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Abstract

In the setting of complete residuated lattices, we explore the relationships between the recently
introduced fuzzy betweenness relations and three important mathematical notions: fuzzy inter-
val operators, fuzzy partial orders and fuzzy Peano–Pasch spaces. After recalling the concept
of a fuzzy betweenness relation w.r.t. a fuzzy equivalence relation, we prove that the resulting
category is isomorphic to that of geometric fuzzy interval spaces w.r.t. the same fuzzy equiva-
lence relation. Next, we construct a fuzzy partial order via a fuzzy betweenness relation w.r.t.
a fuzzy equivalence relation and analyze their relationships in depth. Finally, taking a field
as underlying set, we introduce the concept of a fuzzy betweenness field. Furthermore, in the
setting of completely distributive lattices, we provide an interesting example showing that a
vector space over a fuzzy betweenness field can yield a fuzzy Peano–Pasch space.

Keywords: Fuzzy betweenness relation, Fuzzy interval operator, Fuzzy E-partial order, Fuzzy
betweenness field, Fuzzy Peano-Pasch space

1. Introduction1

1.1. Origin2

The origin of betweenness relations can be traced back to the letter by Gauss to Bolyai3

in 1832, pointing out the absence of betweenness postulates in the Euclidean treatment [14].4

Elimination of this defect did not happen until 50 years later when Pasch [26] initiated his inves-5

tigations. A broad range of follow-up studies focused on connections with other mathematical6

notions, such as algebraic structures [23, 38, 43], metrics [6], order and topology [19, 25, 54],7

antimatroids [10], convex structures [17, 39] and the like. In a more general contemporary ap-8

proach, Pitcher and Smiley [34] systematically investigated a wide variety of settings in which9
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betweenness relations arise. This development was not only motivated by the need for an ab-10

stract theory of betweenness relations, but also by the need to unify betweenness relations on11

different mathematical structures. Among the many different definitions of a betweenness re-12

lation, we adopt the definition in the sense of Hedliková ([17], [39, Further Topics 4.22]), which13

has been proven to characterize geometric interval operators and to have close connections with14

other geometric properties in the framework of (abstract) convex spaces. For more research on15

betweenness relations, we refer to [2, 8, 11, 33, 36].16

More than half a century ago, Zadeh introduced the seminal concept of a fuzzy set [51].17

Since then, theoretical and applied research on fuzzy sets has been growing steadily, one of the18

central notions being that of a binary fuzzy relation. Fuzzy order relations, in particular, have19

contributed to the highly intensive development of new areas of fuzzy mathematics, including20

fuzzy topology, fuzzy convex structures, fuzzy rough sets, fuzzy formal concept analysis, to21

name but a few. However, as far as we know, research on ternary fuzzy relations such as fuzzy22

betweenness relations is extremely limited [20, 37, 53]. Similar to the classical crisp case, when23

a ternary fuzzy relation fulfills certain axioms, we will call it a fuzzy betweenness relation.24

Jacas and Recasens [20] introduced a notion of fuzzy betweenness relation valued in the real25

unit interval equipped with a strict Archimedean t-norm T . In particular, it was shown that26

there is a one-to-one correspondence between these fuzzy betweenness relations and separating27

T -equivalences. Shi and Shi [37] investigated lattice-valued betweenness relations motivated by28

the theory of fuzzy convex structures. Zhang et al. [53, 55] studied fuzzy betweenness relations29

valued in a bounded lattice equipped with a t-norm and discussed the connection with fuzzy30

order relations and metrics.31

In recent years, the study of fuzzy convex structures has witnessed an increasing interest,32

and this from points of view, such as topology [27, 48, 50, 57], convergence theory [32, 49, 56],33

category theory [21, 22, 30], interval theory [28, 31, 47], geometry [9, 44, 45, 46], and so on. From34

the perspective of fuzzy order relations, Li and Shi [24] studied some properties of L-fuzzifying35

convex structures induced by L-orders, where L is a completely distributive lattice. It was36

shown that an L-fuzzifying convexity induced by an L-order is L-fuzzifying JHC (a geometric37

property of fuzzy convex structures) with arity of at most 2, and that an L-fuzzifying convexity38

is an L-fuzzifying antimatroid and that its segment operator is a geometric L-interval operator39

whenever the L-order satisfies strong antisymmetry. In addition, considering an integral com-40

mutative quantale Q as underlying lattice, Wang and Shi [41] presented essential connections41

among Q-fuzzifying convex structures, Q-fuzzifying interval operators and Q-preorders. These42

studies also reflect that there exist important relationships among fuzzy order relations, fuzzy43

interval operators and fuzzy convex structures.44

1.2. Aims and outline45

Motivated by the above-mentioned works (related to fuzzy betweenness relations, fuzzy46

order relations, fuzzy interval operators, fuzzy convex structures, etc.), in this paper we explore47

the relationships among fuzzy betweenness relations and fuzzy interval operators, fuzzy partial48

orders, and fuzzy Peano–Pasch spaces (a special class of fuzzy interval spaces). Zhang et al. [53]49

gave several definitions of fuzzy betweenness relations, the most general of which is based on50
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a fuzzy equivalence relation E, and is called a fuzzy E-betweenness relation. Considering the51

corresponding fuzzy interval operators, we aim to propose a suitable notion of fuzzy interval52

operator that allows to establish connections with fuzzy E-betweenness relations. In fact,53

the answer will turn out to be a geometric fuzzy interval operator w.r.t. a fuzzy equivalence54

relation E, which will be called an E-geometric fuzzy interval operator, see Definition 3.8. Since55

fuzzy interval operators and fuzzy orders are also inextricably linked, we will proceed with56

a discussion of the relationships between fuzzy E-betweenness relations and fuzzy E-partial57

orders. Explicitly, we give necessary and sufficient conditions for a ternary fuzzy relation58

to be a fuzzy E-betweenness relation in terms of fuzzy E-partial orders, see Theorem 4.5.59

Further, based on the mentioned geometric background, we propose the notion of a fuzzy60

betweenness field and show that the fuzzy interval operator induced by a vector space over a61

fuzzy betweenness field satisfies geometric properties of the Peano type and the Pasch type, see62

Theorem 5.12.63

This paper is organized as follows. In Section 2, we recall basic notions and notations64

concerning residuated lattices, fuzzy sets and fuzzy relations. In Section 3, using complete65

residuated lattices for expressing degrees of membership and relationship, we introduce the66

notions of fuzzy E-betweenness relation and E-geometric fuzzy interval space and show that67

they are categorically isomorphic. In Section 4, we first present a representation of fuzzy E-68

betweenness relations in terms of E-partial orders. Then we construct a fuzzy E-partial order69

using a ternary fuzzy relation and show that a special ternary fuzzy relation is a fuzzy E-70

betweenness relation if and only if its fuzzy E-partial order is E-antisymmetric and satisfies71

two additional conditions. Section 5 introduces the notion of a fuzzy betweenness field w.r.t. the72

crisp equality. We give an example showing that a vector space over a fuzzy betweenness field73

can also induce a fuzzy interval operator. In particular, considering a completely distributive74

lattice as underlying lattice, the fuzzy interval operator induced by a vector space over a fuzzy75

betweenness field satisfies the Peano property and the Pasch property. Some conclusions and76

future work are summarized in Section 6.77

2. Preliminaries78

In this section, we present the terminology and basic notions used throughout this paper.79

We refer to [16, 42] for more information concerning residuated lattices, to [1] for general80

category theory, and to [4, 15] for fuzzy sets and fuzzy relations.81

2.1. Residuated lattices82

As a logical algebra, a residuated lattice is an algebraic structure that is simultaneously a83

lattice. Ward and Dilworth [42] introduced the noncommutative version of a residuated lattice,84

but we will restrict to the commutative case in this paper.85

Definition 2.1. A residuated lattice is an algebra (L;∧,∨, ∗,→) of type (2, 2, 2, 2) that satisfies:86

(R1) (L,∧,∨) is a bounded lattice with top element 1 and bottom element 0;87
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(R2) (L, ∗, 1) is a commutative monoid with identity 1 and the operation ∗ is isotone w.r.t. the88

lattice order in both arguments;89

(R3) a ∗ b ≤ c if and only if b ≤ a→ c for all a, b, c ∈ L.90

If the underlying lattice L is complete, then it is called a complete residuated lattice.91

In a complete residuated lattice L, the condition (R3) is equivalent to92

(R3′) a ∗ (
∨
i bi) =

∨
i(a ∗ bi), for all a ∈ L and (bi)i∈I in L.93

Some basic properties of complete residuated lattices are gathered in the following proposi-94

tion.95

Proposition 2.2. Let L be a complete residuated lattice. For any a, b, c, d ∈ L and any two96

families (ai)i∈I and (bi)i∈I of L, the following statements hold:97

(1) a→ b = 1 if and only if a ≤ b;98

(2) 1→ a = a;99

(3) (a ∗ b)→ c = a→ (b→ c) = b→ (a→ c);100

(4) (a→ b) ∗ (c→ d) ≤ (a ∗ c)→ (b ∗ d);101

(5) (a→ b) ≤ (c→ a)→ (c→ b);102

(6) a→
∧
i∈I bi =

∧
i∈I(a→ bi);103

(7) (
∨
i∈I ai)→ b =

∧
i∈I(ai → b).104

A complete lattice L is called completely distributive [13] if for any nonempty family (ajk)j∈J,k∈K(j)105

in L, the identity106 ∧
j∈J

∨
k∈K(j)

ajk =
∨
f∈M

∧
j∈J

aj,f(j)

holds, where M is the set of all choice functions f : J →
⋃
j∈J

K(j) with f(j) ∈ K(j) for all107

j ∈ J . In a completely distributive complete lattice L, we can define108

a→ c =
∨
{b ∈ L | a ∧ b 6 c}

for each a, c ∈ L. It then holds that b ≤ a→ c⇔ a ∧ b ≤ c, i.e., (L;∧,∨,∧,→) is a complete109

residuated lattice. In other words, any completely distributive complete lattice is a particular110

complete residuated lattice with ∗ = ∧.111

In order to give an elegant characterization of the completely distributive property of com-112

plete lattices, we recall the following definition.113
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Definition 2.3 ([12]). Let L be a complete lattice. An element a ∈ L is said to be wedge114

below an element b ∈ L, denoted a C b, if for any subset D ⊆ L, the relation b ≤
∨
D always115

implies the existence of d ∈ D such that a ≤ d.116

Theorem 2.4 ([12, 13]). A complete lattice L is completely distributive if and only if a =117 ∨
{b ∈ L | bC a} for all a ∈ L.118

Proposition 2.5. Let L be a completely distributive complete lattice. Then for any a, b ∈ L119

and any family (bj)j∈J of L, the following statements hold:120

(1) aC b implies a ≤ b;121

(2) a 6= 0 implies 0 C a;122

(3) aC
∨
j∈J bj if and only if (∃j ∈ J)(aC bj).123

Throughout this paper, L always denotes a complete residuated lattice, unless otherwise124

specified.125

2.2. Fuzzy sets126

A fuzzy subset of a set X over L, or simply a fuzzy subset of X, is a map ϕ from X to L,127

i.e., ϕ : X −→ L. The value ϕ(x) is interpreted as the membership degree of x in the fuzzy128

subset ϕ. Crisp subsets of X are considered as fuzzy subsets of X taking membership values129

in the set {0, 1} ⊆ L. The collection of all fuzzy subsets of X over L is denoted by LX . The130

operators on L can be extended to LX in a pointwise manner. Doing so, LX is also a complete131

residuated lattice.132

Let ϕ, φ be two fuzzy subsets of a set X. The map subX : LX × LX −→ L defined by133

subX(ϕ, φ) =
∧
x∈X

ϕ(x)→ φ(x) ,

is called the fuzzy inclusion order on LX [4]. The value subX(ϕ, φ) expresses the degree to134

which ϕ is contained in φ.135

For each map f : X −→ Y and ϕ ∈ LX , f→(ϕ) denotes the fuzzy subset of Y obtained136

by applying Zadeh’s extension principle, i.e., f→(ϕ)(y) =
∨
{ϕ(x) | f(x) = y} for each y ∈ Y .137

For each map g : X −→ Y and φ ∈ LY , g←(φ) denotes the fuzzy subset of X given by138

g←(φ)(x) = φ(g(x)) for all x ∈ X.139

2.3. Fuzzy relations140

Let X be a nonempty set. A binary fuzzy relation R on X is a map from X×X to L, i.e., a141

fuzzy subset of X×X. Similarly, a ternary fuzzy relation T on X is a map from X×X×X to142

L, i.e., a fuzzy subset of X ×X ×X. A crisp binary (resp. ternary) relation is a binary (resp.143

ternary) fuzzy relation that takes values only in the set {0, 1}, and if R (resp. T ) is a crisp144

binary (resp. ternary) relation on X, then the expressions R(x, y) = 1 (resp. (T (x, y, z) = 1)145

and (x, y) ∈ R (resp. (x, y, z) ∈ T ) have the same meaning. By fuzzy relations we usually mean146

binary fuzzy relations. We are interested in the following properties of fuzzy relations.147

A fuzzy relation R on a set X is said to be:148
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– reflexive if R(x, x) = 1 for all x ∈ X;149

– symmetric if R(x, y) = R(y, x) for all x, y ∈ X;150

– antisymmetric if R(x, y) ∗R(y, x) 6= 0 implies x = y for all x, y ∈ X;151

– transitive if R(x, y) ∗R(y, z) ≤ R(x, z) for all x, y, z ∈ X.152

A reflexive and transitive fuzzy relation (resp. crisp relation) R on a set X is called a fuzzy153

quasi-order (resp. quasi-order), and in this case we call (X,R) a fuzzy quasi-ordered set (resp.154

quasi-ordered set). In some sources, quasi-orders and fuzzy quasi-orders are called preorders155

and fuzzy preorders, respectively, but here we use the original name introduced by Birkhoff [5].156

Note that there exist alternative generalizations of the antisymmetry of a crisp binary relation.157

Here we adopt the one that was introduced in [7, 52].158

We say that a map f : (X,RX) −→ (Y,RY ) between two fuzzy quasi-ordered sets is order-159

preserving if160

RX(x1, x2) ≤ RY (f(x1), f(x2))

for all x1, x2 ∈ X.161

A symmetric fuzzy quasi-order on X is called a fuzzy equivalence relation. Using fuzzy162

equivalence relations, we can deal with more general notions of reflexivity and weak antisym-163

metry of fuzzy relations. Namely, if E is a fuzzy equivalence relation on a set X, then a fuzzy164

relation R on X is said to be:165

– E-reflexive if E(x, y) ≤ R(x, y) for all x ∈ X;166

– E-antisymmetric if R(x, y) ∗R(y, x) ≤ E(x, y) for all x, y ∈ X.167

A fuzzy relation R on X is called a fuzzy E-partial order if it is E-reflexive, E-antisymmetric168

and transitive [7, 18]. In this case, the triplet (X,E,R) is called a fuzzy E-partially ordered set.169

We say that a map f : (X,EX , RX) −→ (Y,EY , RY ) is order-preserving if170

RX(x1, x2) ≤ RY (f(x1), f(x2))

and171

EX(x1, x2) ≤ EY (f(x1), f(x2))

for all x1, x2 ∈ X.172

3. Fuzzy betweenness relations and fuzzy interval operators173

By endowing a fuzzy betweenness relation with a fuzzy equivalence relation E, we start174

this section by introducing the notion of a fuzzy E-betweenness relation. Although different175

axiomatic definitions of betweenness relations have been proposed in the literatures [2, 25],176

our fuzzification in this work is based on the one presented in [17, 39] since there is a bi-177

jection between geometric interval operators and betweenness relations, as mentioned in the178

introduction.179
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Definition 3.1. Let E be a fuzzy equivalence relation on a set X. A fuzzy E-betweenness180

relation on X is a ternary fuzzy relation B such that181

(FEB1) B(x, y, z) = B(z, y, x) for all x, y, z ∈ X;182

(FEB2) E(y, z) ≤ B(x, y, z) for all x, y, z ∈ X;183

(FEB3) B(x, y, z) ∗B(x, z, y) ≤ E(y, z) for all x, y, z ∈ X;184

(FEB4) B(o, x, y) ∗B(o, y, z) ≤ B(o, x, z) for all o, x, y, z ∈ X;185

(FEB5) B(o, x, y) ∗B(o, y, z) ≤ B(x, y, z) for all o, x, y, z ∈ X.186

For a fuzzy E-betweenness relation B on a set X, the triplet (X,E,B) is called a fuzzy E-187

betweenness set.188

In the particular case that E is the crisp equality, fuzzy E-betweenness relations are simply189

called fuzzy betweenness relations, and can be described by the following definition.190

Definition 3.2. A fuzzy betweenness relation on X is a ternary fuzzy relation B such that191

(FB1) B(x, y, z) = B(z, y, x) for all x, y, z ∈ X;192

(FB2) B(x, y, y) = 1 for all x, y ∈ X;193

(FB3) B(x, y, z) ∗B(x, z, y) 6= 0 implies y = z, for all x, y, z ∈ X;194

(FB4) B(o, x, y) ∗B(o, y, z) ≤ B(o, x, z) for all o, x, y, z ∈ X;195

(FB5) B(o, x, y) ∗B(o, y, z) ≤ B(x, y, z) for all o, x, y, z ∈ X.196

For a fuzzy betweenness relation B on a set X, the pair (X,B) is called a fuzzy betweenness197

set.198

Intuitively speaking, the value B(x, y, z) is interpreted as the degree to which the element199

y is between the elements x and z.200

Remark 3.3. Zhang et al. [53] introduced related concepts of fuzzy (E-)betweenness relations201

with a focus on the representability in terms of a family of fuzzy orders. It is easy to see that202

Definition 3.1 (resp. Definition 3.2) contains the additional axiom (FEB5) (resp. (FB5)). The203

main reason is that we will focus on the connection with fuzzy interval operators which play204

an important role in the theory of fuzzy convex structures. Since there is no confusion possible205

here, we will still use the term fuzzy (E-)betweenness relation in our work.206
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A map f : (X,EX , BX) −→ (Y,EY , BY ) is said to be betweenness-preserving if207

BX(x, y, z) ≤ BY (f(x), f(y), f(z))

and208

EX(x, y) ≤ EY (f(x), f(y))

for all x, y, z ∈ X.209

We write FEBet (resp. FBet) for the category of fuzzy E-betweenness sets (resp. fuzzy210

betweenness sets) as objects and betweenness-preserving maps as morphisms.211

When L = {0, 1}, Definition 3.2 reduces the following definition of a betweenness relation.212

Definition 3.4. A betweenness relation on X is a ternary relation B such that213

(B1) (x, y, z) ∈ B ⇔ (z, y, x) ∈ B for all x, y, z ∈ X;214

(B2) (x, y, y) ∈ B for all x, y ∈ X;215

(B3) (x, y, z) ∈ B and (x, z, y) ∈ B imply y = z for all x, y, z ∈ X;216

(B4) (o, x, y) ∈ B and (o, y, z) ∈ B imply (o, x, z) ∈ B for all o, x, y, z ∈ X;217

(B5) (o, x, y) ∈ B and (o, y, z) ∈ B imply (x, y, z) ∈ B for all o, x, y, z ∈ X.218

For a betweenness relation B on a set X, the pair (X,B) is called a betweenness set.219

Proposition 3.5 ([53]). Let E be a fuzzy equivalence relation on a set X and B be a fuzzy220

E-betweenness relation on X. Then221

(1) B(x, x, y) = B(x, y, y) = 1 for all x, y ∈ X;222

(2) B(x, y, x) = E(y, x) for all x, y ∈ X.223

Interval operators provide a useful tool to describe geometric properties of convex struc-224

tures [39]. With the development of fuzzy convex structures, interval operators have been225

generalized to the fuzzy setting in recent years (see, e.g., [29, 41, 47]). In what follows, we will226

generalize geometric fuzzy interval operators to E-geometric fuzzy interval operators and then227

study their relationships with fuzzy E-betweenness relations. Let us first recall the definition228

of a geometric fuzzy interval operator.229

Definition 3.6 ([47]). A map I : X ×X −→ LX is called a fuzzy interval operator on X if230

(FI1) I(x, y)(x) = I(x, y)(y) = 1 for all x, y ∈ X;231

(FI2) I(x, y) = I(y, x) for all x, y ∈ X.232

For a fuzzy interval operator I on X, the pair (X, I) is called a fuzzy interval space.233
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A map f : (X, IX) −→ (Y, IY ) between fuzzy interval spaces is said to be interval-preserving234

if235

f→(IX(x, y)) ≤ IY (f(x), f(y))

for all x, y ∈ X.236

We write FIS for the category of fuzzy interval spaces as objects and interval-preserving237

maps as morphisms.238

Considering the geometric properties of fuzzy interval operators, Wang and Shi [41] intro-239

duced the concept of geometric fuzzy interval operators.240

Definition 3.7 ([41]). A fuzzy interval operator I on a set X is called geometric if241

(GFI1) subX(I(x, x), I(x, y)) = 1 and I(x, x)(y) 6= 1 when x 6= y for all x, y ∈ X;242

(GFI2) I(x, y)(z) = subX(I(x, z), I(x, y)) for all x, y, z ∈ X;243

(GFI3) I(x, y)(z) ≤ I(x, z)(o)→ I(o, y)(z) for all x, y, z, o ∈ X.244

For a geometric fuzzy interval operator I on X, the pair (X, I) is called a geometric fuzzy245

interval space.246

The full subcategory of FIS composed of geometric fuzzy interval spaces is denoted GFIS.247

By equipping a fuzzy equivalence E on geometric fuzzy interval operators, we present the248

following definition.249

Definition 3.8. Let E be a fuzzy equivalence relation on a set X. A fuzzy interval operator250

I on X is said to be E-geometric if251

(EGFI) subX(I(x, x), I(x, y)) = 1 and I(x, x)(y) = E(x, y) for all x, y ∈ X;252

(GFI2) I(x, y)(z) = subX(I(x, z), I(x, y)) for all x, y, z ∈ X;253

(GFI3) I(x, y)(z) ≤ I(x, z)(o)→ I(o, y)(z) for all x, y, z, o ∈ X.254

For an E-geometric fuzzy interval operator I on X, the pair (X,E, I) is called an E-geometric255

fuzzy interval space.256

Remark 3.9. Definition 3.8 is introduced based on a fuzzy equivalence relation E. If E is the257

crisp equality, then this definition reduces to Definition 3.7 in the sense of Wang and Shi [41].258

A map f : (X,EX , IX) −→ (Y,EY , IY ) is said to be interval-preserving if259

f→(IX(x, y)) ≤ IY (f(x), f(y))

and260

EX(x, y) ≤ EY (f(x), f(y))

for all x, y ∈ X.261
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We write EGFIS for the category of E-geometric fuzzy interval spaces as objects and262

interval-preserving maps as morphisms.263

In the following, we will study the relationships between EFBet (resp. FBet) and EGFIS264

(resp. GFIS).265

Proposition 3.10. Let (X,E, I) be an E-geometric fuzzy interval space and define a ternary266

fuzzy relation BI : X ×X ×X −→ L by267

BI(x, y, z) = I(x, z)(y).

Then BI is a fuzzy E-betweenness relation on X.268

Proof. We verify that BI satisfies (FEB1)–(FEB5).269

(FEB1) Straightforward.270

(FEB2) Let x, y, z ∈ X. Then

BI(x, y, z) = I(x, z)(y) = I(z, x)(y) (by (FI2))

≥ I(z, z)(y) (by (EGFI))

= E(z, y). (by (EGFI))

(FEB3) Let x, y, z ∈ X. Then

BI(x, y, z) ∗BI(x, z, y) = I(x, z)(y) ∗ I(x, y)(z)

≤ I(y, y)(z) (by (GFI3))

= E(z, y). (by (EGFI))

(FEB4) Let o, x, y, z ∈ X. By (GFI2), we have271

I(o, z)(y) ≤ subX(I(o, y), I(o, z)) ≤ I(o, y)(x)→ I(o, z)(x),

which implies272

I(o, y)(x) ∗ I(o, z)(y) ≤ I(o, z)(x).273

Hence274

BI(o, x, y) ∗BI(o, y, z) = I(o, y)(x) ∗ I(o, z)(y) ≤ I(o, z)(x) = BI(o, x, z).275

(FEB5) Let o, x, y, z ∈ X. By (GFI3), we know that276

I(o, z)(y) ∗ I(o, y)(x) ≤ I(x, z)(y).277

Thus278

BI(o, x, y) ∗BI(o, y, z) = I(o, y)(x) ∗ I(o, z)(y) ≤ I(x, z)(y) = BI(x, y, z).279

The proof is completed.280

When E is the crisp equality, we obtain the following result as a corollary.281
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Corollary 3.11. Let (X, I) be a geometric fuzzy interval space. Then the ternary fuzzy relation282

BI is a fuzzy betweenness relation on X.283

Proposition 3.12. If f : (X,EX , IX) −→ (Y,EY , IY ) is interval-preserving, then f : (X,EX , BIX ) −→284

(Y,EY , BIY ) is betweenness-preserving.285

Proof. Since f : (X,EX , IX) −→ (Y,EY , IY ) is interval-preserving, we have286

f→(IX(x, z)) ≤ IY (f(x), f(z))

for all x, z ∈ X. Then for any y ∈ X, it follows that

BIY (f(x), f(y), f(z)) = IY (f(x), f(z))(f(y))

≥ f→(IX(x, z))(f(y))

=
∨
{IX(x, z)(w) | f(w) = f(y)}

≥ IX(x, z)(y)

= BIX (x, y, z),

as desired.287

By Propositions 3.10 and 3.12, we obtain a functor F: EGFIS −→ EFBet as follows:288

F :


EGFIS −→ EFBet
(X,E, I) 7−→ (X,E,BI),

f 7−→ f.

Conversely, we will induce an E-geometric fuzzy interval operator from a fuzzy E-betweenness289

relation.290

Proposition 3.13. Let (X,E,B) be a fuzzy E-betweenness set and define the map IB : X ×291

X −→ LX by292

IB(x, y)(o) = B(x, o, y).

Then IB is an E-geometric fuzzy interval operator.293

Proof. We verify that IB satisfies (FI1), (FI2) and (EGFI)–(GFI3).294

(FI1) It follows from Proposition 3.5(1) that295

IB(x, y)(x) = B(x, x, y) = 1 and IB(x, y)(y) = B(x, y, y) = 1

for all x, y ∈ X.296

(FI2) It is clear by (FEB1).297

(EGFI) Let x, y ∈ X. Then

subX(IB(x, x), IB(x, y)) =
∧
z∈X

B(x, z, x)→ B(x, z, y)
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=
∧
z∈X

E(z, x)→ B(x, z, y) (by Proposition 3.5(2))

= 1, (by (FEB1) & (FEB2))

and it follows from Proposition 3.5(2) that298

IB(x, x)(y) = B(x, y, x) = E(y, x) = E(x, y).

(GFI2) The key is to prove that IB(x, y)(z) ≤ subX(IB(x, z), IB(x, y)) for all x, y, z ∈ X.
In fact,

subX(IB(x, z), IB(x, y)) =
∧
w∈X

IB(x, z)(w)→ IB(x, y)(w)

=
∧
w∈X

B(x,w, z)→ B(x,w, y)

≥
∧
w∈X

B(x, z, y) (by (FEB4))

= IB(x, y)(z).

(GFI3) Let o, x, y, z ∈ X. By (FEB5), we have299

IB(x, z)(o) ∗ IB(x, y)(z) = B(x, o, z) ∗B(x, z, y) ≤ B(o, z, y) = IB(o, y)(z),

which implies IB(x, y)(z) ≤ IB(x, z)(o)→ IB(o, y)(z).300

When E is the crisp equality, we obtain the following result.301

Corollary 3.14. Let (X,B) be a fuzzy betweenness set. Then IB is a geometric fuzzy interval302

operator.303

Proposition 3.15. If f : (X,EX , BX) −→ (Y,EY , BY ) is betweenness-preserving, then f :304

(X,EX , IBX
) −→ (Y,EY , IBY

) is interval-preserving.305

Proof. Let x, y ∈ X. Then for any w ∈ Y , we have

f→(IBX
(x, y))(w) =

∨
{IBX

(x, y)(z) | f(z) = w}

=
∨
{BX(x, z, y) | f(z) = w}

≤
∨
{BY (f(x), f(z), f(y)) | f(z) = w}

= BY (f(x), w, f(y))

= IBY
(f(x), f(y))(w).

By the arbitrariness of w, we obtain that f is interval-preserving.306
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By Propositions 3.13 and 3.15, we obtain a functor G : EFBet −→ EFGIS as follows:307

G :


EFBet −→ EFGIS

(X,E,B) 7−→ (X,E, IB),
f 7−→ f.

Theorem 3.16. EFBet and EFGIS are isomorphic.308

Proof. Since F and G are both concrete functors, it remains to show that F ◦G = IEFBet and309

G ◦ F = IEFGIS. To that end, it suffices to verify that (1) BIB = B and (2) IBI
= I.310

For (1), let x, y, z ∈ X. Then311

BIB(x, y, z) = IB(x, z)(y) = B(x, y, z),

For (2), let x, y, z ∈ X. Then312

IBI
(x, y)(z) = BI(x, z, y) = I(x, y)(z).

This completes the proof.313

Considering the relationships between geometric fuzzy interval spaces and fuzzy betweenness314

sets, we obtain the following result as a corollary.315

Corollary 3.17. FBet and FGIS are isomorphic.316

4. Fuzzy E-betweenness relations and fuzzy E-partial orders317

Wang and Shi [41] established the connections between fuzzy base-point orders and geo-318

metric fuzzy interval operators. On the other hand, Zhang et al. [53] extensively discussed319

the connections between fuzzy betweenness relations and fuzzy orders. In this section, we will320

explore these connections by equipping these fuzzy structures with a fuzzy equivalence relation.321

To this end, the following definition is necessary.322

Definition 4.1 ([3, 53]). A ternary fuzzy relation T on a set X is said to be middle compatible323

with a fuzzy equivalence relation E on X if324

E(x, y) ∗ T (o, y, z) ≤ T (o, x, z)

for all o, x, y, z ∈ X.325

Now, let us construct a fuzzy E-betweenness relation from a fuzzy E-partially ordered set326

and show its relationship with the middle compatibility of E.327

Theorem 4.2. Let (X,E,R) be a fuzzy E-partially ordered set and define a ternary fuzzy328

relation BR : X ×X ×X −→ L by329

BR(x, y, z) = (R(x, y) ∨R(z, y)) ∗ (R(y, z) ∨R(y, x)).

Then BR is a fuzzy E-betweenness relation if and only if it is middle compatible with E.330
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Proof. Necessity. The proof can be found in [53, Proposition 4].331

Sufficiency. We verify that BR satisfies (FEB1)–(FEB5) as follows:332

(FEB1) Straightforward.333

(FEB2) Let x, y, z ∈ X. Since BR is middle compatible with E and BR(x, z, z) = 1, it334

follows that E(y, z) = E(y, z) ∗BR(x, z, z) ≤ BR(x, y, z).335

(FEB3) Let x, y, z ∈ X. By the transitivity and the E-antisymmetry of R, we then have

BR(x, y, z) ∗BR(x, z, y)

= (R(x, y) ∨R(z, y)) ∗ (R(y, z) ∨R(y, x)) ∗ (R(x, z) ∨R(y, z)) ∗ (R(z, y) ∨R(z, x))

= [R(x, y) ∗R(y, z) ∗R(x, z) ∗R(z, y)] ∨ [R(x, y) ∗R(y, z) ∗R(x, z) ∗R(z, x)]∨
[R(x, y) ∗R(y, z) ∗R(y, z) ∗R(z, y)] ∨ [R(x, y) ∗R(y, z) ∗R(y, z) ∗R(z, x)]∨
[R(z, y) ∗R(y, z) ∗R(x, z) ∗R(z, y)] ∨ [R(z, y) ∗R(y, z) ∗R(x, z) ∗R(z, x)]∨
[R(z, y) ∗R(y, z) ∗R(y, z) ∗R(z, y)] ∨ [R(z, y) ∗R(y, z) ∗R(y, z) ∗R(z, x)]∨
[R(x, y) ∗R(y, x) ∗R(x, z) ∗R(z, y)] ∨ [R(x, y) ∗R(y, x) ∗R(x, z) ∗R(z, x)]∨
[R(x, y) ∗R(y, x) ∗R(y, z) ∗R(z, y)] ∨ [R(x, y) ∗R(y, x) ∗R(y, z) ∗R(z, x)]∨
[R(z, y) ∗R(y, x) ∗R(x, z) ∗R(z, y)] ∨ [R(z, y) ∗R(y, x) ∗R(x, z) ∗R(z, x)]∨
[R(z, y) ∗R(y, x) ∗R(y, z) ∗R(z, y)] ∨ [R(z, y) ∗R(y, x) ∗R(y, z) ∗R(z, x)]

≤ [R(y, z) ∗R(z, y)] ∨ [R(y, z) ∗ 1 ∗R(z, y)] ∨ [1 ∗ 1 ∗R(y, z) ∗R(z, y)]∨
[1 ∗R(y, z) ∗R(z, y)] ∨ [1 ∗R(y, z) ∗ 1 ∗R(z, y)] ∨ [R(z, y) ∗R(y, z) ∗ 1 ∗ 1]∨
[1 ∗ 1 ∗R(y, z) ∗R(z, y)] ∨ [R(z, y) ∗R(y, z) ∗ 1 ∗ 1] ∨ [1 ∗R(y, z) ∗R(z, y)] ∨ [R(y, z) ∗R(z, y)]∨
[1 ∗ 1 ∗R(y, z) ∗R(z, y)] ∨ [1 ∗R(y, z) ∗R(z, y)] ∨ [R(z, y) ∗R(y, z) ∗ 1] ∨ [R(z, y) ∗R(y, z) ∗ 1]∨
[1 ∗ 1 ∗R(y, z) ∗R(z, y)] ∨ [R(z, y) ∗ 1 ∗R(y, z) ∗ 1]

= R(y, z) ∗R(z, y)

≤ E(y, z).

(FEB4) Let o, x, y, z ∈ X. By the transitivity of R, we then have

BR(o, x, y) ∗BR(o, y, z)

= (R(o, x) ∨R(y, x)) ∗ (R(x, y) ∨R(x, o)) ∗ (R(o, y) ∨R(z, y)) ∗ (R(y, z) ∨R(y, o))

= [R(o, x) ∗R(x, y) ∗R(o, y) ∗R(y, z)] ∨ [R(o, x) ∗R(x, y) ∗R(o, y) ∗R(y, o)]∨
[R(o, x) ∗R(x, y) ∗R(z, y) ∗R(y, z)] ∨ [R(o, x) ∗R(x, y) ∗R(z, y) ∗R(y, o)]∨
[R(y, x) ∗R(x, y) ∗R(o, y) ∗R(y, z)] ∨ [R(y, x) ∗R(x, y) ∗R(o, y) ∗R(y, o)]∨
[R(y, x) ∗R(x, y) ∗R(z, y) ∗R(y, z)] ∨ [R(y, x) ∗R(x, y) ∗R(z, y) ∗R(y, o)]∨
[R(o, x) ∗R(x, o) ∗R(o, y) ∗R(y, z)] ∨ [R(o, x) ∗R(x, o) ∗R(o, y) ∗R(y, o)]∨
[R(o, x) ∗R(x, o) ∗R(z, y) ∗R(y, z)] ∨ [R(o, x) ∗R(x, o) ∗R(z, y) ∗R(y, o)]∨
[R(y, x) ∗R(x, o) ∗R(o, y) ∗R(y, z)] ∨ [R(y, x) ∗R(x, o) ∗R(o, y) ∗R(y, o)]∨
[R(y, x) ∗R(x, o) ∗R(z, y) ∗R(y, z)] ∨ [R(y, x) ∗R(x, o) ∗R(o, y) ∗R(y, o)]

≤ (R(o, x) ∗R(x, z)) ∨ (R(o, x) ∗R(x, o)) ∨ (R(z, x) ∗R(x, z)) ∨ (R(z, x) ∗R(x, o))
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= (R(o, x) ∨R(z, x)) ∗ (R(x, z) ∨R(x, o))

= BR(o, x, z).

(FEB5) Let o, x, y, z ∈ X. By the transitivity of R, we then have

BR(o, x, y) ∗BR(o, y, z)

= (R(o, x) ∨R(y, x)) ∗ (R(x, y) ∨R(x, o)) ∗ (R(o, y) ∨R(z, y)) ∗ (R(y, z) ∨R(y, o))

= [R(o, x) ∗R(x, y) ∗R(o, y) ∗R(y, z)] ∨ [R(o, x) ∗R(x, y) ∗R(o, y) ∗R(y, o)]∨
[R(o, x) ∗R(x, y) ∗R(z, y) ∗R(y, z)] ∨ [R(o, x) ∗R(x, y) ∗R(z, y) ∗R(y, o)]∨
[R(y, x) ∗R(x, y) ∗R(o, y) ∗R(y, z)] ∨ [R(y, x) ∗R(x, y) ∗R(o, y) ∗R(y, o)]∨
[R(y, x) ∗R(x, y) ∗R(z, y) ∗R(y, z)] ∨ [R(y, x) ∗R(x, y) ∗R(z, y) ∗R(y, o)]∨
[R(o, x) ∗R(x, o) ∗R(o, y) ∗R(y, z)] ∨ [R(o, x) ∗R(x, o) ∗R(o, y) ∗R(y, o)]∨
[R(o, x) ∗R(x, o) ∗R(z, y) ∗R(y, z)] ∨ [R(o, x) ∗R(x, o) ∗R(z, y) ∗R(y, o)]∨
[R(y, x) ∗R(x, o) ∗R(o, y) ∗R(y, z)] ∨ [R(y, x) ∗R(x, o) ∗R(o, y) ∗R(y, o)]∨
[R(y, x) ∗R(x, o) ∗R(z, y) ∗R(y, z)] ∨ [R(y, x) ∗R(x, o) ∗R(o, y) ∗R(y, o)]

≤ (R(x, y) ∗R(y, z)) ∨ (R(x, y) ∗R(y, x)) ∨ (R(z, y) ∗R(y, z)) ∨ (R(z, y) ∗R(y, x))

= (R(x, y) ∨R(z, y)) ∗ (R(y, z) ∨R(y, x))

= BR(x, y, z).

This completes the proof.336

Remark 4.3. For any partially ordered set (X,≤), Bankston [2], Pérez-Fernández and De Baets [33]337

constructed a betweenness relation on X via338

B≤ = {(x, y, z) ∈ X3 | x = y or y = z or x ≤ y ≤ z or z ≤ y ≤ x},

which is called an order-betweenness relation. Subsequently, Zhang et al. [53] generalized this
construction to the fuzzy case. Concisely, for a given fuzzy E-partially ordered set (X,R), a
fuzzy E-betweenness relation can be constructed in the following way.

BR(x, y, z) = E(x, y) ∨ E(y, z) ∨ (R(x, y) ∗R(y, z)) ∨ (R(z, y) ∗R(y, x)).

Actually, in the classical case, B≤ has another equivalent form. That is,339

B≤ = {(x, y, z) ∈ X3 | x ≤ y or z ≤ y} ∩ {(x, y, z) ∈ X3 | y ≤ x or y ≤ z}.

So in Theorem 4.2, we considered the fuzzy counterpart of this formula,340

BR(x, y, z) = (R(x, y) ∨R(z, y)) ∗ (R(y, z) ∨R(y, x)),

which is much simpler compared with BR.341
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Next, we will consider how to construct a fuzzy E-partial order from a fuzzy E-betweenness342

relation. Let B be a ternary fuzzy relation on a set X. For every o ∈ X, define a binary fuzzy343

relation Ro by344

Ro(x, y) =
∧
z∈X

B(o, z, x)→ B(o, z, y).

Proposition 4.4. Let E be a fuzzy equivalence relation on a set X. Suppose that B is a ternary345

fuzzy relation on X satisfying (FEB2) and (FEB4). Then Ro is E-reflexive and transitive.346

Proof. E-reflexivity: Let x, y, z ∈ X. Then

Ro(x, y) =
∧
z∈X

B(o, z, x)→ B(o, z, y)

≥
∧
z∈X

B(o, x, y) (by (FEB4))

≥ E(x, y). (by (FEB2))

Transitivity: Let x, y ∈ X. Then

Ro(x, y)→ Ro(x, z)

=

(∧
v∈X

B(o, v, x)→ B(o, v, y)

)
→

(∧
u∈X

B(o, u, x)→ B(o, u, z)

)
≥
∧
v∈X

((B(o, v, x)→ B(o, v, y))→ (B(o, v, x)→ B(o, v, z)))

≥
∧
v∈X

B(o, v, y)→ B(o, v, z) (by Proposition 2.2(5))

= Ro(y, z),

which implies that Ro(x, y) ∗Ro(y, z) ≤ Ro(x, z).347

Theorem 4.5. Let E be a fuzzy equivalence relation on a set X and B be a ternary fuzzy348

relation on X satisfying (FEB1). Then the following statements are equivalent:349

(1) B is a fuzzy E-betweenness relation;350

(2) For each o ∈ X, Ro is a fuzzy E-partial order and the following statements hold:351

(i) Ro(o, x) = 1 for all x ∈ X.352

(ii) B(u, x, v) ≤ Ru(y, x)→ Rv(x, y) for all u, v, x, y ∈ X.353

(iii) B(x, y, y) = 1 for all x, y ∈ X.354
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Proof. (1) =⇒ (2): We first prove that Ro is a fuzzy E-partial order. By Proposition 4.4, it
remains to show that Ro is E-antisymmetric. Let x, y ∈ X. Then

Ro(x, y) ∗Ro(y, x)

=

(∧
u∈X

B(o, u, x)→ B(o, u, y)

)
∗

(∧
u∈X

B(o, u, y)→ B(o, u, x)

)
≤ (B(o, x, x)→ B(o, x, y)) ∗ (B(o, y, y)→ B(o, y, x))

= B(o, x, y) ∗B(o, y, x) (by Proposition 3.5(1))

≤ B(x, y, x) (by (FEB5))

= E(x, y). (by Proposition 3.5(2))

For (i), let x ∈ X. Then

Ro(o, x) =
∧
z∈X

B(o, z, o)→ B(o, z, x)

=
∧
z∈X

E(z, o)→ B(o, z, x) (by Proposition 3.5(2))

=
∧
z∈X

E(z, o)→ B(x, z, o) (by (FEB1))

= 1. (by (FEB2))

For (ii), let u, v, x, y ∈ X. Then

Ru(y, x)→ Rv(x, y)

=

(∧
z∈X

B(u, z, y)→ B(u, z, x)

)
→

(∧
z∈X

B(v, z, x)→ B(v, z, y)

)

≥ (B(u, y, y)→ B(u, y, x))→

(∧
z∈X

B(v, z, x)→ B(v, z, y)

)

= B(u, y, x)→

(∧
z∈X

B(v, z, x)→ B(v, z, y)

)
(by Proposition 3.5(1))

≥ B(u, y, x)→
∧
z∈X

B(v, x, y) (by (FEB4))

= B(u, y, x)→ B(y, x, v) (by (FEB1))

≥ B(u, x, v). (by (FEB5))

For (iii), it follows from Proposition 3.5.355

(2) =⇒ (1): It suffices to prove that B satisfies (FEB2)–(FEB5).356
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(FEB2) Let x, y, z ∈ X. Since Rz is a fuzzy E-partial order, we have E(y, z) ≤ Rz(y, z). By
the definition of Rz, we immediately obtain that

E(y, z) ≤
∧
u∈X

B(z, u, y)→ B(z, u, z)

≤ B(z, y, y)→ B(z, y, z)

= 1→ B(z, y, z) (by (iii))

= B(z, y, z).

Thus,

E(y, z)→ B(x, y, z) ≥ B(z, y, z)→ B(x, y, z)

= B(z, y, z)→ B(z, y, x) (by (FEB1))

≥
∧
w∈X

B(z, w, z)→ B(z, w, x)

= Rz(z, x)

= 1, (by (i))

which is equivalent to E(y, z) ≤ B(x, y, z).357

(FEB3) Let x, y, z ∈ X. Then

B(x, y, z) ∗B(x, z, y)

= B(z, y, x) ∗B(y, z, x) (by (FEB1))

≤ (Rz(z, y)→ Rx(y, z)) ∗ (Ry(y, z)→ Rx(z, y)) (by (ii))

≤ (Rz(z, y) ∗Ry(y, z))→ (Rx(y, z) ∗Rx(z, y)) (by Proposition 2.2(4))

= 1→ (Rx(y, z) ∗Rx(z, y)) (by (i))

≤ E(y, z). (by E-antisymmetry of Rx)

(FEB4) Let o, x, y, z ∈ X. Then

B(o, y, z) = B(z, y, o) (by (FEB1))

≤ Rz(z, y)→ Ro(y, z) (by (ii))

= Ro(y, z) (by (i))

=
∧
u∈X

B(o, u, y)→ B(o, u, z) (by the defintion of Ro)

≤ B(o, x, y)→ B(o, x, z),

which implies B(o, x, y) ∗B(o, y, z) ≤ B(o, x, z).358

(FEB5) Let o, x, y, z ∈ X. Then

B(o, y, z)
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≤ Ro(x, y)→ Rz(y, x) (by (ii))

=

(∧
u∈X

B(o, u, x)→ B(o, u, y)

)
→

(∧
v∈X

B(z, v, y)→ B(z, v, x)

)

≤

(∧
u∈X

B(o, x, y)

)
→ (B(z, y, y)→ B(z, y, x)) (by (FEB4))

= B(o, x, y)→ B(z, y, x) (by Proposition 3.5(1))

= B(o, x, y)→ B(x, y, z), (by (FEB1))

which implies B(o, x, y) ∗B(o, y, z) ≤ B(x, y, z).359

Remark 4.6. In [24] and [41], the authors discussed the properties of fuzzy partial orders from360

the point of view of geometric fuzzy interval operators. Here, we equipped fuzzy partial orders361

and geometric fuzzy interval operators with a fuzzy equivalence relation E.362

By Theorem 4.5, we know that from any fuzzy E-betweenness relation B we can generate363

a fuzzy E-partial order Rx for any x ∈ X. Furthermore, we have the following result.364

Proposition 4.7. If f : (X,EX , BX) −→ (Y,EY , BY ) is betweenness-preserving, then f :365

(X,EX , R
X
x ) −→ (Y,EY , R

Y
f(x)) is order-preserving for all x ∈ X, where RX

x and RY
f(x) denote366

the fuzzy E-partial orders generated from BX and BY , respectively.367

Proof. Let x ∈ X. Since f : (X,BX) −→ (Y,BY ) is betweenness-preserving, it follows that368

BX(x, x1, x2) ≤ BY (f(x), f(x1), f(x2))

for each x1, x2 ∈ X. Then we have

RY
f(x)(f(x1), f(x2)) =

∧
z∈Y

BY (f(x), z, f(x1))→ BY (f(x), z, f(x2))

≥
∧
z∈Y

BY (f(x), f(x1), f(x2)) (by (FEB4))

≥ BX(x, x1, x2)

= BX(x, x1, x1)→ BX(x, x1, x2)

≥
∧
u∈X

BX(x, u, x1)→ BX(x, u, x2)

= RX
x (x1, x2).

This completes the proof.369
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5. Fuzzy betweenness fields and fuzzy Peano–Pasch spaces370

In this section, we will focus on fuzzy betweenness relations, i.e., fuzzy E-betweenness rela-371

tions when E is the crisp equality. Specifically, we will consider the relationships between fuzzy372

betweenness relations and other geometric features of fuzzy interval operators. For convenience,373

we first recall the notion of a field.374

A field [40] is an algebraic structure (F,+F , ·F ,−F , −1, 0F , 1F ) of type (2, 2, 2, 1, 0, 0), such375

that 0−1F is not defined, (F,+F ,−F , 0F ) and (F \ {0F}, ·F , −1, 1F ) are Abelian groups, and ·F is376

distributive over +F .377

From now on, we write the quintuple (F,+, ·, 0F , 1F ) for (F,+F , ·F ,−F , −1, 0F , 1F ) if no378

confusion can arise. For convenience, we write a
b

or a/b for a ·F b−1, and write a− b for a−F b,379

for all a, b ∈ F .380

Considering a ternary relation on a field, the concept of a ternary field is proposed in the381

following way.382

Definition 5.1 ([39]). A ternary field (F,+, ·, 0F , 1F , T ) consists of a field (F,+, ·, 0F , 1F ),383

together with a ternary relation T on F such that384

(BF1) (r, s, t) ∈ T implies (r + a, s+ a, t+ a) ∈ T for all r, s, t, a ∈ F ;385

(BF2) (r, s, t) ∈ T implies (r · a, s · a, t · a) ∈ T for all r, s, t, a ∈ F .386

In a natural way, the notion of a betweenness field can be obtained by instantiating the387

ternary relation in Definition 5.1 with a betweenness relation according to Definition 3.4.388

Definition 5.2. A betweenness field (F,+, ·, 0F , 1F , B) consists of a field (F,+, ·, 0F , 1F ), to-389

gether with a betweenness relation B on F such that (BF1) and (BF2) hold.390

Now let us introduce the concept of a fuzzy betweenness field as the fuzzy counterpart of a391

betweenness field.392

Definition 5.3. A fuzzy betweenness field (F,+, ·, 0F , 1F , B) consists of a field (F,+, ·, 0F , 1F ),393

together with a fuzzy betweenness relation B on F such that394

(FBF0) B(0F , 1F , 0F ) = 0;395

(FBF1) B(r, s, t) ≤ B(r + a, s+ a, t+ a) for all r, s, t, a ∈ F ;396

(FBF2) B(r, s, t) ≤ B(r · a, s · a, t · a) for all r, s, t, a ∈ F .397

Remark 5.4. Comparing to Definitions 5.2 and 5.3, (FBF0) appears as an additional condi-398

tion. However, in the classical case this condition trivially holds. Indeed, if L = {0, 1}, then399

B(0F , 1F , 0F ) = 0 means “(0F , 1F , 0F ) /∈ B”. Suppose the opposite, i.e., (0F , 1F , 0F ) ∈ B. By400

(B2) in Definition 3.4, we get (0F , 0F , 1F ) ∈ B, and so we obtain from (B3) that 0F = 1F , a con-401

tradiction. Condition (FBF0) will play an important role in the properties of fuzzy betweenness402

fields.403
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In the following lemma, we present some elementary properties of fuzzy betweenness fields.404

Lemma 5.5. Let (F,+, ·, 0F , 1F , B) be a fuzzy betweenness field. Then the following statements405

hold:406

(1) B(0F , r, 1F ) = B(0F , 1F − r, 1F ) for all r ∈ F ;407

(2) B(0F , r, 1F ) ∗B(0F , s, 1F ) ≤ B(0F , r · s, 1F ) for all r, s ∈ F ;408

(3) B(0F , r, 0F ) = 0 for all r ∈ F\{0F};409

(4) B(r, s, t) = B(r · a, s · a, t · a) for all r, s, t ∈ F and a ∈ F\{0F}.410

Proof. The proofs of (3) and (4) are trivial. We verify (1) and (2).411

(1) Let r ∈ F . Then412

B(0F , r, 1F ) ≤ B(0F ,−r,−1F ) ≤ B(1F , 1F − r, 0F ) ≤ B(0F , 1F − r, 1F ).

Analogously, we have B(0F , 1F − r, 1F ) ≤ B(0F , r, 1F ). Hence B(0F , r, 1F ) = B(0F , 1F − r, 1F ).413

(2) This is valid since

B(0F , r, 1F ) ∗B(0F , s, 1F ) ≤ B(0F , r · s, s) ∗B(0F , s, 1F ) (by (FBF2))

≤ B(0F , r · s, 1F ) (by (FB4))

414

In the classical setting, a vector space over a betweenness field can induce an interval415

operator in a natural way. Here, we will consider its fuzzy counterpart. That is to say, we will416

show that a vector space over a fuzzy betweenness field induces a fuzzy interval operator.417

Let V be a vector space over a fuzzy ternary field (F,+, ·, 0F , 1F , B) and define the map418

IV : V × V −→ LV by419

IV (x, y)(z) =
∨

z=t·x+(1F−t)·y
t∈F

B(0F , t, 1F ).

Proposition 5.6. If V is a vector space over a fuzzy betweenness field (F,+, ·, 0F , 1F , B), then420

IV is a fuzzy interval operator on V .421

Proof. We verify that IV satisfies (FI1) and (FI2).422

(FI1) Let x, y ∈ V . Then423

IV (x, y)(x) =
∨

x=t·x+(1F−t)·y
t∈F

B(0F , t, 1F ) ≥ B(0F , 1F , 1F ) = 1.

Similarly, we have IV (x, y)(y) = 1. Hence IV (x, y)(x) = IV (x, y)(y) = 1.424
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(FI2) Let x, y, z ∈ V . Then

IV (x, y)(z) =
∨

z=t·x+(1F−t)·y
t∈F

B(0F , t, 1F )

=
∨

z=t·x+(1F−t)·y
t∈F

B(0F , 1F − t, 1F ) (by Lemma 5.5(1))

=
∨

z=(1F−s)·x+s·y
s∈F

B(0F , s, 1F )

= IV (y, x)(z).

Hence, IV (x, y) = IV (y, x) by the arbitrariness of z.425

In order to study partially ordered fields and related geometric facts, Prenowitz [35] proposed426

a postulate (denoted by (B3) in [35]) to describe the transitivity (called overlap transitivity) of427

a ternary relation T on X defined by:428

(OT) (a, r, s) ∈ T and (r, s, t) ∈ T imply (a, r, t) ∈ T and (a, s, t) ∈ T for all r, s, t, a ∈ X.429

Example 5.7. Let (F,+, ·, 0F , 1F ) be a field and define TF ⊆ F 3 as430

TF = {(r, s, t) ∈ F 3 | (∃a ∈ F )(s = a · r + (1F − a) · t)}.

Then TF is a ternary relation on F satisfying (OT).431

Next, we generalize this postulate to the fuzzy case for the study of the Peano property and432

the Pasch property of fuzzy interval spaces generated by a vector space over a fuzzy betweenness433

field.434

Definition 5.8. Let T be a ternary fuzzy relation on a set X. We say that T is overlap-435

transitive provided that436

(FOT) T (a, r, s) ∗ T (r, s, t) ≤ T (a, r, t) ∗ T (a, s, t) for all r, s, t, a ∈ X.437

It is easy to see that (FOT) reduces to (OT) when we replace L by {0, 1}.438

Example 5.9. Let (F,+, ·, 0F , 1F ) be a field and µ be a fuzzy set on F . Define T µF : F 3 −→ L
by

T µF (r, s, t) =

{
µ(s), (∃a ∈ F )(s = a · r + (1F − a) · t),

0, otherwise.

Then T µF is a ternary fuzzy relation on F that satisfies (FOT).439
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Interestingly, the interval spaces induced by vector spaces over fuzzy betweenness fields have440

nice geometric properties. Naturally, we shall discuss the geometric properties of fuzzy interval441

spaces induced by vector spaces over fuzzy betweenness fields, including the Peano property442

and the Pasch property. In order to get these ideal results, in the rest of this section, we need443

to assume that L is a completely distributive lattice.444

Definition 5.10 ([44, 45]). A fuzzy interval space (X, I) is called445

(1) a fuzzy Peano space if446

I(b, c)(y) ∧ I(a, y)(z) ≤
∨
x∈X

I(a, b)(x) ∧ I(c, x)(z)

for all a, b, c, y, z ∈ X;447

(2) a fuzzy Pasch space if448

I(b, e)(a) ∧ I(d, e)(c) ≤
∨
x∈X

I(a, d)(x) ∧ I(b, c)(x)

for all a, b, c, d, e ∈ X.449

When L is a completely distributive lattice, we obtain the following properties of a fuzzy450

betweenness field.451

Lemma 5.11. Let (F,+, ·, 0F , 1F , B) be a fuzzy betweenness field such that B is overlap-452

transitive. Then453

(1) B(0F , r, 1F ) ≤ B(0F , r, 1F + r) ∧B(0F , 1F , 1F + r) for all r ∈ F ;454

(2) B(0F , r, 1F ) ∧B(0F , s, 1F ) ≤ B(0F , r, r + s) for all r, s ∈ F .455

Proof. (1) By Lemma 5.5(1) and (BF1), we have456

B(0F , r, 1F ) = B(0F , 1F − r, 1F ) ≤ B(r, 1F , 1F + r).

Then it follows from (FOT) that457

B(0F , r, 1F ) = B(0F , r, 1F ) ∧B(r, 1F , 1F + r) ≤ B(0F , r, 1F + r) ∧B(0F , 1F , 1F + r).

(2) By (FB1) and (FBF1), we get

B(0F , s, 1F ) ≤ B(1F + r, r + s, r). (i)

By (1) and (FBF1), we get

B(0F , r, 1F ) ≤ B(0F , r, 1F + r) ∧B(0F , 1F , 1F + r)
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≤ B(0F , r, 1F + r)

= B(1F + r, r, 0F ). (ii)

Combining (i) with (ii), we have

B(0F , r, 1F ) ∧B(0F , s, 1F ) ≤ B(1F + r, r + s, r) ∧B(1F + r, r, 0F )

≤ B(r + s, r, 0F ) (by (FB5))

= B(0F , r, r + s). (by (FB1))

This completes the proof.458

Theorem 5.12. Let V be a vector space over a fuzzy betweenness field (F,+, ·, 0F , 1F , B) such459

that B is overlap-transitive. Then460

(1) (V, IV ) is a fuzzy Peano space;461

(2) (V, IV ) is a fuzzy Pasch space.462

Proof. By Lemma 5.5(1), we first show an alternative expression for IV (x, y):463

IV (x, y)(z) =
∨

t+s=1F
z=t·x+s·y

B(0F , t, 1F ) ∧B(0F , s, 1F ).

For (1), by Proposition 5.6, it remains to prove that464

IV (b, c)(y) ∧ IV (a, y)(z) ≤
∨
x∈V

IV (a, b)(x) ∧ IV (c, x)(z) (5.i)

for all a, b, c, y, z ∈ V . For this purpose, let α ∈ L\{0} such that465

αCIV (b, c)(y)∧IV (a, y)(z) =
∨

y=t1·b+s1·c
z=t2·a+s2·y

t1+s1=t2+s2=1F

B(0F , t1, 1F )∧B(0F , s1, 1F )∧B(0F , t2, 1F )∧B(0F , s2, 1F ).

Then there exist ti, si ∈ F (i = 1, 2) such that t1 + s1 = t2 + s2 = 1F , y = t1 · b + s1 · c,
z = t2 · a+ s2 · y and α ≤ B(0F , t1, 1F )∧B(0F , s1, 1F )∧B(0F , t2, 1F )∧B(0F , s2, 1F ). It is easy
to obtain that z = t2 · a + s2 · t1 · b + s2 · s1 · c. Denote t = 1F − s2 · s1. Then t = t2 + s2 · t1.
Thus, we have

α ≤ B(0F , t1, 1F ) ∧B(0F , s1, 1F ) ∧B(0F , t2, 1F ) ∧B(0F , s2, 1F )

≤ B(0F , t2, 1F ) ∧B(0F , t1, 1F ) ∧B(0F , s2, 1F )

≤ B(0F , t2, 1F ) ∧B(0F , t1 · s2, 1F ) (by Lemma 5.5(2))

≤ B(0F , t2, t2 + t1 · s2) (by Lemma 5.11(2))

= B(0F , t2, t).
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Now we consider two cases depending on the value of t.466

Case 1. Suppose t = 0F . If t2 6= 0F , then it follows from Lemma 5.5(3) that467

B(0F , t2, t) = B(0F , t2, 0F ) = 0 � α,

a contradiction, and hence t2 = 0F . It follows from t = t2 = 0F and t = 1F − s2 · s1 that
s2 = s1 = 1F and t1 = 0F . Thus z = c. Whence,∨

x∈V

IV (a, b)(x) ∧ IV (c, x)(z) =
∨
x∈V

IV (a, b)(x) ∧ IV (c, x)(c)

≥ IV (a, b)(a) ∧ IV (c, a)(a)

= 1. (by Proposition 5.6)

This shows that (5.i) holds.468

Case 2. Suppose t 6= 0F . Let l = t2/t, k = (s2 · t1)/t and d = l · a+ k · b. Then469

z = (1F − t) · c+ t · d.

By Lemma 5.5 (4), we have470

B(0F , l, 1F ) = B(0F , t2/t, 1F ) = B(0F , t2, t) ≥ α,

and471

B(0F , 1F − t, 1F ) = B(0F , s2 · s1, 1F ) ≥ B(0F , s2, 1F ) ∧B(0F , s1, 1F ) ≥ α.

Hence∨
x∈V

IV (a, b)(x) ∧ IV (c, x)(z)

=
∨
x∈V

 ∨
l1+k1=1F
x=l1·a+k1·b

B(0F , l1, 1F ) ∧B(0F , k1, 1F )

 ∧
 ∨

l2+k2=1F
z=l2·c+k2·x

B(0F , l2, 1F ) ∧B(0F , k2, 1F )


≥

∨
l1+k1=l2+k2=1F
d=l1·a+k1·b
z=l2·c+k2·d

B(0F , l1, 1F ) ∧B(0F , k1, 1F ) ∧B(0F , l2, 1F ) ∧B(0F , k2, 1F )

≥ B(0F , l, 1F ) ∧B(0F , k, 1F ) ∧B(0F , 1F − t, 1F ) ∧B(0F , t, 1F )

= B(0F , l, 1F ) ∧B(0F , 1F − t, 1− F ) (by Lemma 5.5(1))

≥ α.

By the arbitrariness of α, we obtain that (5.i) holds. This shows that (V, IV ) is a fuzzy Peano472

space.473

For (2), it likewise remains to prove that474

IV (b, e)(a) ∧ IV (d, e)(c) ≤
∨
x∈V

IV (a, d)(x) ∧ IV (b, c)(x) (5.ii)

25



for all a, b, c, d, e ∈ V. To this end, let α ∈ L\{0} such that475

αCIV (b, e)(a)∧IV (d, e)(c) =
∨

t1+s1=t2+s2=1F
a=t1·b+s1·e
c=t2·d+s2·e

B(0F , t1, 1F )∧B(0F , s1, 1F )∧B(0F , t2, 1F )∧B(0F , s2, 1F ).

Then there exist ti, si ∈ F (i = 1, 2) such that t1 + s1 = t2 + s2 = 1F , a = t1 · b + s1 · e,476

c = t2 · d + s2 · e and α ≤ B(0F , t1, 1F ) ∧ B(0F , s1, 1F ) ∧ B(0F , t2, 1F ) ∧ B(0F , s2, 1F ). We477

consider three cases depending on the values of s1 and s2.478

Case 1. Suppose s1 = 0F . Then a = b. Hence479 ∨
x∈V

IV (a, d)(x) ∧ IV (b, c)(x) ≥ IV (a, d)(b) ∧ IV (b, c)(b) = IV (b, d)(b) ∧ IV (b, c)(b) = 1F .

Case 2. Suppose s2 = 0F . Then c = d. The rest of this proof is analogous to Case 1.480

Case 3. Suppose s1 6= 0F and s2 6= 0F . Then we have481

e =
a− t1 · b

s1
=
c− t2 · d

s2
.

Hence s2 · a+ s1 · t2 · d = s1 · c+ t1 · s2 · b. Now we claim that482

s2 + s1 · t2 = s1 + t1 · s2 6= 0F .

Firstly, since s2 +s1 · t2 = 1F − t2 ·(1F −s1) = 1F − t2 · t1 and s1 + t1 ·s2 = 1F − t1 ·(1F −s2) =483

1F − t1 · t2, we have s2 + s1 · t2 = s1 + t1 · s2.484

Secondly, if s2 + s1 · t2 = 0F , then we have

α ≤ B(0F , t1, 1F ) ∧B(0F , s1, 1F ) ∧B(0F , t2, 1F ) ∧B(0F , s2, 1F )

≤ B(0F , s2, 1F ) ∧B(0F , s1, 1F ) ∧B(0F , t2, 1F )

≤ B(0F , s2, 1F ) ∧B(0F , s1 · t2, 1F ) (by Lemma 5.5(2))

≤ B(0F , s2, s2 + s1 · t2) (by Lemma 5.11(2))

= B(0F , s2, 0F ).

Since s2 6= 0F , it follows from Lemma 5.5(3) that B(0F , s2, 0F ) = 0 � α, a contradiction. Hence485

s2 + s1 · t2 6= 0F . This shows that s1 + t1 · s2 = s2 + s1 · t2 6= 0F . Now let486

h =
s2 · a+ s1 · t2 · d
s2 + s1 · t2

(
=
s1 · c+ t1 · s2 · b
s1 + t1 · s2

)
.

By Lemma 5.5(4), we have487

B

(
0F ,

s2
s2 + s1 · t2

, 1F

)
= B(0F , s2, s2 + s1 · t2) ≥ α
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and

B

(
0F ,

s1
s1 + t1 · s2

, 1F

)
= B(0F , s1, s1 + t1 · s2)

≥ B(0F , s1, 1F ) ∧B(0F , t1 · s2, 1F ) (by Lemma 5.11(2))

≥ B(0F , s1, 1F ) ∧B(0F , t1, 1F ) ∧B(0F , s2, 1F ) (by Lemma 5.5(2))

≥ α.

Since
s2

s2 + s1 · t2
+

s1 · t2
s2 + s1 · t2

= 1 =
s1

s1 + t1 · s2
+

t1 · s2
s1 + t1 · s2

,

it follows that∨
x∈V

IV (a, d)(x) ∧ IV (b, c)(x)

=
∨
x∈V

 ∨
l1+k1=1F
x=l1·a+k1·d

B(0F , l1, 1F ) ∧B(0F , k1, 1F )

 ∧
 ∨

l2+k2=1F
x=l2·b+k2·c

B(0F , l2, 1F ) ∧B(0F , k2, 1F )


≥

 ∨
l1+k1=1F
h=l1·a+k1·d

B(0F , l1, 1F ) ∧B(0F , k1, 1F )

 ∧
 ∨

l2+k2=1F
h=l2·b+k2·c

B(0F , l2, 1F ) ∧B(0F , k2, 1F )


≥ B

(
0F ,

s2
s2 + s1 · t2

, 1F

)
∧B

(
0F ,

s1 · t2
s2 + s1 · t2

, 1F

)
∧B

(
0F ,

s1
s1 + t1 · s2

, 1F

)
∧

B

(
0F ,

t1 · s2
s1 + t1 · s2

, 1F

)
= B

(
0F ,

s2
s2 + s1 · t2

, 1F

)
∧B

(
0F ,

s1
s1 + t1 · s2

, 1F

)
(by Lemma 5.5(1))

≥ α.

By the arbitrariness of α, we get that (5.ii) holds. This shows that (V, IV ) is a fuzzy Pasch488

space.489

The Peano property and the Pasch property are important geometric properties in the490

theory of interval opeators [39]. Wu et al. [44, 45] generalized these properties to the fuzzy case491

and studied them from the viewpoint of fuzzy convex structures. Here, we provide a typical492

example to show the existence of fuzzy Peano spaces and fuzzy Pasch spaces in Theorem 5.12.493

As an application of Theorem 5.12, we will show that the fuzzy interval operator constructed494

in Proposition 5.6 is a geometric fuzzy interval operator. To this end, we first recall a lemma495

from [45].496

Lemma 5.13 ([45]). Let (X, I) be a fuzzy interval space. Then497
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(1) The fuzzy Peano property implies (GFI2);498

(2) The fuzzy Pasch property implies (GFI3).499

Theorem 5.14. Let V be a vector space over a fuzzy betweenness field (F,+, ·, 0F , 1F , B) such500

that B is overlap-transitive. Then (V, IV ) is a geometric fuzzy interval space.501

Proof. By Theorem 5.12 and Lemma 5.13, it suffices to verify that IV satisfies (GFI1).502

Let a, b ∈ V . Then

subV (IV (a, a), IV (a, b))

= (IV (a, a)(a)→ IV (a, b)(a)) ∧ (IV (a, a)(b)→ IV (a, b)(b))∧ ∧
x∈V \{a,b}

(IV (a, a)(x)→ IV (a, b)(x))


= 1 ∧ 1 ∧

 ∧
x∈V \{a,b}

(∨
∅ → IV (a, b)(x)

)
= 1.

If a 6= b, then503

IV (a, a)(b) =
∨

b=t·a+(1F−t)·a
t∈F

B(0F , t, 1F ) =
∨
∅ = 0 6= 1,

as desired.504

6. Conclusions and future research505

In this paper, we presented essential connections between fuzzy betweenness relations and506

three kinds of induced fuzzy structures. The main results include (i) fuzzy betweenness rela-507

tions w.r.t. a fuzzy equivalence relation are categorically isomorphic to geometric fuzzy interval508

operators w.r.t. the same fuzzy equivalence relation; (ii) the interrelationship between fuzzy509

E-partial orders and fuzzy E-betweenness relations was established; (iii) the concept of a fuzzy510

betweenness field w.r.t. the crisp equality was introduced and a fuzzy Peano-Pasch space was511

constructed from a vector space over a fuzzy betweenness field. This collection of results illus-512

trates that fuzzy betweenness relations play an important role in fuzzy set theory.513

We conclude the manuscript with some problems and topics for further exploration.514

(1) In Section 3, although the notion of an E-geometric fuzzy interval space w.r.t. a fuzzy515

equivalence relation was introduced, the notion of a fuzzy interval operator w.r.t. a fuzzy516

equivalence relation remains unexplored. Precisely, we wonder what is the relationship517

between the category of the new fuzzy interval spaces w.r.t. a fuzzy equivalence relation518

and that of fuzzy E-betweenness sets. Also, we will consider fuzzy betweenness fields w.r.t.519

a fuzzy equivalence relation.520

28



(2) Theorem 5.12 in Section 5 is obtained in the framework of completely distributive lattices.521

It would be interesting to know whether this result also holds true in a more general lattice-522

valued background.523
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