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Abstract 19 

The development of insecticide resistance in malaria vectors is a challenge for the 20 

global effort to control and eradicate malaria. Glutathione S-transferases (GSTs) are 21 

multifunctional enzymes involved in the detoxification of many classes of insecticides. 22 

For mosquitoes, it is known that overexpression of an epsilon GST, GSTe2, confers 23 

resistance towards DDT and pyrethroids. In addition to GSTe2, consistent 24 

overexpression of a delta class GST, GSTd3, has been observed in insecticide resistant 25 

populations of different malaria vector species. However, the functional role of GSTd3 26 

towards DDT resistance has not yet been investigated. Here, we recombinantly 27 

expressed both GSTe2 and GSTd3 from Anopheles arabiensis and compared their 28 

metabolic activities against DDT. Both AaGSTd3 and AaGSTe2 exhibited CDNB-29 

conjugating and glutathione peroxidase activity and DDT metabolism was observed for 30 

both GSTs. However, the DDT dehydrochlorinase activity exhibited by AaGSTe2 was 31 

much higher than for AaGSTd3, and AaGSTe2 was also able to eliminate DDE 32 

although the metabolite could not be identified. Molecular modeling revealed subtle 33 

differences in the binding pocket of both enzymes and a better fit of DDT within the H-34 

site of AaGSTe2. The overexpression but much lower DDT metabolic activity of 35 

AaGSTd3, might suggest that AaGSTd3 sequesters DDT. These findings highlight the 36 

complexity of insecticide resistance in the major malaria vectors and the difficulties 37 

associated with control of the vectors using DDT, which is still used for indoor residual 38 

spraying. 39 
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1. Introduction 52 

Malaria is a mosquito-borne disease that has affected humans for thousands of years. 53 

During the last decades, several interventions, mainly chemical based vector control, 54 

have been implemented to combat malaria. As a result, the number of malaria deaths 55 

has been reduced to 568,000 in 2019, while in 2020, malaria deaths slightly increased 56 

by 12% due to the COVID-19 pandemic and remained stable in 2021 (WHO, 2022). 57 

The reduction of malaria mortality and morbidity in the last decade is mainly due to 58 

indoor residual spraying (IRS) and the use of long-lasting insecticidal nets (LLINs) 59 

(Dhiman, 2019; WHO, 2022). However, insecticide resistance of malaria vectors to at 60 

least one of the commonly-used insecticide classes has been reported in 78 countries 61 

and is a challenge for the global efforts to control and eradicate malaria (WHO, 2022). 62 

More specifically, the widespread insecticide resistance in the major malaria vector 63 

species of the Anopheles gambiae complex (An. coluzzii, An. gambiae sensu stricto and 64 

An. arabiensis) and An. funestus jeopardize malaria control and elimination strategies 65 

(Antonio-Nkondjio et al., 2017; Hancock et al., 2020; Kleinschmidt et al., 2018; Matiya 66 

et al., 2019; Wiebe et al., 2017). In addition to widespread resistance, the invasion of 67 

Anopheles stephensi, native to southern and western Asia, into cities of eastern Africa 68 

makes it also more difficult to control malaria vectors (Takken and Lindsay, 2019). 69 

In general, resistance is either caused by mutations in the gene encoding the target site 70 

of insecticides (toxicodynamic resistance) and/or by decreased exposure 71 

(pharmacokinetic resistance) due to quantitative or qualitative changes in major 72 

detoxification enzymes and transporters, such as cytochrome P450 monooxygenases 73 

(P450s), carboxyl/cholinesterases, glutathione S-transferases (GSTs) and ABC 74 

transporters (Feyereisen et al., 2015; Hemingway and Ranson, 2000). The most 75 

common target site mutation known to confer resistance against pyrethroids and DDT 76 

is the knockdown resistance (kdr) mutation in the voltage-gated sodium channel 77 

(VGSC) gene, resulting in a leucine to phenylalanine (L1014F) or a leucine to serine 78 

(L1014S) substitution at position 1014 (Liu, 2015; Silva et al., 2014). On the other hand, 79 

P450s, such as CYP6M2, CYP6P3 and/or CYP6P4, and GSTs are well-known for their 80 

role in pyrethroid and DDT metabolism (Müller et al., 2008; Riveron et al., 2017; 81 

Riveron et al., 2014b; Stevenson et al., 2011). 82 

Insect GSTs catalyze the detoxification of several major classes of insecticides through 83 

glutathione conjugation, dehydrochlorination or passive binding, or protect insects 84 

against oxidative damage caused by insecticides via glutathione peroxidase activity 85 

(Abel et al., 2004; Hayes and Wolf, 1988; Mannervik et al., 1988; Pickett and Lu, 1989; 86 

Wongtrakul et al., 2014; Yang et al., 2001). Glutathione-based dehydrochlorination of 87 



the organochlorine compound DDT has been reported to confer resistance in Aedes 88 

aegypti, An. dirus and An. gambiae, but is also a common detoxification mechanism in 89 

other insects (Clark and Shamaan, 1984; Clark et al., 1986; Enayati et al., 2005; Grant 90 

et al., 1991; Lumjuan et al., 2005; Ortelli et al., 2003; Pavlidi et al., 2018; Prapanthadara 91 

et al., 1995; Prapanthadara et al., 1996; Prapanthadara et al., 2000; Prapanthadara et al., 92 

1993; Ranson et al., 2001; You et al., 2015). Mosquito GSTs have also been reported 93 

to play a role in the sequestration and/or detoxification of pyrethroids and glutathione 94 

peroxidase activity of GSTs has been detected in An. gambiae, An. cracens, Ae. aegypti 95 

and other insects (Kostaropoulos et al., 2001; Lumjuan et al., 2005; Ortelli et al., 2003; 96 

Sawicki et al., 2003; Singh et al., 2001; Vontas et al., 2001; Wongtrakul et al., 2014).  97 

Cytosolic GSTs are grouped into eight classes: delta, epsilon, omega, sigma, theta, zeta, 98 

xi and iota, with delta and/or epsilon classes being only present in mites or insects (Che-99 

Mendoza et al., 2009; Ding et al., 2003; Ranson et al., 2002; Ranson et al., 2001; Tu 100 

and Akgül, 2005). Delta and epsilon GSTs were previously shown to play a vital role 101 

in resistance to insecticides in different species of Diptera and metabolism of DDT in 102 

An. gambiae, Culex quinquefasciatus and Ae. aegypti has been linked to increased 103 

epsilon class GST dehydrochlorinase activity (Ding et al., 2003; Hemingway et al., 104 

2004; Lumjuan et al., 2011; Lumjuan et al., 2007; Ortelli et al., 2003; Polson et al., 105 

2011; Prapanthadara et al., 2000; Ranson et al., 1997; Ranson et al., 2001). Twenty-106 

eight cytosolic GST genes were identified in the An. gambiae genome, and 12 and 8 of 107 

these genes encode delta and epsilon GSTs, respectively (Strode et al., 2008). Of the 108 

eight An. gambiae epsilon GSTs, the GSTe2 gene is most conserved and consistently 109 

associated with DDT and, to a lower extent, pyrethroid resistance (Ayres et al., 2011; 110 

Djouaka et al., 2011; Lumjuan et al., 2005; Lumjuan et al., 2011; Mitchell et al., 2014; 111 

Ortelli et al., 2003). For example, GSTe2 is also thought to metabolize the pyrethroid 112 

permethrin in An. funestus, although the nature of the permethrin metabolites has not 113 

been identified yet (Riveron et al., 2014b). 114 

Genes that were overexpressed in resistant An. arabiensis populations from Ethiopia 115 

have been recently identified by RNAseq analysis and, amongst others, included a delta 116 

GST gene, GSTd3 (Messenger et al., 2021; Simma et al., 2019). GSTd3 overexpression 117 

has been reported earlier for several pyrethroid/DDT resistant anopheline populations 118 

(Table S1). However, in contrast to GSTe2, the contribution of GSTd3 to DDT 119 

resistance has not yet been studied. Here, we functionally characterized An. arabiensis 120 

GSTd3 and investigated the potency of GSTd3 to metabolize DDT in comparison with 121 

GSTe2. 122 

 123 

 124 



2. Materials and Methods 125 

2.1. Expression of GSTd3 in DDT resistant anopheline mosquito populations 126 

2.1.1. RT-qPCR of GSTd3 in DDT resistant An. arabiensis populations from 127 

Ethiopia 128 

The DDT and deltamethrin resistant An. arabiensis populations from Ethiopia 129 

[Asendabo (ASN), Chewaka (CHW), and Tolay (TOL)] and the Ethiopian susceptible 130 

population Sekoru (SEK) have been previously described .(Alemayehu et al., 2017; 131 

Simma et al., 2019). RNA was extracted from these populations, and stored at -80 °C 132 

until further use, as described in Simma et al. 2019. RNA was reverse transcribed using 133 

the Maxima First Strand cDNA synthesis for RT-qPCR kit [Fermentas (Thermo Fisher 134 

Scientific), Belgium] using 2 µg of total RNA as the template according to the protocol. 135 

The RT-qPCR reactions were performed on a Mx3005P qPCR system [Stratagene 136 

(Agilent Technologies), Belgium)] using the Maxima SYBR Green qPCR master mix 137 

with ROX solution [Fermentas (Thermo Fisher Scientific), Belgium] according to the 138 

manufacturer’s instructions. The optimized qPCR program was an initial denaturation 139 

at 95 °C for 10 min, followed by 35 cycles of 95 °C for 15 s, 55 °C for 30 s and 72 °C 140 

for 30 s. At the end, a melting curve was constructed by ramping from 65 °C to 95 °C, 141 

at 1 °C per 2 s. RT-qPCR primers for GSTd3 as well as for reference genes, 40S 142 

ribosomal protein S7 (RpS7) and elongation factor Tu (EF-Tu) can be found in Table 143 

S2. All qPCR experiments were conducted using four biological and two technical 144 

replicates. Relative expression levels and significant gene expression differences 145 

(independent t-test) were calculated with qbase+2 (Biogazelle, Zwijnaarde, Belgium - 146 

www.qbaseplus.com) and SPSS 28 (IBM, USA). 147 

2.1.2. Expression levels of GSTe2 and GSTd3 in other anopheline mosquito 148 

populations  149 

Relative GSTd3 (VectorBase ID: AGAP004382 for An. gambiae and AARA015764 for 150 

An. arabiensis) and GSTe2 (VectorBase ID: AGAP009194 for An. gambiae, 151 

AARA008732 for An. arabiensis) expression data were obtained from previous reports, 152 

using the IR-TEx database as a guidance (http://opteron.lstmed.ac.uk/shiny/IR-TEx/) 153 

(Ingham et al., 2018). In addition, the Google scholar database was mined for studies 154 

using the keywords “mosquitoes” and “GSTd3”.  155 

2.2. Analyzing AaGSTd3 and AaGSTe2 sequences of the DDT resistant TOL 156 

population 157 

Based on a previously published RNAseq dataset (Simma et al., 2019), we compared 158 

the AaGSTd3 CDS between the DDT and deltamethrin resistant TOL population and 159 



the susceptible SEK population. The AaGSTd3 CDS of the TOL population was also 160 

compared against the An. arabiensis reference (Dongola) strain in VectorBase. The 161 

AaGSTe2 CDS of the TOL population was PCR amplified using primers listed in Table 162 

S2. PCR amplification was performed on newly synthesized cDNA from the TOL 163 

population using GoTaq G2 DNA Polymerase (Promega, Belgium) and the following 164 

conditions: 1 cycle at 95 °C for 2 min; 35 cycles of 95 °C for 30s, 55 °C for 30s and 165 

72 °C for 60 s; and 1 cycle at 72 °C for 5 min. The PCR products were purified using 166 

the E.Z.N.A Cycle Pure Kit (Omega Bio-Tek, Belgium) and then sequenced (LGC 167 

Genomics, Germany). The obtained AaGSTe2 CDS of the TOL population was 168 

compared against the An. arabiensis reference (Dongola) strain and the An. gambiae 169 

reference (PEST) strain in VectorBase (Lawson et al., 2009). 170 

  171 

2.3. Functional expression of AaGSTd3 and AaGSTe2 in vitro and protein 172 

purification 173 

The GSTd3 CDS of the An. arabiensis reference strain (AARA015764-RA at 174 

VectorBase) and GSTe2 CDS of the An. arabiensis TOL population were used for 175 

protein expression. GST CDS were codon optimized for expression in E. coli, 176 

synthesized including a C-terminal 6x His-tag, and cloned into a pet-30a+ expression 177 

vector by Genscript (Piscataway, NJ, USA) (see Table S3 for codon optimized 178 

sequence of AaGSTd3 and AaGSTe2). Expression plasmids were first transformed into 179 

a non-expression host, E. coli DH5α [Fermentas (Thermo Fisher Scientific), Belgium]. 180 

Purified plasmids were then sequenced to confirm sequence integrity (LGC Genomics, 181 

Germany). After transformation into the expression host, E. coli BL21 (DE3) 182 

competent cells (New England Biolabs, Belgium), a single colony containing 183 

recombinant plasmid was grown in 20 ml of LB low salt medium containing kanamycin 184 

at 37 °C overnight. This culture was used to inoculate 1000 ml LB low salt medium 185 

and grown until the OD600 reached 0.8 at 37 °C. Expression was induced by adding 186 

0.3 mM isopropyl β-D-thiogalactoside (IPTG) followed by an additional incubation at 187 

28 °C for 20 h. The cells were harvested by centrifugation at 4000 rpm for 20 min, 188 

freeze-thawed, re-suspended in 80 ml cell lysis buffer containing 0.1 M sodium 189 

phosphate buffer (pH 7.4), 0.5 M sodium chloride, 10 mM imidazole, 2% glycerol, and 190 

0.14% mercapto-ethanol and disrupted by sonication for 30 min using 5 s bursts at low 191 

intensity (25%) with a 5 s cooling period between each burst on ice. Cell lysates were 192 

centrifuged at 7000 g at 4 °C for 30 min in a rotor to pellet the cellular debris and the 193 

supernatant was used for the purification. Purification was performed via Ni-NTA 194 

Agarose (Qiagen, Belgium) to purify recombinant proteins containing a 6x His-tagged 195 

sequence according to the manufacturer’s instructions. Briefly, one ml of resin was 196 



pipetted into a 10-ml column and, subsequently, this column was pre-equilibrated with 197 

10 ml 100 mM PBS (pH 7.4). The supernatant was then loaded on the column, unbound 198 

proteins were washed by 10 ml wash buffer consisting of 100 mM PBS (pH 7.4), 500 199 

mM NaCl, and a series of imidazole concentrations (20, 25 and 50 mM). Recombinant 200 

proteins were collected by adding 75 and 100 mM imidazole. The 10-kDa cutoff 201 

PierceTM Protein concentrator [Fermentas (Thermo Fisher Scientific), Belgium] was 202 

used to remove imidazole and NaCl and to obtain a higher concentration of protein.  203 

Protein concentration was measured with the Bradford assay and the quality of the 204 

samples was monitored by sodium dodecyl sulfate-polyacrylamide gel electrophoresis 205 

(SDS-PAGE) and Western blotting as previously described (Bradford, 1976; Wybouw 206 

et al., 2012). 207 

2.4. Determination of enzyme activity 208 

Glutathione peroxidase activity with cumene hydroperoxide (CHP) was determined 209 

using the method of Samra et al. (2012). Briefly, the reaction systems in UV-STAR 96-210 

well microplates (Greiner bio-one, Belgium) comprised 100 mM potassium phosphate 211 

buffer (pH 6.5), 2 µg AaGSTd3 or AaGSTe2, 1 mM cumene hydroperoxide (CMHP), 212 

2 units of glutathione reductase from baker’s yeast, 7.5 mM reduced Glutathione (GSH), 213 

0.3 mM NADPH (all obtained from Sigma-Aldrich, Belgium). After incubation at 214 

30 °C for 5 min, CMHP was added to initiate the reaction. The oxidation of NADPH 215 

was measured at 15 s intervals at A340 for 5 min. Wells lacking enzyme but containing 216 

all of the substrates served as blanks. The assays were performed in quadruplicate and 217 

repeated 3 times using a Biotek EON microplate spectrophotometer (Biotek, France). 218 

GST activity against the model substrates 1-chloro-2, 4-dinitrobenzene (CDNB) and 219 

1,2-dichloro-4-nitrobenzene (DCNB) (Sigma-Aldrich, Belgium) was measured at 220 

30 °C in clear UV-STAR 96-well microplates (Greiner bio-one, Belgium) according to 221 

the method of Habig et al. (1974). CDNB and DCNB were dissolved in ethanol first 222 

and then diluted with 100 mM potassium phosphate buffer (pH 6.5), while reduced 223 

GSH was dissolved in 100 mM potassium phosphate buffer (pH 6.5). The activity with 224 

1 mM CDNB or DCNB and 5 mM reduced glutathione in 300 µl was measured at A340 225 

for 5 min at 15 s intervals using a Biotek EON microplate spectrophotometer. Wells 226 

containing all reagents except enzyme served as control. The assays were performed in 227 

quadruplicate and repeated 3 times. Significant differences were tested using an 228 

independent t-test. 229 

2.5. Kinetic studies 230 

The steady-state kinetic parameters of GST activity were determined for the CDNB 231 

conjugating reaction by using varying concentration of CDNB and keeping the GSH 232 



concentration fixed and vice versa. For AaGSTd3, the initial rates were determined in 233 

the presence of 2 mM GSH and varying concentrations of CDNB (0.01-2.5 mM), while 234 

at 2 mM of CDNB, GSH was used in the concentration range 0.6-10 mM. The assays 235 

were performed with 0.8 µg of AaGSTd3 in 100 mM potassium phosphate buffer at 236 

30 °C (pH 6.5). For AaGSTe2, the initial rates were determined in the presence of 10 237 

mM GSH and varying concentrations of CDNB (0.0025-1 mM), while CDNB was used 238 

at a fixed concentration of 1mM when GSH was used in the concentration range 0.416-239 

20 mM. The assays were performed with 50 ng of AaGSTe2 in 100 mM potassium 240 

phosphate buffer at 30 °C (pH 6.5). Reactions containing all reagents except 241 

recombinant enzyme served as control. The assays were performed in quadruplicate 242 

and repeated 3 times. The assays were performed as described above in section 2.3. The 243 

kinetic constants were determined by fitting the Michaelis-Menten equation or Hill 244 

equation using SigmaPlot (Systat Software Inc., San Jose, CA). Significant differences 245 

were tested using an independent t-test. 246 

2.6. Determination of DDT dehydrochlorinase activity using gas 247 

chromatography with electron capture detection (GC-ECD) 248 

The DDT dehydrochlorinase (DDTase) activity of AaGSTd3 and AaGSTe2 was 249 
assessed using metabolic assays and confirmed with gas chromatography with an 250 
electron capture detector, GC-ECD (Agilent Technologies 6890 N) (see below) as 251 
previously described with some modifications (Mekonen et al., 2015). Metabolic assays 252 
were conducted at 30 °C for 6, 12, 24 and 36h while shaking at 150 rpm (Labnet 311DS) 253 
(Samra et al., 2012; Tao et al., 2022). The reaction system comprised 100 mM 254 
potassium phosphate buffer (pH 6.5), 10 mM GSH, 300 µg AaGSTd3 or AaGSTe2, 255 
and 3.4 µM 4,4’-DDT [PESTANAL® analytical standard with purity ≥ 98.0%; Sigma-256 
Aldrich (Belgium) product number 31041] in acetone (the final concentration of 257 
acetone in the reaction system was 1.2%), in a total volume of 1 ml, which was carried 258 
out in 7 ml Supelco vials (Sigma-Aldrich, Belgium). Control samples contained the 259 
same reagent mixture with the boiled recombinant enzyme (90 °C for 10 min) or the 260 
same reagent mixture without GSH. Samples with only 4,4’-DDT or 4,4’-DDE 261 
[PESTANAL® analytical standard with purity ≥ 98.0%; Sigma-Aldrich (Belgium) 262 
product number 35487] in acetone, and 100 mM potassium phosphate buffer were used 263 
to evaluate recovery efficiency for each time point. Four replicates were assessed for 264 
each time point and for each GST. 265 

After the reaction, 4 mL of 100 mM potassium phosphate buffer (pH 6.5) was added to 266 

the reaction volume to analyze DDT and possible DDT metabolites. A validated 267 

analytical method was used. DDT and its possible metabolites were extracted using a 268 

liquid-liquid extraction method from the water phase into the hexane phase by adding 269 

5 mL hexane and then shaking by hand for at least 3 min. Hexane solutions were dried 270 



with anhydrous Na2SO4 and were transferred to glass vials. The compounds were 271 

detected using an Agilent 6890N Network gas chromatograph with an auto-sampler, 272 

coupled to an electron capture detector (Agilent Technologies, Belgium). Separation 273 

was performed on a HP-5MS (5% phenyl methyl siloxane) capillary column (30 m 274 

length × 0.25 mm internal diameter, 0.25 µm film thickness) (Model number Agilent 275 

19091 J-433). The operating conditions were as follows: The column was initially set 276 

at a temperature of 60 °C, then increased at a rate of 20 °C/min to 150 °C. It was further 277 

increased at a rate of 15 °C/min to 250 °C and held constant for 2 min, followed by an 278 

increase at a rate of 30 °C/min to 270 °C and held constant for 10 min. It was finally 279 

increased at a rate of 30 °C/min to 280 °C and held constant for 11 min. The temperature 280 

of the injector and detector were maintained at 200 °C and 250 °C, respectively. Helium 281 

was used as a carrier gas at a flow rate of 20 mL/min, and the injections were made in 282 

the split mode with a split ratio of 52.7:1. The Agilent GC ChemStation version Rev. 283 

A.10.02 software was used for system control and data acquisition and analysis. The 284 

quantities of DDT and DDE were calculated with an external standard.  285 

The recovery efficiency was calculated based on the theoretical amount of DDT/DDE 286 

and used to calculate the concentration of DDT and DDE in control and treatment 287 

samples, to compensate for the loss during the extraction. The amount of DDE in a 288 

DDT sample was subtracted for the calculation of newly formed DDE as the standard 289 

4,4’-DDT is not 100% pure (purity ≥ 98.0%, see above). The DDTase activity is 290 

expressed as nmol of DDE formation/mg of enzyme protein (Che-Mendoza et al., 2009; 291 

Udomsinprasert et al., 2005). 292 

2.7. Protein modeling and molecular docking 293 

A structural model for AaGSTd3 was predicted using the Swiss-model server 294 

(http://swissmodel.expasy.org/) using the protein sequence of AaGSTd3 from the TOL 295 

population (identical to GSTd3 of the An. arabiensis reference (Dongola) strain). The 296 

crystal structure of GST1-6 from Anopheles dirus species B (PDB code: 1v2a.1.B) was 297 

automatically selected by the server as the most suitable template for model 298 

construction, with 85% sequence identity and with the sequence diversity being mainly 299 

located at the C-terminal domain. The model revealed a global model quality estimation 300 

(GMQE) score of 0.93. The model was also evaluated by SAVES V5.0 301 

(http://servicesn.mbi.ucla.edu/SAVES/) and ProQ (http://prop.bioinfo.se/cgi-302 

bin/ProQ/ProQ.cgi). Molecular docking was performed using the Swiss-Dock server 303 

and the EADock DSS (http://www.swissdock.ch/) software. The crystal structure of An. 304 

dirus GST1-6 has glutathione sulfonic acid (GTS) as a cofactor instead of GSH, which 305 

did not allow to predict GSH as a cofactor of AaGSTd3 using Swiss Model server 306 

(Udomsinprasert et al., 2005). Hence, molecular docking simulation needed to be 307 



performed for both DDT and GSH for AaGSTd3. The binding modes were generated 308 

via the blind docking method to check the possibility for all target cavities. The 309 

Chemistry at HARvard Macromolecular Mechanics (CHAEMM) energies were 310 

estimated using empirical energy functions, then binding modes were evaluated with 311 

Fast Analytical Continuum Treatment of Solvation (FACTS) based on the fully 312 

analytical evaluation of the volume and spatial symmetry of the solvent (Brooks et al., 313 

1983; Haberthür and Caflisch, 2008). The model and docking results were visualized 314 

using PyMOL v2.0.7 software (DeLano, 2002). A structural model for AaGSTe2 from 315 

the TOL population was predicted using the Swiss-model server and the crystal 316 

structure of GSTe2 ZAN/U variant from Anopheles gambiae (PDB code: 4gsn.1). The 317 

GMQE score was 0.99. The crystal structure of An. gambiae GSTe2 ZAN/U has two 318 

GSH ligands as a cofactor and, using Swiss Model server, allowed to predict GSH as a 319 

cofactor of AaGSTe2 (Mitchell et al., 2014). Hence, for AaGSTe2, molecular docking 320 

simulation only needed to be performed for DDT. DDT docking and visualization was 321 

performed as described for AaGSTd3. 322 

 323 

3. Results 324 

3.1. AaGSTd3 is overexpressed in DDT resistant anopheline mosquito 325 

populations  326 

A previous RNAseq study, showed that GSTd3 was overexpressed in DDT-resistant An. 327 

arabiensis populations ASN, CHW, and TOL (Simma et al., 2019) and GSTd3 328 

overexpression was evaluated in this study using RT-qPCR. AaGSTd3 is 3.7, 2.5, and 329 

3.5-fold overexpressed in ASN, CHW, and TOL compared to the DDT-susceptible 330 

population SEK (P < 0.05) (Figure S1).  331 

Based on a literature search, GSTd3 is also commonly overexpressed in other resistant 332 

anopheline mosquito populations (Fossog Tene et al., 2013; Ibrahim et al., 2022; 333 

Ingham et al., 2018; Isaacs et al., 2018; Jones et al., 2012; Kouamo et al., 2021; Nardini 334 

et al., 2012; Riveron et al., 2014a; Riveron et al., 2017; Samb et al., 2016; Simma et al., 335 

2019; Tchigossou et al., 2018; Toé et al., 2015; Wipf et al., 2022). Among 50 exposed 336 

and unexposed anopheline populations that were resistant to DDT, RNAseq analysis 337 

revealed that GSTd3 was overexpressed in 37 populations while both GSTd3 and GSTe2 338 

were overexpressed (fold change > 2) in 19 populations (Figure 1, Table S1). 339 

Noteworthy, GSTd3 was also overexpressed in some malathion and/or pyrethroid 340 

resistant populations where the resistance level to DDT was unknown (Table S1). 341 

3.2. AaGSTd3 and AaGSTe2 sequence of the DDT resistant TOL population 342 



The An. arabiensis GSTd3 CDS of the DDT and deltamethrin resistant TOL population 343 

did not show non-synonymous nucleotide polymorphisms compared to the susceptible 344 

SEK population and the An. arabiensis reference (Dongola) strain (data not shown). 345 

However, the An. arabiensis GSTe2 CDS of the TOL population did show three non-346 

synonymous nucleotide polymorphisms compared to the An. arabiensis reference 347 

(Dongola) strain (G61A, G139T and G461C resulting in A21T, V47L, and S154T), 348 

while two non-synonymous polymorphisms were found compared to GSTe2 of the An. 349 

gambiae reference (PEST) strain (C9G and G139T, resulting in N3K and V47L) 350 

(Figure S2 and Table S4). 351 

3.3. Heterologous expression and purification of AaGSTd3 and AaGSTe2 352 

AaGSTd3 and AaGSTe2 were expressed using E. coli and successfully purified, as 353 

verified by both SDS-PAGE and Western blot (Figure S3). For both AaGSTd3 and 354 

AaGSTe2, a single band at 25 kDa was observed, which is approximately the expected 355 

molecular weight of these proteins (including the C-terminal His tag). The yield of 356 

recombinant AaGSTd3 and AaGSTe2 was about 40 mg protein /L LB broth. 357 

3.4. Substrate specificities for model substrates and kinetic parameters 358 

Both AaGSTd3 and AaGSTe2 displayed CDNB-conjugating activity and glutathione 359 

peroxidase activity as measured by the GSH-dependent reduction of CHP. However, 360 

the activity towards model substrates was higher for AaGSTe2 (Table 1) and also the 361 

glutathione peroxidase activity was threefold higher when compared to AaGSTd3.  362 

Analysis of Michaelis-Menten kinetics revealed that CDNB is a better substrate for 363 

recombinant AaGSTe2 than for recombinant AaGSTd3, as evidenced by the higher 364 

Vmax and kcat values and lower KmCDNB. The KmCDNB value of AaGSTd3 is 136-fold 365 

higher than the value of AaGSTe2, while the KmGSH value for recombinant AaGSTe2 366 

was higher than for recombinant AaGSTd3 (Table 2). 367 

3.5. AaGSTd3 and AaGSTe2 exhibited DDT dehydrochlorinase activity 368 

The recovery of DDT and DDE after extraction ranged between 100% and 112% or 369 

between 82% and 106%, respectively, with an average of 104 ± 3% or 96 ± 5%. DDT 370 

metabolism was observed for both AaGSTd3 and AaGSTe2. However, the DDTase 371 

activity of AaGSTe2 (100% DDT depletion after 6 h reaction in the presence of the 372 

cofactor GSH) was much higher than AaGSTd3 (7.4% DDT depletion after 6 h 373 

reaction in the presence of the cofactor GSH). For AaGSTd3, the amount of DDE 374 

increased over time while the amount of DDT decreased over time (DDTase activity 375 

was 0.36 ± 0.01, 0.75 ± 0.04, 1.01 ± 0.07, and 1.34 ± 0.15 nmol of DDE formation per 376 

mg protein at 6, 12, 24, and 36 h). However, for AaGSTe2, at 6 h, only very few DDE 377 



was left and no DDT was detected. After 6h incubation, neither DDT nor DDE were 378 

detected (Figure 2A, B, E, F). Control assays with no GSH or denatured recombinant 379 

AaGSTd3 had no detectable DDE production. However, control assays with no GSH 380 

but with AaGSTe2 did show DDTase activity albeit at lower rate (DDTase activity 381 

was 1.55 ± 0.20, 3.69 ± 0.09, 4.58 ± 0.21, and 6.28 ± 0.11 nmol of DDE formation per 382 

mg at 6, 12, 24, and 36 h) (Figure 2C, D, E, F). Values are shown as mean ± SE. 383 

3.6. Prediction of AaGSTd3 and AaGSTe2 structures and docking of DDT 384 

The predicted monomer of AaGSTd3 were divided into two distinct domains. The C-385 

terminal domain (residues 86-210) consisted of 5 α-helices (H4-H8) in which the long 386 

α-helix H4 was not significantly bent (Figure 3, 4A). The active site can be further 387 

divided into a co-factor GSH-binding site (G-site), where one GSH molecule was bound, 388 

and a neighboring substrate-binding site (H-site), which recognizes the hydrophobic 389 

substrate. The predicted G-site in AaGSTd3 was mainly formed by Glu63, Ser64, 390 

Lys105, and Lys127 with hydrogen bonds, which were hydrophilic in nature. These 391 

four hydrogen bonds possibly form a three-dimensional hydrogen-bond-network to 392 

stabilize GSH (Figure 4C, D). The G-site in AaGSTe2 was mainly formed by His53, 393 

Ile55, Glu67, Ser68, and Arg112 with hydrogen bonds (Figure 4G, H). Comparing the 394 

3D structure of AaGSTd3 and AaGSTe2 revealed that H2 in AaGSTe2 was closer to 395 

β2 compared to AaGSTd3, and H8 was a few residues longer than in AaGSTd3. 396 

The most favorable binding mode for 4,4’-DDT was in the H-site of AaGSTd3, with a 397 

Gibbs free energy (ΔG) of -6.92 kcal/mol. The H-site of AaGSTd3 had an open 398 

hydrophobic pocket adjacent to the G-site. The contributing residues for this putative 399 

DDT-binding site included Ser6, Ile8, Ser9, Pro10, Thr31, Asn32, Ile33, Ile51, Ile108, 400 

Ile111, and Val115 within 4Å distance, most of which were hydrophobic in nature, 401 

while Ser6, Ser9, Thr31, and Asn32 were hydrophilic (Figure 5A, C). 402 

The most favorable binding mode for 4,4’-DDT was in the H-site of AaGSTe2, with a 403 

ΔG of -7.65 kcal/mol. The contributing residues for this putative DDT-binding included 404 

Leu9, Leu11, Ser12, Pro13, Leu36, Leu37, Thr54, Ile55, Phe108, Met111, Arg112, 405 

Phe115, Glu116, Leu119, Phe120, Leu207, and Phe210 within 4Å distance (Figure 5E, 406 

G). Comparing the predicted DDT-binding sites of AaGSTd3 and AaGSTe2 revealed 407 

that for AaGSTd3 H4 of the H-site is not bent, while for AaGSTe2, H4 of the H-site is 408 

bent and forms a closed state pocket. Further, a closer distance between the 4,4’-DDT 409 

molecule and GSH was observed for AaGSTe2. Last, the predicted DDT-binding 410 

pocket for AaGSTe2 was surrounded by more residues - including residues from H8 - 411 

forming a nearly closed state, while the pocket for AaGSTd3 was an open state, 412 

although both of them were not predicted to have hydrogen bonds to stabilize 4,4’-DDT. 413 



 414 

4. Discussion 415 

GSTs confer resistance to insecticides by metabolizing - either via conjugation or 416 

dehydrochlorination - or sequestering pesticides. In addition, GSTs display peroxidase 417 

activity which can protect arthropods such as insects and mites against oxidative stress 418 

caused by insecticides and acaricides (Pavlidi et al., 2018). In mosquitoes, the epsilon 419 

class GST, GSTe2, has been frequently implicated in resistance against DDT. GSTe2 420 

was overexpressed in DDT-resistant An. gambiae, An funestus and Ae. aegypti, and the 421 

recombinant GSTe2s of these species could efficiently dehydrochlorinate DDT (Ding 422 

et al., 2003; Lumjuan et al., 2005; Ortelli et al., 2003; Riveron et al., 2014b). In addition, 423 

overexpression of GSTe2 in transgenic mosquitoes conferred DDT resistance (Adolfi 424 

et al., 2019). Remarkably, a delta class GST gene, GSTd3, was also reported to be 425 

overexpressed in DDT/pyrethroid resistant An. arabiensis, An. gambiae, An. coluzzii 426 

and An. funestus populations (see Figure1/Table S1 for overview and references). 427 

Notably, overexpression of GSTd3 occurs more frequently than GSTe2 overexpression 428 

in DDT resistant anopheline populations (37 vs 30, Figure 1, Table S1), suggesting that 429 

GSTd3 might be used as a resistance marker. However, in contrast to GSTe2, GSTd3 430 

metabolism of DDT has not yet been investigated, or at least reported, and therefore we 431 

compare in this study the AaGSTd3 metabolism of DDT with that of AaGSTe2.  432 

Both CDNB-conjugating and glutathione peroxidase activity was observed for 433 

AaGSTe2 and AaGSTd3. AaGSTe2 exhibited a significantly higher activity towards 434 

CDNB and showed higher glutathione peroxidase activity compared to AaGSTd3. 435 

Previously characterized AgGSTe2 CDNB-conjugating activity (12.5 µmol/mg/min) 436 

was found to be more than two-fold lower, but with similar kinetic parameters, 437 

compared to AaGSTe2. In contrast, glutathione peroxidase activity was not detected 438 

for AgGSTe2 in previous reports (Lumjuan et al., 2005; Ortelli et al., 2003). DDTase 439 

activity was also observed for both AaGSTe2 and AaGSTd3, with AaGSTd3 DDTase 440 

activity being slightly lower compared to previously characterized isoforms of An. 441 

gambiae GSTd1 (AgGSTd1-5 and AgGSTd1-6) but more than 80-fold lower than An. 442 

dirus GSTd5 and A. sinensis GSTd2 (Che-Mendoza et al., 2009; Ranson et al., 1998; 443 

Ranson et al., 1997; Tao et al., 2022; Udomsinprasert et al., 2005). However, caution 444 

is needed when comparing studies, as experimental conditions can significantly differ 445 

(e.g. 2 hour incubation assay at 28°C or 30°C and DDE detection with HPLC, compared 446 

to 6 hour incubation at 30°C and DDE detection with GC-ECD in this study) 447 

(Prapanthadara et al., 1993; Ranson et al., 1997; Tao et al., 2022). AaGSTe2, on the 448 

other hand, completely degraded DDT and DDE in the presence of GSH, while without 449 

GSH AaGSTe2 DDTase activity was almost four times higher than DDTase activity of 450 



AaGSTd3 with GSH. Of important note, the DDTase activity of AaGSTe2 without 451 

GSH was about 1000-fold lower than the previously reported DDTase activity of 452 

AgGSTe2 with GSH (Ortelli et al., 2003). Complete degradation of DDE by AaGSTe2 453 

has not yet been reported before, but might, as mentioned above, be due to different 454 

reaction conditions. It could be that, when GSTe2 is incubated with DDT for a longer 455 

period, AaGSTe2 reacts with DDE to form more water-soluble substrates (GS-DDE) 456 

or even degrades DDE beyond DDD and, consequently, DDE can no longer be 457 

extracted using organic solvents and detected by GC-ECD. 458 

Molecular modeling showed that AaGSTd3 has a positive DDT-binding capability. The 459 

most favorable binding mode for 4,4’-DDT was in the H-site of AaGSTd3 which had 460 

an open hydrophobic pocket adjacent to the G-site, suggesting appropriate shape and 461 

location of this pocket for DDT-binding capability. Surprisingly, a highly conserved G-462 

site residue in delta GSTs (Ser9) is missing in our docking model, which is in line with 463 

DmGSTd2 and AdGSTd4-4 (Gonzalez et al., 2018; Vararattanavech and Ketterman, 464 

2007). It could also imply that AaGSTd3 needs further formational change. Our 465 

prediction of the AaGSTe2 protein structure and DDT docking was largely in line with 466 

the findings of Wang et al. for AgGSTe2 (2008). Docking of DDT revealed that 467 

AaGSTe2 has the same V-shaped DDT-binding pocket as AfGSTe2 and AgGSTe2, but 468 

with the angle/shape of docked DDT differing between Anopheles GSTs, which could 469 

be due to the protein sequence differences between Anopheles GSTe2s or different 470 

docking software (Riveron et al., 2014b; Wang et al., 2008). Previous studies also 471 

showed that the better performance of GSTe2 could be caused by a larger entry site for 472 

DDT, a more efficient hydrogen bond network to stabilize GSH, and a better-sealed 473 

hydrophobic DDT pocket (Low et al., 2010; Wang et al., 2008). Indeed, by comparing 474 

the predicted DDT-binding sites of AaGSTd3 and AaGSTe2, it was found that H4 of 475 

the H-site of AaGSTd3 is different from AaGSTe2, with H4 being bent and forming a 476 

closed state pocket in Anopheles GSTe2 (Riveron et al., 2014b). In addition, the 477 

predicted DDT-binding pocket for AaGSTe2 also comprised more residues compared 478 

to AaGSTd3, forming a nearly closed state. Altogether, our molecular docking 479 

experiments could explain higher DDT-detoxifying activity of AaGSTe2. In addition, 480 

a closer position between chlorine atoms of DDT and the sulfur atom of glutathione 481 

was also observed in AaGSTe2, which might facilitate the elimination of HCl from 482 

DDT to form DDE (Low et al., 2010; Wongsantichon et al., 2012). 483 

Although GSTe2 is well known to confer DDT resistance, in some DDT/pyrethroid 484 

field resistant populations from Africa, GSTe2 is not always highly expressed nor is 485 

the GSTe2 L119F resistance mutation present, suggesting that additional mechanisms 486 

are involved in DDT resistance in mosquitoes (Riveron et al., 2015; Simma et al., 2019; 487 

Thomsen et al., 2014). Although AaGSTd3 metabolizes DDT to a lesser extent 488 



compared to AaGSTe2 and has lower peroxidase activity, its consistent overexpression 489 

in DDT resistant anopheline populations suggests that it might have a significant role 490 

in DDT resistance. A possible explanation might be that GSTd3 rather sequesters than 491 

metabolizes DDT. In this light, AaGSTd3 does have a five-fold higher affinity for 492 

GSH compared to AaGSTe2 and previously it has been suggested that GSTs with high 493 

affinity for GSH evolved towards increased product binding at the expense of catalytic 494 

efficiency (Meyer, 1993). Alternatively, GSTd3 might be co-regulated with other 495 

resistance genes, and make part of a more general stress response. 496 

To conclude, both GSTd3 and GSTe2 of An. arabiensis were expressed and 497 

functionally characterized. CDNB-conjugating, DDTase and glutathione peroxidase 498 

activity of AaGSTd3 was lower compared to AaGSTe2. Protein modeling and DDT 499 

docking also suggested a better fit of DDT within the H-site AaGSTe2. This suggests 500 

that the contribution of AaGSTd3 towards DDT resistance in Anopheles mosquitoes is 501 

minor compared to that of AaGSTe2. However, the consistent overexpression of this 502 

gene in DDT resistant Anopheles mosquitoes, does suggest that AaGSTd3 might have 503 

a significant role in resistance. Future experiments should focus on confirming the role 504 

of AaGSTd3 in DDT resistance, for example via genetically modified mosquitoes 505 

overexpressing AaGSTd3 (as was done by Adolfi et al. for AgGSTe2), and investigate 506 

whether AaGSTd3 rather contributes to DDT resistance via sequestration instead of 507 

direct metabolism (Adolfi et al., 2019).  508 
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9. Figure legends 524 

Figure 1. Expression levels of GSTd3 and GSTe2 in anopheline mosquito populations 525 
resistant to DDT 526 

GSTd3 and GSTe2 expression levels [log2(fold change (FC)] derived from previously published 527 
RNAseq studies with DDT resistant populations of An. arabiensis, An. coluzzi, An gambiae s.s., 528 
An. gambiae s.l. and An. funestus. A horizontal line indicates a log2FC of 1. An asterisk 529 
indicates that the L119F resistance mutation was reported for GSTe2 (Riveron et al., 2017). 530 
Details for each differential expression analysis can be found in Table S1. 531 

Figure 2. DDT Metabolic activity assays with AaGSTe2 and AaGSTd3  532 

(A) Concentration of DDT and its metabolite DDE at different time points in a reaction mix 533 

including AaGSTd3, GSH, and DDT. (B) Concentration of DDT and its metabolite DDE at 534 

different time points in a reaction mix system including AaGSTe2, GSH, and DDT. (C) 535 

Concentration of DDT in a reaction mix with only AaGSTd3 and DDT. (D) Concentration of 536 

DDT and its metabolite DDE in a reaction mix with only AaGSTe2 and DDT. (E) DDTase 537 

activity of AaGSTd3 with (grey bars) or without GSH (black bars). (F) DDTase activity for 538 

AaGSTe2 with (grey bars) or without GSH (black bars). A low or no DDTase activity was 539 

shown for AaGSTe2 (grey bars) as only little DDE could be detected at 6h while at other time-540 

points DDT could not be detected. An asterisk indicates the treatment group at 6h is 541 

significantly different from the control group at 6h (detailed information can be found in Figure 542 

S4). Different letters a, b, c, d (or A, B, C, D) indicate statistically significant differences 543 

between groups (one-way ANOVA, P < 0.05). 544 

Figure 3. Multiple sequence alignment of An. arabiensis delta and epsilon class GSTs 545 

with those of insects 546 

GST protein sequences were aligned using BioEdit v. 7.2.5 (Hall, 1999). BmGSTD (3VK9), 547 

NIGSTD (3WYW), LmGSTD1(AEB91971), DmGSTD1(3EIN), AfGSTE2 (3ZML), 548 

AgGSTD1-6 (1PN9), and AdGSTD4-4 (3F63) were used in this study, which can be accessed 549 

at the NCBI (L. migratoria) or the RCSB Protein Data Bank (PDB accessions, other insects). 550 

Identical and highly similar residues are shaded black and grey, respectively. The positions of 551 

β sheets (β1-β4) and α-helices (H1-H8) in the AaGSTd3 protein sequence were derived from 552 

the AaGSTd3 3D-model predicted by the Swiss-model server and are shown on top of the 553 

alignment. The predicted GSH-binding pocket is indicated with an asterisk. The predicted 554 

DDT-binding pockets are indicated with black squares. Bm: Bombyx mori; NI: Nilaparvata 555 



lugens; Lm: Locusta migratoria; Dm: Drosophila melanogaster; Af: Anopheles funestus; Ag: 556 

Anopheles gambiae; Ad: Anopheles duris. 557 

Figure 4. Structural features of AaGSTd3 and AaGSTe2 protein model  558 

(A) Ribbon representation of the AaGSTd3 monomer. The N-terminal domain is shown in 559 

purple, the C-terminal domain is shown in blue. (B) Ribbon representation of the AaGSTd3 560 

homodimer. (C) Predicted residues that may contribute in the interaction of the GSH-binding 561 

pockets in AaGSTd3. Hydrogen bonds are shown in red. (D) Predicted surface representation 562 

of GSH binding in the AaGSTd3 protein model. (E) Ribbon representation of the AaGSTe2 563 

monomer. The N-terminal domain is shown in purple while the C-terminal domain is shown in 564 

blue. (F) Ribbon representation of the AaGSTe2 homodimer. (G) Predicted residues that may 565 

contribute in the interaction of the GSH-binding pockets in AaGSTe2. Hydrogen bonds are 566 

shown in red. (H) Predicted surface representation of GSH binding in the AaGSTe2 protein 567 

model. 568 

Figure 5. Predicted interactions between AaGSTd3 or AaGSTe2 residues and 4,4’-DDT 569 

(A) Predicted residues that may contribute to the interaction of AaGSTd3 with 4,4’-DDT. (B) 570 

Predicted surface representation of the DDT-binding pockets of AaGSTd3. (C) Predicted 571 

residues that may contribute in the interaction of AaGSTd3 with a GSH and a DDT molecule. 572 

(D) Predicted surface representation of the DDT-binding pockets in AaGSTd3. The bound GSH 573 

molecule is also represented. Hydrogen bonds are shown in red. (E) Predicted residues that may 574 

contribute to the interaction of AaGSTe2 with 4,4’-DDT. (F) Predicted surface representation 575 

of the DDT-binding pockets of AaGSTe2. (G) Predicted residues that may contribute to the 576 

interaction of AaGSTe2 with a GSH and a DDT molecule. (H) Predicted surface representation 577 

of the DDT-binding pockets in AaGSTe2. The bound GSH molecule is also depicted. Hydrogen 578 

bonds are shown in red. 579 

10.  Supplementary figure legends 580 

Figure S1. Relative expression levels of GSTd3 in DDT resistant populations of An. 581 

arabiensis 582 

Relative expression levels (fold change) of the GSTd3 gene in highly DDT resistant Anopheles 583 

arabiensis populations ASN, CHW and TOL compared to a susceptible population SEK as 584 

assessed by RT-qPCR. An asterisk indicates a significant difference from 1 based on an 585 

independent t test (P < 0.05). 586 

Figure S2. Multiple sequence alignment of An. arabiensis and An. gambiae GSTe2 587 

Alignment between AaGSTe2 protein sequence of the TOL population, the AaGSTe2 protein 588 

sequence (VectorBase ID: AARA008732) of the An. arabiensis reference strain (Dongola), and 589 



the AgGSTe2 protein sequence (VectorBase ID: AGAP009194) of the An. gambiae reference 590 

(PEST) strain. A square indicates previously reported resistance mutations (I114T, L119F) for 591 

GSTe2, but these mutations were not found in the TOL population (Mitchell et al., 2014; 592 

Riveron et al., 2014b). BioEdit v. 7.2.5 (Hall, 1999) was used for aligning sequences.  593 

Figure S3. SDS-PAGE and Western blot of purified fractions of recombinantly expressed 594 

GST protein 595 

SDS-PAGE (A) and Western blot (B) showing the expression of the AaGSTe2 and AaGSTd3 596 

protein. Lane 1: molecular weight marker (Precision Plus ProteinTM All Blue Prestained Protein 597 

Standard). Lane 2: purified His-tagged AaGSTd3. Lane 3: purified His-tagged AaGSTe2. Lane 598 

4: molecular weight marker (Precision Plus ProteinTM Unstained Protein Standard). 599 

Figure S4. DDT Metabolic activity assays with AaGSTe2 and AaGSTd3 600 

DDT metabolic activity assays with AaGSTd3 were performed at 6h (A), 12h (B), 24h (C), and 601 

36h (D). DDT metabolic activity assays with AaGSTe2 were performed at 6h (E), 12h (F), 24h 602 

(G), and 36h (H). DDT, a reaction system including DDT only; DDE, a reaction system 603 

including DDE only; Control, a reaction system including boiled GST, DDT and GSH; Without 604 

GSH, a reaction system including GST and DDT; GSH, a reaction system including GST, DDT 605 

and GSH. An asterisk indicates a significant difference from the control group at each time 606 

point. 607 
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12.  Tables 958 

Table 1. Substrate specificities of AaGSTd3 and AaGSTe2 against the model substrates CDNB, DCNB, and CuOOH 959 

n.d: not detected (under assay conditions) 960 

An asterisk indicates a significant difference from AaGSTd3 based on an independent t test (P < 0.05). 961 

 962 

 963 

 964 

Substrate Structure Specific activity (µmol/min/mg) 

  AaGSTd3 AaGSTe2 

1-Chloro-2,4-dinitrobenzene 

(CDNB)  

0.68 ± 0.09 33 ± 3* 

1,2-Dichloro-4-nitrobenzene 

(DCNB)  

n.d. 0.27 ± 0.02* 

Cumene hydroperoxide 

(CuOOH) 

 0.55 ± 0.06 1.8 ± 0.2* 



Table2. Kinetic parameters of recombinant Anopheles arabiensis GSTs 965 

Kinetic parameter AaGSTd3 AaGSTe2 

VmaxCDNB (U/mg) 0.65 ± 0.02 24 ± 2* 

VmaxGSH (U/mg) 0.72 ± 0.05 41 ± 2* 

KmCDNB (mM) 1.3 ± 0.1 0.0093 ± 0.0008* 

KmGSH (mM) 1.2 ± 0.1 6.8 ± 0.8* 

kcatCDNB (s-1) 0.27 ± 0.01 10 ± 1* 

kcatGSH (s-1) 0.30 ± 0.02 18 ± 1* 

kcat/KmCDNB (mM-1s-1) 0.21 1100 

kcat/KmGSH (mM-1s-1) 0.24 2.6 

Three independent assays were performed and four technical replicates were used in each independent assay. Results show mean ± SE. One unit (U) is the 966 
amount of enzyme that catalyzes the reaction of 1 µmol of substrate per minute at pH 6.5 and 30ºC. An asterisk indicates a significant difference from 967 
AaGSTd3 based on an independent t test (P < 0.05). 968 

 969 

 970 

 971 

 972 



13.  Supplementary Tables 973 

Table S1. Relative expression level of GSTd3 and GSTe2 in anopheline mosquito populations 974 

Table S2. Primers used in this study 975 

Table S3. Codon optimized sequence of AaGSTd3 and AaGSTe2 for expression in Escherichia coli 976 

Table S4. CDS of AaGSTe2 from reference (Dongola) and the resistant TOL population and CDS of AgGSTe2 from reference (PEST) population. 977 
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