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Abstract

In the setting of complete residuated lattices, we explore the relationships between the recently
introduced fuzzy betweenness relations and three important mathematical notions: fuzzy inter-
val operators, fuzzy partial orders and fuzzy Peano—Pasch spaces. After recalling the concept
of a fuzzy betweenness relation w.r.t. a fuzzy equivalence relation, we prove that the resulting
category is isomorphic to that of geometric fuzzy interval spaces w.r.t. the same fuzzy equiva-
lence relation. Next, we construct a fuzzy partial order via a fuzzy betweenness relation w.r.t.
a fuzzy equivalence relation and analyze their relationships in depth. Finally, taking a field
as underlying set, we introduce the concept of a fuzzy betweenness field. Furthermore, in the
setting of completely distributive lattices, we provide an interesting example showing that a
vector space over a fuzzy betweenness field can yield a fuzzy Peano—Pasch space.

Keywords: Fuzzy betweenness relation, Fuzzy interval operator, Fuzzy FE-partial order, Fuzzy
betweenness field, Fuzzy Peano-Pasch space

1. Introduction

1.1. Origin

The origin of betweenness relations can be traced back to the letter by Gauss to Bolyai
in 1832, pointing out the absence of betweenness postulates in the Euclidean treatment [14].
Elimination of this defect did not happen until 50 years later when Pasch [26] initiated his inves-
tigations. A broad range of follow-up studies focused on connections with other mathematical
notions, such as algebraic structures [23| B8, 43], metrics [0], order and topology [19, 25 [54],
antimatroids [10], convex structures [I7, [39] and the like. In a more general contemporary ap-
proach, Pitcher and Smiley [34] systematically investigated a wide variety of settings in which
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betweenness relations arise. This development was not only motivated by the need for an ab-
stract theory of betweenness relations, but also by the need to unify betweenness relations on
different mathematical structures. Among the many different definitions of a betweenness re-
lation, we adopt the definition in the sense of Hedlikova ([17], [39, Further Topics 4.22]), which
has been proven to characterize geometric interval operators and to have close connections with
other geometric properties in the framework of (abstract) convex spaces. For more research on
betweenness relations, we refer to [2, [8 1], 33}, 36].

More than half a century ago, Zadeh introduced the seminal concept of a fuzzy set [51].
Since then, theoretical and applied research on fuzzy sets has been growing steadily, one of the
central notions being that of a binary fuzzy relation. Fuzzy order relations, in particular, have
contributed to the highly intensive development of new areas of fuzzy mathematics, including
fuzzy topology, fuzzy convex structures, fuzzy rough sets, fuzzy formal concept analysis, to
name but a few. However, as far as we know, research on ternary fuzzy relations such as fuzzy
betweenness relations is extremely limited |20} 37, [53]. Similar to the classical crisp case, when
a ternary fuzzy relation fulfills certain axioms, we will call it a fuzzy betweenness relation.
Jacas and Recasens [20] introduced a notion of fuzzy betweenness relation valued in the real
unit interval equipped with a strict Archimedean t-norm 7. In particular, it was shown that
there is a one-to-one correspondence between these fuzzy betweenness relations and separating
T-equivalences. Shi and Shi [37] investigated lattice-valued betweenness relations motivated by
the theory of fuzzy convex structures. Zhang et al. [53, [55] studied fuzzy betweenness relations
valued in a bounded lattice equipped with a t-norm and discussed the connection with fuzzy
order relations and metrics.

In recent years, the study of fuzzy convex structures has witnessed an increasing interest,
and this from points of view, such as topology [27], 48, 50, [57], convergence theory [32} [49] 56],
category theory [211, 22} 30], interval theory [28 311 [47], geometry [9, [44], 45], [46], and so on. From
the perspective of fuzzy order relations, Li and Shi [24] studied some properties of L-fuzzifying
convex structures induced by L-orders, where L is a completely distributive lattice. It was
shown that an L-fuzzifying convexity induced by an L-order is L-fuzzifying JHC (a geometric
property of fuzzy convex structures) with arity of at most 2, and that an L-fuzzifying convexity
is an L-fuzzifying antimatroid and that its segment operator is a geometric L-interval operator
whenever the L-order satisfies strong antisymmetry. In addition, considering an integral com-
mutative quantale Q as underlying lattice, Wang and Shi [41] presented essential connections
among Q-fuzzifying convex structures, Q-fuzzifying interval operators and Q-preorders. These
studies also reflect that there exist important relationships among fuzzy order relations, fuzzy
interval operators and fuzzy convex structures.

1.2. Aims and outline

Motivated by the above-mentioned works (related to fuzzy betweenness relations, fuzzy
order relations, fuzzy interval operators, fuzzy convex structures, etc.), in this paper we explore
the relationships among fuzzy betweenness relations and fuzzy interval operators, fuzzy partial
orders, and fuzzy Peano—Pasch spaces (a special class of fuzzy interval spaces). Zhang et al. [53]
gave several definitions of fuzzy betweenness relations, the most general of which is based on
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a fuzzy equivalence relation F, and is called a fuzzy E-betweenness relation. Considering the
corresponding fuzzy interval operators, we aim to propose a suitable notion of fuzzy interval
operator that allows to establish connections with fuzzy FE-betweenness relations. In fact,
the answer will turn out to be a geometric fuzzy interval operator w.r.t. a fuzzy equivalence
relation E, which will be called an E-geometric fuzzy interval operator, see Definition [3.8 Since
fuzzy interval operators and fuzzy orders are also inextricably linked, we will proceed with
a discussion of the relationships between fuzzy FE-betweenness relations and fuzzy FE-partial
orders. Explicitly, we give necessary and sufficient conditions for a ternary fuzzy relation
to be a fuzzy E-betweenness relation in terms of fuzzy E-partial orders, see Theorem [4.5
Further, based on the mentioned geometric background, we propose the notion of a fuzzy
betweenness field and show that the fuzzy interval operator induced by a vector space over a
fuzzy betweenness field satisfies geometric properties of the Peano type and the Pasch type, see
Theorem [5.12]

This paper is organized as follows. In Section [2 we recall basic notions and notations
concerning residuated lattices, fuzzy sets and fuzzy relations. In Section |3, using complete
residuated lattices for expressing degrees of membership and relationship, we introduce the
notions of fuzzy E-betweenness relation and E-geometric fuzzy interval space and show that
they are categorically isomorphic. In Section [d] we first present a representation of fuzzy E-
betweenness relations in terms of E-partial orders. Then we construct a fuzzy E-partial order
using a ternary fuzzy relation and show that a special ternary fuzzy relation is a fuzzy E-
betweenness relation if and only if its fuzzy FE-partial order is F-antisymmetric and satisfies
two additional conditions. Section [p|introduces the notion of a fuzzy betweenness field w.r.t. the
crisp equality. We give an example showing that a vector space over a fuzzy betweenness field
can also induce a fuzzy interval operator. In particular, considering a completely distributive
lattice as underlying lattice, the fuzzy interval operator induced by a vector space over a fuzzy
betweenness field satisfies the Peano property and the Pasch property. Some conclusions and
future work are summarized in Section [Gl

2. Preliminaries

In this section, we present the terminology and basic notions used throughout this paper.
We refer to |16, 42] for more information concerning residuated lattices, to [I] for general
category theory, and to [4] [15] for fuzzy sets and fuzzy relations.

2.1. Residuated lattices

As a logical algebra, a residuated lattice is an algebraic structure that is simultaneously a
lattice. Ward and Dilworth [42] introduced the noncommutative version of a residuated lattice,
but we will restrict to the commutative case in this paper.

Definition 2.1. A residuated lattice is an algebra (L; A, V, %, —) of type (2, 2, 2, 2) that satisfies:

(R1) (L,A,V) is a bounded lattice with top element 1 and bottom element 0;
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(R2) (L,*,1) is a commutative monoid with identity 1 and the operation * is isotone w.r.t. the
lattice order in both arguments;

(R3) axb<cifandonlyif b <a— cforall a,b,c € L.

If the underlying lattice L is complete, then it is called a complete residuated lattice.
In a complete residuated lattice L, the condition (R3) is equivalent to

(R3) ax*(V,b) =V,(axb), for all a € L and (b;);es in L.

Some basic properties of complete residuated lattices are gathered in the following proposi-
tion.

Proposition 2.2. Let L be a complete residuated lattice. For any a,b,c,d € L and any two
families (a;)ier and (b;)ier of L, the following statements hold:

1) a = b=17if and only if a < b;
2
3) (axb) wc=a—(b—c)=b— (a — c);
5) (a—=b) <(c—a)— (c—b)
6) a = Nierbi = Nies(a = bi);

(1)
(2)
(3)
(4) (a—=b)x(c—d) < (axc)— (bxd);
(5)
(6)
(7) (Viera) = b= Nie,(ai = b).

A complete lattice L is called completely distributive [13] if for any nonempty family (a k) jesrer ()

in L, the identity

AV a=V A

jeJ keK(3) fEM jeJ

holds, where M is the set of all choice functions f:J — U K(j) with f(5) € K(j) for all
jeJ
7 € J. In a completely distributive complete lattice L, we can define

a—>c:\/{b€L|a/\b<c}

for each a,c € L. It then holds that b < a — c < aAb<c, i.e., (L;\,V,A\,—) is a complete
residuated lattice. In other words, any completely distributive complete lattice is a particular
complete residuated lattice with x = A.

In order to give an elegant characterization of the completely distributive property of com-
plete lattices, we recall the following definition.

4
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Definition 2.3 ([12]). Let L be a complete lattice. An element a € L is said to be wedge
below an element b € L, denoted a < b, if for any subset D C L, the relation b < \/ D always
implies the existence of d € D such that a < d.

Theorem 2.4 ([12, 13]). A complete lattice L is completely distributive if and only if a =
V{be L|b<a} forallae€ L.

Proposition 2.5. Let L be a completely distributive complete lattice. Then for any a,b € L
and any family (bj);es of L, the following statements hold:

(1) a<1b implies a < b;
(2) a # 0 implies 0 < a;
(3) a<tV,c;b; if and only if (35 € J)(a < by).

Throughout this paper, L always denotes a complete residuated lattice, unless otherwise
specified.

2.2. Fuzzy sets

A fuzzy subset of a set X over L, or simply a fuzzy subset of X, is a map ¢ from X to L,
i.e., p : X —> L. The value ¢(z) is interpreted as the membership degree of x in the fuzzy
subset . Crisp subsets of X are considered as fuzzy subsets of X taking membership values
in the set {0,1} C L. The collection of all fuzzy subsets of X over L is denoted by LX. The
operators on L can be extended to L¥ in a pointwise manner. Doing so, L~ is also a complete
residuated lattice.

Let ¢, ¢ be two fuzzy subsets of a set X. The map subx : LX x LX — L defined by

subx (¢, ¢) = /\ o(x) = ¢(1),

zeX

is called the fuzzy inclusion order on L* [4]. The value subx(p,¢) expresses the degree to
which ¢ is contained in ¢.

For each map f : X — Y and ¢ € LY, f7(y) denotes the fuzzy subset of Y obtained
by applying Zadeh’s extension principle, i.e., f7(¢)(y) = \/{p(z) | f(z) =y} for each y € Y.
For each map g : X — Y and ¢ € LY, g=(¢) denotes the fuzzy subset of X given by
g7 (6)(z) = B(g(x)) for all z € X.

2.3. Fuzzy relations

Let X be a nonempty set. A binary fuzzy relation R on X is a map from X x X to L, i.e., a
fuzzy subset of X x X. Similarly, a ternary fuzzy relation 7" on X is a map from X x X x X to
L, i.e., a fuzzy subset of X x X x X. A crisp binary (resp. ternary) relation is a binary (resp.
ternary) fuzzy relation that takes values only in the set {0,1}, and if R (resp. T) is a crisp
binary (resp. ternary) relation on X, then the expressions R(x,y) = 1 (resp. (T(z,y,z) = 1)
and (z,y) € R (resp. (z,y, z) € T') have the same meaning. By fuzzy relations we usually mean
binary fuzzy relations. We are interested in the following properties of fuzzy relations.

A fuzzy relation R on a set X is said to be:

5
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— reflexive if R(x,z) =1 for all z € X;

— symmetric if R(x,y) = R(y,x) for all z,y € X;

— antisymmetric if R(xz,y) * R(y,z) # 0 implies z = y for all z,y € X;
— transitive if R(z,y) * R(y,z) < R(zx, z) for all z,y,2z € X.

A reflexive and transitive fuzzy relation (resp. crisp relation) R on a set X is called a fuzzy
quasi-order (resp. quasi-order), and in this case we call (X, R) a fuzzy quasi-ordered set (resp.
quasi-ordered set). In some sources, quasi-orders and fuzzy quasi-orders are called preorders
and fuzzy preorders, respectively, but here we use the original name introduced by Birkhoff [5].
Note that there exist alternative generalizations of the antisymmetry of a crisp binary relation.
Here we adopt the one that was introduced in [7), 52].

We say that a map f : (X, Rx) — (Y, Ry) between two fuzzy quasi-ordered sets is order-
preserving if

Rx(x1,72) < Ry (f(21), f(22))

for all z1, 25 € X.

A symmetric fuzzy quasi-order on X is called a fuzzy equivalence relation. Using fuzzy
equivalence relations, we can deal with more general notions of reflexivity and weak antisym-
metry of fuzzy relations. Namely, if E is a fuzzy equivalence relation on a set X, then a fuzzy
relation R on X is said to be:

— E-reflexive if E(x,y) < R(x,y) for all z € X;
— E-antisymmetric if R(z,y) * R(y,z) < E(z,y) for all x,y € X.

A fuzzy relation R on X is called a fuzzy E-partial order if it is E-reflexive, E-antisymmetric
and transitive [7, [I8]. In this case, the triplet (X, E, R) is called a fuzzy E-partially ordered set.
We say that a map f: (X, Ex, Rx) — (Y, Ey, Ry) is order-preserving if

Rx(x1,72) < Ry (f(21), f(22))

and
Ex(x1,$2) S Ey(f(i[fl), f($2))
for all z;, 29 € X.

3. Fuzzy betweenness relations and fuzzy interval operators

By endowing a fuzzy betweenness relation with a fuzzy equivalence relation F, we start
this section by introducing the notion of a fuzzy FE-betweenness relation. Although different
axiomatic definitions of betweenness relations have been proposed in the literatures [2, 25],
our fuzzification in this work is based on the one presented in [I7], [39] since there is a bi-
jection between geometric interval operators and betweenness relations, as mentioned in the
introduction.
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Definition 3.1. Let E be a fuzzy equivalence relation on a set X. A fuzzy E-betweenness
relation on X is a ternary fuzzy relation B such that

( ) B(z,y,2) = B(z,y,x) for all z,y,z € X;

( ) E(y,z) < B(z,y, z) for all z,y,z € X;

(FEB3) B(z,y,2) * B(z,2,y) < E(y, z) for all z,y, z € X;

( ) B(o,x,y) * B(o,y,z) < B(o,x,z) for all 0,2,y,z € X;
( ) B(o,x,y) * B(o,y,z) < B(z,y, z) for all o, z,y,z € X.

For a fuzzy E-betweenness relation B on a set X, the triplet (X, E, B) is called a fuzzy FE-
betweenness set.

In the particular case that E is the crisp equality, fuzzy E-betweenness relations are simply
called fuzzy betweenness relations, and can be described by the following definition.

Definition 3.2. A fuzzy betweenness relation on X is a ternary fuzzy relation B such that

x B(x,z,y) # 0 implies y = z, for all x,y, z € X
x B(o,y,z) < B(o,z,z2) for all o,x,y, z € X
x B(o,y,2) < B(z,y,z) for all o, z,y,2z € X.

For a fuzzy betweenness relation B on a set X, the pair (X, B) is called a fuzzy betweenness
set.

Intuitively speaking, the value B(z,y, z) is interpreted as the degree to which the element
y is between the elements x and z.

Remark 3.3. Zhang et al. [53] introduced related concepts of fuzzy (FE-)betweenness relations
with a focus on the representability in terms of a family of fuzzy orders. It is easy to see that
Definition (resp. Definition contains the additional axiom (FEB5) (resp. (FB5)). The
main reason is that we will focus on the connection with fuzzy interval operators which play
an important role in the theory of fuzzy convex structures. Since there is no confusion possible
here, we will still use the term fuzzy (FE-)betweenness relation in our work.
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Amap f: (X, Ex,Bx) — (Y, Ey, By) is said to be betweenness-preserving if

Bx(l',y, Z) < By(f(l‘), f(y)’f(z))

and
Ex(l’,y) S EY(f($)7f(y))

for all z,y,z € X.

We write FEBet (resp. FBet) for the category of fuzzy E-betweenness sets (resp. fuzzy
betweenness sets) as objects and betweenness-preserving maps as morphisms.

When L = {0, 1}, Definition [3.2 reduces the following definition of a betweenness relation.

Definition 3.4. A betweenness relation on X is a ternary relation B such that
r,y,2) € B< (2,y,x) € B for all z,y,z € X;
x,y,y) € B for all z,y € X;

(B1) (z,y,2)

(B2) ( )

(B3) (x,y,2) € B and (x,z,y) € B imply y = z for all z,y,z € X;

(B4) ( ) € B and (0,y, 2) € B imply (0, z,2) € B for all 0,z,y,z € X;
(B5) ( )

o,z,y) € B and (0,y,z) € B imply (z,y,z) € B for all 0,z,y,z € X.

For a betweenness relation B on a set X, the pair (X, B) is called a betweenness set.

Proposition 3.5 ([53]). Let E be a fuzzy equivalence relation on a set X and B be a fuzzy
E-betweenness relation on X. Then

(1) B(x,,y) = B(z,y,y) =1 for all z,y € X;
(2) B(z,y,x) = E(y,x) for all x,y € X.

Interval operators provide a useful tool to describe geometric properties of convex struc-
tures [39]. With the development of fuzzy convex structures, interval operators have been
generalized to the fuzzy setting in recent years (see, e.g., [29, [41) [47]). In what follows, we will
generalize geometric fuzzy interval operators to E-geometric fuzzy interval operators and then
study their relationships with fuzzy E-betweenness relations. Let us first recall the definition
of a geometric fuzzy interval operator.

Definition 3.6 ([47]). A map I : X x X — L¥ is called a fuzzy interval operator on X if
(FI1) I(z,y)(z) = I(z,y)(y) = 1 for all z,y € X;

(FI12) I(z,y) = I(y,x) for all z,y € X.

For a fuzzy interval operator I on X, the pair (X, I) is called a fuzzy interval space.
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Amap f: (X, Ix) — (Y, Iy) between fuzzy interval spaces is said to be interval-preserving
if
[7Ux () < Iy(f(2), f(y))

for all z,y € X.

We write FIS for the category of fuzzy interval spaces as objects and interval-preserving
maps as morphisms.

Considering the geometric properties of fuzzy interval operators, Wang and Shi [41] intro-
duced the concept of geometric fuzzy interval operators.

Definition 3.7 (J41]). A fuzzy interval operator I on a set X is called geometric if
(GFI1) subx({(z,x),I(x,y)) =1 and I(z,z)(y) # 1 when x # y for all z,y € X;
(GF12) I(z,y)(z) =subx(I(z,2),I(z,y)) for all z,y, z € X
(GFI3) I(z,y)(z) < I(z,z)(0) = I(0,y)(2) for all z,y,z,0 € X.

For a geometric fuzzy interval operator I on X, the pair (X,I) is called a geometric fuzzy
interval space.

The full subcategory of FIS composed of geometric fuzzy interval spaces is denoted GFIS.
By equipping a fuzzy equivalence E on geometric fuzzy interval operators, we present the
following definition.

Definition 3.8. Let F be a fuzzy equivalence relation on a set X. A fuzzy interval operator
I on X is said to be E-geometric if

(EGFI) subx(I(z,x),I(z,y)) =1 and I(z,z)(y) = E(x,y) for all x,y € X;
(GFI12) I(z,y)(z) =subx(I(x,z2),I(z,y)) for all z,y,z € X;
(GFI3) I(z,y)(z) < I(z,z)(0) = I(0,y)(2) for all z,y,z,0 € X.

For an E-geometric fuzzy interval operator I on X, the pair (X, E, I) is called an E-geometric
fuzzy interval space.

Remark 3.9. Definition [3.8]is introduced based on a fuzzy equivalence relation F. If E is the
crisp equality, then this definition reduces to Definition in the sense of Wang and Shi [41].

Amap f: (X, Ex,Ix) — (Y, Ey, Iy) is said to be interval-preserving if

J7Ux(x,y) < Iv(f(2), f(y)

and
Ex(v,y) < Ey(f(z), f(y))
for all z,y € X.
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We write EGFIS for the category of E-geometric fuzzy interval spaces as objects and
interval-preserving maps as morphisms.

In the following, we will study the relationships between EFBet (resp. FBet) and EGFIS
(resp. GFIS).

Proposition 3.10. Let (X, E,I) be an E-geometric fuzzy interval space and define a ternary
fuzzy relation By : X x X x X — L by

B[(CU, Y, Z) = I(‘T7 Z)(y)
Then By is a fuzzy E-betweenness relation on X.

Proof. We verify that By satisfies (FEB1)—(FEB5S).
(FEB1) Straightforward.
(FEB2) Let x,y,z € X. Then

Bi(z,y,2) = I(z,2)(y) = 1(z,7)(y (by (F12))
> 1(z,2)(y by (EGFI))
= E(z,y) (by (EGFT))

(FEB3) Let x,y,z € X. Then

Bi(x,y,2) * Br(v, 2,y) = I(z,2)(y) * [(z,y)(2)
< I(y,y)(2) (by (GFI3))
= E(z,y). (by (EGFI))

(FEB4) Let 0,z,y,2z € X. By (GFI2), we have
I(0,2)(y) < subx(I(0,y),I(0,2)) < I(0,y)(x) = I(0, 2)(x),

which implies
I{0,y)(x) * I(0,2)(y) < I(0,2)(x).
Hence
Bi(o,z,y) * Br(o,y,2) = I(o,y)(x) * I(0,2)(y) < I(0,2)(x) = Bf(o,x, 2).
(FEB5) Let o, z,y,z € X. By (GFI3), we know that
(0, 2)(y) * I(o,y)(x) < I(z, 2)(y).
Thus
Bi(o,x,y) * Bi(o,y,2) = 1(0,y)(x) * I(0,2)(y) < I(x,2)(y) = Bi(z,y, 2).
The proof is completed. O

When FE is the crisp equality, we obtain the following result as a corollary.

10
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Corollary 3.11. Let (X, 1) be a geometric fuzzy interval space. Then the ternary fuzzy relation
By is a fuzzy betweenness relation on X.

Proposition 3.12. If f : (X, Ex, Ix) — (Y, Ey, Iy) is interval-preserving, then f : (X, Ex, Br,) —

(Y, Ey, By,) is betweenness-preserving.

Proof. Since f : (X, Ex,Ix) — (Y, Ey, Iy) is interval-preserving, we have

f7Ux(2,2) < Iy(f(2), f(2))
for all z,z € X. Then for any y € X, it follows that

Br, (f(2), f(y), f(2)) = Iy (f(2), f(2))(f ()
> 7 Ux(z,2))(f(y))
=\ {Ix(,2)(w) | f(w) = f(y)}
> Ix(z,2)(y)
= Bry(2,y,2),
as desired. O

By Propositions and [3.12] we obtain a functor F: EGFIS — EFBet as follows:

EGFIS —  EFBet
F:<¢ (X,E,I) — (X,E,By),
Conversely, we will induce an E-geometric fuzzy interval operator from a fuzzy E-betweenness
relation.

Proposition 3.13. Let (X, E, B) be a fuzzy E-betweenness set and define the map Ig : X X
X — L% by

]B(xa y)<0) - B(.Z‘, o, y)
Then Ig is an E-geometric fuzzy interval operator.

Proof. We verify that I satisfies (FI1), (FI2) and (EGFI)-(GFI3).
(FI1) It follows from Proposition [3.5(1) that

Ig(z,y)(x) = B(x,2,y) = 1 and Ip(z,y)(y) = B(z,y,y) =1

for all z,y € X.
(FI2) Tt is clear by (FEBI).
(EGFI) Let z,y € X. Then

subx(Ig(z,x), Ig(z,y)) = /\ B(z,z,x2) = B(xz, 2,y)

zeX

11



298

299

300

301

302

303

304

305

306

= /\ E(z,z) = B(x, z,y) (by Proposition [3.5(2))
—1, (by (FEB1) & (FEB2))
and it follows from Proposition [3.5(2) that
Ip(z,2)(y) = B(z,y, ) = E(y,x) = E(z,y)

(GFI2) The key is to prove that Ig(z,y)(z) < subx(Ip(z,z2),Ip(x,y)) for all z,y,z € X.
In fact,

subx(Ig(z, 2), Ig(x,y)) /\ Ip(z, 2)(w) = Ip(z,y)(w)

— /\ B(z,w,z) = B(z,w,y)
> /\ (z,2,) (by (FEB4))
= Ip(z,y)(2).

(GFI3) Let o, x,y,z € X. By (FEB5), we have
Ip(x, 2)(0) ¥ Ip(x,y)(2) = B(x,0,2) * B(z,2,y) < B(o,z,y) = I5(0,y)(2),
which implies Ip(z,y)(z) < Ig(z,2)(0) — Ig(o,y)(2). O
When FE is the crisp equality, we obtain the following result.

Corollary 3.14. Let (X, B) be a fuzzy betweenness set. Then Ip is a geometric fuzzy interval
operator.

Proposition 3.15. If f : (X, Ex,Bx) — (Y, Ey, By) is betweenness-preserving, then f :
(X, Ex,Ip,) — (Y, Ey, Ip,) is interval-preserving.

Proof. Let x,y € X. Then for any w € Y, we have

F7 Uy (2,)(w) = \/{Ip (z,9) (2 ) | f(z) = w}
_\/{BX I,Z,y (Z):w}
< \/{By(f(x), ( ) f(W) | f(2) = w}

= Ip, (f(2), f(y))(w).

By the arbitrariness of w, we obtain that f is interval-preserving. O

(
(
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By Propositions and [3.15 we obtain a functor G : EFBet — EFGIS as follows:

EFBet — EFGIS
G:R (X,E,B) — (X,E, Ip),
Theorem 3.16. EFBet and EFGIS are isomorphic.

Proof. Since F and G are both concrete functors, it remains to show that F o G = [gpget and
G o F = Igpais. To that end, it suffices to verify that (1) By, = B and (2) I, = I.
For (1), let z,y,z € X. Then

BIB(xvya Z) - IB(x,z)(y) - B(Z‘,y,Z),
For (2), let z,y,z € X. Then
]BI(I7Q)(2) = BI(*/E’ Zvy) = ](Iay)(z)
This completes the proof. O

Considering the relationships between geometric fuzzy interval spaces and fuzzy betweenness
sets, we obtain the following result as a corollary.

Corollary 3.17. FBet and FGIS are isomorphic.

4. Fuzzy E-betweenness relations and fuzzy E-partial orders

Wang and Shi [41] established the connections between fuzzy base-point orders and geo-
metric fuzzy interval operators. On the other hand, Zhang et al. [53] extensively discussed
the connections between fuzzy betweenness relations and fuzzy orders. In this section, we will
explore these connections by equipping these fuzzy structures with a fuzzy equivalence relation.
To this end, the following definition is necessary.

Definition 4.1 ([3,53]). A ternary fuzzy relation T on a set X is said to be middle compatible
with a fuzzy equivalence relation £ on X if

E(x,y) *T(0,y,2) < T(0,2,2)
for all 0, z,y, 2z € X.

Now, let us construct a fuzzy E-betweenness relation from a fuzzy E-partially ordered set
and show its relationship with the middle compatibility of F.

Theorem 4.2. Let (X, E, R) be a fuzzy E-partially ordered set and define a ternary fuzzy
relation B : X x X x X — L by

Br(z,y,2) = (R(z,y) V R(2,9)) * (R(y, 2) V R(y, ©)).

Then Bpg is a fuzzy E-betweenness relation if and only if it is middle compatible with E.

13
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= (R(0,2) V R(z,x)) x (R(x, 2) V R(x,0))
= Bgr(o,z, 2).

(FEB5) Let 0, z,y,z € X. By the transitivity of R, we then have

Bg(o,2,y) * Br(o,y, 2

z)

= (R(o,z) vV R(y, x)) * (R(z,y) V R(x,0)) x (R(0,y) V R(z,y)) * (R(y, ) V R(y,0))
= [R(0, %) x R(z,y) * R(o,y) = R(y, 2)] V [R(0, ) x R(x,y) * R(0,y) * R(y, 0)]V
[R(0,2) * R(z,y) * R(z,y) = R(y, 2)] V [R(0, ) x R(x,y) * R(z,y) * R(y, 0)]V
[R(y, ) * R(z,y) * R(o,y) * R(y, )] V [R(y, z) * R(z,y) * R(o,y) * R(y, 0)]V
[R(y, x) = R(z,y) * R(z,y) * R(y, 2)] V [R(y, z) * R(z,y) * R(z,y) = R(y, 0)]V
[R(o,x) * R(x,0) * R(o,y) * R(y, z)] V [R(0,z) * R(x,0) * R(0,y) * R(y,0)]V
[R(0,x) * R(x,0) * R(z,y) * R(y, 2)] V [R(0,x) x R(x,0) * R(z,y) * R(y,0)]V
[B(y, z) * R(z,0) * R(o,y) * R(y, 2)] V [R(y, z) * R(z, 0) x R(o,y) x R(y,0)]V
[R(y,z) * R(z,0) * R(z,y) * R(y, 2)] V [R(y, z) * R(x,0) * R(0,y) * R(y, 0)]

< (R(z,y) * R(y, 2)) V (R(z,y) * R(y, ) V (R(z,y) * R(y, 2)) V (R(z,y) * R(y, z))
= (B(z,y) vV R(z,y)) = (R(y,z) V R(y, z)

= Br(z,y,2).

336

337

This completes the proof.

Remark 4.3. For any partially ordered set (X, <), Bankston [2], Pérez-Fernandez and De Baets [33]
constructed a betweenness relation on X via

Be={(z,y,2) € X?’ |z =yory=zorx<y<zorz<y<u}

which is called an order-betweenness relation. Subsequently, Zhang et al. [53] generalized this
construction to the fuzzy case. Concisely, for a given fuzzy E-partially ordered set (X, R), a
fuzzy E-betweenness relation can be constructed in the following way.

Bf(x,y,2) = E(z,y) V E(y,2) V (R(z,y) * R(y,2)) V (R(2,9) * R(y, ©)).
Actually, in the classical case, B< has another equivalent form. That is,
Be ={(z,y,2) e X’ |z <yorz<y}n{(r,y,2) € X’ | y<xory<z}
So in Theorem [£.2], we considered the fuzzy counterpart of this formula,

BR<x7y7Z> = (R(l’,y) \% R(’Z?y)) * (R(ya'Z) \% R(y>x>>7

which is much simpler compared with B*.
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Next, we will consider how to construct a fuzzy E-partial order from a fuzzy E-betweenness
relation. Let B be a ternary fuzzy relation on a set X. For every o € X, define a binary fuzzy
relation R, by

Ry(z,y) = /\ B(o,z,x) = B(o,2,y).

zeX

Proposition 4.4. Let E be a fuzzy equivalence relation on a set X . Suppose that B is a ternary
fuzzy relation on X satisfying (FEB2) and (FEB4). Then R, is E-reflezive and transitive.

Proof. E-reflexivity: Let x,y,z € X. Then

R,(z,y) = /\ B(o, z,z) — B(o, z,y)

> /\ Bl(o,z,y) (by (FEB4))
> E(z,y). (by (FEB2))

Transitivity: Let z,y € X. Then

R,(x,y) — R,(x, z)

= (/\ B(o,v,x) — B(o,v,y)) — (/\ B(o,u,z) — B(o,u,z))

veX ueX

> /\ ((B(o,v,x) = Bl(o,v,y)) = (B(o,v,z) = B(o,v, z)))

veX
> /\ B(o,v,y) = B(o,v,2) (by Proposition [2.2/(5))
veX
= Ro(y7 Z)a
which implies that R,(z,y) * Ry(y, z) < Ro(z, 2). ]

Theorem 4.5. Let E be a fuzzy equivalence relation on a set X and B be a ternary fuzzy
relation on X satisfying (FEB1). Then the following statements are equivalent:

(1) B is a fuzzy E-betweenness relation;
(2) For each o € X, R, is a fuzzy E-partial order and the following statements hold:

(i) Ro(0o,z) =1 forallx € X.
(ii) B(u,z,v) < Ry(y,z) = Ry(x,y) for all u,v,z,y € X.
(i) B(z,y,y) =1 for all z,y € X.

16



Proof. (1) = (2): We first prove that R, is a fuzzy E-partial order. By Proposition [4.4] it
remains to show that R, is F-antisymmetric. Let x,y € X. Then

Ro(z,y) * Ro(y, x)

= (/\ B(o,u,z) — B(o,u,y)) * (/\ B(o,u,y) — B(o,u,x))

< (B(o,z,x) = B(o,2,y)) * (B(0,y,y) = B(0,y, 1))

= B(o,z,y) x B(o,y, x) (by Proposition [3.5(1))
< B(z,y, ) (by (FEB5))
= E(z,y). (by Proposition [3.5(2))

For (i), let x € X. Then

R,(0,z) = /\ B(o,z,0) — B(o, z, )

= /\ E(z,0) = B(o, z, ) (by Proposition [3.5(2))
= /\ ) — B(z,z,0) (by (FEB1))
1 (by (FEB2))

For (ii), let u,v,z,y € X. Then

Ru(y,z) — Ry(7,y)

= (/\ B(u, z,y) — B(u,z,x)) — </\ B(v,z,x) — B(%%?J))

zeX zeX

> (B(u,y,y) = Blu,y,x)) — (/\ B(v,z,x) — B(v,z,y))

= B(u,y,z) — (/\ B(v,z,z) = B(v, z, y)) (by Proposition [3.5(1))
> B(u,y,z) — /\ B(v,z,y) (by (FEB4))
= B(u,y,z) = B(y,x,v) (by (FEB1))
> B(u, z,v). (by (FEB5))

355 For (iii), it follows from Proposition [3.5]
356 (2) = (1): It suffices to prove that B satisfies (FEB2)—(FEB5).

17



(FEB2) Let z,y,z € X. Since R, is a fuzzy E-partial order, we have E(y, z) < R,(

the definition of R,, we immediately obtain that

E(y,z) < /\ B(z,u,y) = B(z,u, z)

ueX
< B(z,y,y) = B(z,y,2)
=1— B(z,y,2)
= B(z,y, 2).
Thus,

y,2) = B(x,y,2)
y,2) = B(z,y,7)
B(z,w, z) — B(z,w,x)

E(y,2z) = B(x,y,2) > B(,
B(z,

v

g
>

€
z Z,.%')

I
=X

I

357 which is equivalent to E(y, z) < B(z,y, z).
(FEB3) Let x,y,z € X. Then

B(z,y,2) * B(z,2,y)

= B(z,v, )*B(y,z x) (
< (Ba(2,9) = Raly, 2)) * (Ry(y, 2) = Ra(2,9)) (
< (Ru(z,y) * Ry(y,2)) = (Ra(y, 2) * Ra(2,9)) (
=1 (Ru(y,2) * Ru(2,y)) (
< E(y, 2). (

(FEB4) Let 0,z,y,z € X. Then

B(o,y,2) = B(z,y,0)

- Ro(ya Z)
— /\ B(o,u,y) = B(o,u,2)

ueX

< B(o,z,y) = B(o,x, 2),

33 which implies B(o,z,y) * B(o,y,2) < B(o,x, z).
(FEB5) Let 0, 2z,y,z € X. Then

B(o,y,2)

18

(
< R.(z,y) = Ro(y, 2) (b

(

(

(by (iii))

(by (FEBL))

(by (i)

y,z). By
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360

361

362

363

364

365
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367

368

369

< R( Y, ) (by (ii))

= ( (0, u,x —>B(0uy)) (/\ B(z,v,y)—>B(z,U,l’)>

vex
( (0,2,y ) — (B(z,9,y) = B(z,y,2)) (by (FEB4))
qux ,y) — B(z,y,x) (by Proposition [3.5(1))
= B(o,z,y) = B(z,y, 2), (by (FEB1))
which implies B(o,z,y) * B(o,y,2) < B(x,y, 2). ]

Remark 4.6. In [24] and [41], the authors discussed the properties of fuzzy partial orders from
the point of view of geometric fuzzy interval operators. Here, we equipped fuzzy partial orders
and geometric fuzzy interval operators with a fuzzy equivalence relation E.

By Theorem we know that from any fuzzy E-betweenness relation B we can generate
a fuzzy F-partial order R, for any z € X. Furthermore, we have the following result.

Proposition 4.7. If f : (X,Ex,Bx) — (Y, Ey, By) is betweenness-preserving, then f :
(X,Ex,RY) — (Y,Ey,R (x)) is order-preserving for all x € X, where RY and R}/(x) denote
the fuzzy E-partial orders genemted from Bx and By, respectively.

Proof. Let x € X. Since f: (X, Bx) — (Y, By) is betweenness-preserving, it follows that

Bx (2, 1,22) < By (f(), f(x1), f(22))

for each x1,z9 € X. Then we have

R (F(1). F(22) = N Br(F(2).2 f(21)) = By(f(x). 2 f(22))
> N\ By(f(@). f(a1). f(x2)) (by (FEBA))

> Bx(x,x1,22)

— BX(I',[El,.Tl) — BX(ZL',I‘l,QTQ)

> /\ Bx(x,u,z1) — Bx(x,u, )
ueX

= Rf(ml,xg).

This completes the proof. O
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5. Fuzzy betweenness fields and fuzzy Peano—Pasch spaces

In this section, we will focus on fuzzy betweenness relations, i.e., fuzzy E-betweenness rela-
tions when F is the crisp equality. Specifically, we will consider the relationships between fuzzy
betweenness relations and other geometric features of fuzzy interval operators. For convenience,
we first recall the notion of a field.

A field [40] is an algebraic structure (F,+p, -, —p, *,0p, 1p) of type (2,2,2,1,0,0), such
that 04" is not defined, (F, +p, —r,0r) and (F \ {0z}, -, !, 15) are Abelian groups, and -5 is
distributive over +p.

From now on, we write the quintuple (F,+,-,0p,15z) for (F,+r,r,—p, *,0r,1F) if no
confusion can arise. For convenience, we write { or a/b for a - b=! and write a — b for a —p b,
for all a,b € F.

Considering a ternary relation on a field, the concept of a ternary field is proposed in the
following way.

Definition 5.1 ([39]). A ternary field (F,+,-,0p, 15, T) consists of a field (F,+,-,0p, 1),
together with a ternary relation 7" on F' such that

(BF1) (r,s,t) € T implies (r +a,s + a,t +a) € T for all v, s,t,a € F,
(BF2) (r,s,t) € T implies (r-a,s-a,t-a) € T for all r,s,t,a € F.

In a natural way, the notion of a betweenness field can be obtained by instantiating the
ternary relation in Definition [5.1] with a betweenness relation according to Definition [3.4]

Definition 5.2. A betweenness field (F,+,-,0r, 1p, B) consists of a field (F,+,-,0p, 1p), to-
gether with a betweenness relation B on F such that (BF1) and (BF2) hold.

Now let us introduce the concept of a fuzzy betweenness field as the fuzzy counterpart of a
betweenness field.

Definition 5.3. A fuzzy betweenness field (F,+,-,0p, 1, B) consists of a field (F,+,-,0p, 1r),
together with a fuzzy betweenness relation B on F' such that

(FBF1) B(r,s,t) < B(r+a,s+a,t+a) for all r;s,t,a € F;
(FBF2) B(r,s,t) < B(r-a,s-a,t-a)forall r,s,t,a € F.

Remark 5.4. Comparing to Definitions and [5.3] (FBF0) appears as an additional condi-
tion. However, in the classical case this condition trivially holds. Indeed, if L = {0,1}, then
B(0p,1r,0r) = 0 means “(0Op, 1p,0r) ¢ B”. Suppose the opposite, i.e., (0, 1r,0r) € B. By
(B2) in Definition[3.4] we get (0p, Op, 1p) € B, and so we obtain from (B3) that 0p = 1p, a con-
tradiction. Condition (FBF0) will play an important role in the properties of fuzzy betweenness
fields.
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In the following lemma, we present some elementary properties of fuzzy betweenness fields.

Lemma 5.5. Let (F,+,-,0p, 1r, B) be a fuzzy betweenness field. Then the following statements
hold:

Op,r,1p) = B(Op,1p —r,1p) for allr € F;

Op,7, 1) * B(0p, s,1p) < B(0p,r-s,1g) for allr,s € F;
Op,r,0r) =0 for all r € F\{0r};

r,s,t)=B(r-a,s-a,t-a) forallr,s,t € F and a € F\{Or}.

Proof. The proofs of (3) and (4) are trivial. We verify (1) and (2).
(1) Let r € F'. Then

B(0p,7m,1p) < B(0p,—1,—1p) < B(lp,1p — r,0p) < B(0p,1p — 7, 1F).

Analogously, we have B(0p, 1p —7,1p) < B(0p,r, 1r). Hence B(0p,r,1r) = B(0p, 1p —1,15).
(2) This is valid since

B(0p,7r,1p) * B(0p, s, 1p) (Op,7-s,8)* B(0p, s, 1F) (by (FBF2))

<B
< B(0p,7-8,1p) (by (FB4))

]

In the classical setting, a vector space over a betweenness field can induce an interval
operator in a natural way. Here, we will consider its fuzzy counterpart. That is to say, we will
show that a vector space over a fuzzy betweenness field induces a fuzzy interval operator.

Let V be a vector space over a fuzzy ternary field (F,+,+, 0, 1p, B) and define the map
Iy :V xV — LV by

Iy (z,y)(2) = \/  B(Ort1p).
z=t-z+(1p—t)-y
teF
Proposition 5.6. If V is a vector space over a fuzzy betweenness field (F,+,-,0p, 1p, B), then
Iy is a fuzzy interval operator on V.

Proof. We verify that Iy satisfies (FI1) and (FI2).
(FI1) Let z,y € V. Then

Iy(z,y)(x) = \/  B(0p,t,1p) > B(0p,1p,1p) = 1.
rz=t-z+(1p—t)y
teF

Similarly, we have Iy (x,y)(y) = 1. Hence Iy (z,y)(z) = Iv(z,y)(y) = 1.
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(FI2) Let z,y,z € V. Then

Iy(zy)(z)= \/ B0t 1p)

z=t-z+(1p—t)y
teF

— \/ B(0p,1p —t,1p) (by Lemma[5.5(1))

z=t-z+(1p—t)-y
teF

= \/  B(Ogs1p)

z=(1p—s)-z+sy
seF

= Iv(y, )(2).

Hence, Iy (z,y) = Iy(y,x) by the arbitrariness of z. O

In order to study partially ordered fields and related geometric facts, Prenowitz [35] proposed
a postulate (denoted by (B3) in [35]) to describe the transitivity (called overlap transitivity) of
a ternary relation 7" on X defined by:

(OT) (a,r,s) € T and (r,s,t) € T imply (a,r,t) € T and (a,s,t) € T for all r,s,t,a € X.
Example 5.7. Let (F,+,-,0p, 17) be a field and define Tr C F? as

Tr={(r,s,t) €F*| (Fa€ F)(s=a-r+ (1lp —a)-t)}.
Then TF is a ternary relation on F' satisfying (OT).

Next, we generalize this postulate to the fuzzy case for the study of the Peano property and

the Pasch property of fuzzy interval spaces generated by a vector space over a fuzzy betweenness
field.

Definition 5.8. Let T be a ternary fuzzy relation on a set X. We say that T is overlap-
transitive provided that

(FOT) T(a,r,s)*«T(r,s,t) <T(a,r,t)*T(a,s,t) forall r s,t,a € X.
It is easy to see that (FOT) reduces to (OT) when we replace L by {0,1}.

Example 5.9. Let (F,+,+,0r,1r) be a field and p be a fuzzy set on F. Define Th : F* — L
by

" _ [ w(s), GaeF)s=a-r+(lp—a)-t),
TF(TvS’t)_{ 0, otherwise.

Then T} is a ternary fuzzy relation on F' that satisfies (FOT).
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Interestingly, the interval spaces induced by vector spaces over fuzzy betweenness fields have
nice geometric properties. Naturally, we shall discuss the geometric properties of fuzzy interval
spaces induced by vector spaces over fuzzy betweenness fields, including the Peano property
and the Pasch property. In order to get these ideal results, in the rest of this section, we need
to assume that L is a completely distributive lattice.

Definition 5.10 ([44] 45]). A fuzzy interval space (X, ) is called

(1) a fuzzy Peano space if

1(b,)(y) AM(ay)(z) < \/ L(a,b) (@) A(e,)(2)

zeX

for all a,b,c,y, z € X;

(2) a fuzzy Pasch space if

I(b,e)(a) N I(d,e)(c) < \/ I(a,d)(x) N I(b,c)(x)

zeX

for all a,b,c,d,e € X.

When L is a completely distributive lattice, we obtain the following properties of a fuzzy
betweenness field.

Lemma 5.11. Let (F,+,-,0p, 15, B) be a fuzzy betweenness field such that B is overlap-
transitive. Then

(1) B(Og,r,1p) < B(0p,r,1p+ 1) A BOp,1p,1p+ 1) for allr € F;
(2) B(Op,r, 1) A B(Op,s,1p) < B(Op, 7,7+ ) for all r,s € F.
Proof. (1) By Lemma [5.5(1) and (BF1), we have
B(0p,r,1p) = B(0p,1p —r,1p) < B(r,1p,1p + 7).
Then it follows from (FOT) that
B(Op,r,1p) = B(0p,7,1p) A B(r,1p,1p +7) < B(Op,r,1p + 1) A B(Op, 1p, 1p + 7).
(2) By (FB1) and (FBF1), we get
B(Op,s,1p) < B(lp+r,r+s,7). (i)
By (1) and (FBF1), we get

B(OF,T, 1F) S B(OF,T, 1F—|—’I") /\B(OF,1F,1F+T)
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S B<OF7T7 ]-F+T)
ZB(lp—i—T,T,OF). (11)

Combining (i) with (ii), we have

BOp,r,1p) A B(Op,s,1p) < B(lp + 1,7+ s,7r) AB(lp + r,7,0F)
< B(r+s,r,0p) (by (FBb))
= B(0p,r, 7+ 5). (by (FB1))
This completes the proof. O

Theorem 5.12. Let V' be a vector space over a fuzzy betweenness field (F,+,-,0r, 1, B) such
that B 1s overlap-transitive. Then

(1) (V,1v) is a fuzzy Peano space;
(2) (V,1Iy) is a fuzzy Pasch space.

Proof. By Lemma [5.5(1), we first show an alternative expression for Iy (z,y):

Iy(z.y)(z)= \/ B(Op.t,1p) AB(Op,s,1p).

t+s=1p
z=t-x+sy
For (1), by Proposition it remains to prove that
Iy (b,c)(y) Ay (a,y)(z) < \/ Iv(a,b)(x) A Iy (c,z)(2) (5.0)

zeV

for all a,b, c,y,z € V. For this purpose, let « € L\{0} such that

Oé<]]v(b, c)(y)/\fy(a,y)(z) == \/ B(Op,tl,lp)/\B(OF,Sl,1F)AB<OF,t2,1F)/\B(OF,52,1F).

y=t1-b+s1-c
z=ta-a+s2-y
t1+s1=to+so=1p
Then there exist t;,s; € F (i = 1,2) such that t; + sy = to + 50 = 1lp, y = t1 - b+ s1 ¢,
z=ty-a+$y-yand o < B(0p,t1,1rp) A B(Op, s1,1p) A B(Op,t2,1rp) A B(Op, s2, 1r). It is easy
to obtain that z =ty -a+S9-t1-b+59-5;-¢c. Denotet = 1p — 89 - 81. Then t = t9 + 59 - t5.
Thus, we have

a < B(0p,t1,15) A B(Og, s1,15) A B(Op, ta, 12) A B(Op, $2, 15)
< B(0p,ty, 1) AN B(Op,t1,1p) A B(Op, s9, 1r)
< B(0p,ty,1p) AN B(Op,t; - S, 1p) (by Lemma [5.5(2))
< B(0p, tg, ta + t1 - $2) (by Lemma m<2))
= B(0p, ts, 1)
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Now we consider two cases depending on the value of t.
Case 1. Suppose t = 0. If t5 # Op, then it follows from Lemma (3) that

B(OF,tQ,t) = B(OF7tQ,OF) =0 z a,

a contradiction, and hence t5 = Op. It follows from ¢t = t5 = O and t = 1p — s9 - $1 that
S$o =81 = 1p and t; = Op. Thus z = ¢. Whence,

\/Ivab YA Iy (c,z)(z \/Ivab ) A Iy (e, z)(c)
zeV zeV
> Iyv(a,b)(a) A Iy(c,a)(a)
= 1. (by Proposition [5.6))

This shows that holds.
Case 2. Suppose t # 0p. Let l =to/t, k= (sg-t;)/t and d =1-a+ k- b. Then

z=(1p—1t)-c+t-d.
By Lemma (4), we have
B(0p,1,1r) = B(OF, t2/t, 1r) = B(OF, t2,t) > a,
and
B0p,1p —t,1g) = B(0p, $2 - 81, 1p) > B(0p, $2,1p) A B(Op, s1, 1r) > «
Hence

\/ Iy (a,b)(x) A Iy (c,x)(2)

zeV

=\ | V BOrL 1) ABOpk,1r) | Al \/ B(Oplo1p) AB(Op, ky, 15)

zeV li+ki=1p lo+ko=1p
x=l1-a+ki-b z=lo-ct+ko-x

v

\/  B(0p i, 1) AB(Op, k1, 15) A B(Op, 1o, 15) A B(Op, k2, 1r)
li+k1=la+ko=1F

d=l1-a+k1-b
z=lo-ct+ko-d
> B(0p, 1, 1) A B(Op, k,15) A B(Op,1p — t,15) A B(Op, t, 1)
IB(Op,l,lp)/\B(OF,lp—t,l—F) (by Lemma (1))
> .

By the arbitrariness of a;, we obtain that holds. This shows that (V| Iy) is a fuzzy Peano
space.
For (2), it likewise remains to prove that

Iy(b,e)(a) Av(d.e)(c) < \/ Iv(a,d)(x) ALy (b, c)(x) (5.ii)

zeV
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for all a,b,c,d,e € V. To this end, let « € L\{0} such that

Oé<][v(b, 6)(&)/\Iv(d, 6)(6) = \/ B(OF,tl,lp)/\B<OF,51,1F)/\B(0F,t2,1F)/\B(OF,82,1F).
t1+s1=ta+s2=1F
a=t1-b+s1-e
c=to-d+s3-€
Then there exist t;,s; € F (i = 1,2) such that t; + 1 = to + 8o = 1p, a = t1 - b+ s1 - €,
Cc = tg -d + S9 - € and « S B(OF,tl,lp) A B(OF,Sl, 1F> N B(Op,tg,lp) A B(OF,SQ,lp). We
consider three cases depending on the values of s; and ss.
Case 1. Suppose s; = Op. Then a = b. Hence

\/ Iv(a,d)(x) A Iy (b,¢)(x) = Ty (@, d)(b) A Ty (b, )(B) = Ty (b, d) (b) A Ty (b, ) (B) = L.

zeV

Case 2. Suppose s, = Op. Then ¢ = d. The rest of this proof is analogous to Case 1.
Case 3. Suppose s; # O and sy # Op. Then we have
a — tl b C — tg -d

e = =
S1 52

Hence sy -a+ s1-ty-d=s1-c+t;-So-b. Now we claim that
52+81't2281+t1'827é01:‘.

FiI‘Stly, since 82+81't2 = 1F—t2'(1F—81) = 1F—t2't1 and 81—|—t1'82 = 1F—t1'(1p—82) =
1F—t1't2, we have SQ—I—Sl'tQ :Sl+t1‘82.
Secondly, if so + s1 - to = Op, then we have

a < B(0p,t1,15) A B(Op, s1,15) A B(Op, t2, 17) A B(Or, s, 15)

< B(Op, s2,15) A B(Op, s1,15) A B(Op, t2, 17)

< B(0p, s9,1p) AN B(Op, s1 - ta, 1) (by Lemma (2))
< B(0F, S, 82 + 51 - t2) (by Lemma [5.11)(2))
= B(0p, $2,0r).

Since sy # O, it follows from Lemma (3) that B(0p, s2,0p) = 0 # «, a contradiction. Hence
S + 81 - tg # Op. This shows that s; + 1 - 5o = $9 + 51 - to # 0p. Now let

h:

52-a+31-t2-d<_51-c+t1-52-b>
So + 81+ 1o S1+t1 - S2 '

By Lemma [5.5{(4), we have

52
B|0p,—————,1p ) = B(0p, 82,80+ 51 - 13) > «
(0 210 ) = BlOrssa 51 12)
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B (OF, 5 +8t11 5y 1F> = B(0p, s1,81 + 11 - S2)
> B(0p,s1,1p) A B(Op,t1 - s2,1F) (by Lemma M(Z))
> B(0p, s1,1r) A B(Op, t1, 1) A B(Op, s2,1r)  (by Lemma [5.52))
> a.
Since
S9 n 81+ o - S1 n t1 - S9 7
So+ 81ty S22+ 811t s1tti-s2  s1+t-S

it follows that

\/ Iv(a,d)(z) A Iy (b, ¢)(z)

zeV

=\ \/  B(Or,h,1p) A B(Op, ki, 1r) | A \/  B(0p,l, 1) AB(Op, ks, 15)

eV li+ki=1p lot+ka=1p
r=l1-a+ki-d x=lo-b+ko-c

> \/ B h.1p) ABOp, ki, 1p) | A \/  B(Op.la,1p) A B(OF, ky, 15)

l1+ki=1p lotko=1p
h=l1-a+k1-d h=ly-b+ksa-c

S9 51 -ty 51
>B(0p, —2 1) aB(0p, -2 1) AB(0p, —1 10 A
- (F82+51't2 F) (F82+81't2 F) (F51+t1~82 F)
tl‘SQ
B(0p, ———,1
(F81+t1‘52 F)

=B (oF % 1F) AB (OF S 1F> (by Lemma [5.5(1))
t 02

) )
82+51 S1+t1'82
> Q.

By the arbitrariness of a, we get that (5.ii) holds. This shows that (V,Iy) is a fuzzy Pasch
space. ]

The Peano property and the Pasch property are important geometric properties in the
theory of interval opeators [39]. Wu et al. [44] 45] generalized these properties to the fuzzy case
and studied them from the viewpoint of fuzzy convex structures. Here, we provide a typical
example to show the existence of fuzzy Peano spaces and fuzzy Pasch spaces in Theorem [5.12]
As an application of Theorem [5.12] we will show that the fuzzy interval operator constructed
in Proposition [5.6|is a geometric fuzzy interval operator. To this end, we first recall a lemma
from [45].

Lemma 5.13 ([45]). Let (X, I) be a fuzzy interval space. Then
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(1) The fuzzy Peano property implies (GFI2);
(2) The fuzzy Pasch property implies (GFI3).

Theorem 5.14. Let V be a vector space over a fuzzy betweenness field (F,+,-, 0, 1, B) such
that B is overlap-transitive. Then (V,1y) is a geometric fuzzy interval space.

Proof. By Theorem and Lemma [5.13] it suffices to verify that Iy satisfies (GFI1).
Let a,b € V. Then

suby (Iy(a, a), Iy (a,b))
= (Iy(a,a)(a) = Iy(a,b)(a)) A (Iy(a,a)(b) — Iy (a,b)(b))A

A Uvla.a) @) = Iv(a,b)(@))

zeV\{a,b}
—1ain | A (\/@ = In(a, b)(:v))
zeV\{a,b}
= 1.
If a # b, then
I(a,a)b) = \/  B(pt1p)=\/0=0#1,
b=t-a+(1p—t)-a
teF
as desired. O

6. Conclusions and future research

In this paper, we presented essential connections between fuzzy betweenness relations and
three kinds of induced fuzzy structures. The main results include (i) fuzzy betweenness rela-
tions w.r.t. a fuzzy equivalence relation are categorically isomorphic to geometric fuzzy interval
operators w.r.t. the same fuzzy equivalence relation; (ii) the interrelationship between fuzzy
E-partial orders and fuzzy F-betweenness relations was established; (iii) the concept of a fuzzy
betweenness field w.r.t. the crisp equality was introduced and a fuzzy Peano-Pasch space was
constructed from a vector space over a fuzzy betweenness field. This collection of results illus-
trates that fuzzy betweenness relations play an important role in fuzzy set theory.

We conclude the manuscript with some problems and topics for further exploration.

(1) In Section [3 although the notion of an E-geometric fuzzy interval space w.r.t. a fuzzy
equivalence relation was introduced, the notion of a fuzzy interval operator w.r.t. a fuzzy
equivalence relation remains unexplored. Precisely, we wonder what is the relationship
between the category of the new fuzzy interval spaces w.r.t. a fuzzy equivalence relation
and that of fuzzy F-betweenness sets. Also, we will consider fuzzy betweenness fields w.r.t.
a fuzzy equivalence relation.
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(2) Theorem in Section [5|is obtained in the framework of completely distributive lattices.
It would be interesting to know whether this result also holds true in a more general lattice-
valued background.
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