The research on CO oxidation over Ce–Mn oxides: The preparation method effects and oxidation mechanism

Zhiping Ye, Yang Liu, Anton Nikiforov, Jiayu Ji, Bo Zhao, Jiade Wang

PII: S0045-6535(23)01397-8

DOI: https://doi.org/10.1016/j.chemosphere.2023.139130

Reference: CHEM 139130

To appear in: ECSN

Received Date: 7 February 2023

Revised Date: 2 June 2023

Accepted Date: 3 June 2023

Please cite this article as: Ye, Z., Liu, Y., Nikiforov, A., Ji, J., Zhao, B., Wang, J., The research on CO oxidation over Ce–Mn oxides: The preparation method effects and oxidation mechanism, *Chemosphere* (2023), doi: https://doi.org/10.1016/j.chemosphere.2023.139130.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Ltd.

魙

Zhiping Ye: Writing - Original Draft, Validation, Formal analysis, Visualization, Methodology Data curation, Investigation, Conceptualization.

Yang Liu: Writing - Original Draft, Data Curation, Validation, Formal analysis, Visualization, Investigation.

Anton Nikiforov: Writing - review & editing, Validation, Software, Funding acquisition

Jiayu Ji: Resources, Visualization, Investigation, Formal analysis, Validation.

Bo Zhao: Resources, Writing – review & editing, Supervision, Funding acquisition.

Jiade Wang : Methodology, Writing - Review &Editing, Funding acquisition, Resources,

Supervision, Project administration.

Journal

Jeerral Prosperce

1	The research on CO oxidation over Ce-Mn oxides: the preparation method effects and oxidation		
2	mechanism		
3	Zhiping Ye ^{a, d} , Yang Liu ^a , Anton Nikiforov ^b , Jiayu Ji ^a , Bo Zhao ^{c, *} , Jiade Wang ^{a, *}		
4	^a College of Environment, Zhejiang University of Technology, 18 Chaowang RD, Hangzhou		
5	310014, PR China		
6	^b Ghent University, Faculty of Engineering, Department of Applied Physics, Research Unit Plasma		
7	Technology, Sint-Pietersnieuwstraat 41, 9000 Ghent, Belgium		
8	° Zhejiang Tuna Environmental Science & Technology Co., Ltd, Shaoxing 312071, PR China		
9	^d State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex,		
10	Beijing, 100084, China		
11	ABSTRACT		
12	A series of CeO ₂ -MnO _x for highly efficient catalytical oxidation of carbon monoxide were prepared		
13	by citrate sol-gel (C), hydrothermal (H) and hydrothermal-citrate complexation (CH) methods. The		
14	outcome indicates that the catalyst generated using the CH technique (CH-1:8) demonstrated the greatest		
15	catalytic performance for CO oxidation with a T_{50} of 98 °C, and also good stability in 1400 min.		
16	Compared to the catalysts prepared by C and H method, CH-1:8 has the highest specific surface of 156.1		
17	m ² ·g ⁻¹ , and the better reducibility of CH-1:8 was also observed in CO-TPR. It is also observed the high		
18	ratio of adsorbed oxygen/lattice oxygen (1.5) in the XPS result. Moreover, characterizations by the TOF-		
19	SIMS method indicated that obtained catalyst CH-Ce/Mn=1:8 had stronger interactions between Ce and		
20	Mn oxides, and the redox cycle of $Mn^{3+}+Ce^{4+} \leftrightarrow Mn^{4+}+Ce^{3+}$ was a key process for CO adsorption and		
21	oxidation process. According to in-situ FTIR, the possible reaction pathway for CO was deduced in three		
22	ways. CO directly oxidize with O_2 to CO_2 , CO adsorbed on Mn^{4+} and Ce^{3+} reacts with O to form		

23	intermediates (COO ⁻) (T > 50 °C) and carbonates (T > 90 °C), which are further oxidized into CO ₂ .		
24	Keywords: hydrothermal-citrate complexation (CH), CO oxidation, Ce-Mn redox cycle, In-situ		
25	characterization		
26	1. Introduction		
27	The iron and steel industry (ISI) is a pillar industry of China's economy, accounting for 56.76% of		
28	the global crude steel output in 2020 (Zhu et al., 2022). The air pollution emissions of ISI, especially CO		
29	concentration in 1-2 orders of magnitude higher than other pollutants. It poses a major risk to both the		
30	environment and public health (Ye et al., 2022; Yu et al., 2021). The catalytic oxidation of CO is regarded		
31	as one of the finest methods for reducing the impact of ISI pollution not only in China but also on a		
32	global scale.		
33	Among different catalysts, Mn-based materials have been widely applied for CO removal due to the		
34	ability of crystalline lattices to store oxygen and the high mobility of lattice oxygen (Gao et al., 2021;		
35	Niu and Lei, 2019). The bimetallic catalysts can further strengthen the redox properties of the surface of		
36	Mn-based materials. The kinetic study for CO oxidation performed over Cu-Ce catalysts shows that the		
37	partial pressure dependence is 0-1 for CO and 0 for O2. This could be well interpreted by a Mars-		
38	vanKrevelen type mechanism over these catalysts. (Jia et al., 2012) The DFT calculation results further		
39	verify that the oxygen vacancies make the required reaction energy lower than the conventional reaction		
40	method during the CO oxidation process.(Wang et al., 2022) The kinetics of CO oxidation on MnCeO _x		
41	catalyst shows that the surface oxygen vacancies promote CO oxidation, special attention was paid to the		
42	oxide structure leading to the most active catalyst. (Arena et al., 2017) The addition of the Ce element is		
43	of great potential to change the crystal structure and valence state of MnO _x , and the substitution of Ce to		
44	Mn helps to enhance the lattice oxygen activity, promoting the reactivity of CO oxidation reactions (Wei		

45 et al., 2021).

46	The rise in ceria concentration of Ce-Mn oxides has also been reported to have different morphology
47	and microstructure: the nanorod particles became notably shorter and thinner, and some thick flakes or
48	agglomerates of shapeless nanoparticles were also seen, changing the mesopore properties and specific
49	surface area (Kharlamova et al., 2022). The Ce-Mn-O solid solution with superior catalytic activity was
50	made using a deposition coprecipitation technique. It has good stability during catalytical processes, and
51	CO oxidation for three successive runs was explored (Venkataswamy et al., 2015). Reports stated that
52	the Ea (activation energy) value of Mn-Ce solid solution for CO oxidation was about 30-40 kJ·mol ⁻¹
53	lower that of manganese oxide and manganese-cerium oxide catalysts, suggesting the high reactivity of
54	Mn-Ce solid solution (Zhang et al., 2016).
55	Ce-Mn oxides have been reported to be available in a variety of forms due to their good
56	compatibility, and the solid solution is one of the most efficient structures due to the dispersity,
57	crystallinity, and anti-agglomeration (Lei et al., 2021; Zhang et al., 2021). Several routes have been
58	suggested for the preparation of Ce-Mn solid solution, such as impregnation (Yang et al., 2020), sol-gel
59	(Huang et al., 2019), coprecipitation (Tang et al., 2020), hydrothermal (Huang et al., 2021), and ion
60	exchange (Ji et al., 2021). The various preparation techniques affect the solid solution formation,
61	exhibiting different catalytic oxidation performances. However, the available research results can not
62	draw unambiguous conclusions on the method's selectivity and the relationship between it and solid
63	solution structure. Therefore, it is still worth putting more effort into detailed research of the effects.
64	In this work, the citric acid sol-gel, the hydrothermal, and citrate-hydrothermal methods were used
65	to prepare Mn-Ce solid solution. Considering the three carboxyl groups of citric acid, it is beneficial for
66	the complexation reaction between the carboxyl group and metal. The obtained precursors have a three-

67	dimensional network structure, which improves the dispersibility of the catalyst (Zhao et al., 2016). The	
68	citric acid-hydrothermal coupling method has strong innovation and feasibility, as it can simultaneously	
69	possess the high dispersion of the citric acid method and the high activity and stability of the	
70	hydrothermal method to obtain more bimetallic active sites. The focus was put on how various	
71	approaches affected the physicochemical properties of solid solutions, for instance, phase composition,	
72	morphology, surface properties, and the efficiency of the CO oxidation over the Ce-Mn solid solution	
73	structure. And the adsorption and oxidation of CO process were intensively studied. Hence, the link with	
74	the preparation method and characteristics of CeO ₂ -MnO _x was investigated using XPS, FE-SEM, TEM,	
75	XRD, Raman spectrum, BET, CO-TPR, and H2-TPR. Furthermore, in situ DRIFTS, XPS, and TOF-	
76	SIMS were used to explore a CO oxidation mechanism on CeO ₂ -MnO _x .	
77	2. Experimental set-up and methodology	
77 78	2. Experimental set-up and methodology2.1. Catalysts preparation	
77 78 79	 2. Experimental set-up and methodology 2.1. Catalysts preparation The citric acid sol-gel process was used to create the catalysts designated as C-1:8. With a molar 	
77 78 79 80	 2. Experimental set-up and methodology 2.1. Catalysts preparation The citric acid sol-gel process was used to create the catalysts designated as C-1:8. With a molar ratio of 1:8, the necessary quantity of Ce(NO₃)₃·6H₂O and Mn(NO₃)₂·4H₂O was dissolved in 2 M citric	
77 78 79 80 81	 2. Experimental set-up and methodology 2.1. Catalysts preparation The citric acid sol-gel process was used to create the catalysts designated as C-1:8. With a molar ratio of 1:8, the necessary quantity of Ce(NO₃)₃·6H₂O and Mn(NO₃)₂·4H₂O was dissolved in 2 M citric acid. The resulting solutions were heated to 70 °C and agitated for three hours before being dried in a	
 77 78 79 80 81 82 	 2. Experimental set-up and methodology 2.1. Catalysts preparation The citric acid sol-gel process was used to create the catalysts designated as C-1:8. With a molar ratio of 1:8, the necessary quantity of Ce(NO₃)₃·6H₂O and Mn(NO₃)₂·4H₂O was dissolved in 2 M citric acid. The resulting solutions were heated to 70 °C and agitated for three hours before being dried in a rotary evaporator. The resultant materials were dried for an additional day at 110 °C and calcined for	
 77 78 79 80 81 82 83 	 2. Experimental set-up and methodology 2.1. Catalysts preparation The citric acid sol-gel process was used to create the catalysts designated as C-1:8. With a molar ratio of 1:8, the necessary quantity of Ce(NO₃)₃·6H₂O and Mn(NO₃)₂·4H₂O was dissolved in 2 M citric acid. The resulting solutions were heated to 70 °C and agitated for three hours before being dried in a rotary evaporator. The resultant materials were dried for an additional day at 110 °C and calcined for three hours at 500 °C.	
 77 78 79 80 81 82 83 84 	 2. Experimental set-up and methodology 2.1. Catalysts preparation The citric acid sol-gel process was used to create the catalysts designated as C-1:8. With a molar ratio of 1:8, the necessary quantity of Ce(NO₃)₃·6H₂O and Mn(NO₃)₂·4H₂O was dissolved in 2 M citric acid. The resulting solutions were heated to 70 °C and agitated for three hours before being dried in a rotary evaporator. The resultant materials were dried for an additional day at 110 °C and calcined for three hours at 500 °C. The catalyst was made by the hydrothermal method named H-1:8. Both Ce(NO₃)₃·6H₂O and	

- 86 and Mn precursors, 60 mL of 4 M NaOH was added dropwise and stirred for 30 min. The solution was
- 87 placed in a 100 mL autoclave at 100 °C for 24 h. The slurry samples were washed with deionized water,
- 88 dried at 60 $^{\circ}\mathrm{C},$ and calcined in air for 2 h.

89	Finally, the sample labelled as CH-1:8 was prepared using the citrate-hydrothermal (CH) method	
90	$Mn(NO_3)_2 \cdot 4H_2O$, citric acid, urea and $Ce(NO_3)_3 \cdot 6H_2O$, all at a concentration of 3 M, were added to the	
91	beaker and mixed in the molar ratio of [urea]:[citric acid]:[Mn]:[Ce]=1.5:1.5:0.87:0.33, 0.3 M of KMnO ₄	
92	solution was then added dropwise. [Mn(NO ₃) ₂]:[KMnO ₄] in a molar ratio of 1:2. Subsequently, the	
93	premixed solution was given a dropwise addition of 10 mL of ammonia solution (25wt%) until the pH	
94	was 6-7. Four hours of mixing later, the combined liquid was loaded into a 100 mL hydrothermal kettle,	
95	and the reaction was continued for 12 h at 180 °C. The slurry samples were then rinsed with deionized	
96	water until the pH of the solution approached 7, dried at 80 °C for 12 h and calcined in air at 350 °C for	
97	4 h.	
98	2.2. Catalyst characterization	
99	Using Cu K α radiation (= 0.1541 nm) and a PANalytical Empyrean powder diffractometer, the X-	
100	ray diffraction (XRD) patterns were collected. The patterns were gathered using a 20 range with steps of	
101	0.0167° between 10° and 80°. Herein, the average CeO ₂ (110) particle size is computed by the Scherrer	
102	formula: La= $k\lambda/\beta\cos\theta$, where k: Scherrer constant 0.89; β : the FWHM (full width at half maximum)	
103	corresponding to the 110 peaks; λ : wavelength of X-ray (γ =0.15406 nm); θ : diffraction angle for the	
104	peaks belonging to the 110 peaks.	
105	The shape and structure of the samples were examined using a transmission electron microscope	
106	(TEM, JEOL JEM-2010F) and a field emission scanning electron microscope (FE-SEM, HITACHI	
107	Regulus 8100) at acceleration voltages of 130 kV and 300 kV, respectively.	
108	Elemental analysis of calcined solids for Ce and Mn was conducted using an Agilent 720ES	
109	spectrometer with inductively coupled plasma emission spectroscopy (ICP-OES). Prior to analysis, the	
110	catalysts were resolved in a concentrated mixture of hydrochloric acid and nitric acid.	

111	Brunauer-Emmett-Teller (BET) specific surface area and porosity of the samples were measured on	
112	a Nova2000e analyzer (Quantachrome, USA) by adsorption of N_2 at 77 K. The samples were off-gassed	
113	in nitrogen at 200 °C for 10 h before starting the analysis. For the purpose of calculating the specific	
114	surface area and pore size distribution, BET and BJH were selected.	
115	X-ray photoelectron spectroscopy (XPS) was performed using monochromatic Al Ka radiation	
116	(hv=1486.2 eV) and a Thermo Scientific K-Alpha instrument sample chamber. Since the XPS peaks have	
117	multiple components, the peaks were analyzed for mixed Gaussian (70%)/Lorentzian (30%) shapes using	
118	CasaXPS analysis software. Using the 284.8 eV binding energy of amorphous carbon as a calibration	
119	reference.	
120	The Renishaw inVia instrument produced Raman spectra. The sample testing conditions were: room	
121	temperature with a 17 mW diode-pumped solid-state laser set at a laser wavelength of 532 nm and a	
122	scanning wavelength range of 50-4000 cm ⁻¹ .	
123	An experiment with a temperature program was used to investigate the catalysts' redox properties.	
124	The 30-40 mg samples were purged with He gas flow (50 mL·min ⁻¹) for one hour, cooled to 50 °C, after	
125	which it was heated from 25 to 300 °C at a rate of 5 °C·min ⁻¹ using a 5% H ₂ /Ar gas mixture (50 mL·min ⁻¹) which it was heated from 25 to 300 °C at a rate of 5 °C·min ⁻¹) which it was heated from 25 to 300 °C at a rate of 5 °C·min ⁻¹) which it was heated from 25 to 300 °C at a rate of 5 °C·min ⁻¹) which it was heated from 25 to 300 °C at a rate of 5 °C·min ⁻¹) which it was heated from 25 to 300 °C at a rate of 5 °C·min ⁻¹) which it was heated from 25 to 300 °C at a rate of 5 °C·min ⁻¹) which it was heated from 25 to 300 °C at a rate of 5 °C·min ⁻¹) which it was heated from 25 to 300 °C at a rate of 5 °C·min ⁻¹) which it was heated from 25 to 300 °C at a rate of 5 °C·min ⁻¹) which is a 5% H ₂ /Ar gas mixture (50 mL·min ⁻¹) which is a state of 5 °C·min ⁻¹) which i	
126	¹) for drying pretreatment. After the baseline is stable, the sample starts to be analyzed in the reducing	
127	atmosphere. A Quartz U-shaped microreactor-equipped MicroActive for AutoChem II 2920 Version	
128	catalyst analyzer was used to carry out the H_2 temperature-programmed reduction studies. TCD is used	
129	to identify the reducing gas after the sample was desorbed at 800 $^\circ C$ in a 10% H ₂ /Ar gas flow. On a	
130	Microtrac BELCat II catalyst analyzer, experiments for CO temperature programming reduction were	
131	carried out. The sample was heated at 10 °C·min ⁻¹ at 50-800 °C in a 10% CO/He environment. The	
132	reducing gas was detected by a gas quality using the (m/z) signals of CO (28) and CO ₂ (44) at an MFC	

total flow rate of 30.00 SCCM.

134	With the aid of a TOF-SIMS5 spectrometer (PHI nano TOF II Time-of-Flight SIMS) fitted with a
135	bismuth liquid metal ion gun (LMIG), both positive and negative were performed. A pulsed Bi ³⁺ primary
136	ion beam (30 keV, 2 nA) rastered across an 80 \times 80 μm^2 surface area was used to bombard the tabled
137	samples. The overall fluence is below 10^{12} ions/cm ² with a data capture time of 100 s, assuring static
138	circumstances. An electron flood cannon with a 20 eV pulse was used to correct for charge effects. At
139	m/z = 140 for Ce ⁺ , the mass resolution (m/m) was around 7000. The precise mass of the secondary ions,
140	further to the intensities required for the anticipated isotope pattern, allowed for their identification.
141	The oxidation pathway of CO on the Ce-Mn catalyst was analyzed using the in situ DRIFTS analysis
142	technique. The instruments are Thermo Fisher's Nicolet IS50 FTIR and Harrick in situ reaction chamber
143	(HVC-DRM). The scanning range of 4000-600 cm ⁻¹ and a resolution of 8 cm ⁻¹ were used with an average
144	of over 128 scans. Prior to CO oxidation experiments, background spectra was captured at room
145	temperature under a flow of pure N_2 until spectra became stable. Then, the spectrum of the sample (40-
146	60 mesh) at the temperature range of 20-200 $^\circ C$ was recorded, and the gaseous CO was evacuated using
147	ultra-high purity air.
148	2.3. Catalytic activity evaluation
149	2.3.1. CO oxidation curve
150	The catalyst (250 mg, 40-60 mesh) was reacted in 8 mm quartz tubes for the catalytic activity
151	evaluation, which was done in a fixed bed reactor. A K-type thermocouple in the catalyst bed provided

- a temperature of 40-240 °C, which was used to test the catalytic activity. At a mass air rate of 30,000
- $mL \cdot g^{-1} h^{-1}$, a mass flow controller measured the CO content to be 1500 ppm. After the gas had settled for
- 154 30 minutes following entrance, the test was initiated.

155 The CO conversion (X_{co}) efficiency was calculated:

156
$$X_{co}(\%) = \frac{[co]_{in} - [co]_{out}}{[co]_{in}} * 100\%$$

157 Yield of $CO_2(X_{co_2})$:

158

$$X_{co_2} = \frac{[CO_2]_{out}}{[co]_{in}} * 100\%$$

159 where [CO]_{out}, [CO₂]_{out} and [CO]_{in} in represent the corresponding output and inlet is the outlet and

- 160 inlet concentrations of CO and CO₂.
- 161 2.3.2. Stability test
- 162 Before the stability test, the samples were treated with airflow (100 mL·min⁻¹) at the temperature of
- 163 calcination for 1.5 h (1 °C·min⁻¹). The stability experiment was performed at 110 °C for 1440 min, and
- 164 the catalytic stability of the Ce-Mn samples was examined by gas chromatography with continuous
- 165 injection.
- 166 3.Results and Discussion
- 167 3.1. Catalyst characterization
- 168 3.1.1. Morphology and phase structures

Fig. 1 displays the XRD patterns of the CH-1:8, H-1:8, and C-1:8 samples.

171	The phase compositions of all catalysts were analysed by X-ray diffraction, and the corresponding
172	diffraction patterns are collected in Fig. 1. The fluorite structure of the CeO ₂ phase was observed clearly
173	in all three samples. For CH-1:8, the diffraction peaks at $2\theta = 37.12^{\circ}$, 42.40° , and 78.92° correspond to
174	$\epsilon\text{-MnO}_2$ (JCPDS30-0820). The peaks with 20 values of 28.75°, 56.82°, and 67.44° attributed to $\beta\text{-MnO}_2$
175	(JCPDS 72-1984). The diffraction peaks of Mn_5O_8 (JCPDS 72-1427) were observed for the H-1:8 sample.
176	As can be observed, the C-1:8 diffraction peaks were accurately identified as Mn_3O_4 (JCPDS 80-0382).
177	Meanwhile, the diffraction peaks of all the CeO ₂ -MnO _x catalysts exhibit a minor shift when compared
178	to pure CeO ₂ , and comparable outcomes were also reported (Zhu et al., 2017). The reason for this
179	phenomenon may be the entry of Mn ions into the CeO_2 lattice to create CeO_2 -MnO _x solid solution.
180	Referring to the Hume-Rothery criterion in SI (Otto et al., 2013), empirical values are obtained: when
181	$\Delta R/R$ (relative difference of radii R) is lower than 30%, solid solutions can be formed, and the $\Delta R/R$ of
182	Ce-Mn material is 22.9%, so it is possible to form a solid solution.
183	Furthermore, the crystallite sizes of the Ce-Mn samples were estimated using the Scherrer equation
184	from the broadening of the CeO ₂ (111) facet diffraction peak at 2θ =28.5°. As displayed in Table S1, the

185 crystallite size of the CH-1:8, C-1:8, and H-1:8 samples is 9.18 nm, 7.56 nm, and 10.45 nm, respectively.

198	0.311 nm lattice fringes. According to the standard card (JCPDS 75-0076). In the CeO ₂ -MnO _x samples,
199	the (111) face spacing of the composite catalysts were reduced compared to the pure CeO ₂ , CH-1:8, H-
200	1:8, and C-1:8 was reduced to 0.285 nm, 0.307 nm, and 0.304 nm, respectively. The inclusion of Mn
201	may deform the CeO ₂ lattice leading to the lattice edges of Ce shrinking (Wang et al., 2017), considering
202	the radius of Mn^{3+} (0.058 nm) and Mn^{4+} (0.053 nm) have substantially lower than Ce^{3+} (0.103 nm) and
203	Ce ⁴⁺ (0.087 nm), making it easier for incorporation of Mn into Ce lattice. This is corroborated by the
204	slight shift in the position of the CeO ₂ (111) peak in the XRD result. It has been shown that the β -MnO ₂
205	(110) crystal plane has the characteristics of the most stable and preferential exposure (Lin et al., 2021).
206	Nitrogen sorption measurements at 77 K were used to evaluate the porosity of the samples. Figure
207	S2 shows the N_2 adsorption-desorption isotherms for CH-1:8, H-1:8, and C-1:8. The catalysts' N_2
208	adsorption-desorption isotherms are comparable, as seen in Fig. S2, demonstrating the properties of
209	mesoporous materials. Table S1 displays the precise surface areas, typical pore sizes, and volumes. The
210	CH-1:8, H-1:8, and C-1:8 catalysts have specific surface areas of 156.1, 77.3, and 35.1 $m^2 \cdot g^{\text{-1}},$
211	respectively. The increased surface area helps the CO oxidation rate to rise. According to Fig. S1, we
212	can find that the CH-1:8 showed significantly higher N_2 adsorption than the other two catalysts at p/p_0
213	less than 0.1. The microporous pore volumes of CH-1:8 (0.0218 $\text{cm}^3 \cdot \text{g}^{-1}$) is much larger than H-
214	$1:8(0.0159 \text{ cm}^3 \cdot \text{g}^{-1}) \text{ and } \text{C-}1:8 \ (0.0021 \text{ cm}^3 \cdot \text{g}^{-1}).$

215 3.1.2. The elemental analysis

- 216 ICP-OES analysis in Table S2 confirms the element component of bulk samples. The Ce/Mn atomic
- 217 ratios of CH-1:8, H-1:8, and C-1:8 is 1:6.5, 1:8.8, and 1:4.2, respectively. Considering the atomic ratios
- 218 of XPS spectra, it is observed higher dispersion of cerium oxides than manganese oxides on the surface.

219

Fig. 3. XPS spectra of (A) Mn 2p, (B) Ce 3d and (C) O1s for CeO₂-MnO_x catalysts.

220	The surface elements of the CeO_2 -MnO _x catalyst were characterised by XPS. The resulting XPS
221	spectral data are shown in Figure 3, and the corresponding quantitative results are listed in Table S2. In
222	Fig.3(A), the Mn 2p XPS envelope of H-1:8 was deconvoluted to three major characteristic peaks at
223	639.5 eV, 641.7 eV, and 643.9 eV, which are indicative of Mn^{2+} , Mn^{3+} , Mn^{4+} (Zhao et al., 2019).
224	Conversely, the citrate-related methods exhibited two curve-fitting peaks with BE of 644.1 (\pm 0.3) eV
225	and 641.8 (\pm 0.4) eV for Mn ³⁺ and Mn ⁴⁺ , respectively. Integration of the peaks leads to Mn ³⁺ /Mn ⁴⁺ atomic
226	ratio closing to 1.85 (CH-1:8), 1.69 (H-1:8), and 1.59 (C-1:8), as shown in Table S2. Considering the
227	electrostatic balance, the quantity of oxygen vacancies had a similar pattern. The XPS Mn AOS of CH-
228	1:8, H-1:8, and C-1:8 is 3.23, 3.45, and 3.56. It revealed that Mn ³⁺ is the dominant oxidation state for
229	CH-1:8 and H-1:8, in comparison with Mn ⁴⁺ for C-1:8.

230	The Ce 3d spectra of the ready-made samples are given in Fig. 3. (B). The split-orbit multiplex lines
231	of the $3d_{3/2}$ and $3d_{5/2}$ signals, which may be divided into m and n series, were deconvoluted into eight
232	distinctive peaks. Among these characteristic peaks, a (916.7 \pm 0.2 eV), b (904.7 \pm 0.1 eV), c (900.8 \pm 0.2
233	eV), and d (898.5 \pm 0.2 eV) were assignable to Ce ⁴⁺ 3d _{3/2} lines, while b' (889.2 \pm 0.2 eV) and d' (882.4 \pm
234	0.2 eV) can be attributable to Ce ⁴⁺ $3d_{5/2}$ lines. While, a' at 897.5 \pm 0.2 eV ($3d_{5/2}$) and c' at 884.4 \pm 0.3 eV
235	$(3d_{5/2})$ were assignable to Ce ³⁺ (Yang et al., 2019). Using multi-peak fitting, the molar ratio of Ce ³⁺ to
236	Ce^{4+} was obtained, exhibiting the order of CH-1:8 (0.23) > H-1:8 (0.12) > C-1:8 (0.13) in Table S2. CH-
237	1:8 prepared still shows a high amount of low-valent Ce ³⁺ and Mn ³⁺ , pointing to a significant number of
238	oxygen vacancies. (Wan et al., 2022).
239	The O1s spectra shown in Fig. 3(C) are separated into two peaks at 529.3 eV and 531.3 eV for
240	lattice oxygen (O_{latt}) and surface active oxygen (O_{surf}) (Liao et al., 2022). The atomic ratio of O_{surf}/O_{latt} is
241	generally used to analyze the creation of surface oxygen vacancies resulting in the formation of oxygen-
242	adsorbed species, which is an important parameter related to catalytic redox ability. The CH-1:8 sample
243	has the highest ratio of O_{surf}/O_{latt} (1.5) compared to H-1:8 (0.6) and C-1:8 (0.9).
244	3.1.3. Raman
245	The structures of CH-1:8, H-1:8, and C-1:8 catalysts were further characterized by Raman
246	spectroscopy in Fig. 4(A). The Raman spectra of all CeO ₂ -MnO _x catalysts showed a peak at 445-465 cm ⁻
247	¹ that shifted to a lower wavelength compared with the F2g band of the pure CeO ₂ at 464 cm ⁻¹ . It was

explained by the deformation of the CeO_2 lattice and the phonon effect in the generation of the Ce-Mn 248 249 solid solutions, resulting in the generation of oxygen vacancies (Luo et al., 2020). The distortion of Ce-O bonding symmetry was also observed using TEM. The catalyst exhibits principal Raman bands at 463 250 cm⁻¹ and 600 cm⁻¹ for the cubic fluorite structure with F2g vibrations (labelled 1) and defect-induced 251

252 modes (D band, labelled 2). The D band is associated with oxygen vacancies in the cerium-based material, and the intensity ratio of F2g to D (A2/A1) reflects the proportional correlations to the amount of the 253 254 surface-level vacancy of oxygen (Yao et al., 2017). The table in Fig. 4(C) includes a summary of the findings. That indicates A2/A1 for CH-1:8 is 0.6, which is significantly larger than that for H-1:8 (0.232) 255 and C-1:8 (0.136). In addition, the CeO_2 -MnO_x catalysts show a clear Raman peak placed at 635-651 256 cm⁻¹ and an unremarkable peak at 500-510 cm⁻¹, which were assigned to the Mn-O-Mn and Mn-O 257 258 stretching structures, respectively (Ma et al., 2022; Venkataswamy et al., 2015). And the β -MnO₂ characteristic peaks of CH-1:8 were also observed at 187, 584, and 635 cm⁻¹, which was in agreement 259 260 with the XRD pattern.

261

262 Fig. 4. (A) Raman spectra, (B) CO-TPR curves, (C)H₂-TPR curves, and(D) Ce_xMn_yO_zH_w secondary ions (+) and

263

(-) fragments of the synthesized catalysts (CH-1:8, H-1:8, C-1:8).

264	3.1.4. CO-TPR	and H ₂ -TPR
264	3.1.4. CO-TPR	and H ₂ -TPR

265	CO-TPR and H ₂ -TPR were used to investigate the redox properties of Ce and Mn species. the
266	corresponding CO consumption measured online during this experiment is shown in Fig. 4(B). At 150-
267	350 °C and 300-500 °C, the catalysts as-prepared exhibit two increased reduction peaks. While it is
268	observed the weak peak of C-1:8 at low temperatures among samples. Considering the reducibility
269	enhancement effect by the incorporation of Ce to Mn, the first reduced peak is believed to be the mixture
270	reduction of Ce^{4+} to Ce^{3+} and MnO_2 to Mn_3O_4 in the catalyst, and the following peak is responsible for
271	converting Mn ₃ O ₄ into MnO stage (Chen et al., 2019). It is noted that a rapid CO consumption is observed
272	at 100-200 °C, suggesting the excellent CO oxidation ability of CH-1:8 compared to the other two
273	catalysts.
274	It is interesting to find the similar characteristic peaks of CO-TPR and H ₂ -TPR figures of prepared
275	catalysts, except for the C-1:8 sample (Fig. 4(B-C)). The consumption of H_2 showed 102.18 mmol·g ⁻¹
276	(CH-1:8), 76.52 mmol·g ⁻¹ (H-1:8), and 46.11 mmol·g ⁻¹ (C-1:8). And the peak position of CO-TPR at
277	409.6 °C (C-1:8) > 319.2 °C (H-1:8) > 242.4 °C (CH-1:8). For the CH-1:8 sample, it is also observed
278	that the low temperature reduction peaks had shifted to the left and that the second peak of the CO-TPR
279	profile had widened in the comparison of H2-TPR, suggesting the higher mobility and accessibility of
280	CO than H_2 through the CH-1:8 surface (Sacco et al., 2022).
281	3.1.5. TOF-SIMS
282	TOF-SIMS was used to explore the top layer (1-3 nm) of the CH-1:8, H-1:8, and C-1:8 catalysts,
283	analyzing the chemical compositions. It should be noted that the detection of polar $Ce_xMn_yO_zH_w$

secondary ions (+) and (-) has been compiled in Table S3 and Fig. 4(D). The data exhibits the presence

of CeMnO₂, CeMnO₃H, Ce₂MnO₄, CeMnO₃, and CeMnO₂H₄ fragments, indicating the formation of the

Co Mn intermetallia species on the actulat surface. The detection of a large number of secondary ions

106

280	ce-win interinctance species on the cataryst surface. The detection of a large number of secondary ions
287	shows that the mixing of Mn, Ce, and O leads to the composition of homogeneous nanoscale materials,
288	which is consistent with the TEM characterization result that Mn enters into the CeO2 lattice to form Ce-
289	Mn solid solution. Concurrently, the results of TOF-SIMS measurements clearly proved that the total
290	relative polar strengths of Ce-Mn intermetallic species contained in the CH-1:8 sample (0.431%) are
291	clearly stronger than that of H-1:8 (0.3%) and C-1:8 samples (0.178%).
292	3.2. Catalytic performance
293	The findings of the evaluation of the CeO ₂ -MnO _x samples' catalytic abilities for CO oxidation are
294	displayed in Fig. 5. Fig. 5(A) demonstrates that the CH-1:8 has the best CO conversion, and the T_{90} is
295	maintained at 110 °C, followed by H-1:8 (T ₉₀ =142 °C) and C-1:8 (T ₉₀ =205 °C), and the CO ₂ yield was
296	also showed the same tread by CH-1:8 (T ₉₀ =128 °C), H-1:8 (T ₉₀ =156 °C) and C-1:8 (T ₉₀ =225 °C). On
297	the other hand, T_{50} and T_{90} values of CH-1:8 are smaller than most other Ce-Mn-based catalysts,
298	indicating that it is highly competitive, as shown in Table S4. For comparison, the CO reaction rate was
299	calculated due to the different reaction conditions. The reaction rate of CO on CH-1:8 is also faster than
300	the reaction rate of most of the other catalysts. In fact, the reaction rate of CH-1:8 at 115 °C is 2.36E-07
301	molCO·g ⁻¹ ·s ⁻¹ , which is much higher than those of H-1:8 (1.18E-07 mol molCO·g ⁻¹ ·s ⁻¹) and C-1:8
302	$(2.36\text{E}-08 \text{ molCO} \cdot \text{g}^{-1} \cdot \text{s}^{-1})$

In addition, the stability of 1440 min tests have been performed at 115 °C over three CeO₂-MnO_x catalysts, and Fig. 5(C) shows the conversion of CO to CO₂ with respect to time. For all samples, there was no discernible difference in the effectiveness of CO removal, suggesting that the catalyst has good stability. The citric acid acts as a chelating and reducing agent in the preparation process, which results in an increase in the specific surface area and the Ce³⁺/Ce⁴⁺ ratio. 308 3.3. CO catalytic mechanism

309	To further investigate the CO oxidation process over CH-1:8, the DRIFTS and XPS were carried
310	out. According to Fig. 5(D), the bands centring at 2360 cm ⁻¹ and 2341 cm ⁻¹ related to gaseous CO are
311	identified at ambient temperature in the DRIFTS spectra collected between 20 $^\circ\!C$ and 200 $^\circ\!C.$ At 70 $^\circ\!C,$
312	gradually lowering the distinctive CO peaks, the emergence of the CO_2 peak at 2359 cm ⁻¹ and 2338 cm ⁻¹
313	¹ followed, indicating the occurrence of CO oxidation. The antisymmetric stretch of C-O and C=O,
314	respectively, is largely attributed to the two additional peaks at 2359 cm ⁻¹ and 2338 cm ⁻¹ . Fig. 5(E)
315	Fig. 5. CO conversion (A), CO ₂ yield (B), and stability tests at 115°C (C) of CH-1:8, H-1:8, and C-1:8
316	catalysts (1500 ppm of CO, 30000 h ⁻¹). DRIFTS spectra of CO oxidation on CH-1:8 catalyst among 1000-3200
317	cm ⁻¹ (D),1000-1500 cm ⁻¹ ,2050-2230 cm ⁻¹ , and 3300-4000cm ⁻¹ (E).

demonstrates, the characteristic peak at 1060-1076 cm⁻¹ and 1230-1260 cm⁻¹ originate from the carboxylate (T>50 °C) and carbonate species (T>90 °C). The peak at 3500-3950 cm⁻¹ represents the

320	production of $H_2O_{(gas)}$, rising with the temperature. The ⁻ OH of the metal surface is responsible for the
321	peak at 3650-3700 cm ⁻¹ , and it decreases owing to the rise in temperature. At 2170 cm ⁻¹ after 150 °C, a
322	peak for CO linear adsorbed on Ce^{n+} was found, and the peak's strength grew in step with the rising
323	temperature. It should be observed that the intensity in the Mn^{n+} -CO band (2138 cm ⁻¹ and 2188 cm ⁻¹)
324	increases with rising temperature on account of improved relation between Mn^{n+} active sites and CO
325	molecules adsorbed on them, reaching its peak at 130 °C.
326	From the XPS results (Table S2), it is clear that the ratio of O _{surf} /O _{latt} is greatly reduced after CO
327	oxidation, demonstrating that this reaction covered the surface oxygen on the catalyst. (Eq. D.1). Raman

328 spectroscopy also shows the existence of the oxygen vacancy on the catalyst's surface, which could be advantageous for the adsorption of the reactants. Hence, it is believed that CO (ads) reacts with the 329 surrounding adsorbed oxygen to generate CO₂ (route 1). Compared to the adsorption energies obtained 330 331 for CO on β -MnO₂ (1 1 0) facet (45.37 kJ·mol⁻¹) and pure CeO₂ (60.68 kJ·mol⁻¹), CO is more likely to 332 be adsorbed at β -MnO₂ (1 1 0) site, which is in good agreement with DRIFT date, Mn-CO appeared at a lower temperature than Ce-CO (Fig. 5(E)). On the other hand, the oxidation of CO takes place with the 333 334 involvement of not only the surface-adsorbed oxygen species but also the surface lattice oxygen (Eq B.1-B.4). Polychronopoulou et al employed 180/160 isothermal isotope exchange to show that lattice 335 oxygen in cerium oxide is involved in the synthesis of CO₂ from CO-s or CO (g) (Polychronopoulou et 336 337 al., 2021). Ce-Mn followed the Mv-K mechanism, in which the CO adsorbed on Mn sites shown in Process 4 in Fig. 6 could react with lattice oxygen from Mn-O-Mn, Ce-O-Ce, and Mn-O-Ce. Mn⁴⁺ reacts 338 with CO to form Mn³⁺ (Eq. G.1-G.2), the XPS result also showed that the ratio of Mn³⁺/Mn⁴⁺ increased 339 from 1.85 to 2.31 after the CO reaction, a process that requires electrons. Meanwhile, the ratio of 340

341	Ce ³⁺ /Ce ⁴⁺ decrea	sed from 0.23 t	o 0.17.	the valenc	e state of Ce	e increasing.	transferring	electrons to M	In.
541		500 mom 0.25 t	0.17,	the vulche	c state of ce	, moreusing,	numbrenning		-

- 342 thus forming a redox electron pair (Ce^{4+}/Ce^{3+} and Mn^{3+}/Mn^{4+}) (Eq. A.1-A.4).
- 343 As a particular number of OH groups on the catalyst surface in DRIFT as Fig. 5(E) shown, (route
- 344 2) adsorbed CO on Mn⁴⁺ and Ce³⁺ forms the intermediate (COO⁻)(T>50 °C) by a reaction with the
- nearby O from OH, which further oxidizes into CO₂ and H₂O in Fig. 6 (Eq. E.1-E.2). This is consistent
- 346 with the results of increased COO⁻ and $H_2O_{(gas)}$ peak intensities and decreased metal ⁻OH peak in DRIFT
- 347 spectra. Furtherly gas phase O₂ supplemental oxygen vacancies to complete the catalytic cycle as process
- 348 2 (Li et al., 2020).
- 349 **Table 1**
- 350 Potential processes in the catalytic oxidation of CO

	CO oxidation process					
	O^{2-} (latt) + $Mn^{4+} \rightarrow O^{-} + Mn^{3+}$					
Electron transfer	O^{2-} (latt) + $Ce^{4+} \rightarrow O^{-} + Ce^{3+}$	Eq. A.2				
between Ce and Mn	$Mn^{3+} + Ce^{4+} \rightarrow Ce^{3+} + Mn^{4+}$	Eq. A.3				
	$2Ce^{3+} + 1/2O_2(gas) + Vo \rightarrow 2Ce^{4+} + O^{2-}(ads) \rightarrow 2Ce^{4+} + O^{2-}(surf)$ $\rightarrow 2Ce^{4+} + O^{2-}(latt) + Vo$	Eq. A.4				
	$O_2(gas) \rightarrow O_2(ads)$	Eq. B.1				
Adsorption	$O_2(ads) + 4e^- \rightarrow 2O^{2-}(ads)$	Eq. B.2				
migration of O ₂	$O^{2-}(ads) - e^- \rightarrow O^-(ads)$	Eq. B.3				
	$O^{2-}(ads) \rightarrow O^{2-}(latt)$	Eq. B.4				
Adsorption of CO	CO(gas)→CO(ads)	Eq. C.1				
Route 1	$CO(ads)+O^{2-} \rightarrow CO_2+2e^{-}$	Eq. D.1				
Danta 2	$CO(ads)+OH^{-}(surf) \rightarrow HCOO^{-}$	Eq. E.1				
Route 2	$2\text{HCOO}^- + \text{O}^{2-} \rightarrow 2\text{CO}_2 + \text{H}_2\text{O}$	Eq. E.2				
	$CO(ads)+2O^{2-}(ads) \rightarrow CO_3^{2-}+2e^{-}$	Eq. F.1				
Route 3	$\mathrm{CO}_3^{2\text{-}} + \mathrm{O}^{2\text{-}} \rightarrow \mathrm{CO}_2 + 2\mathrm{O}^{2\text{-}}$	Eq. F.2				
Total reaction	$CO(ads) + O^{2}(ads) + 2Mn^{4+} \rightarrow CO_2 + 2Mn^{3+}$	Eq. G.1				

351	Another parallel route is suggested that CO oxidation happens when carbonate (T>90 °C) forms
352	according to DRIFT in Fig. 5(E), (route 3). The oxygen vacancy in an O_2 atmosphere will initially be
353	filled by dioxygen by its bonding to the Mn and Ce ions, creating two activated surface O. CO $_{(ads)}$ in
354	combination with activated surface O form carbonate intermediates (CO_3^{2-}) as Fig. 5(E) shown the band
355	attributed to carbonate species at 1230-1260 cm ⁻¹ rises with temperature but remains flat after 170 °C,
356	indicating the decomposition of these carbonate substances into CO ₂ . It has been reported that unidentate
357	carbonate species are thermally more stable than inorganic carboxylate, and can be stable up to 200 °C
358	(Schweke et al., 2018). It is consistent with their function as important chemical intermediates in the
359	catalytic CO oxidation cycle (Eq. F.1-F.2) because COO ⁻ and CO_3^{2-} sites have IR bands for CO. It is
360	worth noting that Mn-O and Ce-O often function as adsorption sites in the process.

Fig. 6. Mechanism of catalytic oxidation of CO on Ce-Mn catalyst: adsorption (Process 1-4), reaction

(Route1-3), and the electron transfer in Ce-O-Mn.

364 4.Conclusions

365	In this experiment, Ce-Mn catalyst was used, and three methods were used to prepare the catalyst
366	by citrate-hydrothermal method, sol-gel method, and hydrothermal method. When the volumetric air
367	velocity is 30000 mL \cdot min ⁻¹ and the CO concentration is 1500 ppm, the catalytic oxidation efficiency can
368	reach T_{90} =115 °C, and it shows good stability after 1440 min of operation. It is possible to outline how
369	the preparation procedure affects the catalytic oxidation of CO at low temperatures:
370	(1) Smaller grain size and greater specific surface area are characteristics of the catalysts obtained
371	by the hydrothermally assisted sol-gel method; additionally, the increased Ce^{3+}/Ce^{4+} ratio enables more
372	oxygen vacancies and unsaturated chemical bonds to be generated, which improves catalytic
373	performance.
374	(2) The cycles and reactions of $Mn^{4+}+Ce^{3+}\leftrightarrow Mn^{3+}+Ce^{4+}$ enhance the CO adsorption and oxidation
375	process. Individual electrons at the reaction interface and the manganese substitution in the catalyst
376	crystal are critical to the catalytic process.
377	(3) The catalytic oxidation of CO at the reaction interface of Ce-Mn bimetal follows the mechanism
378	of M-vK, CO molecules and lattice oxygen at the reaction interface the catalyst reacts with lattice oxygen
379	instead of gas-phase oxygen, and the CO oxidation cycle has three processes, the first process is CO
380	oxidation, then the surface re-oxidation and the third stage of CO oxidation. The reaction between lattice
381	oxygen and CO adsorbed on metal ions produces intermediates: COO ⁻ and carbonates. Therefore, CO
382	oxidation efficiency is heavily reliant on the mobility and redox performance of oxygen in the catalyst.
383	(4) The catalyst preparation method in this work would be helpful to improve the preparation
384	method of other present catalysts. In addition, Ce-Mn exhibits comparable CO oxidation activity,

- 385 excellent redox properties, and greater specific surface area, indicating the application of a promising
- 386 non-noble metal catalyst in CO-containing flue gases.

387 Acknowledgments

- 388 This publication was funded by the National Natural Science Foundation of China (No.22108255),
- 389 China Postdoctoral Science Foundation (2022M712226), and the State Environmental Protection Key
- 390 Laboratory of Sources and Control of Air Pollution Complex (SCAPC202108). The TOF-SIMS study
- 391 was performed by Qiannan Ma of Shiyanjia laboratory (www.shiyanjia.com), for which the authors are
- 392 appreciative.
- 393 References

394 Uncategorized References

- Arena F, et al., 2017.Probing the functionality of nanostructured MnCeO x catalysts in the carbon monoxide oxidation.Applied Catalysis B: Environmental; 210: 14-22.https://doi.org/10.1016/j.apcatb.2017.03.049.
- 398 Chen J, et al., 2019. A facile strategy of enhancing interaction between cerium and manganese oxides for
- catalytic removal of gaseous organic contaminants. Applied Catalysis B: Environmental; 250: 396400 407.https://doi.org/10.1016/j.apcatb.2019.03.042.
- Gao Y, et al., 2021.Mechanisms and energetics of CO oxidation on MnO₂-supported Pt13
 clusters.Applied Surface Science; 560: 150017.https://doi.org/10.1016/j.apsusc.2021.150017.
- Huang J, et al., 2019. The promotional role of Nd on Mn/TiO₂ catalyst for the low-temperature NH₃-SCR
 of NO_x. Catalysis Today; 332: 49-58. https://doi.org/10.1016/j.cattod.2018.07.031.
- Huang XS, et al., 2021.A strategy for constructing highly efficient yolk-shell Ce@Mn@TiOx catalyst
 with dual active sites for low-temperature selective catalytic reduction of NO with NH₃.Chemical
 Engineering Journal; 419: 129572.https://doi.org/10.1016/j.cej.2021.129572.
- Ji S, et al., 2021.Fabrication of a wide temperature Mn-Ce/TNU-9 catalyst with superior NH₃-SCR
 activity and strong SO₂ and H₂O tolerance.New Journal of Chemistry; 45: 38573865.https://doi.org/10.1039/d0nj05404f.

411	Jia A-P, et al., 2	2012.CO c	oxidation over	CuO/Ce1-xCuxO2	–δ and C	e1–xCuxO2–δ c	atalysts: Sy	mergetic
412	effects	and	kinetic	study.Journal	of	Catalysis;	289:	199-
413	209.https:/	//doi.org/1	0.1016/j.jcat.	2012.02.010.				

- Kharlamova TS, et al., 2022.Effect of metal-doping (Me = Fe, Ce, Sn) on phase composition, structural
 peculiarities, and CO oxidation catalytic activity of cryptomelane- type MnO₂.Journal of Alloys and
- 416 Compounds; 917: 17.https://doi.org/10.1016/j.jallcom.2022.165504.
- Lei Z, et al., 2021.Study on denitration and sulfur removal performance of Mn-Ce supported fly ash
 catalyst.Chemosphere; 270: 128646.https://doi.org/10.1016/j.chemosphere.2020.128646.
- Li Z, et al., 2020.Oxygen vacancy mediated Cu_yCo₃-yFe₁O_x mixed oxide as highly active and stable
 toluene oxidation catalyst by multiple phase interfaces formation and metal doping effect.Applied
- 421 Catalysis B: Environmental; 269: 118827.https://doi.org/10.1016/j.apcatb.2020.118827.
- Liao Y, et al., 2022. The Unique CO Activation Effects for Boosting NH₃ Selective Catalytic Oxidation
 over CuOx-CeO₂. Environ Sci Technol; 56: 10402-10411. https://doi.org/10.1021/acs.est.2c02612.
- 424 Lin F, et al., 2021. Investigation of chlorine-poisoning mechanism of MnO_x/TiO₂ and MnO_x-CeO₂/TiO₂
- 425 catalysts during o-DCB_z catalytic decomposition: Experiment and first-principles calculation.J
 426 Environ Manage; 298: 113454.https://doi.org/10.1016/j.jenvman.2021.113454.
- Luo Y, et al., 2020.MnO₂ nanoparticles encapsuled in spheres of Ce-Mn solid solution: Efficient catalyst
 and good water tolerance for low-temperature toluene oxidation.Applied Surface Science; 504:
 144481.https://doi.org/10.1016/j.apsusc.2019.144481.
- Ma D, et al., 2022.Enhanced Catalytic Ozonation for Eliminating CH(3)SH via Stable and Circular
 Electronic Metal-Support Interactions of Si-O-Mn Bonds with Low Mn Loading.Environ Sci
 Technol; 56: 3678-3688.https://doi.org/10.1021/acs.est.1c07065.
- Niu X, Lei Z, 2019.Copper doped manganese oxides to produce enhanced catalytic performance for CO
 oxidation.Journal of Environmental Chemical Engineering; 7:
 103055.https://doi.org/10.1016/j.jece.2019.103055.
- Otto F, et al., 2013.Relative effects of enthalpy and entropy on the phase stability of equiatomic highentropy alloys.Acta Materialia; 61: 2628-2638.https://doi.org/10.1016/j.actamat.2013.01.042.
- 438 Polychronopoulou K, et al., 2021.Design Aspects of Doped CeO₂ for Low-Temperature Catalytic CO
- 439 Oxidation: Transient Kinetics and DFT Approach.ACS Appl Mater Interfaces; 13: 22391-

- 440 22415.https://doi.org/10.1021/acsami.1c02934.
- Sacco NA, et al., 2022.One step citric acid-assisted synthesis of Mn-Ce mixed oxides and their
 application to diesel soot combustion.Fuel; 322: 124201.https://doi.org/10.1016/j.fuel.2022.124201.
- 443 Schweke D, et al., 2018. The Interaction of CO₂ with CeO₂ Powder Explored by Correlating Adsorption
- and Thermal Desorption Analyses. The Journal of Physical Chemistry C; 122: 99479957. https://doi.org/10.1021/acs.jpcc.8b01299.
- Tang XL, et al., 2020.Effect of hierarchical element doping on the low-temperature activity of
 manganese-based catalysts for NH₃-SCR.Journal of Environmental Chemical Engineering; 8:
 104399.https://doi.org/10.1016/j.jece.2020.104399.
- Venkataswamy P, et al., 2015.Structural properties of alumina supported Ce–Mn solid solutions and their
 markedly enhanced catalytic activity for CO oxidation.Applied Surface Science; 349: 299309.https://doi.org/10.1016/j.apsusc.2015.04.220.
- Wan J, et al., 2022.Designed preparation of nano rod shaped CeO₂-MnO catalysts with different Ce/Mn
 ratios and its highly efficient catalytic performance for chlorobenzene complete oxidation: New
 insights into structure–activity correlations.Chemical Engineering Journal; 433:
 133788.https://doi.org/10.1016/j.cej.2021.133788.
- Wang B, et al., 2017.Plasma-catalytic removal of toluene over CeO₂ -MnO_x catalysts in an atmosphere
 dielectric barrier discharge.Chemical Engineering Journal; 322: 679692.https://doi.org/10.1016/j.cej.2017.03.153.
- Wang Y, et al., 2022. Mechanistic study of low-temperature CO oxidation over CuO/Cu₂O interfaces with
 oxygen vacancy modification. Applied Surface Science; 603:
 154469.https://doi.org/10.1016/j.apsusc.2022.154469.
- Wei L, et al., 2021.Ce-promoted Mn/ZSM-5 catalysts for highly efficient decomposition of ozone.J
 Environ Sci (China); 103: 219-228.https://doi.org/10.1016/j.jes.2020.10.008.
- 464 Yang J, et al., 2020.Iron doped effects on active sites formation over activated carbon supported Mn-Ce
- 465 oxide catalysts for low-temperature SCR of NO.Chemical Engineering Journal; 379:
 466 122398.https://doi.org/10.1016/j.cej.2019.122398.
- 467 Yang ZY, et al., 2019.Study of reaction mechanism based on further promotion of low temperature 468 degradation of toluene using nano-CeO₂/Co₃O₄ under microwave radiation for cleaner production

469	in spraying processing.Journal of Hazardous Materials; 373: 321-
470	334.https://doi.org/10.1016/j.jhazmat.2019.03.062.
471	Yao XJ, et al., 2017.Influence of preparation methods on the physicochemical properties and catalytic
472	performance of MnOx-CeO2 catalysts for NH3-SCR at low temperature. Chinese Journal of Catalysis;
473	38: 146-159.https://doi.org/10.1016/s1872-2067(16)62572.
474	Ye Z, et al., 2022.Investigation of Cu-Mn catalytic ozonation of toluene: Crystal phase, intermediates
475	and mechanism.J Hazard Mater; 424: 127321.https://doi.org/10.1016/j.jhazmat.2021.127321.
476	Yu WT, et al., 2021. Facile treatment tuning the morphology of Pb with state-of-the-art selectivity in CO ₂
477	electroreduction to formate.Chemical Communications; 57: 7418-
478	7421.https://doi.org/10.1039/d1cc02113c.
479	Zhang X-m, et al., 2016.Dynamic active sites over binary oxide catalysts: In situ/operando spectroscopic
480	study of low-temperature CO oxidation over MnOx-CeO2 catalysts.Applied Catalysis B:
481	Environmental; 191: 179-191.https://doi.org/10.1016/j.apcatb.2016.03.030.
482	Zhang X, et al., 2021. The promoting effect of H_2O on rod-like $MnCeO_x$ derived from MOF_s for toluene
483	oxidation: A combined experimental and theoretical investigation.Applied Catalysis B:
484	Environmental; 297: 120393.https://doi.org/10.1016/j.apcatb.2021.120393.
485	Zhao L, et al., 2019.Synthesis of CeaMnOx hollow microsphere with hierarchical structure and its
486	excellent catalytic performance for toluene combustion. Applied Catalysis B: Environmental; 245:
487	502-512.https://doi.org/10.1016/j.apcatb.2019.01.005.
488	Zhao Y, et al., 2016.Inhibition of calcium sulfate scale by poly (citric acid).Desalination; 392: 1-
489	7.https://doi.org/10.1016/j.desal.2016.04.010.
490	Zhu L, et al., 2017.Cerium modified birnessite-type MnO ₂ for gaseous formaldehyde oxidation at low
491	temperature.Applied Catalysis B: Environmental; 211: 212-
492	221.https://doi.org/10.1016/j.apcatb.2017.04.025.
493	Zhu T, et al., 2022. Multi-process and multi-pollutant control technology for ultra-low emissions in the
494	iron and steel industry.Journal of Environmental Sciences; 123: 83-
495	95.https://doi.org/10.1016/j.jes.2022.01.044.
496	

25

Highlights

• The hydrothermal citrate complexation method enhanced the interaction between

Ce-Mn and showed a superior performance for the oxidation of CO.

• The $Mn^{3+}+Ce^{4+} \leftrightarrow Mn^{4+}+Ce^{3+}$ redox cycle facilitates its synergistic effect in the

CO oxidation process.

• The reaction of CO oxidation on Ce-Mn surface is proposed.

The authors declare that they have no known competing financial interests or personal relationships

that could have appeared to influence the work reported in this paper.

oundiproved