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Summary
This paper proposes the estimation of first-order-plus-dead-time (FOPDT) and
second-order-plus-dead-time (SOPDT) models from noisy step response data. The
model parameters are estimated by computation of areas, which makes it robust in
the presence of stochastic disturbances in the step response data. The efficiency of
the methodology is extensively tested in various numerical examples as well as in
real-life experimental tests. The results - comparing our proposed estimation method
with some other methods - suggest that the novel algorithm can be used with noisy
step response data and adequately approximates high order systems. Moreover, it
does not require any system identification expertise, making it readily accessible for
the non-experienced user in industrial practice. The method is successfully validated
for overdamped, reasonably underdamped, as well as highly oscillatory processes,
hence offering a comprehensive estimation method.
KEYWORDS:
FOPDT model, SOPDT model, model estimation, step response data, stochastic disturbances, quasi-
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1 INTRODUCTION

Process identification is the starting point in control design and it received great attention among the control community, being
in top three items relevant to industry [13]. Model reduction techniques are usually performed prior to the design and tuning of
controller parameters stages. Hence, the complex dynamics of an industrial process can be simplified by a model reduction to
a first-order-plus-dead-time (FOPDT) or second-order-plus-dead-time (SOPDT) model. Consequently, the efficiency of model-
based control strategies is highly dependent to the derivation of such simplified process models. The rationale consists in the
proofs that such continuous-time transfer functions give a relatively good approximated step response, when compared to the
measured data. Even for higher-order systems, SOPDT models characterize the essential dynamics of a process for further use
in controller’s tuning [1]. In practice, such low-order models make the controller design and online tuning more understandable
and friendly for the system engineer.

Since an oscillatory response commonly occurs in the practical industrial processes, several techniques to estimate the param-
eters of an underdamped SOPDT model are currently available. The majority of those can be classified based on the applied
methodology in: i) open-loop techniques, using the step response data [3, 6, 15] and ii) closed-loop algorithms, which employ
a relay feedback system to ensure an oscillatory response [2, 10]. In the former, in order to derive the parameters of a SOPDT
model, a step response experiment is performed in open-loop, whereas in the latter, the key idea is to use a relay with or without
hysteresis in a control loop to ensure an oscillatory system response [14].
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Since our proposed estimation method uses open-loop step response data to provide an accurate SOPDT model, in the follow-
ing several available results are briefly presented. In [11], a tutorial review on process identification from step and relay feedback
tests is presented. The reviewed identification methods using an open-loop step response test are based on the following: model
fitting using key points from the transient response, integral methods, frequency response estimation, or least squared algorithm,
among others. In [3], a comparison between different identification methods using step response data is provided. Hence, an
integral equation method, a non-linear curve fitting available in Matlab® Optimization Toolbox and a particle swarm optimiza-
tion technique using noise-free data are evaluated. The results are promising but limited to noise-free data, thus encouraging us
to propose a method suitable for noisy step response data. A set of identification procedures using step response information
is presented in both [6, 15]. These methods are based on estimating specific points of the step response (e.g., peak and valley
points on an oscillatory response and their corresponding time instants). However, the location of these points is sensitive to
stochastic disturbances and it can be difficult to select from a noisy signal. In [4], a SOPDT estimation method based on step
response data is given, in which the model parameters are obtained by computing areas instead of points, which makes it less
sensitive to noise. The method is successfully validated for overdamped and reasonably underdamped systems, but fails to pro-
vide accurate results for highly oscillatory systems (with a small damping factor). In [7], a process identification for a SOPDT
model using rectangular pulse input is presented. The model parameters are estimated starting from an open-loop test, by means
of minimizing the sum of modelling errors using the least square method. The solution of the minimization problem is obtained
using a specialized optimization toolbox from Matlab®, and requires specific expertise in the identification field. Moreover, the
method is tested only on overdamped and reasonably damped processes, without testing its validity on highly oscillatory dynam-
ics. A real-coded genetic algorithm used for identification of FOPDT and SOPDT models from open-loop step response is given
in [16]. The method uses a complex optimization problem to search for the model parameters and was not tested for poorly
damped step responses. In [17], a direct identification method from step response data is provided. The procedure derives lin-
ear regression equations directly from the process differential equations, and is validated in simulation on a SOPDT model with
a zero. In [18], a robust method is proposed for identification of linear continuous systems using linear regression equations
based on least squared method. Both methods require dedicated tools and understanding. In [9], a frequency domain approach
for estimating FOPDT and SOPDT models from step response data, using the least squares fitting algorithm is provided, which
also assumes previous specialized knowledge. An indirect identification method of continuous-time delay systems from step
responses is given in [5]. The method firstly uses the discretized continuous-time data to compute a discrete model, which is
then converted to a continuous-time one. In [8], an analytical method based on process moments for estimating a second-order
system with zero plus time delay is presented. The identification can be performed starting from either closed-loop or open-loop
time response data. Nevertheless, the burgeoning demand of simple, yet robust tools in industrial systems practices increases
the ongoing research interest on them.

In this paper, a comprehensive estimation methodology for FOPDT and SOPDT models is provided. Starting from available
step response data, the model parameters are estimated using computation of areas. For validation purposes, the results were
successfully compared to existing estimation methods.

The novelty and valuable contributions of this work can be summarized as follows:
• it provides a quasi-automatic estimation method, which does not require specialized expertise on classical system

identification concepts and methods.
• the methodology is extensive and suitable for the entire range of typical second-order process dynamics. Hence, a two

folded algorithm offers an estimation solution for either:
i) overdamped and reasonably underdamped processes - in practice this will result in a SOPDT model with damping

factor > 0.5, or
ii) highly oscillatory processes - in practice this will result in a SOPDT model with damping factor < 0.5.

• the algorithm is highly reliable in realistic situations, when noisy signals are used as entry data in the estimation procedure.
The remaining of this paper is structured as follows. In Section 2 the description of our novel estimation method in given.

The method is validated on numerical examples in Section 3 and experimental tests in Section 4. The conclusions and future
perspectives are presented in Section 5. The theoretical proofs and Matlab® software are given in the Appendix.
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2 NOVEL ESTIMATION ALGORITHM FOR SOPDT MODELS

Let us consider a SOPDT model defined as:
𝐾

(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)
𝑒−𝜏𝑑𝑠 (1)

in which 𝜏1 and 𝜏2 are the unknown process time constants and 𝜏𝑑 is the unknown dead-time value of the process. A reasonable
estimate 𝐾 of the gain can readily be obtained by averaging the steady-state values of the step response.

The remainder of this section is organized as follows:
1. Subsection 2.1 presents the method for estimating a second-order model without delay, suitable for overdamped, and

reasonably underdamped processes.
2. Subsection 2.2 explains the robustness of the proposed method.
3. Subsection 2.3 presents an extension of the proposed method for estimating a second-order model without delay, suitable

for highly oscillatory processes.
4. Subsection 2.4 considers the dead time influence, thus presenting the full estimation algorithm for a SOPDT model.

2.1 Estimation of a SO model from an overdamped or a reasonably underdamped step response
The second-order (SO) model has the generic form:

𝐾
(𝜏1𝑠 + 1)(𝜏2𝑠 + 1)

= 𝐾
𝜏1𝜏2𝑠2 + (𝜏1 + 𝜏2)𝑠 + 1

=
𝐾𝜔2

𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛
= 𝐾

1
𝜔2
𝑛
𝑠2 + 2𝜁

𝜔𝑛
𝑠 + 1

(2)

in which 𝜏1 and 𝜏2 may be real (overdamped) or complex conjugated (underdamped) values, and with 𝜁 the damping factor and
𝜔𝑛 the natural frequency (rad/s).

In this section, the procedure to estimate the two SO parameters (i.e., 𝜁 and 𝜔𝑛) is tailored for the particular case of
overdamped, as well as reasonably underdamped processes. In practice this will result in a SO model with 𝜁 in the range
{𝜁min … 𝜁max}, with e.g., 𝜁min = 0.5 and 𝜁max = 3. Notice that, for 𝜁 > 3, the model is practically a FO. Here it is assumed that
the dead time is zero, then in Section 2.4 it is explained how to apply the procedure when the dead time is non zero. For a
simplified exposition, all the proofs are given in the Appendix A.1.

Step 1. Referring to Fig. 1, using the measured step response 𝑦(𝑡), 0 ≤ 𝑡 ≤ 𝑇𝑚, calculate the area:

𝐴1 =

𝑇𝑚

∫
0

[𝐾 − 𝑦(𝑡)]𝑑𝑡 (3)

In the discrete-time domain, the area is easily calculated as:

𝐴1 ≅ 𝑇𝑠
𝑁𝑠
∑

𝑘=0
[𝐾 − 𝑦(𝑘)] (4)

with 𝑇𝑠 the sampling period and 𝑁𝑠 + 1 the number of samples in the measurement period 𝑇𝑚 = 𝑁𝑠𝑇𝑠.

Step 2. Construct the signal 𝑥(𝑡) as the step response of the first-order (FO) system 𝐾
1+𝜏𝑠

, with the time constant 𝜏 calculated
as:

𝜏 =
𝐴1

𝐾
(5)

Referring again to Fig. 1 the following relations are proven in the Appendix A.1:
𝐴2 = 𝐴1 (

Δ
= 𝐴) (6)

Area 𝑆1 = Area 𝑆2 (7)
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FIGURE 1 Definition of step responses and corresponding areas as used in the algorithm

Step 3. Define now the signal (𝑡) as the (signed) area between 𝑥(𝑡) and 𝑦(𝑡), 0 ≤ 𝑡 ≤ 𝑇𝑚 as:

(𝑡) =

𝑡

∫
0

[𝑥(𝜈) − 𝑦(𝜈)]𝑑𝜈 (8)

In discrete-time, (𝑡) becomes:
(𝑘) = (𝑘 − 1) + 𝑇𝑠[𝑥(𝑘) − 𝑦(𝑘)] for 𝑘 = 1...𝑁𝑠 (9)

Notice that (0) = 0; moreover, in the Appendix it is proven that (𝑇𝑚) ≈ 0. It follows that (𝑡) must have an extreme in the
range 0 ≤ 𝑡 ≤ 𝑇𝑚.

Step 4. Find the time instant 𝑇 when |(𝑡)| reaches its extreme:
𝑇 = arg max

𝑡
|(𝑡)| (10)

and define the area 𝑆
Δ
= (𝑇 ). In Fig. 1 𝑆 corresponds to Area 𝑆1.

Step 5. Defining 𝛼
Δ
= 𝑇

𝜏
and 𝑍

Δ
= (𝜁 −

√

𝜁2 − 1)2, calculate the following 𝜁 -dependent function, with 𝜁 in the range
{𝜁min … 𝜁max}, with e.g. 𝜁min = 0.5 and 𝜁max = 3 (if 𝜁 > 3, the system is practically first order):

𝐹 (𝜁 ) = 𝑆
𝐴

− 𝑒−𝛼
[

1 − 2Re
{

𝑒−𝛼𝑍

1 −𝑍2

}]

, if 0.5 < 𝜁 < 1 (11)

𝐹 (𝜁 ) = 𝑆
𝐴

− 𝑒−𝛼
[

1 − 𝑒−𝛼𝑍

1 −𝑍2
− 𝑒−𝛼𝑍−1

1 −𝑍−2

]

, if 1 < 𝜁 < 3 (12)

Step 6. The solution is then the value of 𝜁 which fulfils:
𝐹 (𝜁 ) = 0 (13)

with the corresponding value
𝜔𝑛 =

2𝜁
𝜏
. (14)
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This solution is unique (Ref. Appendix A.1).

2.2 Robustness of the proposed estimation method
Obviously, the method is robust w.r.t. stochastic disturbances on the measured step response (because it is solely based on the
calculation of areas 𝐴 and 𝑆, and because integration has an an averaging effect on the noise).

The method is also robust w.r.t. the estimated gain, 𝐾 , except in the case of a very poorly damped (highly oscillatory) step
response. In this section we give an explanation which will lead to a remedy.

FIGURE 2 Support figure depicting an error in the static gain estimation

Referring to Fig. 2, it can be observed that an error Δ𝐾 = 𝐾 − 𝐾 in the estimated static gain is equivalent to an error
Δ𝐴 = 𝐴 − 𝐴 = 𝑇𝑚Δ𝐾 in the calculated area 𝐴.

From Fig. 2 it follows that 𝐴 = 𝐴 + 𝑎𝐾𝑇𝑚, with 𝑎 the relative error on the static gain: 𝑎 = 𝐾−𝐾
𝐾

= Δ𝐾
𝐾

.
Then

𝐴
𝐾

=
𝐴 + 𝑎𝐾𝑇𝑚
(1 + 𝑎)𝐾

≅ 𝐴
𝐾

+ 𝑎𝑇𝑚 (15)
for a small relative error (i.e., 𝑎 ≅ 0).

With the measurement time 𝑇𝑚 being about equal to the settling time for a SO system (i.e., 𝑇𝑚 = 4
𝜁𝜔𝑛

), the combination of
(15),(14),(5),(6) results in:

𝐴
𝐾

≅ 𝐴
𝐾

+ 4𝑎
𝜁𝜔𝑛

= 𝐴
𝐾

(

1 + 2𝑎
𝜁2

)

(16)
In conclusion, from (16) it results that a small relative error 𝑎 on the static gain 𝐾 corresponds to a relative error 2𝑎

𝜁2
on 𝐴

𝐾
.

Considering (5),(6), this error is also the relative error in the estimation of 𝜏, which is a key parameter in the proposed method.
For example, consider 𝑎 = 0.01 which is a small error of 1% and a reasonably damped system with 𝜁 = 0.7. It results a

relative error of Δ𝜏
𝜏

= 2𝑎
𝜁2

= 2∗0.01
0.72

= 0.04 in (16), which is a negligible 4% error. However, in the case of a highly oscillatory
system with 𝜁 = 0.2, this relative error becomes quite large (e.g. Δ𝜏

𝜏
= 2𝑎

𝜁2
= 2∗0.01

0.22
= 0.50 = 50%) and has major influence in

the overall performance of the algorithm.
Hence, the method from Section 2.1 is not suitable for highly oscillatory systems (say 𝜁 < 0.5). From an engineering practice

point of view, a highly oscillatory process has more than 1 oscillation period in the step response. A typical step response for
such systems is provided in Fig. 3.
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FIGURE 3 Useful step response points and areas for highly oscillatory system

Referring to (3), in the calculation of the area 𝐴 = ∫ ∞
0 [𝐾 − 𝑦(𝑡)]𝑑𝑡 = 𝐴1 + 𝐴2 + 𝐴3 + 𝐴4 ⋯ there is a positive contribution

from 𝐴1, 𝐴3, 𝐴5, ⋯ and a negative contribution from 𝐴2, 𝐴4, 𝐴6, ⋯. This can make the area 𝐴 quite small - thus becoming
prone to errors - in case of a highly oscillatory step response.

Referring to (5) and (14), area 𝐴 = 𝐾𝜏 = 𝐾2 𝜁
𝜔𝑛

= 𝐾2 𝜁
𝜔𝑛
𝑇𝑚

𝜁𝜔𝑛

4
= 0.5𝜁2𝐾𝑇𝑚, with 𝐾𝑇𝑚 the area under ‘the static gain line’.

Thus using the previous example, for a reasonably damped system with 𝜁 = 0.7, the area is 𝐴 = 0.25𝐾𝑇𝑚, whereas in the case
of a highly oscillatory system with 𝜁 = 0.2, the area 𝐴 = 0.02𝐾𝑇𝑚 becomes very small and unreliable to calculate 𝜏.

Hence, for highly oscillatory step responses, an alternative area 𝐴 = ∫ ∞
0 |𝐾 − 𝑦(𝑡)|𝑑𝑡 = 𝐴1 −𝐴2 +𝐴3 −𝐴4 ⋯ is introduced,

which never becomes small.

2.3 Estimation of a SO model from a highly oscillatory step response
Hereafter, the algorithm to estimate the SO model parameters from (2) (i.e., 𝜁 and 𝜔𝑛) from highly oscillatory step response
data is provided. In practice this will result in a SO model with 𝜁 in the range {𝜁min … 𝜁max}, with e.g., 𝜁min = 0.01 and
𝜁max = 0.5. Similar with the description from Section 2.1, here it is assumed that the dead time is zero, which will be followed
in Section 2.4 by the description in the general case with dead time different from zero. For the interested reader, all the proofs
are given in the Appendix A.2.

Step 1. Using the measured step response 𝑦(𝑡) calculate the alternative area:

𝐴 =

𝑇𝑚

∫
0

|𝐾 − 𝑦(𝑡)|𝑑𝑡 (17)

In the Appendix A.2 it has been proven that the area 𝐴 from (17) can be analytically obtained as:
𝐴 = 2𝐾Re

{

𝑝∕𝑝
𝑝 − 𝑝

(

−1 + 2 𝑒𝑝𝑇1
1 + 𝑒0.5𝑝𝑇𝑝

)}

(18)

where 𝑝 and 𝑝 are the complex conjugated poles for the SO model (2) (i.e. 𝑝 = −𝜁𝜔𝑛 + 𝑗𝜔𝑛

√

1 − 𝜁2 with 𝜔𝑛 = 2𝜋
𝑇𝑝
√

1−𝜁2
) and

𝑇1 =
arcsin(𝜁 )+ 𝜋

2

𝜔𝑛

√

1−𝜁2
.

The value 𝑇𝑝 is the period of oscillations; this period can be well estimated from the measured step response (averaging over
multiple periods is indeed possible because of the very poor damping).

Notice that the right hand side of (18) is a function of the damping factor 𝜁 only, and is further used to estimate the damping
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factor value.

Step 2. Referring to expression (18), define two functions in the variable 𝜁 as:
𝑓 (𝜁 ) =

𝑝∕𝑝
𝑝 − 𝑝

(

−1 + 2 𝑒𝑝𝑇1
1 + 𝑒0.5𝑝𝑇𝑝

)

(19)
and

𝐹 (𝜁 ) = 𝐴 − 2𝐾Re{𝑓 (𝜁 )} (20)

Step 3. From (18), rewritten as (20), the solution is then the value of 𝜁 which fulfils:
𝐹 (𝜁 ) = 0 (21)

with the corresponding value
𝜔𝑛 =

2𝜋
𝑇𝑝
√

1 − 𝜁2
(22)

This solution is unique (Ref. Appendix A.2).

2.4 Generic procedure to obtain the SOPDT model
In this section, it is explained how to take into account the dead time, when estimating a SOPDT model from step response
data, with 𝜁 in the range {𝜁min … 𝜁max}, where 𝜁min = 0.01 and 𝜁max = 3.

Given the input parameters:
1) measured step response data 𝑦(𝑘), 𝑘 = 0…𝑁𝑠, sampled with period 𝑇𝑠 during the time-range 0… 𝑇𝑚, with 𝑇𝑚 = 𝑁𝑠𝑇𝑠;
2) an estimate of the static gain 𝐾 and of the period of oscillations 𝑇𝑝 (in case of highly oscillatory step responses); note that
these values are easy to estimate from the measured step response;
3) a minimum value 𝜏𝑑 = 𝑑𝑇𝑠 and a maximum value 𝜏𝑑 = 𝑑𝑇𝑠 for the dead-time 𝜏𝑑 , with {𝑑, 𝑑} integer numbers. It is
noteworthy to mention that these values are easy to estimate from the measured step response. Moreover, these values are not
critical, as long as the optimal 𝜏𝑑 is in the range {𝜏𝑑 … 𝜏𝑑}. Default values could be 𝜏𝑑 = 0 and 𝜏𝑑 = 𝑇𝑚.

In order to estimate the SOPDT model parameters (i.e. 𝜔𝑛, 𝜁 and 𝜏𝑑), the following procedure is provided.
For each 𝑑 = 𝑑 ∶ 𝑑 do the following:

Step 1. Replace the measured step response 𝑦(𝑘) by a ‘delay-free’ step response 𝑠(𝑘). This is simply done by skipping the
first 𝑑 samples (i.e. 𝑠(𝑘 − 𝑑) = 𝑦(𝑘), with 𝑘 = 𝑑…𝑁𝑠).

Step 2. Use the shifted step response 𝑠(𝑘) to estimate the parameters 𝜁 and 𝜔𝑛
As a rule of thumb, if there is more than one oscillation period in the step response 𝑦(𝑘), then use the extension for the

method suitable for highly oscillatory systems provided in Section 2.3, else use the algorithm from Section 2.1.

Step 3. Calculate the step response 𝑦(𝑘) of the estimated SOPDT model 𝐾𝜔2
𝑛

𝑠2+2𝜁𝜔𝑛𝑠+𝜔2
𝑛
𝑒−𝜏𝑑𝑠 with 𝜏𝑑 = 𝑑𝑇𝑠.

Step 4. As an error criterion use for example the Sum of Squared Errors 𝑆𝑆𝐸 =
∑𝑁𝑠

𝑘=0[𝑦(𝑘) − 𝑦(𝑘)]2.
Note that SSE is a commonly used error criterion, but any other criterion which involves the error between actual and estimated
step responses would do.

Step 5. The optimal value of 𝜏𝑑 is then 𝜏∗𝑑 = arg min
𝜏𝑑

𝑆𝑆𝐸(𝜏𝑑).
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3 NUMERICAL EXAMPLES

Example 1: Overdamped system
Consider the system: 𝑃 (𝑠) = 100(𝑠 + 1.5)(𝑠 + 3)(𝑠 + 6)

(𝑠 + 1)(𝑠 + 2)(𝑠 + 4)(𝑠 + 8)(𝑠 + 16)
𝑒−0.5𝑠, 𝐾 = 2.6.

Our estimation: 𝑃𝑅𝐷𝐾𝐴𝑀 (𝑠) = 2.6
0.015𝑠2 + 0.735𝑠 + 1

𝑒−0.54𝑠, hereafter referred with subscript ‘RDKAM’.
Reference model: 𝑃𝑇𝐹𝐸𝑆𝑇 (𝑠) =

2.6
0.010𝑠2 + 0.754𝑠 + 1

𝑒−0.50𝑠, hereafter referred with subscript ‘TFEST’.
It is noteworthy to mention that the latter was obtained using the Matlab® System Identification Toolbox, i.e., the tfest function.

The estimation using the proposed method is acceptable, from a practical engineering p.o.v.; ref. Fig. 4, right subplot.
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FIGURE 4 MEASURED, REAL, RDKAM and TFEST step responses for Ex. 1

Due to severe low and high frequency stochastic disturbances, the measured step response deviates from the real step
response; for this reason, the value for estimated gain 𝐾 was chosen as an average value over the last 0.5 seconds from the
measured step response, ref. Fig. 4, left subplot.
In the experiment, we injected stochastic disturbance at the input, with the standard deviation value 𝜎𝑖𝑛 = 0.472, and at output
of the process, with 𝜎𝑜𝑢𝑡 = 0.052. For comparison, we have also computed the Mean Squared Error, obtaining the values:
𝑀𝑆𝐸𝑅𝐷𝐾𝐴𝑀 = 0.0051, and 𝑀𝑆𝐸𝑇𝐹𝐸𝑆𝑇 = 0.0020, where 𝑀𝑆𝐸𝑅𝐷𝐾𝐴𝑀 = 1

𝑁𝑠 + 1

𝑁𝑠
∑

𝑘=0
[𝑦𝑅𝐸𝐴𝐿(𝑘)−𝑦𝑅𝐷𝐾𝐴𝑀 (𝑘)]2 with 𝑦𝑅𝐸𝐴𝐿

the step response of 𝑃 (𝑠) and 𝑦𝑅𝐷𝐾𝐴𝑀 the step response of 𝑃𝑅𝐷𝐾𝐴𝑀 (𝑠) estimated using our proposed method (and similar for
the definition of 𝑀𝑆𝐸𝑇𝐹𝐸𝑆𝑇 ); 𝑁𝑠 + 1 is the number of samples in the data set.

Example 2: Underdamped system
Consider the system: 𝑃 (𝑠) = 1000

𝑠2 + 10𝑠 + 100
𝑒−0.1𝑠, 𝐾 = 10.22, 𝑇𝑝 = 0.7.

Our estimation: 𝑃𝑅𝐷𝐾𝐴𝑀 (𝑠) = 1098
𝑠2 + 10.36𝑠 + 107.4

𝑒−0.115𝑠.
TFEST estimation: 𝑃𝑇𝐹𝐸𝑆𝑇 (𝑠) =

937
𝑠2 + 11.79𝑠 + 92.49

𝑒−0.075𝑠.

The estimation using the proposed method is acceptable, from a practical engineering p.o.v.; ref. Fig. 5, right subplot.
The injected stochastic disturbances have the following values: 𝜎𝑖𝑛 = 0.284, and 𝜎𝑜𝑢𝑡 = 0.566.

For comparison, we have also computed the value 𝑀𝑆𝐸, obtaining: 𝑀𝑆𝐸𝑅𝐷𝐾𝐴𝑀 = 0.064, and 𝑀𝐸𝑆𝑇𝐹𝐸𝑆𝑇 = 0.162.
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FIGURE 5 MEASURED, REAL, RDKAM and TFEST step responses for Ex. 2

Example 3: Highly oscillatory system
Consider the system: 𝑃 (𝑠) = 1000

(𝑠2 + 4𝑠 + 100)(0.05𝑠 + 1)
, 𝐾 = 10, 𝑇𝑝 = 0.63.

Our estimation: 𝑃𝑅𝐷𝐾𝐴𝑀 (𝑠) = 10
0.0097𝑠2 + 0.0374𝑠 + 1

𝑒−0.04𝑠.
TFEST estimation: 𝑃𝑇𝐹𝐸𝑆𝑇 (𝑠) =

10.10
0.0105𝑠2 + 0.0503𝑠 + 1

.

The estimation using the proposed method is acceptable, from a practical engineering p.o.v.; ref. Fig. 6, right subplot.
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FIGURE 6 MEASURED, REAL, RDKAM and TFEST step responses for Ex. 3

The injected stochastic disturbances have the following values: 𝜎𝑖𝑛 = 1.00, and 𝜎𝑜𝑢𝑡 = 0.20.
For comparison, we have also computed the value 𝑀𝑆𝐸, obtaining: 𝑀𝑆𝐸𝑅𝐷𝐾𝐴𝑀 = 0.21, and 𝑀𝐸𝑆𝑇𝐹𝐸𝑆𝑇 = 0.73.

Example 4: High-order monotonic process. Comparative evaluation with existing methods. Our proposed method was com-
pared with two methods from the literature. The first method uses a three-point fitting estimation method [15], hereafter will
be referred with the subscript ‘GPR’. The second method is based on least squares regression equations [18], hereafter will be
referred with the subscript ‘QGW’. As the reference for comparison we also employed the estimation method tfest.
Consider the system [18]: 𝑃 (𝑠) = 1

(𝑠 + 1)5
, 𝐾 = 1.
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Our estimation: 𝑃𝑅𝐷𝐾𝐴𝑀 (𝑠) = 1
4.04𝑠2 + 3.58𝑠 + 1

𝑒−1.45𝑠.
GPR estimation: 𝑃𝐺𝑃𝑅(𝑠) =

1
4.71𝑠2 + 3.58𝑠 + 1

𝑒−1.35𝑠.
QGW estimation: 𝑃𝑄𝐺𝑊 (𝑠) = 1

4.40𝑠2 + 3.45𝑠 + 1
𝑒−1.45𝑠.

TFEST estimation: 𝑃𝑇𝐹𝐸𝑆𝑇 (𝑠) =
0.98

4.37𝑠2 + 3.40𝑠 + 1
𝑒−1.50𝑠.

The estimations are perfect from a practical engineering p.o.v. (ref. Fig. 7, where for simplicity we only show the comparison
results with QGW method. The graphical results obtained with the other methods are basically identical, and for simplicity were
not plotted).
For comparison, we have also computed the value 𝑀𝑆𝐸, obtaining: 𝑀𝑆𝐸𝑅𝐷𝐾𝐴𝑀 = 7.35 × 10−5, 𝑀𝑆𝐸𝐺𝑃𝑅 = 9.31 × 10−5,
𝑀𝑆𝐸𝑄𝐺𝑊 = 13.29 × 10−5, and 𝑀𝑆𝐸𝑇𝐹𝐸𝑆𝑇 = 9.12 × 10−5.
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FIGURE 7 REAL, RDKAM and QGW step responses for Ex. 4

Example 5: High-order system with delay. Comparative evaluation with existing estimation methods.
Consider the system [18]: 𝑃 (𝑠) = 1.08

(𝑠 + 1)2(2𝑠 + 1)3
𝑒−10𝑠, 𝐾 = 1.08.

Our estimation: 𝑃𝑅𝐷𝐾𝐴𝑀 (𝑠) = 1.08
10.87𝑠2 + 5.78𝑠 + 1

𝑒−12.1𝑠.
GPR estimation: 𝑃𝐺𝑃𝑅(𝑠) =

1.08
11.76𝑠2 + 5.64𝑠 + 1

𝑒−12.17𝑠.
QGW estimation: 𝑃𝑄𝐺𝑊 (𝑠) = 1.08

11.90𝑠2 + 5.87𝑠 + 1
𝑒−12.06𝑠.

TFEST estimation: 𝑃𝑇𝐹𝐸𝑆𝑇 (𝑠) =
1.06

11.89𝑠2 + 5.71𝑠 + 1
𝑒−12.0𝑠.

The estimations are perfect from a practical engineering p.o.v. (ref. Fig. 8, where for simplicity we only show the comparison
results with GPR method. The graphical results obtained with the other methods are very similar and were omitted).
For comparison, we have also computed the value 𝑀𝑆𝐸, obtaining: 𝑀𝑆𝐸𝑅𝐷𝐾𝐴𝑀 = 3.93 × 10−5, 𝑀𝑆𝐸𝐺𝑃𝑅 = 13.85 × 10−5,
𝑀𝑆𝐸𝑄𝐺𝑊 = 5.17 × 10−5, and 𝑀𝑆𝐸𝑇𝐹𝐸𝑆𝑇 = 2.42 × 10−5.

In this section, several numerical examples were used to test the efficiency of the proposed estimation method in various
situations:

i) noisy overdamped, underdamped and highly oscillatory system dynamics, i.e., entry data subject to severe stochastic
disturbances (ref. Example 1, 2 and 3, respectively).

ii) noise-free system dynamics for comparative evaluation with existing estimation methods from the literature, (ref.
Examples 5 and 6).
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FIGURE 8 REAL, RDKAM and GPR step responses for Ex. 5

In all the above mentioned examples, the simulation results clearly indicated that our proposed estimation method is reliable
when tested in reasonable cases.

4 EXPERIMENTAL TESTS

In this section, our novel estimation method is tested on two real-time benchmarks, which are representative for manifold con-
trol engineering processes. As such, the six tanks process from Quanser can be viewed as a dynamics simulator for chemical
plants, such as distillation columns from petrochemical industry, pharmaceutical industry or water treatment plants. On the
other hand, the Mass-Spring-Damper (MSD) system is illustrative for mechatronics engineering applications, more specifically
in vibration control problems. Thus, it can be used to simulate the active suspension system of a car, the train with multiple
coaches, the chain of cars in a highway, or the damping system in tall buildings or the movement in air-plane wings.

Real-time Example 1: The six tanks process
In the six tanks process from Quanser® (Fig. 9) described in [12], the input variable is the water flow (i.e., the voltage [V] of the
pump) for the 1𝑠𝑡 tank, while the output variable is the water level [cm] of the 6𝑡ℎ tank. All thanks are in series, which makes
the system a 6𝑡ℎ order.
The measured data was sampled with 𝑇𝑠 = 1[𝑠] and 𝐾 is specified as 0.82.
Our estimation: 𝑃𝑅𝐷𝐾𝐴𝑀 (𝑠) = 0.0011

𝑠2+0.0646𝑠+0.0013
𝑒−18𝑠, with 𝑀𝑆𝐸𝑅𝐷𝐾𝐴𝑀 = 7.00 × 10−5..

TFEST estimation: 𝑃𝑇𝐹𝐸𝑆𝑇 (𝑠) =
0.0010

𝑠2+0.0624𝑠+0.0013
𝑒−19𝑠, with 𝑀𝑆𝐸𝑇𝐹𝐸𝑆𝑇 = 8.16 × 10−5..

Figure 10 denotes a good approximation of the measured step response.
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FIGURE 9 Overview of the six tanks process from Quanser®
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FIGURE 10 Measured, TFEST and RDKAM step responses for the Quanser® six tanks process from real-time Example 1

Real-time Example 2: The Mass-Spring-Damper (MSD) system
In the Mass-Spring-Damper (MSD) system from ECP® depicted in Fig. 11, the input variable is the voltage [V] of motor, while
the output variables are the positions [mm] of the two masses. For our test, only the model for the second mass is of interest,
which is a 4th order system with two resonance peaks (i.e., 4 complex conjugated poles).
The measured data was sampled with 𝑇𝑠 = 0.010[𝑠].
Our estimation: 𝑃𝑅𝐷𝐾𝐴𝑀 (𝑠) = 736𝑒−0.11𝑠

𝑠2+2.01𝑠+404
, with 𝑀𝑆𝐸𝑅𝐷𝐾𝐴𝑀 = 0.042.

TFEST estimation: 𝑃𝑇𝐹𝐸𝑆𝑇 (𝑠) =
729𝑒−0.15𝑠

𝑠2+2.72𝑠+400
, with 𝑀𝑆𝐸𝑇𝐹𝐸𝑆𝑇 = 0.095.

The estimation successfully approximates the measured data; ref. Fig. 12.

5 CONCLUSIONS

In this paper a novel method has been presented to estimate a FOPDT or SOPDT model from noisy step response data. It can be
used with non-oscillatory as well as with highly oscillatory step responses. The key idea is the calculation of areas of interest,
rather than using specific points of the step response, for estimating the model parameters. The method is quasi-automatic
and does not require specialized expertise in system identification techniques. Moreover its validation (both with numerical
and experimental examples) showed increased reliability w.r.t. entry data corrupted with stochastic disturbances, thanks to the
averaging effect of the integration, as opposed of needing to detect interest points in a noisy signal.
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FIGURE 11 Overview of the MSD system from ECP®
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FIGURE 12 Measured, TFEST and RDKAM step responses for the ECP® MSD system from real-time Example 2

As a reference, our estimation results were compared with a model obtained using the Matlab® System Identification Toolbox.
Moreover, we also compared our method, with two methods from the literature, which use different estimation approaches, i.e., a
three-point fitting method and a method using least squares regression equations. The results show the efficiency of the proposed
estimation method, which has the benefit of being extremely easy to use, and does not requisite identification proficiency. Our
aim was to develop a simple and convenient estimation method, especially dedicated to industry practitioners.

Future work will focus on performing an extensive robustness validation for our proposed method, using for example Monte-
Carlo simulations for different noise sequences, to analyse the variability of the parameter estimates.
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APPENDIX

A

This appendix is organized in three parts with the following structure:
• Subsection A.1 presents the theoretical proofs regarding subsection 2.1,
• Subsection A.2 depicts the theoretical proofs regarding subsection 2.3,
• Subsection A.3 provides a summary of the algorithms and the Matlab® software corresponding to the procedure detailed

in subsection 2.4.

A.1 Theoretical proofs - regarding the formulas introduced in Section 2.1
This section presents the theoretical proofs regarding the relations (6) and (7) by means of two theorems.
Theorem 1. The areas 𝐴1 and 𝐴2 are equal; their value is 𝐴 = 𝐾(𝜏1 + 𝜏2).
Proof of Theorem 1. The step response of a SO process model is given as:

𝑌 (𝑠) = 𝐾
(1 + 𝜏1𝑠)(1 + 𝜏2𝑠)

1
𝑠

⇐⇒ 𝑦(𝑡) = 𝐾
(

1 +
𝜏1

𝜏2 − 𝜏1
𝑒−𝑡∕𝜏1 −

𝜏2
𝜏2 − 𝜏1

𝑒−𝑡∕𝜏2
) (A1)

Then, the area 𝐴1 is obtained as:

𝐴1 =

∞

∫
0

[𝐾 − 𝑦(𝑡)]𝑑𝑡

= −𝐾
𝜏1

𝜏2 − 𝜏1

∞

∫
0

𝑒−𝑡∕𝜏1𝑑𝑡 +𝐾
𝜏2

𝜏2 − 𝜏1

∞

∫
0

𝑒−𝑡∕𝜏2𝑑𝑡 = 𝐾(𝜏1 + 𝜏2)

(A2)

The step response of a FO process model is given as:
𝑋(𝑠) = 𝐾

1 + (𝜏1 + 𝜏2)𝑠
1
𝑠

⇐⇒ 𝑥(𝑡) = 𝐾(1 − 𝑒−𝑡∕(𝜏1+𝜏2)) (A3)
Then, the area 𝐴2 is obtained as:

𝐴2 =

∞

∫
0

[𝐾 − 𝑥(𝑡)]𝑑𝑡 = 𝐾

∞

∫
0

𝑒−𝑡∕(𝜏1+𝜏2)𝑑𝑡 = 𝐾(𝜏1 + 𝜏2) (A4)



Anca Maxim ET AL 15

Remark 1. As demonstrated, the following relations are obtained:

(𝑡 → ∞) =

∞

∫
0

[𝑥(𝑡) − 𝑦(𝑡)]𝑑𝑡

=

∞

∫
0

[𝐾 − 𝑦(𝑡)]𝑑𝑡 −

∞

∫
0

[𝐾 − 𝑥(𝑡)]𝑑𝑡

= 𝐴1 − 𝐴2 = 0 ⇐⇒ 𝑆1 + 𝑆2 = 0

(A5)

Remark 2. After calculating the area 𝐴 from a measured step response, (𝜏1 + 𝜏2) can be estimated as:
𝜏1 + 𝜏2 =

𝐴
𝐾

(A6)

Theorem 2. The ratio of the areas 𝑆
𝐴

depends only on the ratio 𝑍 of the time constants
(

𝑍 = 𝜏1
𝜏2

)

.
Proof of Theorem 2.

𝑆
Δ
= (𝑇 ) =

𝑇

∫
0

[𝑥(𝑡) − 𝑦(𝑡)]𝑑𝑡

=

𝑇

∫
0

[

𝐾(1 − 𝑒−𝑡∕(𝜏1+𝜏2)) −𝐾
(

1 +
𝜏1

𝜏2 − 𝜏1
𝑒−𝑡∕𝜏1 −

𝜏2
𝜏2 − 𝜏1

𝑒−𝑡∕𝜏2
)]

𝑑𝑡

=𝐾(𝜏1 + 𝜏2)

[

𝑒−𝑇 ∕(𝜏1+𝜏2) +
𝜏21

𝜏22 − 𝜏21
𝑒−𝑇 ∕𝜏1 −

𝜏22
𝜏22 − 𝜏21

𝑒−𝑇 ∕𝜏2
]

(A7)

Defining
𝛼

Δ
= 𝑇

𝜏1 + 𝜏2

(

= 𝐾𝑇
𝐴

)

(A8)
and using (A6), (A7) becomes:

𝑆 = 𝐴
[

𝑒−𝛼 − 1
1 −𝑍−2

𝑒−𝛼(1+𝑍−1) − 1
1 −𝑍2

𝑒−𝛼(1+𝑍)
]

(A9)
The following relation for overdamped systems results:

𝑆
𝐴

= 𝑒−𝛼
[

1 − 𝑒−𝛼𝑍

1 −𝑍2
− 𝑒−𝛼𝑍

1 −𝑍−2

]

(A10)
Regarding the underdamped systems, 𝜏1 = 𝑀𝑒−𝑗𝜑 and 𝜏2 = 𝑀𝑒𝑗𝜑 are complex conjugated numbers with 0 < 𝜑 < 𝜋∕2 for

stability. The ratio of the time constants then takes the following form:
𝑍

Δ
=

𝜏1
𝜏2

= 𝑒−𝑗2𝜑, so 𝑍−1 = 𝑍∗ (complex conjugated) (A11)
Thus

𝑒−𝛼𝑍−1

1 −𝑍−2
= 𝑒−𝛼𝑍∗

1 −𝑍∗2
=
(

𝑒−𝛼𝑍

1 −𝑍2

)∗

, because 𝛼 is real. (A12)
For underdamped systems, (A10) becomes:

𝑆
𝐴

= 𝑒−𝛼
[

1 − 2𝑅𝑒 𝑒−𝛼𝑍

1 −𝑍2

]

(A13)

NOTE: In theory, 𝑇 can be any value in the range 0 < 𝑇 < 𝑇𝑚, but the theory is based on a nominal 2𝑛𝑑 order system without
disturbances. In practice, we select 𝑇 where the area 𝑆 is maximum, in order to decrease the effect of all kind of errors on
the calculated 𝑆 (e.g. higher order dynamics, integration errors due to discrete-time, error on the gain 𝐾 , disturbances on the
measured step response).
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The final result is a SO model of the form:
𝐾

(1 + 𝜏1𝑠)(1 + 𝜏2𝑠)
= 𝐾

1 + 2𝜁
𝜔𝑛
𝑠 + 1

𝜔2
𝑛
𝑠2

(A14)

It results that:
𝜏1 + 𝜏2 =

2𝜁
𝜔𝑛

and 𝜏1𝜏2 =
1
𝜔2
𝑛

(A15)
Consider (A15) to calculate 𝜁 :

𝜁 =
𝜏1 + 𝜏2
2
√

𝜏1𝜏2
= 𝑍 + 1

2
√

𝑍
(A16)

It follows that the solution of the quadratic equation (A16) is:
𝑍 = (𝜁 −

√

𝜁2 − 1)2 (A17)
Therefore, there are 2 cases:
1. if 𝜁 > 1, then 𝑍 = (𝜁 −

√

𝜁2 − 1)2 is in the range 0 < 𝑍 < 1. Then, referring to (A10), the solution for 𝜁 is given by:
𝐹 (𝜁 )

Δ
= 𝑆

𝐴
− 𝑒−𝛼

[

1 − 𝑒−𝛼𝑍

1 −𝑍2
− 𝑒−𝛼𝑍−1

1 −𝑍−2

]

= 0 (A18)

2. if 𝜁 < 1, then 𝑍 = (𝜁 − 𝑗
√

1 − 𝜁2)2 is of the form 𝑒−𝑗2𝜑, with 𝜑 in the range 0 < 𝜑 < 𝜋
2
, 𝜑 = arccos 𝜁 . Then, referring to

(A13), the solution for 𝜁 is given by:
𝐹 (𝜁 )

Δ
= 𝑆

𝐴
− 𝑒−𝛼

[

1 − 2Re
{

𝑒−𝛼𝑍

1 −𝑍2

}]

= 0 (A19)

A.2 Theoretical proofs - regarding the alternative area introduced in Section 2.3
This section presents the theoretical proofs regarding the computation of the alternative area (17) using a two parts exposition.
First the calculation of 𝑇𝑘 values is provided, followed by the computation of 𝐴𝑘 and 𝐴 areas (ref. Fig. 3).

Calculation of 𝑇𝑘 values
The relationship between the standard SO model for oscillatory systems (2) and its complex conjugated poles is:

𝐾𝜔2
𝑛

𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔2
𝑛
=

𝐾𝑝𝑝
(𝑠 − 𝑝)(𝑠 − 𝑝)

(A20)

where 𝑝 = −𝜁𝜔𝑛 + 𝑗𝜔𝑛

√

1 − 𝜁2 is the complex pole, with the relationships 𝑝 + 𝑝 = −2𝜁𝜔𝑛 and 𝑝𝑝 = 𝜔2
𝑛.The general step response for the SO model (A20) is:

𝑌 (𝑠) =
𝐾𝑝𝑝

(𝑠 − 𝑝)(𝑠 − 𝑝)
1
𝑠
= 𝐾

(

1
𝑠
+

𝑝
𝑝 − 𝑝

1
𝑠 − 𝑝

+
𝑝

𝑝 − 𝑝
1

𝑠 − 𝑝

)

(A21)
with the time-domain equivalent:

𝑦(𝑡) = 𝐾
(

1 +
𝑝

𝑝 − 𝑝
𝑒𝑝𝑡 +

𝑝
𝑝 − 𝑝

𝑒𝑝𝑡
)

= 𝐾(1 + 𝐶 + 𝐶) = 𝐾(1 + 2Re{𝐶}) (A22)

where 𝐶 = 𝑝
𝑝−𝑝

𝑒𝑝𝑡.
From (A22) results that

𝑦(𝑡) = 𝐾 if Re{𝐶} = 0;

⇒ Re
{

𝑝
𝑝 − 𝑝

𝑒𝑝𝑡
}

= Re
{

−𝜁𝜔𝑛 − 𝑗𝜔𝑛

√

1 − 𝜁2

2𝑗𝜔𝑛

√

1 − 𝜁2
𝑒−𝜁𝜔𝑛𝑇𝑘𝑒𝑗𝜔𝑛

√

1−𝜁2𝑇𝑘

}

= 0 (A23)
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Notice that √1 − 𝜁2 is real because 𝜁 < 1 for underdamped systems and 𝜔𝑛 is real because is the natural frequency. Hence, after
simplifications, (A23) becomes:

Re
{

𝜁 + 𝑗
√

1 − 𝜁2

𝑗
𝑒𝑗𝜔𝑛

√

1−𝜁2𝑇𝑘

}

= 0 ⇒ Re
⎧

⎪

⎨

⎪

⎩

𝑒𝑗
(

𝜋
2
−arcsin(𝜁 )

)

𝑒𝑗
𝜋
2

𝑒𝑗𝜔𝑛

√

1−𝜁2𝑇𝑘

⎫

⎪

⎬

⎪

⎭

= 0 (A24)

Further on, using the Euler’s formula in (A24) we obtain:
− 𝜋

2
+
(𝜋
2
− arcsin(𝜁 )

)

+ 𝜔𝑛

√

1 − 𝜁2𝑇𝑘 = −𝜋
2
+ 𝑘𝜋

⇒ 𝑇𝑘 =
arcsin(𝜁 ) + 𝑘𝜋 − 𝜋

2

𝜔𝑛

√

1 − 𝜁2
(A25)

Using (A25), one can compute the difference between successive 𝑇𝑘 values, with 𝑘 = 2, 3,… as follows:
𝑇𝑘 − 𝑇𝑘−1 =

𝜋
𝜔𝑛

√

1 − 𝜁2
(A26)

In particular, for 𝑘 = 1 and 𝑇0 = 0 we obtain:
𝑇1 − 𝑇0 =

arcsin(𝜁 ) + 𝜋
2

𝜔𝑛

√

1 − 𝜁2
(A27)

Notice that the oscillation period can easily be computed from (A26) as:
𝑇𝑝 = 2(𝑇𝑘 − 𝑇𝑘−1) =

2𝜋
𝜔𝑛

√

1 − 𝜁2
(A28)

Calculation of 𝐴𝑘 and 𝐴 areas
Starting from (17) and using (A22) results that each 𝐴𝑘 area is defined as:

𝐴𝑘 =

𝑇𝑘

∫
𝑇𝑘−1

|𝐾 − 𝑦(𝑡)|𝑑𝑡

= −𝐾

𝑇𝑘

∫
𝑇𝑘−1

[

𝑝
𝑝 − 𝑝

𝑒𝑝𝑡 +
𝑝

𝑝 − 𝑝
𝑒𝑝𝑡

]

𝑑𝑡

= −2𝐾 ∗ Re
{

𝑝∕𝑝
𝑝 − 𝑝

[

𝑒𝑝𝑇𝑘 − 𝑒𝑝𝑇𝑘−1
]

}

(A29)
The alternative area 𝐴 = 𝐴1 − 𝐴2 + 𝐴3 − 𝐴4 +⋯ can be computed using (A29) as:

𝐴 = 2𝐾 ∗ Re
{

𝑝∕𝑝
𝑝 − 𝑝

[(𝑒𝑝𝑇1 − 𝑒𝑝𝑇0) − (𝑒𝑝𝑇2 − 𝑒𝑝𝑇1)

+ (𝑒𝑝𝑇3 − 𝑒𝑝𝑇2) − (𝑒𝑝𝑇4 − 𝑒𝑝𝑇3) +⋯]
}

= 2𝐾 ∗ Re
{

𝑝∕𝑝
𝑝 − 𝑝

[−1 + 2(𝑒𝑝𝑇1 − 𝑒𝑝𝑇2 + 𝑒𝑝𝑇3 −⋯)]}

= 2𝐾 ∗ Re
{

𝑝∕𝑝
𝑝 − 𝑝

[−1 + 2(𝑒𝑝𝑇1 − 𝑒𝑝(𝑇1+0.5𝑇𝑝)

+ 𝑒𝑝(𝑇1+𝑇𝑝) − 𝑒𝑝(𝑇1+1.5𝑇𝑝) +⋯)]}

= 2𝐾 ∗ Re
{

𝑝∕𝑝
𝑝 − 𝑝

[−1 + 2𝑒𝑝𝑇1(1 − 𝑒0.5𝑝𝑇𝑝

+ 𝑒𝑝𝑇𝑝 − 𝑒1.5𝑝𝑇𝑝 +⋯)]}

(A30)

Finally, (A30) can be written in a compact form (using the geometric series formula) as:
𝐴 = 2𝐾 ∗ Re

{

𝑝∕𝑝
𝑝 − 𝑝

(

−1 + 2 𝑒𝑝𝑇1
1 + 𝑒0.5𝑝𝑇𝑝

)}

(A31)
This result is also given in (18), and is used in the proposed methodology to compute the optimal value for the parameter 𝜁 .
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A.3 Summary of the algorithms and Matlab® code
In this section, details regarding how to apply the proposed algorithms, and the Matlab® software corresponding to the procedure
detailed in subsection 2.4 are provided.

A.3.1 Summary of the algorithms
Given the measured step response 𝑦(𝑡), 0 ≤ 𝑡 ≤ 𝑇𝑚, in discrete time 𝑦(𝑘), 𝑘 = 0, 1,… , 𝑁𝑠 and 𝑇𝑚 = 𝑁𝑠𝑇𝑠, with 𝑇𝑠 the sampling
period;
Estimate the static gain 𝐾 (e.g. by averaging the samples of the steady-state part of the step response).
Apply one of the two algorithms below within the generic procedure of Section 2.4.

1) Overdamped and reasonably underdamped step response
* Calculate the area 𝐴 = 𝑇𝑠

𝑁𝑠
∑

𝑘=0
[𝐾 − 𝑦(𝑘)].

* Calculate the step response 𝑥(𝑘), 0 ≤ 𝑘 ≤ 𝑁𝑠 of the FO system 𝐾
1+𝜏𝑠

, with 𝜏 = 𝐴
𝐾

.
* Calculate the area signal (𝑘) between 𝑥(𝑘) and 𝑦(𝑘) as:

(𝑘) = (𝑘 − 1) + 𝑇𝑠[𝑥(𝑘) − 𝑦(𝑘)], 𝑘 = 1...𝑁𝑠,with (0) = 0.

* Find 𝑘∗ = arg max
𝑘

|(𝑘)| and define the time 𝑇 = 𝑇𝑠𝑘∗ and the corresponding area 𝑆 = (𝑘∗).
* Define the function 𝐹 (𝜁 ) for 0.5 ≤ 𝜁 ≤ 3 as follows:

𝐹 (𝜁 ) = 𝑆
𝐴

− 𝑒−𝛼
[

1 − 2Re
{

𝑒−𝛼𝑍

1 −𝑍2

}]

, if 0.5 < 𝜁 < 1,

𝐹 (𝜁 ) = 𝑆
𝐴

− 𝑒−𝛼
[

1 − 𝑒−𝛼𝑍

1 −𝑍2
− 𝑒−𝛼𝑍−1

1 −𝑍−2

]

, if 1 < 𝜁 < 3,

with 𝛼
Δ
= 𝑇

𝜏
and 𝑍

Δ
= (𝜁 −

√

𝜁2 − 1)2.
* Solution: 𝜁∗ = arg min

𝜁
|𝐹 (𝜁 )| and 𝜔∗

𝑛 =
2𝜁∗

𝜏
.

The algorithm involves the calculations of 2 areas and the minimisation of a 1-dimensional function of a single variable,
(which is quite simple and which does not face any convergence problems).

2) Highly oscillatory step response
* Estimate the oscillation period 𝑇𝑝 (e.g. by detecting the maxima of the integral signal (𝑘) = (𝑘 − 1) + 𝑇𝑠[𝐾 − 𝑦(𝑘)] for
𝑘 = 1,… , 𝑁𝑠, with (0) = 0).
* Calculate the area 𝐴 = 𝑇𝑠

𝑁𝑠
∑

𝑘=0
|𝐾 − 𝑦(𝑘)|.

* Define the function 𝐹 (𝜁 ) for 0.01 ≤ 𝜁 ≤ 0.5 as follows:

𝐹 (𝜁 ) = 𝐴 − 2𝐾Re
{

𝑝∕𝑝
𝑝 − 𝑝

(

−1 + 2 𝑒𝑝𝑇1
1 + 𝑒0.5𝑝𝑇𝑝

)}

,

with 𝑝 = −𝜁𝜔𝑛 + 𝑗𝜔𝑛

√

1 − 𝜁2 (and 𝑝̄ the complex conjugated), 𝜔𝑛 =
2𝜋

𝑇𝑝
√

1−𝜁2
and 𝑇1 =

arcsin(𝜁 )+ 𝜋
2

𝜔𝑛

√

1−𝜁2
.

* Solution: 𝜁∗ = arg min
𝜁

|𝐹 (𝜁 )| and 𝜔∗
𝑛 =

2𝜋
𝑇𝑝
√

1−𝜁∗2
.
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A.3.2 Matlab® code

f u n c t i o n Sy sEs t=RDK_SOPDT_FOPDT( StepMeas , Ts , K, Tp , MinDelay , MaxDelay )
% Robus t e s t i m a t i o n o f a SOPDT ( or FOPDT) model from
% h i g h l y c o r r u p t e d s t e p r e s p o n s e da ta
% Robin De Keyser − Ghent U n i v e r s i t y , Belg ium − Robain . DeKeyser@UGent . be − 070720
% StepMeas : ( column ) v e c t o r c o n t a i n i n g t h e measured s t e p r e s p o n s e
% Ts : sa mp l ing p e r i o d
% K: s t a t i c ga in
% Tp : o s c i l l a t i o n p e r i o d ( o n l y f o r h i g h l y o s c i l l a t o r y s t e p r e s p o n s e s ; o t h e r w i s e p u t Tp=0)
% MinDelay : minimum l i m i t f o r de a d t i m e ( p u t 0 i f no b e t t e r g u e s s )
% MaxDelay : maximum l i m i t f o r de a d t i m e ( p u t −1 i f no b e t t e r g u e s s )
% S y s E s t : e s t i m a t e d SOPDT model
%( f o r FOPDT model : uncomment l i n e 20 and drop t h e 2nd o r d e r term i n S y s E s t )

s= t f ( ’ s ’ ) ; Res1 = [ ] ; Res2 = [ ] ; NDTmin=round ( MinDelay / Ts ) ;
i f MaxDelay==−1, NDTmax= l e n g t h ( StepMeas ) −2; e l s e NDTmax=round ( MaxDelay / Ts ) ; end

i f Tp==0
Zv1 = [ 0 . 5 0 : 0 . 0 1 : 0 . 9 9 ] ; Zv2 = [ 1 . 0 1 : 0 . 0 1 : 3 . 0 0 ] ; %a l l o w s r e a l and complex−c o n j p o l e s
%Zv1 = [ 0 . 5 0 : 0 . 0 1 : 0 . 5 0 ] ; Zv2 = [ 1 . 0 1 : 0 . 0 1 : 3 . 0 0 ] ; %t o f o r c e r e a l p o l e s
%Zv1 = [ 0 . 5 0 : 0 . 0 1 : 0 . 5 0 ] ; Zv2 = [ 3 . 0 0 : 0 . 0 1 : 3 . 0 0 ] ; %t o f o r c e 1 s t o r d e r (FOPDT)
Xv1=(Zv1−s q r t ( Zv1 . ^ 2 −1 ) ) . ^ 2 ; Xv2=(Zv2−s q r t ( Zv2 . ^ 2 −1 ) ) . ^ 2 ;

e l s e
Z = [ 0 . 0 1 : 0 . 0 1 : 0 . 5 0 ] ;
SR=s q r t (1−Z . ^ 2 ) ; O=2∗ pi . / ( Tp . ∗ SR ) ; p=−Z . ∗O+j ∗O. ∗ SR ; pb=conj ( p ) ;
T1=( a s i n ( Z)+0 .5∗ pi ) . / ( O. ∗ SR ) ;
F =(( pb . / p ) . / ( pb−p )) .∗( −1+2∗ exp ( p . ∗ T1 ) . / ( 1 + exp ( 0 . 5 ∗ p∗Tp ) ) ) ;

end % i f

f o r NDT=NDTmin : NDTmax
TauD=NDT∗Ts ; S tepResp=StepMeas (NDT+1: end ) ;
i f Tp==0
A=Ts∗sum (K−StepResp ) ; Tau=A/K; SysRef=K/ (1+ Tau∗ s ) ;
S t epRef=s t e p ( SysRef , Ts ∗ [ 0 : l e n g t h ( S tepResp ) −1 ] ’ ) ;
D i f f=StepRef−StepResp ; Area =0;
f o r k =2: l e n g t h ( S tepResp )

Area ( k)= Area ( k−1)+Ts ∗( D i f f ( k−1)+ D i f f ( k ) ) / 2 ;
end
[ Val , Ind ]=max ( abs ( Area ) ) ; S=Area ( Ind ) ; A l f a=Ts ∗( Ind −1)/ Tau ;
Fv1=S /A−exp(−Alfa ) .∗(1 −2∗ r e a l ( exp(−Alfa . ∗ Xv1 ) . / ( 1 − Xv1 . ^ 2 ) ) ) ;
Fv2=S /A−exp(−Alfa ) .∗(1 − exp(−Alfa . ∗ Xv2 ) . / ( 1 − Xv2.^+2)− exp(−Alfa . ∗ Xv2 .^ −1) . / (1 −Xv2 . ^ −2 ) ) ;
Fv=[Fv1 Fv2 ] ;
[ Val , Ind ]=min ( abs ( Fv ) ) ; Zv=[Zv1 Zv2 ] ; Ze t a=Zv ( Ind ) ; Omega=2∗ Ze ta / Tau ;

e l s e
A=Ts∗sum ( abs (K−StepResp ) ) ; Fz=A−2∗K∗ r e a l ( F ) ;
[ Val , Ind ]=min ( abs ( Fz ) ) ; Ze t a=Z ( Ind ) ; Omega=2∗ pi / ( Tp∗ s q r t (1− Ze ta ^ 2 ) ) ;

end % i f
Sy sEs t=K∗exp(−TauD∗ s ) / ( 1 + ( 2 ∗ Ze ta / Omega )∗ s +(1 / Omega ^2)∗ s ^ 2 ) ;
S t e p E s t=s t e p ( SysEst , Ts ∗ [ 0 : l e n g t h ( StepMeas ) −1 ] ’ ) ;
E r r=StepMeas−S t e p E s t ; Cos t=Err ’∗ E r r ;
Res1 =[ Res1 ; Cos t TauD ] ; Res2 =[ Res2 ; S ysE s t ] ;

end %f o r

[ Val , Ind ]=min ( Res1 ( : , 1 ) ) ; Sy sEs t=Res2 ( Ind ) ;
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