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ABSTRACT
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that 
activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into 
T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent 
on the immunogenicity of dying cells as de#ned by the antigenicity of these cells and their ability to 
expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines 
like type I interferons (IFNs). Moreover, it is crucial that the host’s immune system can adequately detect 
the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies 
have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and 
oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for 
anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe 
current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing 
immuno-oncological paradigms.
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Introduction

It has been two decades since the concept of apoptosis being 
solely immunologically quiet and hence unable to activate the 
immune system has been overthrown. A large number of 
studies have substantiated an immunogenic variant of regu-
lated cell death (RCD) programs like apoptosis, called immu-
nogenic cell death (ICD)1–4. Since then, this concept of ICD 
has been extended to other RCDs, a term that refers to cell 
death programs that have a known intricate signaling cascade, 
such as necroptosis, pyroptosis, or ferroptosis5–15.

The most well-known form is Apoptosis. Apoptosis is mor-
phologically defined by the shrinking of cells, fragmentation of 

the DNA, and blebbing of the cell membrane. In contrast, 
necroptosis, pyroptosis, and ferroptosis are regulated forms 
of molecularly defined necrosis. They resemble accidental 
necrosis in terms of its final morphology (e.g., organelle swel-
ling, plasma membrane rupture, cell lysis, and leakage of intra-
cellular components) but utilize a distinct molecular 
machinery.

Nevertheless, some degree of caution is required with the 
ICD-like profile subscribed to some recently discovered RCD 
pathways, since a full consensus on their immunological 
impact is still pending16,17. For instance, ferroptosis, 
a pathway first described in 201218, has been shown to be 
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immuno-modulatory in multiple disease models19–22 including 
cancer13,22–27. Depending on the temporal stage of ferroptosis 
(i.e., early vs. late), differences in modulating experimental 
anti-tumor immunity have been reported13. However, several 
immunosuppressive mechanisms have also been associated 
with ferroptosis such as formation of lipid bodies28, oxidized 
phospholipids (oxPLs)29–33 formation, and cyclo-oxygenase 2 
(MT-CO2; also known as COX2)34,35 activation36. Some of the 
immunosuppressive mechanisms relevant for anti-tumor 
immunity5 were also attributed to ferroptotic tumor- 
associated neutrophils resulting even in enhanced tumor 
growth37. Clinical and immuno-oncology implications of 
such findings are still pending.

Owing to a lot of research studies published over the last few 
decades, the molecular and cellular mechanisms behind ICD 
have been largely deciphered. Organelle and cellular stress, 
most particularly endoplasmic reticulum (ER) stress induced 
by reactive oxygen species (ROS) production, is an essential 
early trigger for the initiation of ICD38–42. Sequentially, ICD 
enables a time- and space-dependent organized exposure as 
well as release of damage-associated patterns (DAMPs) or 
alarmins from dying cancer cells. The main DAMPs associated 
with ICD include calreticulin exposure on the cell 
membrane43–49, heat-shock proteins (HSPs), exposure on the 
cell membrane and/or passively released50,51, passively released 
high-mobility group box 1 (HMGB1)52–56, surface exposure of 
annexin A1 (ANXA1)57–60, and adenosine triphosphate (ATP), 
which can be actively or passively released44,61,62. The binding 
of these DAMPs to their cognate pattern recognition-receptors 
(PRRs), present on antigen-presenting cells such as dendritic 
cells (DCs), eventually leads to the activation of both the innate 
and the adaptive immune system via a series of cytokine and 
chemokine networks5,63–66. Dying cancer cells undergoing ICD 
can autonomously release cytokines as well as induce cytokine 
production from neighboring immune or stromal cells67–72. 
Additionally, ICD can also cause the secretion of immunosti-
mulatory and chemotactic cytokines73–75 including, but not 
limited to, type I interferons (IFNs)76–80 and chemokine 
(C-X-C) ligand 9 and 10 (CXCL9/10)73,81,82. In the correct 
context, ICD can also facilitate T cell expansion in a manner 
that leads to diversification of TCR repertoire,83–91 which can 
help regress distant (metastatic) tumor lesions via abscopal 
effect-like immune responses92–96. This abscopal effect is dri-
ven by DAMPs (i.e., adjuvanticity) and tumor-associated anti-
gen (TAA) (i.e., antigenicity),97–99 thereby highlighting the 
importance of ICD100–102. The ability of ICD to initiate an 
immune response is highly dependent on antigenicity and 
adjuvanticity103–105. Without antigens, ICD can only induce 
an antigen-irrelevant inflammatory response without engage-
ment of the adaptive immune system106. Conversely, the pre-
sentation of antigens to T cells with poor adjuvanticity actively 
promotes tolerance107–110.

In general, ICD inducers can be broadly divided into two 
groups depending on how they initiate ER stress-related path-
ways relevant for DAMP mobilization111–114. ER stress will 
lead to unfolded protein response (UPR) activation, leading 
to an upregulation of pathways including PERK – eukaryotic 
initiation factor 2 (eIF2a)79. Downstream, this will cause lower 
amounts of IkB and more activation of nuclear factor-kB (NF- 

kB)115. The first group includes therapies that induce ICD 
without directly inducing ER stress. Such type I ICD inducers 
include radiotherapy as well as chemotherapies like paclitaxel, 
oxaliplatin, and anthracyclines61,116–120. The second group, i.e., 
type II ICD inducers, includes treatment modalities that induce 
ICD by specifically targeting the ER to induce ER stress-driven 
cell death, e.g., photodynamic therapy (PDT) or oncolytic 
viruses121–124. Comprehensively, ICD inducers can be part of 
different treatment classes including not only microbial and 
chemical but also physical treatments such as irradiation and 
high hydrostatic pressure (HHP)57.

Importantly, there is little correlation between the specific 
chemical features of an anti-cancer therapy and their ability to 
induce ICD. For example, while cisplatin and oxaliplatin are 
both platinum-based chemotherapies and induce cell death via 
DNA adduct-formation, yet only oxaliplatin treatment results in 
ICD125–128. Over the years, at least two pre-clinical criteria have 
been established to classify an anti-cancer therapy as a potential 
ICD inducer129,130. First criterion is that a therapy should be able 
to induce tumor regression in an immuno-competent, but not 
immuno-deficient, mouse setting131–133. Secondly, the cancer 
cells treated with an ICD inducer should serve as an anti- 
cancer vaccine in a prophylactic setting5,134–139. To rephrase, 
when tumor-naïve mice are injected with cancer cells under-
going ICD upon exposure to the anti-cancer drug, subsequent 
challenging with live cancer cells of the same type should not 
result in the formation of a tumor at the vaccination and chal-
lenging site. It is important to keep in mind that these 
approaches of classifying ICD inducers may have clinical trans-
lational issues, since they only allow exploration in a mouse 
setting. For this reason, in addition to these in vivo mice experi-
ments, in vitro or ex vivo settings can also be utilized to assess the 
immunogenic potency of dying cancer cells treated with 
a potential ICD inducer57,140. Here, the presence of aforemen-
tioned ICD-associated DAMPs can serve as a surrogate marker 
to confirm ICD in vitro or ex vivo 141–144. Additionally, culturing 
the dying cancer cells with innate immune cells, such as DCs, to 
assess ICD-relevant DC functions, is also possible. Phenotypic 
markers like phagocytic activity145–149, DC activation 
markers150–154 (CD86 and major histocompatibility complex 
(CIITA, also known as MHC) Class II molecules) or the secre-
tion of cytokines like interleukin 1 beta (IL-1β)155–157, interleu-
kin 6 (IL-6)158–161, interleukin 12 (IL-12)162,163, and tumor 
necrosis factor (TNF)164–167, and the ability of DCs to activate 
T cell proliferation and functional activation168–172 are examples 
of possible features to assess.

Multiple chemotherapeutics, commonly used in the clinic, 
have been identified as ICD inducers. The most commonly 
used chemotherapies with ICD potential are anthracyclines 
(including doxorubicin, epirubicin, mitoxantrone, and idaru-
bicin), cyclophosphamide, oxaliplatin, paclitaxel, docetaxel, 
5-fluorouracil, and targeted therapies like bortezomib126,173– 

182. In fact, there is concrete evidence supporting the beneficial 
effects of ICD in cancer patients. For instance, patients with 
tumors displaying markers of ER stress (like tribbles pseudo-
kinase 3 (TRB3) and DNA damage inducible transcript 3 
(DDIT3; also known as CHOP)183–188 or ICD-associated 
DAMPs, such as calreticulin or HMGB1, have a better 
prognosis189–197. These findings support the pursuit for an 
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ideal ICD-inducing treatment regimen40. It is important to 
note that most clinical trials do not choose for specific che-
motherapeutics based on their ability to induce ICD. Instead, 
they are based on their ability to induce tumor response and 
disease control, without specific knowledge about their poten-
tial to induce ICD198,199. In some cases, these design-related 
decisions can be counterproductive for immune-mediated 
tumor control, thereby limiting the clinical benefit for cancer 
patients200–203. Besides chemotherapeutics, there are multiple 
other treatment options that can induce ICD. Herein, radia-
tion-based modalities are particularly proficient at inducing 
ICD and associated abscopal effect-like responses204–209. 
Additionally, some upcoming immunotherapies like oncolytic 
viruses also operate via ICD induction210–214.

In this Trial Watch edition, we will be focusing on the most 
recent preclinical and clinical advances around ICD induction 
by anti-cancer chemotherapy.

Preclinical advances

Since the publication of the previous Trial Watch dealing with 
chemotherapeutic ICD inducers, several novel preclinical stu-
dies on this topic have been published215. Here, we highlight 
the ones that are of particular importance and/or capture the 
general trends in this field.

Some papers further contributed to our mechanistic under-
standing of ICD. Mandula et al. (H. Lee Moffitt Cancer center, 
Tampa, USA.) established the role of protein kinase R-like 
reticulum kinase (EIF2AK3; also known as PERK), a well- 
known ER stress sensor, in mediating ICD via a new RCD sub- 
routine, i.e., paraptosis. They found that PERK inhibition 
resulted in an increased T cell activation followed by 
a reduction in tumor growth via type I IFN responses. These 
findings encourage the use of PERK-targeting therapies for 
cancer immunotherapy216. Furthermore, Hayashi et al. 
(Cedars-Sinai Medical Center, Los Angeles, CA, USA) reported 
that although gemcitabine stimulates the release of immunos-
timulatory DAMPs, it also triggers prostaglandin E2 (PGE2) 
release, which counteracts ICD-relevant immune responses. 
However, when they combined gemcitabine and PGE2 block-
ade, an effective DC and T cell activation was induced, which 
led to tumor regression36. Oresta et al. (Humanitas Clinical and 
Research Center-IRCCS, Rozzano, Italy) found that mitochon-
drial metabolic reprogramming is important for ICD 
occurrence217. This is accompanied by an increased oxidative 
phosphorylation. Moreover, tumors with low amounts of com-
plex 1 of the respiratory chain expression had a higher chance 
of recurrence after chemotherapy. Lucarini et al. (Bambino 
Gesù Children’s Hospital, Rome, Italy) investigated the com-
bination strategy of mitoxantrone and anti-transforming 
growth factor beta (TGFB1) with programmed cell death-1 
(PD-1, also known as PDCD1) blockade in neuroblastoma 
mouse models. They found that the low dose of mitoxantrone 
by itself was already able to increase IFNγ and granzyme 
B (GZMB) in CD8+ T cells, which were further increased 
upon combination with anti-TGFβ and anti-PD-1 
blockades218. Several papers also revealed a novel connection 
between anti-cancer agents and the ICD pathway125. Humea 
et al. (Centre de Recherche des Cordeliers, Université de Paris, 

Paris, France) reported about the induction of immunogenic 
cell stress and ICD via dactinomycin219, an inhibitor of DNA 
and RNA transcription220. Marin et al. (Barcelona institute of 
Science and Technology, Barcelona, Spain) found that senes-
cent cells have a greater immunologic potential that could 
initiate CD8+ T cell responses. These senescent cells are able 
to release alarmins and PRR agonists and increase MHCI 
exposure. Even more so, immunization with these cancer 
cells caused protection superior to the standard ICD 
inducers221.

Several papers also focused on increasing tumor-directed 
drug delivery while decreasing toxicity using nanoparticles222. 
For example, Zhou et al. (Department of Pharmaceutics, China 
Pharmaceutical University, Nanjing, China) published that 
direct delivery of therapeutic proteins, including RNase A, 
PD-1 antibodies, and photothermal agents, via hydrogels form-
ing membrane pores, increased lactate dehydrogenase 
(LDHA), HMGB1, and ATP release in multiple murine cancer 
models223. In due course, the intratumoral hydrogel injections 
resulted in more CD8+ T cell tumor infiltration and a lower 
tumor growth compared to the saline treated tumors. Another 
example is the study by Yang et al. (Wuhan University, Wuhan, 
China). They focused on decreasing the toxicity of small- 
molecule inhibitors by creating a prodrug nanomicelle that 
integrates both a phosphoinositide 3-kinase (PIK3CG; also 
known as PI3K)/mammalian target of rapamycin (mTOR) 
inhibitor and a cyclin-dependent kinase (CDK) inhibitor, fla-
vopiridol. With this treatment, they were able to decrease 
tumor growth via the induction of ICD accompanied by 
HMGB1 and Gasdermin E (GSDME) release as well as ATP 
secretion in a breast cancer cell line224. Song et al. (Shanghai 
Jiaotong University, Shanghai, China) created a porphyrin- 
cisplatin conjugate (NP@Pt-1) that can be triggered by 
light225. NP@Pt-1 treatment resulted in an increased ROS 
production leading to ATP and HMGB1 in murine colon 
cancer cells release compared to untreated cells. Additionally, 
NP@Pt-1 treatment resulted in a decreased tumor growth 
compared to PBS-treated tumors.

Besides nanoparticles, other innovative strategies have been 
implemented to optimize ICD inducing treatment regimes. 
Tatarova et al. (OHSU Center for Spatial Systems 
Biomedicine, Portland, USA) developed a microdevice that 
could assist with microtargeting-specific regions of the 
tumor. This implantable chip is able to contain 18 different 
treatments that can be released in separate regions226. Zawilska 
et al. (Univeristy of Wroclaw, Wroclaw, Poland) developed 
a liposomal docetaxel therapy that could overcome the pro-
blems of toxicity and poor pharmacokinetics. They saw that the 
cell growth decreased using their treatment compared to doc-
etaxel alone. Additionally, the half life of docetaxel was signifi-
cantly increased when liposomal-pegylated227.

A series of studies are also trying to use ICD and its markers 
as a biomarker modality175. Use of an ICD-associated genetic 
signature is one of the approaches proposed to exploit ICD as 
a predicting marker for patient outcome. In high-grade glioma 
(HGG), such a signature was able to predict responsiveness to 
immune checkpoint blocker (ICB) therapy including anti-PD 
-1 and anti-cytotoxic T-lymphocyte-associated antigen 4 
(CTLA4)160. This signature, composed of FOXP3, IL6 LY96, 

ONCOIMMUNOLOGY 3



MYD88, and PDIA3, was able to distinguish patients with 
increased immune modulation and immune escape and high 
expression of human leukocyte antigen (HLA)-related genes. 
On top of that, multiple papers have reported that even micro- 
RNAs linked to ICD-relevant DAMPs are able to predict treat-
ment outcome228. Several microRNAs relevant for modulating 
expression of calreticulin, e.g., miR-27a-3p229,230, or 
HMGB1231–234 have been characterized.

Finally, optimizing the detection of ICD in response to 
chemotherapy has also been investigated further since the last 
Trial Watch publication235. Zhang et al. (Chonnam National 
University Medical School, Hwasun, Korea) engineered calre-
ticulin-targeting monobodies to detect ICD more 
accurately236. Via this method, they were able to detect surface 
expression in multiple cancer cell lines and in mice treated with 
ICD inducers. Similar to this, Kim et al. (Gyeongsang National 
University, Jinju, Korea) created a synthetic 18F-labeled peptide 
that specifically binds calreticulin237. Via this method, they 
were able to detect calreticulin surface exposure in mouse 
colon cancer tumors via a small-animal positron emission 
tomography (PET) scan. This staining was visible in tumors 
treated with multiple ICD inducers including doxorubicin, 
oxaliplatin, and radiation.

Finalized clinical studies

All finalized clinical studies published after the previous Trial 
Watch (June 2019) were gathered using PubMed (http://www. 
ncbi.nlm.nih.gov/pubmed) with the following search string 
taking into account to most established ICD inducers (cancer 
OR tumor OR tumor OR neoplasm) AND (oxaliplatin OR 
cyclophosphamide OR bortezomib OR doxorubicin OR epir-
ubicin OR idarubicin OR mitoxantrone OR paclitaxel) AND 
(“danger signal” OR “damage associated molecular pattern” 
OR “immunogenic cell death” OR “immunogenic cancer cell 
death” OR immunogenic OR immunogenicity), together with 
the clinical trial filter. Additionally, articles were filtered manu-
ally based on relevance as well as on the presence of measure-
ments of immunological parameters. On November 15, 2022, 
this query with PubMed resulted in 268 published clinical trial 
studies. From these papers, 67 studies were investigating 
immune responses using biomarkers. Of note, many studies 
reported the blood cell counts of patients during treatment. 
This kind of publication was not considered for this Trial 
Watch, since such counts are not valid ICD biomarkers. In 
this section, we will give a general overview of these published 
clinical studies (Figure 1) and highlight a few of them.

Figure 1. Recently published clinical studies testing immunogenic cell death (ICD)-inducing chemotherapy in oncology that investigate the immunogenic response. 
Clinical studies were classified on: (a) cancer type, (b) ICD-inducing drug, (c) combinatorial immunotherapy. (d) immunomonitoring approach, CAR, chimeric antigen 
receptor; CRC, colorectal carcinoma; ICB, immune checkpoint blocker; IHC, immunohistochemistry; PD-L1, programmed death-ligand; TIL, tumor-infiltrating lymphocyte.
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Among these studies, we found that there were 15 indivi-
dual cancer types investigated. A large portion (29.9%) of the 
studies focused on breast cancer (Figure 1A)238–241. Page 
et al. (Earle A. Chiles Research Institute, Providence Cancer 
Institute, Portland, Oregon) reported on the efficiency of 
cyclophosphamide in combination with a cytokine cocktail 
including TNF, IL-2, IL-1, IFN-γ, IL-6, IL-8, granulocyte- 
macrophage colony-stimulating factor (CSF2; also known as 
GM-CSF), and granulocyte colony stimulating factor (CSF3; 
also known as G-CSF) with the product name IRX-2 in 
breast cancer. In this phase 1b study, they demonstrated 
that after treatment there was a higher T-cell activation 
profile, based on GZMB, GZMA, IFNG, membrane cofactor 
protein-4 (CD46; also known as MCP-4), S100, CD184, CC- 
motif chemokine ligand 21 (CCL21) and perforin-1 
(ZNF395; also known as PRF-1) compared to the baseline. 
Additionally, they found a cyclophosphamide-associated per-
ipheral T-regulatory (Treg) cell depletion242. However, upre-
gulation of the immune-checkpoint ligand, programmed cell 
death ligand 1 (PD-L1, also known as CD274), assessed by 
immunohistochemistry (IHC) was also seen in these patients 
after treatment. Additionally, there were 3 “basket trials” 
(4.5% of all included published trials), consisting of multiple 
solid tumor types243–245. Haas et al. (University of 
Pennsylvania, Philadelphia, PA, USA) analyzed the effects 
of cyclophosphamide, with and without chimeric antigen 
receptor (CAR) T cells specific for mesothelin (meso), 
a protein highly expressed by many cancers246–249. They 
found that patients pre-treated with cyclophosphamide 
increased the initial CAR T cell expansion but did not alter 
the persistence at day 28244. Although both treatment arms 
were well tolerated, patients showed limited clinical benefit.

Most of the studies included into this Trial Watch, i.e., 
41 out of 67, investigated the effect of co-treatment with 
more than one ICD inducer (Figure 1B). Chemotherapeutic 
regimes based on paclitaxel, together with other ICD indu-
cers, were very prevalent in the published clinical trials. 
This was most likely because paclitaxel is regularly applied 
as part of a multi-modal chemotherapeutic regimen, espe-
cially against breast cancer and ovarian cancer241,250–252. In 
this sense, an immunotherapy-relevant example includes 
the KEYNOTE-355 trial, where the investigators tested 
paclitaxel or gemcitabine in combination with carboplatin 
and pembrolizumab, an anti-PD-1 ICB, in triple-negative 
breast cancer253. They found that the addition of pembro-
lizumab resulted in a significant increase in patient overall 
survival (OS) compared to chemotherapy alone. It is impor-
tant to note that the combination of ICD inducers together 
with ICBs is very prevalent (Figure 1C). In general, most 
studies find that the addition of ICBs increases the overall 
response rate (ORR) compared to chemotherapy alone254– 

256. Tumor-targeting passive immunotherapies, such as 
trastuzumab (anti-human epidermal growth factor receptor 
2 (ERBB2; also known as HER2)), are also repeatedly com-
bined with ICD inducers. Similarly, CAR T cells are often 
combined with ICD inducers like fludarabine and 
cyclophosphamide257–260. The latter is not per se to pro-
mote an immune activation but rather to eliminate the 
circulating lymphocyte population.

Lastly, another parameter that we assessed in this Trial 
Watch was the measurement of immune response parameters. 
In the above studies, the most frequently used immune bio-
markers were tumor infiltrating lymphocytes (TILs) analysis 
and the PD-L1 detection (Figure 1D)239,261–263. For instance, 
a phase II study for breast cancer investigating the addition of 
durvalumab, a monoclonal anti-PD-1 antibody, together with 
anthracycline-taxane-based neoadjuvant therapy included 
a broad biomarker analysis. The authors found that paclitaxel 
was able to increase the TILs in both treatments’ arms (with 
and without durvalumab). Additionally, they found that both 
arms showed a higher pathological complete response (pCR) 
rate in the PD-L1-positive tumors compared to PD-L1low 

tumors264. Finally, they concluded that durvalumab together 
with anthracycline-/taxane-based neoadjuvant chemotherapy 
(NACT) was the most optimal treatment regime for increased 
pCR rates. Additionally, more advanced molecular analysis 
such as RNA sequencing was also often used as biomarker 
discovery242,265,266. For instance, Pusztai et al. (Yale Cancer 
Center, New Haven, CT, USA) found while investigating pacli-
taxel in combination with durvalumab and the poly-ADP 
ribose polymerase (PARP) inhibitor olaparib in breast cancer 
that their dendritic cell signature had a positive correlation 
with pCR in the treatment arm267. Additionally, they found 
that their mast cell signature correlated negatively with pCR. 
However, they did not find any correlation between their T cell 
signatures and pCR in their clinical trial.

Altogether, these results highlight the promising perspec-
tives and clinical trends in ICD research.

Ongoing clinical studies

In parallel, we also assessed the ClinicalTrials.gov database 
(http://www.clinicaltrials.gov/) for all the ongoing or active 
clinical trials using oxaliplatin, cyclophosphamide, bortezomib, 
doxorubicin, epirubicin, idarubicin, mitoxantrone, or pacli-
taxel in combination with cancer immunotherapy. With 
a relevant search string, we found not less than 84 clinical 
studies that matched the following criteria: (1) they involved 
at least one ICD-inducing chemotherapeutic agent and (2) they 
were initiated after June 2019 (when the latest Trial Watch on 
this topic was published).

In this context, multiple cancer types are being studied 
(Tables 1 and 2). Like the finalized studies described above, 
the ongoing clinical trials are predominately focused on breast 
cancer. This is a trend that has been seen over multiple Trial 
Watch publications215,268. In contrast to the published clinical 
trials, recently enlisted clinical studies also have a considerable 
percentage focusing on hematopoietic cancer types such as 
lymphoma, leukemia, and multiple myeloma (Table 1). Most 
likely, this is due to a high increase in CAR T cell studies, 
a treatment that has been approved for these cancer types in 
combination with specific chemotherapies that can also induce 
ICD86. For instance, a single arm clinical study with the aim of 
observing the tolerance and safety of Fludarabine in combina-
tion with CAR natural killer (NK)-CD19 cells in acute lympho-
blastic leukemia (NCT05563545). Furthermore, clustering of 
several different solid tumor types in the same study is also 
something that is often noticed in these ongoing trials.
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Most of the clinical trials selected for this Trial Watch 
analysis applied paclitaxel, cyclophosphamide, oxaliplatin, 
and doxorubicin, not only as a monotherapy but also in com-
bination with other anti-cancer treatments. The most prevalent 
ICD inducer is paclitaxel as shown in Table 2. However, only 
a small percentage of the studies assesses ICD as the main study 
objective. Most of the time, studies include treatment arms of 
the ICD inducer with and without combinatorial therapies. In 
general, ICD inducers are mostly combined with (1) other cell 
death inducers including other chemotherapeutics, such as 
carboplatin, or radiation therapy; (2) ICBs targeting molecules 
such as anti-PD-1 or anti-PD-L1 antibodies; (3) tumor- 
targeting passive immunotherapies such as agents against epi-
dermal growth factor receptor (EGFR) and HER2; (4) T cells 
that are adoptively transferred or T cells expressing engineered 
TAA-specific transgenic TCRs; (5) cytokines that further 

stimulate the immune responses including not only interferon 
alpha (IFNA) but also mixtures like IRX-2 (IL-1β, IL-2, IL-6, 
IL-8, IL-10, IL-12, TNF, and IFNγ). These trends are very 
similar to the previous Trial Watch215 as well as the published 
clinical trials that we summarized above.

In these selected clinical trials, there are multiple immu-
nological assessment methodologies that were examined 
with the aim of acquiring a predictive marker for treatment 
response as or assessing the immune response during treat-
ment. This includes T cell analysis, either via IHC, e.g., to 
estimate the quantity and phenotypes of tumor-infiltrating 
T cells or via flow cytometry, e.g., for detailed profiling of 
the peripheral blood immune cell subsets. For example, 
clinical trial NCT05033769 is going to assess KI-67 on 
peripheral T cells. Additionally, in some ongoing clinical 
trials, such as NCT04868708, PD-L1 expression of the 

Table 1. Contemporary clinical studies assessing the therapeutic and immunological characteristics of chemotherapeutics.

Cancer type ICD inducer Phase Status Combination Trial number

Breast cancer Cyclophosphamide I Recruiting Combined with DPX-Survivac, Letrozole, XRT NCT04895761
II Recruiting Combined with Anthracyclines and P2Et NCT05007444

CRC Oxaliplatin I/II Active, not 
recruiting

Combined with Leucovorin, 5-FU and Bevacizumab NCT04068610

II Recruiting Combined with Nivolumab NCT05504252
Combined with Capecitabine, Bevacizumab and Pembrolizumab NCT04262687
Combined with Atezolizumab, Bevacizumab and Capecitabine NCT04659382

FOLFOX Withdrawn Combined with Durvalumab and Oleclumab or Monalizumab NCT04145193
Gastric cancer Oxaliplatin II Recruiting Combined with 5-FU, Capecitabine, Durvalumab, Trastuzumab, 

Cisplatin and Pembrolizumab
NCT04379596

Gastric or 
Gastroesophageal 
cancer

III Recruiting Combined with AK104 and Capecitabine NCT05008783

Leukemia Cyclophosphamide I Nyet recruiting Combined with Fludarabine and CD19/22 targeting T cells NCT05223686
Recruiting Combined with Fludarabine and Cl-135 CAR-T cells NCT05266950

Combined with Fludarabine and CAR-NK CD19 cells NCT05563545
Combined with Fludarabine and pCAR-19B cells NCT04888442

Completed Combined with Fludarabine and pCAR-19B cells NCT04888468
II Recruiting Combined with Fludarabine and CNCT19 cells NCT04684147

Combined with Fludarabine and pCAR-19B cells NCT05334823
Leukemia and 

Lymphoma
Cyclophosphamide I Terminated Combined with Fludarabine and RPM CD19-mbIL 15-CAR-T cells NCT04844086

Lymphoma I Recruiting Combined with Fludarabine and CB-010 NCT04637763
Combined with Fludarabine and LCAR-AIO cells NCT05318963

I/II Recruiting Combined with Fludarabine and CRC01 NCT04836507
Combined with Fludarabine and allogenic CD19-car T cells NCT05554939

Cyclophosphamide and 
doxorubicin

I/II Recruiting Combined with Rituximab and Doxorubicin NCT04663347

Oxaliplatin II Recruiting Combined with Lacutamab and Gemcitabine NCT04984837
Multiple myeloma Bortozomib I Recruiting Combined with REGN5458, Daratumumab, Carfilzomib, 

Lenalidomide and Dexamethasone
NCT05137054

Cyclophosphamide I Recruiting Combined with ALLO-715/647, Fludarabine and Nirogacestat NCT04093596
Rnrolling by 

invitation
Combined with Fludarabine and − 29 CAR-T cells NCT04861480

II Recruiting Combined with Fludarabine and BCMA targeting t cells NCT05594797
Myeloid malignancies Mitoxantrone II Recruiting Combined with Magrolimab, Etoposide and Cytarabine NCT04778410
NSCLC Oxaliplatin I/II Recruiting Combined with Nivolumab and Ipilimumab NCT04043195
Ovarian cancer Doxorubicin I Recruiting Combined with SL-172154 NCT05483933

Cyclophosphamide I Recruiting Combined with Fludarabine and CAR T cells NCT05225363
Pancreatic cancer FOLFIRINOX I/II Recruiting Combined with Mitazalimab NCT04888312
Rectal cancer Oxaliplatin II Recruiting Combined with Tislelizumab and Capecitabine NCT05420584

Combined with Capecitabine and anti-PD1 NCT05307198
Sarcoma Doxorubicin I/II Not yet 

recruiting
Combined with YH001 and Envafolimab NCT05448820

Solid tumor Cyclophosphamide I Recruiting Combined with neoantigen peptide vaccine, Pembrolizumab and 
Sargramostim

NCT05269381

Terminated Combined with GEN-011, IL2 and Fludarabine NCT04596033
Oxaliplatin I Recruiting Combined with HB002.1T and Capecitabine NCT04802980
Oxaliplatin or Paclitaxel I/II Recruiting Combined with AK104/AK117, Cisplatin, 5FU NCT05235542

5-FU, 5-fluorouracil; CAR-NK cells, Car natural killer cells; CAR, chimeric antigen receptor; CRC, colorectal cancer; PD-1, programmed death-1; TIL, tumor-infiltrating 
lymphocyte; NSCLC, non-small cell lung carcinoma.
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tumor tissue samples is being determined by IHC. In addi-
tion, in this clinical trial they will also investigate the 
development of anti-drug antibodies over 30 days after the 
last treatment. This latter practice is being performed in 

many other clinical trials (e.g., NCT04282070, 
NCT04093596, and NCT04888312). Another biomarker 
being utilized is antigen-specific immunogenicity especially 
in CAR T cell or adoptive T cell clinical trials (e.g., 

Table 2. Contemporary clinical studies assessing the therapeutic and immunological characteristics of paclitaxel.

Cancer type ICD inducer Phase Status Combination Trial number

Breast cancer Nab-Paclitaxel II/III Not yet 
recruiting

Combined with EOC202 NCT05322720

Nab-Paclitaxel II recruiting Combined with SG001 NCT05068141
II/III Not yet 

recruiting
Combined with B013 NCT05555706

Paclitaxel I Not yet 
recruiting

Combined with Eftilagimob alpha NCT04252768

I Recruiting Combined with Durvalumab and Trastuzumab Deruxtecan NCT04556773
I/II Recruiting Combined with Trastuzumab Deruxtecan NCT04538742
II Recruiting Combined with DC vaccines and Trastuzumab and Pertuzumab NCT05325632
III Recruiting Combined with Capecitabine and Trastuzumab Deruxtecan NCT04494425
III Recruiting Combined with Dato-DXd, Carboplatin, Capecitabine and Eribulin Mesylate NCT05374512

Eribulin and 
Paclitaxel

IV Recruiting NCT05033769

Cervical cancer Paclitaxel I Active, not 
recruiting

Combined with M7824, Carboplatin, Bevacizumab and Cisplatin NCT04551950

II Active, not 
recruiting

Combined with AK104, Bevacizumab, Cisplatin or Carboplatin NCT04868708

II/III Recruiting Combined with QL1604 and Cisplatin or Carboplatin NCT04864782
III Recruiting Combined with AK104 and Carboplatin, Cisplatin, Bevacizumab NCT04982237

Endometrial neoplasm Paclitaxel III Recruiting Combined with Olaparib, Durvalumab and Carboplatin NCT04269200
Gastric cancer Paclitaxel II Recruiting Combined with IMU-131 and Pembrolizumab NCT05311176
Gastric or 

Gastroesophageal 
cancer

Paclitaxel II/III Not yet 
recruiting

Combined with QL1604 NCT04435652

III Recruiting Combined with Trastuzumab Deruxtecan and Ramucirumab NCT04704934
Head and neck squamous 

carcinoma
Paclitaxel I Recruiting Combined with SCT-I10A, SCT200 and Docetaxel NCT05552807

Melanoma and 
Pancreatic cancer

Nab-Paclitaxel II Recruiting Combined with YH003, Toripalimab and Gemcitabine NCT05031494

Nasopharyngeal 
carcinoma

Paclitaxel I aAtive, not 
recruiting

Combined with SHR-1316 and Carboplatin, Gemcitabine and Cisplatin NCT04282070

NSCLC Nab-Paclitaxel III Not yet 
recruiting

Combined with Sintilimab, Carboplatin, Cisplatin, Pemetrexed, Docetaxel 
and Gemcitabine

NCT05116462

Paclitaxel I/II Active, not 
recruiting

Combined with AK104 and carboplatin NCT04647344

II Recruiting Combined with Carboplatin NCT04832854
III Recruiting Combined with SHR-1316 and Carboplatin NCT04316364
III Terminated Combined with carboplatin and Bevacizumab or PF-06439535 NCT04325698
III Unknown Combined TRS003, Bevacizumab and Carboplatin NCT04416035
III Completed Combined with Bp102 or Avastin and Carboplatin NCT05169801
III Recruiting Combined with SIBP04, Avastin and Carboplatin NCT05318443
III Recruiting Combined with Cisplatin, Carboplatin, Etoposide, Pemetrexed and 

Ociperlimab or Tislelizumab or Durvalumab
NCT04866017

Ovarian cancer Paclitaxel I/II Recruiting Combined with TILs, interferon and Carboplatin NCT04072263
Paclitaxel or 

Doxorubicin
III Recruiting Combined with BD0801 NCT04908787

Paclitaxel and 
Doxorubicin

III Active, not 
recruiting

Combined with Mirvetuximab Soravtansine and Topotecan NCT04209855

Pancreatic cancer Nab-Paclitaxel I Recruiting Combined with AB680, Zimberelimab and Gemcitabine NCT04104672
I Active, not 

recruiting
Combined with Canakinumab, Spartalizumab and Gemcitabine NCT04581343

II Recruiting Combined with NIS793, Spartalizumab and Gemcitabine NCT04390763
Solid tumor Nab-Paclitaxel I/II Recruiting Combined with DF1001 and Nicolumab NCT04143711

I/II Active, not 
recruiting

Combined with YH003, Toripalimab and Gemcitabine NCT04481009

I/II Recruiting Combined with LYT-200, anti-PD1 and Gemcitabine NCT04666688
II Recruiting Combined with camrelizumab and famitinib NCT05214976
II Recruiting Combined with AZD0171, Durvalumab and Gemcitabine NCT04999969

Paclitaxel I Not yet 
recruiting

Combined with KM257 NCT05320874

II Recruiting Combined with adoptive T cells NCT05144698
II Recruiting Combined with Navicixizumab NCT05453825

Paclitaxel or 
Oxaliplatin

I Recruiting Combined with Ociperlimab, Tislelizumab, Carboplatin, Cisplatin, 5-FU and 
Capecitabine

NCT04047862

I/II Recruiting Combined with AK104/AK117, Cisplatin, 5FU NCT05235542

5-FU, 5-fluorouracil; TIL, tumor-infiltrating lymphocyte; NSCLC, non-small cell lung carcinoma.
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NCT04596033). Evaluating the presence of specific or sev-
eral cytokines is also prioritized in some clinical trials. For 
example, NCT04895761 aims to assess the IFNγ in breast 
cancer patients treated with cyclophosphamide or radio-
therapy in combination with a neoadjuvant aromatase inhi-
bitor. In each treatment arm, an ELISPOT will be 
performed in PBMCs. Lastly, multiple ongoing clinical stu-
dies are evaluating immunological markers on a larger scale 
via omics technologies. Omics approaches like RNA 
sequencing are creating many variables that can give func-
tional patterns associated with T cell status shifting after 
chemotherapy. So far, a long list of ways to create some 
sort of immunological output is being practiced in these 
clinical trials. Yet, there are still many clinical trials that are 
not planning on assessing any markers for immune 
response (e.g., NCT04637763, NCT05504252).

Conclusion

Currently, various chemotherapeutics linked to ICD are 
approved worldwide for use as anti-cancer treatment in 
patients with multiple cancer subtypes. Approval of most 
of these chemotherapies was largely preceded by pre- 
clinical investigations with tumor xenografts269–272 in 
immunodeficient mice and therefore these were often trans-
lated to the clinic without any validation for immune- 
modulation273–275. Therefore, most of these chemotherapies 
are currently utilized at doses and treatment schedules that 
are meant to achieve tumor reduction via maximal tolerable 
dose276–279 rather than a balance between short-term 
(tumor reduction) and long-term (anti-cancer immunity) 
effects. In this sense, overcoming some common side effects 
of chemotherapies that can also counteract ICD, i.e., 
neutropenia,280–284 lymphopenia285–289 and intestinal 
mucositis290–292, should be prioritized via more tumor- 
targeted delivery of chemotherapies through nanoparticles 
or other controlled delivery methods293,294.

The ‘first generation’ of anti-cancer immunotherapy has 
nearly passed. Despite the stunning success of immuno- 
oncology drugs through a broad spectrum of distinct 
malignant diseases, it turned out that a large majority of 
patients do not respond to currently approved immu-
notherapies, or if they do, responses are mostly transient. 
Currently, the field of immuno-oncology aims to tackle 
these immunotherapy-resistant contexts via multi-modal 
anti-cancer therapies integrating anti-cancer agents, falling 
into different treatment modalities (radiotherapy, che-
motherapy, targeted therapy, and immunotherapy). 
However, systematically designed as well as multi-arm 
comparative clinical studies coupled with proper immune 
biomarkers aimed at identifying correct dosing and treat-
ment scheduling/ordering are pending. Such studies are 
crucial to maximize the immune-activation relevant syner-
gism between active immunotherapies and ICD-inducing 
chemotherapies. Simultaneously, pre-selection of patients 
via specific biomarkers is also necessary to tailor these 
multi-modal immunotherapies to specific patient sub- 
groups rather than giving it in a nonspecific fashion 
thereby contributing to socio-economic healthcare burden.
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