the optimal wake parameters:
approximating vi, aopt

i , yopt
i using ANFIS model.

Solving (31) with constraints (33-37).
Return ωdl

i and βoffset
i

end for
end for

The proposed optimization problem aims to find the optimal
rotational speed and blade pitch angle offset of the WTs to
achieve the scheduled power reserve while actively updating
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the optimal wake parameters for different wind scenarios
during the operating hour. Algorithm 1 outlines the optimal
power reserve allocation and deployment, taking into account
the operation and wake constraints specified in (33-37). Since
activating the power reserve will dynamically impact the wake
parameters, the choice of shifting the operating point to the
right side of the MPPT curve is made to not only increase ki-
netic energy for the inertial response but also restrict the wake
parameters to stay within the predefined optimal ranges given
in (35). At the same time, (36) ensures an optimal blade pitch
offset that reduces the turbulence generated by the turbine and
minimizes wake effects on downstream WTs while the WT
activates FCR through the torque control system. This happens
because of the unique nonlinear relationship between pitch and
torque, which can only be fully controlled when the rotational
speed exceeds the MPPT limit or when the wind speed goes
above the rated value (the mentioned nonlinearities are visually
illustrated in Fig.4). Therefore, although the pitch and torque
control systems interact dynamically, wake formation will be
actively controlled at the WT local control system by keeping
the rotational speed variations in the right-side deloading zone
(using an adaptive look-up table) while the blade pitch offset
guarantees the optimal wake coordination when rotor speed
changes due to the FCR activation in real-time.

It is worth mentioning that additional constraints and op-
timization objectives can be incorporated into the proposed
problem formulation to further improve the system’s per-
formance. For instance, one can consider minimizing the
cost of energy production by reducing mechanical loads and
turbine wear and tear. This study mainly considered power
production and kinetic energy, which mainly impact the WF’s
overall performance and wake mitigation. Moreover, different
optimization algorithms can be explored to solve the problem
efficiently, such as genetic algorithms, particle swarm opti-
mization(PSO), or simulated annealing. This study considered
multi-objective PSO to deal with the nonlinear optimization
problem.

V. CASE STUDY AND SIMULATION RESULTS

A. Optimal scheduled reserve

One of the most critical issues with the bidding strategies
of WTs is the stochasticity of wind power and grid frequency.
If the decision-maker offers a too-high bidding quantity, the
operator will not be able to satisfy grid requirements at low
wind speeds and will be subject to penalties. However, a low
reserve bidding quantity leads to extra wind power curtailment
and declines in revenue. The proposed optimization strategy
compromises between an aggressive and a conservative de-
cision with a high or low bidding quantity, considering the
quarter-hourly based penalties and revenues defined by the
TSO. Fig. 7 shows the estimated wind and grid frequency
variations for a day in January 2020 and the calculated 24-
hour optimal bidding schedule when the electricity and FCR
prices are competitive (electricity and reserve were considered
at the lowest and highest prices according to the energy market
in 2019-2020). A windy day (TI > 15%) is considered for
studying different bidding scenarios. The proposed strategy

Figure 7: Estimated scheduled energy and reserve contribution.
The time resolution of grid frequency and wind speed datasets
is 10 seconds and 15 minutes, respectively.

is compared with the baseline approach, in which the WT
contributes 10% of its capacity in the FCR market without
considering the variability of wind and grid frequency, and the
efficiency improvement is estimated, respectively. As Fig. 7
shows, higher contributions in both the energy and FCR are
decided when the expected wind speed reaches the rated
region. However, the lower or higher contribution in the day-
ahead market is scheduled according to the estimation of
maximum grid frequency deviation. For instance, although
the wind speed goes above 11.4 m/s around 9:00-10:00h,
a very low reserve bid is set due to the expected drop in
grid frequency to avoid any penalty in case of a demanded
upward regulation. In contrast, a higher contribution is set
for reserve provision around 23:00-24:00h due to a rise in
grid frequency considering the maximum possible downward
regulation (reimbursing the curtailment by offering the FCR
provision).

B. W wake modeling and optimal reserve allocation

This section evaluates the performance of the proposed
optimal strategy for the 9.86 MW reserve provision that is
decided around 7:00, where the mean wind speed is 7 m/s,
and TI is 5%. Based on the results given in Fig.7, the optimal
scheduled reserve around 7:00 clock is set to 9.86 MW
when the average expected available wind power, considering
different wake scenarios, is 38.13 MW. The studied wind
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Figure 8: WF’s wake modeling under the applied AIC and WRC strategies for 7 m/s wind speed and 5% turbulence intensity.
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Figure 9: The WF layout in the North Sea.

directions WD are also illustrated in Fig.9, which addresses
the geographic coordinates and indicates the onshore, offshore,
side-shore, cross-offshore, and cross-onshore winds. Fig. 8
illustrates the WF modeling under the applied AIC and WRC
strategies for the wind directions specified in Fig. 9, and power
Relative Increase (RI) that percentiles the increase of Optimal
Power (OP) based on the Initial Power (IP), where WTs
greedily maximize their output power without considering
negative impacts of the wake. The AIC approach involves
adjusting the axial induction factor of each WT to mitigate the
wake effects generated by upstream turbines. By optimizing
the axial induction factor, AIC limits the excessive reduction
in power output of downstream turbines, preventing significant
loss due to wake effects. On the other hand, WRC adjusts
the yaw angle of each WT to redirect the wake away from
downstream turbines and reduce wake-induced power losses
in the wind farm. As illustrated in Fig. 8, depending on the
wind direction and the specific wake formation, the optimal
wake parameters, i.e., yaw angles and axial induction factors,
can be very different for various scenarios of wind direction.
Therefore, The optimization problem (31) should be rapidly
updated to find the optimal distribution of the power reserve
in a varying wind condition. The computationally efficient
estimation of WFs’ optimal wake parameters, discussed in

Figure 10: Estimated optimal wake parameters.

IV-B, are given in Fig.10, corresponding to the WF wake
modeling under AIC and WRD strategies. The obtained wake
information and optimal scheduled reserve can be fed into the
optimization problem (31) to search for the optimal solutions,
i.e., optimal deloaded rotor speeds and blade pitch angles
(pitch offsets), maximizing the total power production and the
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Figure 11: The Pareto front of the optimal solutions over the
iterations of the bi-objective optimization problem.

kinetic energy. A co-evolutionary multi-swarm particle swarm
optimizer based on crowding distance archival management
is applied to find solutions in rapidly changing environments
(the implementation of the proposed algorithm is given in the
appendix). Fig. 11 illustrates the optimal solutions and Pareto
fronts for the cross-offshore, cross-onshore, and offshore wind,
which have the maximum, medium, and minimum kinetic
capacity, respectively. It also shows that the maximum power
production without any FCR provision should ensure 60%
of the maximum total kinetic energy that can be released in
inertial support. Also, the maximum total kinetic energy can
only be achieved in the cross-offshore and cross-onshore wind
by 45% deloading WTs (increasing the WTs’ rotational speeds
up to 45%). It can be comprehended that yawing upstream
WTs control wake deflections. Also, the upstream WTs’ axial
induction factors are set to a lower value compared to the
other WTs, which are less located in each other’s stream with
minimum wake overlaps. For instance, the axial induction
factor of the upstream T1 (with maximum wake overlap) is set
to 0.305 in the cross-onshore wind (WD0°). However, since
T7 and T22 are almost decoupled from the WF wake, they are
allowed to operate at their maximum capacity. The estimated
power reserve is optimally distributed among the WTs by
shifting their rotational speeds to the right side of the MPPT
curve shown in Fig.6.

Moreover, the algorithm searches for the optimal individual
blade pitch offset to ensure that the estimated WTs’ optimal
axial induction factors are respected. The total WF output
should be deloaded by 19.86%. The Pareto front determines
the maximum kinetic energy in different wind directions,
the optimal deloaded rotational speeds, and the blade pitch
offsets for the WTs. Fig.12 shows the power reserve allocation
and presents the percentual share of each WT, identifying
the WTs’ deloading portion. For instance, T7 and T22 have
the maximum share of FCR provision in the cross-onshore
wind (WD0°) because they almost have no conflict with their
neighboring WTs. Therefore, increasing their rotational speed
will not cause wake disruption for their neighbors, and for the
same reason, no blade pitch offset is required. However, as
Fig.8 also visually confirms, T1 in the same wind direction
can cause a significant wake for T9. Therefore, it plays a
minimum contribution to FCR provision, and its operation

Figure 12: Optimal power reserve allocation for 7 m/s 5% TI
wind speed, and 9.86 MW scheduled reserve.

will be limited by the optimal axial induction factor, which
is achieved by a blade pitch offset of 1.6°. Taking advantage
of the superior computational efficiency of the PSO and the
proposed ANFIS model, the optimal power reserve allocation
can be instantly updated by any changes in the dominant
wind speed, direction, or TI. The performance of the proposed
strategy is estimated and compared with the baseline strategy,
where 15% reserve power is distributed evenly regardless of
wake interactions. Furthermore, the simulations are carried out
with different wind speeds and TIs concerning the dominant
inflow wind direction [46] given in Fig.13. The results confirm
the overall improvement and higher effectiveness at lower TIs,
which cause stronger uniform wake formations and can play
a significant role in the optimal allocation of power reserve.

Moreover, the dynamic behavior of the WF and the ac-
tivation of the scheduled symmetric reserve have been in-
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Figure 3. Sketch of the wind-farm model,
showing the orientation and dimensions of
the trapezoid shape and the turbine layout.

Figure 4. Wind rose plot of the height-
averaged winds in the wind-farm layer
(U1, V1).

−κ · U3 with κ = (k, l) the horizontal wavenumber vector. The vertical wave number m(k, l)
follows from the dispersion relation [9]

m2 = (k2 + l2)

(

N2

Ω2
− 1

)

. (8)

The three-layer model is discretised with a Fourier–Galerkin method. The first-order part of
the wind-farm drag involves the product of two spatially dependent functions and is calculated
in physical space in order to avoid the expensive convolution sum in Fourier space. Aliasing
errors are thereby removed using the 3/2-rule [10]. The discretised equations form a linear
matrix equation which is solved with the LGMRES algorithm [11]. We use a numerical domain
of 1000 by 400 km at a uniform grid resolution of 500 m to allow the perturbations to die out
before being recycled by the periodic boundary conditions.

2.2. Wind-farm model

For simplicity, we represent the Belgian–Dutch wind-farm cluster as a trapezoidal shape with
a surface area of 582 km2 (see figures 1 and 3). Moreover, we assume that all wind farms
are equipped with the same 8 MW wind turbine and that a total of 475 turbines are installed
equidistantly in the wind-farm zone in a staggered pattern with respect to the dominant inflow
direction (cf. figures 3 and 4). We consider turbines with a constant thrust coefficient CT = 0.8,
a rotor diameter of 154 m and a turbine hub height zh = 120 m.

The drag exerted by this wind-turbine array on the flow is represented by an external force
fi in the depth-averaged momentum equation for the wind-farm layer. In order to account for
turbine wake interactions, we employ the Gaussian wake model [12] to compute the thrust forces
fk = (fi,k) of the individual wind turbines k = 1, . . . , Nt. In addition to turbine dimensions
and locations, input for the wake model includes the free-stream velocity ufs upstream of the
first turbine (i.e., the velocity measured upstream before local pressure build up in front of the
turbine slows down the approaching flow) and the ambient turbulent intensity I0 at hub height.
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Figure 13: Performance of the proposed strategy for the S-W
(side-shore) wind and wind rose for the C-Power layout.

vestigated based on the carried-out wake analysis. Fig. 14
depicts the active operation of the WF, which provides 9.86
MW symmetric FCR under turbulent wind conditions. The
frequency profile utilized in this study is designed to simulate
the worst-case scenario and is not representative of natural
grid frequency behavior. This profile includes a significant
drop from 50.2 to 49.8 Hz over 500 seconds to ensure the
system can adequately respond to both upward and downward
regulation during extreme conditions. The study examines the
results of the dominant wind speed profile (maximum wind
speed experienced by T1-7, T9-14, and T21) for the side-shore
wind coming from the southwest with 7 m/s mean and 5%
turbulence intensity (TI). T8 and T20 experience a minimum
wind speed of 5.46 m/s through the wake deficit. The rest of
the WTs receive reduced wind speeds between 7 and 5.46 m/s.

The WF’s total power production has been estimated using
the baseline control strategy that distributes the power reserve
equally among WTs and the proposed optimal method that
actively controls the wake and optimally allocates the sched-
uled reserve to WTs. As Fig. 14 visually depicts, although the
efficiency improvement of the proposed strategy is practically
greater than the baseline method, it can be noticed that it is
more significant when the wind speed drops below the mean
value. This is the direct effect of the active wake-controlled
approach, which reduces the adverse impact of wakes and
ensures the efficiency of the WTs at lower wind speeds. The
deployment of the FCR, besides adjusting the blade pitch
offset, yaw angle, and axial induction factor, dynamically
involves regulating the WT’s rotational speed and generator
torque. Although FCR activation generally can be carried out
through both pitch and torque control systems, in this study,
to avoid introducing excessive mechanical loads on the WTs’
blade’s root and the tower, the FCR activation is done solely
by adjusting the generator torque, and the pitch blade offset
only keeps the WT operation in the acceptable optimal wake
condition. These control actions and rotational speed variation
between MPPT and deloaded operation (flexible band of ωi)
are also shown in Fig.14 for the maximum and minimum wind
speeds with full and marginal FCR activations in different
reserve allocations.

The optimization algorithm proposed in this study typically
assigns a lower reserve to WTs located in the wake. Neverthe-
less, if the optimal yaw angle sufficiently redirects the wake
and preserves wind speed, these turbines may also contribute

Figure 14: Dynamic operation of WF, activating 9.86 MW
symmetric FCR for side-shore wind from the southwest.

to FCR provision. For instance, T8 receives a reduced mean
wind speed of 5.44 m/s. However, with 50°yaw misalignment,
its wake is redirected, and therefore, increasing its rotational
speed up to 5% does not significantly reduce wind speed for
T15 in its downstream path. Nevertheless, T20 is marginally
involved in FCR contribution (β < 3) since its optimal
yaw angle is decided for 25°, and its rotor speed increment
can cause a significant wake for T29 and T28. Since wind
direction changes can be frequent in the North Sea and alters
the wake behavior, the proposed operation strategy suggests
updating the power reserve allocation on a minutes scale
(60 seconds < tau′ < 600 seconds) to allow the WTs to
optimize their power output in response to wind changing
conditions and sub-hourly reserve schedules planned in the
day-ahead market.
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VI. CONCLUSIONS

This study proposes an operating strategy for WFs with
optimal distribution of FCR. The studied algorithm supports
optimal decision-making in the day-ahead market using the
two-stage stochastic programming method considering data-
driven wind speed forecasting and grid frequency for deter-
mining an hourly-based optimal scheduled reserve. Moreover,
an optimization problem is formulated to dynamically allocate
the estimated scheduled reserve among the WTs by actively
minimizing wake interactions and maximizing WT’s total
electrical power and kinetic energy. A deep learning approach
is suggested for computationally efficient estimation of the
WT wake behavior under axial induction and wake redirection
control strategies. The trained ANFIS model can mimic the
WT’s aerodynamic complexity in varying wind speed/direction
and turbulence intensity and provides the optimization problem
with appropriate constraints. The WT’s desired control set
points at the supervisory level will be determined by searching
for the WTs’ optimal deloading percentage, rotational speed,
and blade pitch offset, leading to a relative increase in total
generated power. The C-Power WF layout is studied to explore
the aerodynamic coupling behavior in different wind direc-
tions. The creation of wake forms can significantly change
the optimal allocation of power reserve and share of each WT
in providing FCR. Results suggest that the proposed optimal
operational framework can optimize the WTs’ overall perfor-
mance, especially in less turbulent conditions, and benefit WF
owners willing to contribute to the day-ahead market without
relying on a perfect storage system.
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APPENDIX

In this algorithm, each particle is evaluated for its fitness
values with respect to two objective functions, f1 and f2.
External archives A1, . . . , AK are used to store the non-
dominated solutions encountered so far, and the best positions
from these archives are used to update the particles in each
iteration. The algorithm terminates after a maximum number
of iterations T , and the final Pareto optimal set S and
Pareto front F are generated by merging the external archives
and selecting the non-dominated solutions, respectively. The
function NonDominatedSort performs non-dominated sorting
of the solutions in Ak ∪ P and returns the non-dominated
solutions in Ak. After updating Ak, the algorithm checks if
the size of Ak has exceeded the archive size K. If the size of
Ak is greater than K, the crowding distance of solutions in
Ak is calculated based on the f1 and f2 values. The solutions
with the lowest crowding distance are then removed until

the size of Ak is equal to K. This ensures that the external
archive maintains a diverse set of non-dominated solutions by
promoting well-spaced solutions in the objective space.

Algorithm 2 Co-evolutionary PSO with crowding distance
archival management for bi-objective optimization

Require: Initial population of particles P , maximum number
of iterations T , archive size K, fitness function f1(·) and
f2(·)

Ensure: Pareto optimal set S and Pareto front F
Initialize P and K external archives A1, . . . , AK with
empty solutions
for t = 1, . . . , T do

for p ∈ P do
Evaluate the fitness values of particle p:
f1(p), f2(p)← f1(p), f2(p)
for k = 1, . . . , K do

Update external archive Ak with the non-
dominated solutions from the current population and the
archive itself:

Ak ← NonDominatedSort(Ak ∪ P )
if |Ak| > K then

Calculate crowding distance of solutions in
Ak using the f1 and f2 values

Remove solutions with the lowest crowding
distance until |Ak| = K

end if
end for

end for
for p ∈ P do

Select a random external archive Ak

Update particle p using the best position from Ak:
p.v ← w ·p.v+c1 ·rand() ·(pbest−p)+c2 ·rand() ·

(bestAk
− p)

p.x← p.x + p.v
end for

end for
Generate the Pareto optimal set S by merging the solutions
in the external archives A1, . . . , AK :
S ← A1 ∪ · · · ∪AK

Generate the Pareto front F by selecting the non-dominated
solutions from S:
F ← p ∈ S : ̸ ∃p′ ∈ S∗ such that:
f1(p′) ≤ f1(p) and f2(p′) ≤ f2(p)
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