
Context-aware query derivation for IoT data
streams with DIVIDE enabling privacy by
design
Mathias De Brouwer a,*, Bram Steenwinckel a, Ziye Fang a, Marija Stojchevska a, Pieter Bonte a,
Filip De Turck a, Sofie Van Hoecke a and Femke Ongenae a

a IDLab, Ghent University – imec, Belgium
E-mails: mrdbrouw.DeBrouwer@UGent.be, Bram.Steenwinckel@UGent.be, Ziye.Fang@UGent.be,
Marija.Stojchevska@UGent.be, Pieter.Bonte@UGent.be, Filip.DeTurck@UGent.be, Sofie.VanHoecke@UGent.be,
Femke.Ongenae@UGent.be

Editors: First Editor, University or Company name, Country; Second Editor, First University or Company name, Country and Second
University or Company name, Country
Solicited reviews: anonymous reviewer; anonymous reviewer

Abstract. Integrating Internet of Things (IoT) sensor data from heterogeneous sources with domain knowledge and context
information in real-time is a challenging task in IoT healthcare data management applications that can be solved with seman-
tics. Existing IoT platforms often have issues with preserving the privacy of patient data. Moreover, configuring and managing
context-aware stream processing queries in semantic IoT platforms requires much manual, labor-intensive effort. Generic queries
can deal with context changes but often lead to performance issues caused by the need for expressive real-time semantic reason-
ing. In addition, query window parameters are part of the manual configuration and cannot be made context-dependent. To tackle
these problems, this paper presents DIVIDE, a component for a semantic IoT platform that adaptively derives and manages the
queries of the platform’s stream processing components in a context-aware and scalable manner, and that enables privacy by
design. By performing semantic reasoning to derive the queries when context changes are observed, their real-time evaluation
does require any reasoning. The results of an evaluation on a homecare monitoring use case demonstrate how activity detection
queries derived with DIVIDE can be evaluated in on average less than 3.7 seconds and can therefore successfully run on low-end
IoT devices.

Keywords: Context-aware query derivation, Internet of Things, Cascading reasoning, Semantic reasoning, Homecare monitoring

1. Introduction

1.1. Background

In the healthcare domain, many applications involve a large collection of Internet of Things (IoT) devices and
sensors [1]. Many of those systems typically focus on the real-time monitoring of patients in hospitals, nursing
homes, homecare or elsewhere. In such systems, patients and their environment are being equipped with different

*Corresponding author. E-mail: mrdbrouw.DeBrouwer@UGent.be.

mailto:mrdbrouw.DeBrouwer@UGent.be
mailto:Bram.Steenwinckel@UGent.be
mailto:Ziye.Fang@UGent.be
mailto:Marija.Stojchevska@UGent.be
mailto:Pieter.Bonte@UGent.be
mailto:Filip.DeTurck@UGent.be
mailto:Sofie.VanHoecke@UGent.be
mailto:Femke.Ongenae@UGent.be
mailto:mrdbrouw.DeBrouwer@UGent.be

devices and sensors for following up on the patients’ conditions, diseases and treatments in a personalized, context-
aware way. This is achieved by integrating the data collected by the IoT devices with existing domain knowledge
and context information. As such, analyzing this combination of data sources jointly allows a system to extract
meaningful insights and actuate on them [2].

Integrating and analyzing the IoT data with domain knowledge and context information in a real-time context is
a challenging task. This is due to the typically high volume, variety and velocity of the different data sources [3]. To
deal with these challenges, semantic IoT platforms can be deployed [4]. They generally contain stream processing
components that integrate and analyze the different data sources by continuously evaluating semantic queries. To
deploy this, Semantic Web technologies are typically employed: ontologies are designed to integrate and model the
data from different heterogeneous sources and its relationships and properties in a common, machine-interpretable
format, and existing stream reasoning techniques are used by the data stream processing components [5].

Currently, the configuration and management of queries that run on the stream processing components of a se-
mantic IoT platform are manual tasks that require a lot of effort from the end user. In the typical IoT applications
in healthcare, those queries should be context-aware: the context information determines which sensors and de-
vices should be monitored by the query, for example to filter specific events to send to other components for fur-
ther analysis. For example, a patient’s diagnosis in the Electronic Health Record (EHR) determines the monitoring
tasks that should be performed in the patient’s hospital room, while the indoor location (room) of the patient in a
homecare monitoring environment determines which in-home activities can be monitored. Changes in this context
information regularly occur. For example, the profile information of patients in their EHR can be updated, or the
in-home location of the patient can evolve over time. Hence, the management of the queries should be able to deal
with such context changes. Currently, no semantic IoT platform component exists that allows to configure, derive
and manage the platform’s queries in an automated, adaptive way. Therefore, platforms typically apply one of two
existing approaches to achieve this.

The first approach to introduce context-awareness into semantic queries is by defining them in a generic fashion.
A generic query uses generic ontology concepts in its definitions to perform multiple contextually relevant tasks.
This way, semantic reasoners will reason in real-time on all available streaming, context and domain knowledge data
to determine the contextually relevant sensors and devices to which the query is applicable. The advantage of this
approach is that such queries are prepared to deal with contextual changes: due to their generic nature, they should
not be updated often. However, the disadvantage of highly generic queries is the high computational complexity
of the semantic reasoning during their evaluation. This is caused by complex ontologies in IoT domains such as
healthcare that require expressive reasoning [6]. In healthcare applications that involve a large number of sensors,
it is practically challenging to do this in real-time: queries take longer to evaluate, causing lower performance and
difficulty to keep up with the required query execution frequencies. Typically, central components in an IoT platform
have more resources and are therefore more likely to overcome this challenge. However, running all queries on
central components would require all generated IoT streaming data to be sent over the network, causing the network
to be highly congested all the time. In addition, the central server resources would be constantly in use, and local
decision making would no longer be possible. Importantly, this would also imply no flexibility in preserving the
patient’s privacy by keeping sensitive data locally. Looking at local and edge IoT devices to run those generic queries
instead, resources are typically lower, making the performance challenges an even bigger issue of the generic query
approach.

An alternative approach that can be adopted is installing multiple specific queries on the stream processing com-
ponents that filter the contextually relevant sensors for one specific task. Evaluating such non-generic queries re-
duces the required semantic reasoning effort, solving the performance issues of the generic approach. However, this
approach even further increases the required manual query configuration and management effort for the end user:
whenever the context changes, the queries should be manually updated. This is infeasible to do in practice. As a
consequence, current platforms do not apply this approach often and mostly work with generic queries instead.

Moreover, the definition of generic stream processing queries does not contain any means to make the window
parameters of the query dependent on the application context and domain knowledge. Currently, an end user should
configure these query parameters, and cannot let the system define them based on the data. This can be a problem
in some specific monitoring cases. For example, the size of the data window on which a monitoring task such as in-
home activity detection should be executed, may depend on the type of task, and therefore be defined in the domain

knowledge. Another example is when the execution frequency of a monitoring task depends on certain contextual
events happening in the patient’s environment.

In addition, preserving the privacy of the patients is of utmost importance in healthcare systems [7]. In IoT
platforms, lots of the data generated by the IoT devices can contain privacy-sensitive information. Depending on
where the data processing components are being hosted, this privacy-sensitive data may have to be sent over the IoT
network, potentially exposing it to the outside world. Therefore, the IoT data is ideally processed close to where it
is generated to reduce the amount of information sent over the network as much as possible. With regards to this, a
semantic IoT platform should enable privacy by design [8]: it should allow an end user to build privacy by design
into an application by precisely controlling which data is kept locally, and which data is sent over the network.

Finally, a semantic IoT platform component that would solve the aforementioned issues, should also be practically
usable. Currently, existing semantic IoT healthcare platforms use semantic reasoners or stream reasoners that are
configured with existing sets of generic semantic queries [2]. Defining such queries and ensuring their correctness
is a delicate and time-consuming task. Hence, a new component should not introduce a completely different means
of defining generic queries, but instead reduce the required changes to these definitions to a minimum. This implies
that it should start from the generic definition of stream processing queries. Moreover, the other configuration tasks
of the component should also be as minimal as possible to increase overall usability.

1.2. Research objectives and paper contribution

In summary, there is a need for a semantic IoT platform component that fulfills the different requirements tackled
in the previous subsection, so that it can be applied in a healthcare data management system. Hence, we set the
following research objectives for the design of such an additional semantic IoT platform component:

1. The component should reduce the manual, labor-intensive query configuration effort by managing the queries
on the platform’s stream processing components in an automated, adaptive and context-aware way.

2. The evaluation of queries managed by the component should be performant, also on low-end IoT edge devices
with fewer resources. Network congestion and overuse of central resources should be avoided.

3. The component should allow for the query window parameters to be context-dependent.
4. The component should enable privacy by design: it should allow end users to integrate privacy by design into

an application by defining, on different levels of abstraction, which data is kept locally and which parts of the
data can be sent over the network.

5. The component should be practically usable, minimizing the effort to integrate it into an existing system.

This paper presents DIVIDE, a semantic IoT platform component that we have designed to achieve the presented
research objectives. DIVIDE automatically and adaptively derives and manages the contextually relevant specific
queries for the platform’s stream processing components, by performing semantic reasoning with a generic query
definition whenever contextual changes occur. As a result, the derived queries will efficiently monitor the relevant
IoT sensors and devices in real-time, and still do not require any real-time reasoning during their evaluation.

The contribution of this paper is the methodological design and proof-of-concept of the DIVIDE component,
fulfilling the requirements associated with the above research objectives. In the paper, DIVIDE is applied and eval-
uated on a realistic homecare monitoring use case, to demonstrate how it can be used in a practical IoT application
context that works with privacy-sensitive information.

1.3. Paper organization

The remainder of this paper is structured as follows. Section 2 discusses some related work. In Section 3, the
eHealth use case scenario is further explained, translated into the technical system set-up, and semantically described
with an ontology. Section 4 presents a general overview of the DIVIDE system. Further functional and algorithmic
details of DIVIDE are provided in Section 5 and Section 6 using the running use case example, while Section 7
zooms in on the technical implementation of DIVIDE. Section 8 describes the evaluation set-up with the different
evaluation scenarios and hardware set-up. Results of the evaluations are presented in Section 9, and further discussed
in Section 10. Finally, Section 11 concludes the main findings of the paper and highlights future work.

2. Related work

2.1. Semantic Web, stream processing and stream reasoning

Using Semantic Web technologies such as the Resource Description Framework (RDF) and the Web Ontol-
ogy Language (OWL), heterogeneous data sources can be consolidated and semantically enriched into a machine-
interpretable representation using ontologies [4]. An ontology is a model that semantically describes all domain-
specific knowledge by defining domain concepts and their relations and attributes. Within RDF, an International-
ized Resource Identifier (IRI) is used to refer to every resource defined in an ontology [9]. Semantic reasoners can
interpret semantic data to derive new knowledge based on the definitions in the ontologies. The complexity of the
semantic reasoning depends on the expressivity of the underlying ontology [10]. Different ontology languages exist.
They range from RDFS, which has the lowest expressivity, to OWL 2 DL, which has the highest expressivity.

RDFox [11] and VLog [12] are state-of-the-art OWL 2 RL reasoners. OWL 2 RL contains all constructs that can
be evaluated by a rule engine. These constructs can be expressed by simple Datalog rules. By design, these engines
are not able to handle streaming data. However, RDFox can also run on a Raspberry Pi, and any ARM-based IoT
edge device in general. In addition, previous research has shown it can also successfully run on a smartphone [13].

Notation3 Logic (N3) [14] is a rule-based logic that is often used to write down RDF. N3 is a superset of RDF/-
Turtle [15], which implies that any valid RDF/Turtle definitions are valid N3 as well.

Stream Reasoning (SR) [5] state-of-the-art contains three main approaches: Continuous Processing (CP) engines,
Reasoning Over Time (ROT) frameworks and Reasoning About Time (RAT) frameworks. CP engines have contin-
uous semantics, high throughput, and low latency but do not perform reasoning. ROT frameworks solve reasoning
tasks continuously with high throughput and low latency, but do not consider time. RAT frameworks do consider
time in the reasoning task, but may lack reactivity due to the high latency. These various approaches each investigate
the trade-off between the expressiveness of reasoning and the efficiency of processing [5].

RDF Stream Processing (RSP) identifies a family of CP engines that solve information needs over heterogeneous
streaming data, which is typical in IoT applications. It addresses data variety by adopting RDF streams as data
model, and solves data velocity by extending SPARQL with the continuous semantics [16]. Different RSP engines
exist, such as C-SPARQL [17], CQELS [18], Yasper [19] and RSP4J [20]. Queries can be registered to these engines
that are used to continuously filter the defined data streams. A data window is placed on top of the data stream.
Parameters of the window definition include the size of the data window that is added to the query’s data model,
and the window’s sliding step which directly influences the query’s evaluation frequency.

RSP-QL [21] is a reference model that unifies the semantics of the existing RSP approaches. RSP has been ex-
tended to support ROT in various ways: (i) solutions incorporating efficient incremental maintenance of material-
izations of the windowed ontology streams [22–25], (ii) solutions for expressive Description Logics (DL) [26, 27],
and (iii) a solution for Answer Set Programming (ASP) [28]. More central to ROT is the logic-based framework
for analyzing reasoning over streams (LARS) [29] that extends ASP for analytical reasoning over data streams.
LASER [30] is a system, based on LARS, that employs a tractable fragment of LARS that ensures uniqueness of
models. BigSR [31] employs Big Data technologies (e.g., Apache Spark and Flink) to evaluate the positive fragment
of LARS. C-Sprite [32] focuses on efficient hierarchical reasoning to improve the throughput and application on
edge devices by efficiently filtering out unnecessary data in the stream. A similar approach to filter out unnecessary
streaming data in ASP exists, by investigating the dependency graph of the input data [33]. RDF Event Process-
ing (RSEP) identifies a family of approaches that extend CP over RDF Streams with event pattern matching [34].
RSEP extends RSP with a reactive RAT formalism with limited expressiveness [35]. RSEP-QL [36] is an extension
of RSP-QL that incorporates the language features from Complex Event Processing (CEP) [37]. StreamQR [38]
rewrites continuous RSP queries to multiple parallel queries, allowing for the support of ontologies that are ex-
pressed in the ELHIO logic. The CityPulse project [39] presents the combination of RSP, CEP and expressive
reasoning through ASP.

The most advanced attempts to develop expressive Stream Reasoning increased the reasoning expressiveness, but
at the cost of limited efficiency. DyKnow [40] and ETALIS [41] combine RAT and ROT reasoning, but perform CP at
an extremely slow speed. STARQL [42] is a first step in the right direction because it mixes RAT, and ROT reasoning
utilizing a Virtual Knowledge Graph (VKG) approach [43] to obtain CP. Cascading Reasoning [44] was proposed

to solve the problem of expressive reasoning over high-frequency streams by introducing a hierarchical approach
consisting of multiple layers. Although several of the presented approaches adopt a hierarchical approach [28, 41,
42], only a recent attempt has laid the first fundamentals on realizing the full vision of cascading reasoning with
Streaming MASSIF [45].

2.2. Semantic IoT platforms and privacy preservation

Today, different IoT platforms exist that extend big data platforms with IoT integrators [46, 47]. FIWARE [48] is
a platform that offers different APIs that can be used to deploy IoT applications. Sofia2 [49] is a semantic middle-
ware platform that allows different systems and devices to become interoperable for smart IoT applications. Sym-
bIoTe [50] goes a step further and abstracts existing IoT platforms by providing a virtual IoT environment provi-
sioned over various cloud-based IoT platforms. The Agile [51] and BIG IoT [52] platforms focus on flexible IoT
APIs and gateway architectures, such as VICINITY [53] and INTER-IoT [54] which also provide an interoperability
platform. bIoTope [55] addresses the requirement for open platforms within IoT systems development.

Zooming in on IoT-based healthcare systems, a large number of solutions have risen in the last few years [1, 56–
58]. Jaiswal et al. surveyed 146 healthcare for IoT solutions in recent years, and classified them in five categories:
sensor-based, resource-based, communication-based, application-based, and security-based approaches. They iden-
tified scalability and interoperability as two big challenges that are yet to be solved by many systems. Especially the
latter is a challenge with the heterogeneity of data originating from different sources. This challenge can be solved
with Semantic Web technologies.

Focusing on IoT healthcare systems that involve semantic technologies, multiple solutions already exist. For ex-
ample, in the topic of homecare monitoring, Zgheib et al. [59] proposed a scalable semantic framework to monitor
activities of daily living in elderly, to detect diseases and epidemics. The proposed framework is based on several
semantic reasoning techniques that are distributed over a semantic middleware layer. It makes use of CEP to extract
symptom indicators, which are fed to a SPARQL engine that detects individual diseases. C-SPARQL is then em-
ployed on a stream of diseases to detect possible epidemics. While this approach zooms in largely on scalability for
this specific use case, it does not offer any flexibility in making the SPARQL and C-SPARQL queries context-aware
in a fully automated and adaptive way.

Moreover, Jabbar et al. [60] and Ullah et al. [61] both presented an IoT-based Semantic Interoperability Model that
provides interoperability among heterogeneous IoT devices in the healthcare domain. These models add semantic
annotations to the IoT data, allowing SPARQL queries to easily extract concepts of interest. However, these illustra-
tive SPARQL queries require manual configuration effort and are not automatically ensuring context-awareness in
a dynamic environment. In addition, Ali et al. [62] present an ontology-aided recommendation system to efficiently
monitor the patient’s physiology based on wearable sensor data while recommending specific, personalized diets.
Similarly, Subramaniyaswamy et al. [63] present a personalized travel and food recommendation system based on
real-time IoT data about the patient’s physical conditions and activities. Again, these systems only work with static
SPARQL queries to evaluate their system, not achieving context-awareness in an adaptive, dynamic environment.

In summary, many of the presented platforms are adopting a wide range of existing Semantic Web technologies
to deal with the challenges associated with real-time IoT applications in complex IoT domains such as healthcare.
These platforms typically combine different technologies that involve both stream processing and semantic rea-
soning components. They all have in common that the queries for the stream processing components are not yet
configured and managed in a fully automated, adaptive and context-aware way.

Privacy by design is an approach that states that privacy must be incorporated into networked data systems and
technologies, by default [8, 64, 65]. It approaches privacy from the design-thinking perspective, stating that the
data controller of a system must implement technical measures for data regulation by default, within the applicable
context. Privacy by design is a broad concept that is more concretely defined through seven principles that can
be applied to the design of a system. One of these principles is that the privacy-preserving capabilities should be
embedded into the design and architecture of IT systems. Another principle focuses on the importance of keeping
privacy user-centric, ensuring that the design always considers the needs and interests of the users. Other principles
focus on visibility and transparency, privacy as the default setting, proactive instead of reactive measures, avoiding

unnecessary privacy-related trade-offs, and end-to-end security through the lifecycle of the data. Privacy by design
is a key principle of the General Data Protection Regulation (GDPR) of the European Union [65].

3. Use case description and set-up

To demonstrate how DIVIDE can be employed in a semantic IoT network to perform context-aware homecare
monitoring, a detailed use case is presented in this section.

3.1. Use case description

The homecare monitoring use case scenario presented in this paper focuses on a rule-based service that recognizes
the activities of elderly people in their homes.

Use case background More and more people live with chronic illnesses and are followed up at home by various
healthcare actors such as their General Practitioner (GP), nursing organization, and volunteers. Patients in homecare
are increasingly equipped with monitoring devices such as lifestyle monitoring devices, medical sensors, localiza-
tion tags, etc. The shift to homecare makes it important to continuously assess whether an alarming situation occurs
at the patient. If an alarm is generated, either automatically or initiated by the patient, a call operator at an alarm
center should decide which intervention strategy is required. By reasoning on the measured parameters in combi-
nation with the medical domain knowledge, a system could help a human operator with choosing the most optimal
intervention strategy.

A core building block of a homecare monitoring solution is an autonomous activity recognition (AR) service
that detects and recognizes different in-home activities performed by the patient. Moreover, it should also monitor
whether ongoing activities belong to a known regular routine of the patient, so that anomalies in the patient’s daily
activity pattern can be detected. Such a service could make use of the data collected by the different sensors and
devices installed in the patient’s home environment, as well as knowledge about AR rules and known routines of
the patient. Given the heterogeneous nature of these different data sources, Semantic Web technologies are ideally
suited to create this autonomous AR service.

Details of the activity recognition service The use case of routine and non-routine AR has been designed together
with the home monitoring company Z-Plus. To properly perform knowledge-driven AR, AR rules should be known
by the system. Z-Plus helped us with designing the rules.

An AR rule can be defined as a set of one or more value conditions defined on certain observable properties that
are being analyzed for a certain entity type. An observable property is any property that can be measured by a sensor
in the patient’s environment, e.g., temperature, relative humidity, power consumption, door status (open vs. closed),
indoor location, etc. Every sensor analyzes its property for a specific entity. Examples of analyzed entities are a
room (e.g., for a humidity sensor), an electrical appliance such as a cooking stove (e.g., for a power consumption
sensor), a cupboard (e.g., for a door contact sensor), or even the patient (e.g., for a wearable sensor).

In a realistic home environment with a wide range of sensors installed, many different AR rules will be defined.
This makes it highly inefficient to continuously monitor all possible activities that can be recognized in the home,
since this would require the continuous monitoring of all sensors that observe a certain property for an entity type
associated with at least one rule. Hence, the AR service performs location-dependent activity monitoring: it only
observes activities that are relevant to the room that the patient is currently located in. To enable this, an indoor
location system should be installed that unambiguously knows the current room of the patient at every point in time.
The activities relevant to the current room can be derived by considering all sensors that analyze this room or an
entity in the room: all activity rules should be evaluated that have conditions (i) on observable properties that are
measured by these sensors, and (ii) that are defined for the same entity type as analyzed by those sensors.

Activities recognized by the AR service should be labeled as belonging to the regular routine of this patient
or not. If an ongoing activity in the patient’s routine is recognized, the situation is normal and requires no more
strict follow-up. Ideally, as long as an activity is going on, location changes in the home are less probable and
should therefore be monitored less frequently. However, if an activity outside the routine of the patient is being

detected, more strict location monitoring is required since the situation is abnormal. If necessary, an alarm should
automatically be generated by the system. To implement such a system, knowledge on the existing routines of the
patient at different times of the day should exist.

Finally, an important requirement of the AR service is that it reduces the information that leaves the patient’s
home environment to a minimum, as a first step in preserving the patient’s privacy. This implies that no actual raw
sensor data should be sent over the network. To enable this, the AR service should largely run in-home, so that only
the actual outputs such as detected activities are being sent. Obviously, data that is not contained in the HomeLab
should always be sent over a secure, encrypted connection.

Running example To facilitate the methodological description of DIVIDE in Sections 4, 5 and 6, consider the
following illustrative running example derived from the presented homecare monitoring use case.

Consider a smart home with an indoor location system detecting in which room the patient is present, and
an environmental sensor system measuring the relative humidity in every room of the home. The smart home
consists of multiple rooms including one bathroom. The patient living in the home has a morning routine that
includes showering. To keep it simple, the AR service of the running example consists of a single rule. This
rule detects when a person is showering, and is formulated as follows:

A person is showering if the person is present in a bathroom with a relative humidity of at least 57%.

This is a rule with a single condition, defined on a crossed lower threshold for the relative humidity observable
property, for the bathroom entity type. Hence, given the presence of a humidity sensor in the patient’s bathroom,
the showering activity will be monitored by the AR service if the patient is located in the bathroom.

3.2. Activity recognition ontology

An Activity Recognition ontology has been designed to support the described use case scenario. This Ac-
tivity Recognition ontology is linked to the DAHCC (Data Analytics for Heathcare and Connected Care) on-
tology [66], which is an in-house designed ontology that includes different modules connecting data analytics
to healthcare knowledge. Specifically for the purpose of this semantic use case, it is extended with a module
KBActivityRecognition supporting the knowledge-driven recognition of in-home activities.

The DAHCC ontology contains five main modules. The SensorsAndActuators and
SensorsAndWearables modules describe the concepts that allow defining the observed properties, location,
observations and/or actions of different sensors, wearables and actuators in a monitored environment such as a
smart patient home. The MonitoredPerson and CareGiver modules contain concepts for the definition of a
patient monitored inside a residence and the patient’s caregivers. The ActivityRecognition module allows
describing the activities performed by a monitored person that are predicted by an AR model.

The DAHCC ontology bridges the concepts of multiple existing ontologies in the data analytics and health-
care domains. These ontologies include SAREF (the Smart Applications REFerence ontology) [67] and its exten-
sions SAREF4EHAW (SAREF extended with concepts of the eHealth Ageing Well domain) [68], SAREF4BLDG
(an extension for buildings and building spaces) and SAREF4WEAR (an extension for wearables), as well as the
Execution-Executor-Procedure (EEP) ontology [69].

Listing 1 shows how a knowledge-based AR model can be defined and configured. In the example, it is configured
according to the use case’s running example, i.e., with one activity rule for showering. Lines 13–17 of this listing
contain the definition of the single condition of this rule.

In Section A.1 of Appendix A, additional listings detail multiple other definitions within the Activity Recognition
ontology that support the knowledge-driven AR use case and its running example. This includes the ontological
definitions that can be used by a semantic reasoner to define whether an activity prediction corresponds to a person’s
routine, as well as the semantic description of the example patient and home in the running use case example.

Figure 1. Architectural set-up of the eHealth use case scenario

Listing 1: Example of how a knowledge-based AR model with an activity rule for showering can be described
through triples in the KBActivityRecognition ontology module. All definitions are listed in RDF/Turtle
syntax. To improve readability, the KBActivityRecognition: prefix is replaced by the : prefix.

1 # define knowledge-based activity recognition model and its config with a specific rule
2 :KBActivityRecognitionModel rdf:type ActivityRecognition:ActivityRecognitionModel ;
3 eep:implements :KBActivityRecognitionModelConfig1 .
4 :KBActivityRecognitionModelConfig1 rdf:type ActivityRecognition:Configuration ;
5 :containsRule :showering_rule .
6
7 # define showering activity rule: detected by one specific condition
8 :showering_rule rdf:type :ActivityRule ;
9 ActivityRecognition:forActivity [rdf:type ActivityRecognition:Showering] ;
10 :hasCondition :showering_condition .
11
12 # define showering condition: relative humidity in the bathroom should be at least 57%
13 :showering_condition rdf:type :RegularThreshold ;
14 :forProperty [rdf:type SensorsAndActuators:RelativeHumidity] ;
15 Sensors:analyseStateOf [rdf:type SensorsAndActuators:BathRoom] ;
16 :isMinimumThreshold "true"^^xsd:boolean ;
17 saref-core:hasValue "57"^^xsd:float .
18
19 # define in system that conditions can be defined on relative humidity in a room
20 SensorsAndActuators:RelativeHumidity rdfs:subClassOf :ConditionableProperty .
21 SensorsAndActuators:Room rdfs:subClassOf :AnalyzableForCondition .

3.3. Architectural use case set-up

To implement the use case scenario of a knowledge-driven routine and non-routine AR service, a cascading
reasoning architecture is used [70]. An overview of the architectural cascading reasoning set-up for this use case is
shown in Figure 1. This architecture is generic and can be applied to different use case scenarios in the healthcare
domain with similar requirements.

The architecture of the system is split up in a local and a central part. The local part consists of a set of components
that are running on a local device in the patient’s environment. This device could be any existing gateway that is
already installed in the patient’s home, such as the device for a deployed nurse call system. The local components
are the Semantic Mapper and an RSP Engine. The components of the central part are deployed on a back-end server
of an associated nursing home or hospital. They consist of a Central Reasoner, DIVIDE, and a Knowledge Base.

Knowledge Base The Knowledge Base contains the semantic representation of all domain knowledge and context
data in the system, in an RDF-based knowledge graph. In the given use case scenario, this domain knowledge con-
sists of the Activity Recognition ontology that is discussed in Section 3.2. It includes the AR model with its activity
rules. The contextual information describes the different smart homes and their installed sensors, and patients.

Semantic Mapper The Semantic Mapper semantically annotates all raw observations generated by the sensors in
the patient’s environment. These semantic sensor observations are forwarded to the data streams of the RSP Engine.

RSP Engine The RSP engine continuously evaluates the registered queries on the RDF data streams, to filter
relevant events. In this use case scenario, the filtered events are in-home locations and recognized activities both in
and not in the patient’s routine. Only these filtered events are encrypted and sent over the network to the Central
Reasoner. By applying the cascading reasoning principles and installing the RSP Engine locally in the patient’s
environment, a first step in preserving the patient’s privacy can be taken.

Central Reasoner The Central Reasoner is responsible for further processing the events received from the RSP
Engine, and acting upon them. For example, it can aggregate the filtered events and save them to use for future
call enrichment, or send an alarm to the patient’s caregivers when necessary. In general, any action is possible,
depending on what additional components are deployed and implemented on the central node.

Importantly, the Central Reasoner will also update relevant contextual information in the Knowledge Base, such
as events occurring in the patients’ environment. This information can then trigger a re-evaluation of the queries
deployed on the local RSP engines. In the given use case scenario, relevant context changes that trigger a possible
change in the deployed RSP queries are location updates and detected activities. When the in-home location of the
patient changes, the set of activities that need to be monitored changes as well, since the AR service is location-
dependent. Moreover, context information about recognized ongoing routine and non-routine activities directly
defines the execution frequency of the location monitoring RSP query.

DIVIDE DIVIDE is the component that manages the queries executed by the local RSP Engine components. It
updates the queries whenever triggered by context updates in the Knowledge Base. By aggregating contextual infor-
mation with medical domain knowledge through semantic reasoning during the query derivation, the resulting RSP
queries only involve filtering and do not require any more real-time reasoning. Moreover, it allows to dynamically
manage the window parameters of the queries (i.e., the size of the data window and its sliding step) based on the
current context. It is fully automated and adaptive, so that at all times, relevant queries are being executed given the
context information about the patients in the Knowledge Base.

In the running example, DIVIDE will ensure that there is always a location monitoring query running on the RSP
Engine component installed in the patient’s home. The window parameters of this query will depend on whether
or not an activity is currently going on, and whether or not this activity belongs to the current patient’s routine. In
addition, when the patient is located in the bathroom, an additional RSP query will be derived and installed that
monitors when the patient is showering. When the query detects this activity, this would be considered a recognized
routine activity as showering is included in the patient’s morning routine.

4. Overview of the DIVIDE system

In Section 3, the general cascading reasoning architecture of the semantic system in the eHealth use case scenario
is explained. This section zooms in on DIVIDE, the architectural component responsible for managing the queries
running on the local RSP Engine components. It is the task of the DIVIDE system to ensure that these queries
perform the relevant filtering given the current context, at any given time, for every RSP Engine known to DIVIDE.

The methodological design of DIVIDE contains of two main pillars: (i) the initialization of DIVIDE, involving the
DIVIDE query parsing and ontology preprocessing steps, and (ii) the core of DIVIDE which is the query derivation.
Figure 2 shows a schematic overview of the action steps, inputs and internal assets DIVIDE, in which the two main
pillars can be distinguished. The following two sections, Section 5 and Section 6, provide more information on
this initialization and query derivation, respectively. Throughout the descriptions of DIVIDE in these sections, the
running eHealth use case example described in Section 3.1 is considered.

In terms of logic, DIVIDE works with the rule-based Notation3 Logic (N3) [14]. The semantic reasoner used
within DIVIDE should thus be a reasoner supporting N3. Such a reasoner can reason within the OWL 2 RL pro-
file [10], which implies that a semantic system that uses DIVIDE in combination with an RSP engine is equivalent
to a set-up involving a semantic OWL 2 RL reasoner. The reasoner should support the generation of all triples based

PREPROCESSED

ONTOLOGY

ONTOLOGY

PREPROCESSING

ONTOLOGY

CONTEXT

New or changed

DIVIDE QUERY DEFINITION

DIVIDE QUERY

PARSING

DIVIDE QUERY

CONTEXT

ENRICHMENT

SENSOR

QUERY RULE
GOAL

CONTEXT

ENRICHMENT

QUERY

EXTRACTION

INPUT

VARIABLE

SUBSTITUTION

WINDOW

PARAMETER

SUBSTITUTION

RSP ENGINE

QUERY UPDATE

SEMANTIC

REASONING

ENRICHED

CONTEXT

INSTANTIATED

QUERY IN

PROOF

PROOF

LEGEND

...

...

DIVIDE input

DIVIDE internal

asset

DIVIDE action...

PARTLY INSTANTIATED

RSP-QL QUERY BODY

DIVIDE

COMPONENT

DEFINITIONS

FULLY INSTANTIATED

RSP-QL QUERY BODY

DIVIDE query derivation

DIVIDE initialization

Figure 2. Schematic overview of the DIVIDE system. It shows all actions that can be performed by DIVIDE with their inputs and outputs. A
distinction is made between internal assets and external inputs to the system. The overview is split up in the two major parts: the inputs, steps
and assets of the DIVIDE initialization, and those of the DIVIDE query derivation.

on a set of input triples and rules, as well as generating a proof towards a certain goal rule. Such a proof should
contain the chain of all rules used by the reasoner to infer new triples based on its inputs, described in N3 logic.

5. Initialization of the DIVIDE system

The core task of DIVIDE is the derivation and management of the queries running on the RSP engines of the
semantic components in the system that are known to DIVIDE. To allow DIVIDE to effectively and efficiently
perform the query derivation for one or more components upon context changes, different initialization steps are
required. Three main steps can be distinguished from the upper part of the DIVIDE system overview in Figure 2:
(i) parsing and initializing the DIVIDE queries, (ii) preprocessing the system ontology, and (iii) initializing the
DIVIDE components. This section zooms in on each of these three initialization tasks.

5.1. Initialization of the DIVIDE queries

A DIVIDE query is a generic definition of an RSP query that should perform a real-time processing task on the
RDF data streams generated by the different local components in the system. The goal of DIVIDE is to instantiate
this query in such a way that it can perform this task in a single query that simply filters the RDF data streams. To
this end, the internal representation of a DIVIDE query contains a goal, a sensor query rule with a generic query
pattern, and a context enrichment. These three items are essential for correctly deriving the relevant queries during
the query derivation process. They will each be explained in detail in the first three subsections of this section.

In the running example, there is one RSP query that actively monitors the location of the patient in the home,
and one query that detects a showering activity when the patient is located in the bathroom. This subsection will
focus on the latter, which is an example of an actual AR query. Within DIVIDE, a generic DIVIDE query will
be defined for each type of activity rule present in the system. This means that no dedicated DIVIDE query per
activity should be defined, which would be too cumbersome and highly impractical in a real-world deployment.
A rule type is a specific combination of conditions and the type of value they are defined on. For the showering
rule, this means that the type is defined as follows: a rule with a single condition on a lower regular threshold
that should be crossed. This means that the detailed specific RSP queries corresponding to activity rules of the
same type will all be derived from the same generic DIVIDE query. The generic DIVIDE query corresponding
to the type of the showering activity rule will be used as the running example DIVIDE query in this section.
Note that the running example will only focus on the detection of this activity in the patient’s routine.

5.1.1. Goal
The goal of a DIVIDE query defines the semantic output that should be filtered by the resulting RSP query. This

required query output is translated to a valid N3 rule. This rule is used in the DIVIDE query derivation to ensure
that the resulting RSP query is filtering this required RSP query output.

For the generic query definition corresponding to the RSP query that detects the showering activ-
ity in the running example, the goal is specified in Listing 2. It is looking for any instance of a
RoutineActivityPrediction.

Listing 2: Goal of the generic DIVIDE query detecting an ongoing activity in a patient’s routine

1 {
2 ?p rdf:type KBActivityRecognition:RoutineActivityPrediction ;
3 ActivityRecognition:forActivity [rdf:type ?activityType] ;
4 ActivityRecognition:activityPredictionMadeFor ?patient ;
5 ActivityRecognition:predictedBy ?model ; saref-core:hasTimestamp ?t .
6 ?activityType rdfs:subClassOf KBActivityRecognition:DetectableActivity .
7 } => {
8 _:p rdf:type KBActivityRecognition:RoutineActivityPrediction ;
9 ActivityRecognition:forActivity [rdf:type ?activityType] ;
10 ActivityRecognition:activityPredictionMadeFor ?patient ;
11 ActivityRecognition:predictedBy ?model ; saref-core:hasTimestamp ?t .
12 } .

5.1.2. Sensor query rule with generic query pattern
The sensor query rule is the core of the DIVIDE query definition. It is a complex N3 rule that defines the generic

pattern of the RSP query, together with semantic information on when and how to instantiate it. Its usage by the
semantic rule reasoner during the DIVIDE query generation defines whether or not this generic query should be
instantiated given the involved context.

The formalism of the sensor query rule builds further on SENSdesc, which is the result of previous research [71].
This theoretical work was the first step in designing a format that describes an RSP query in a generic way that can
be combined with formal reasoning to obtain the relevant queries that filter patterns of interest. By generalizing this
format and integrating it into DIVIDE, it has become practically usable.

Each sensor query rule consists of three main parts: the relevant context in the rule’s antecedence, and the generic
query and ontology consequences defined in the rule’s consequence.

Relevant context In the antecedence of the sensor query, the context in which the generic RSP query might become
relevant is generically described. For each set of query variables for which the antecedence is valid, there is a chance
that the rule, instantiated with these query variables, will appear in the proof constructed by the semantic reasoner
during the query derivation. If this is the case, the query will be instantiated for this set of variables.

To explain the different parts, consider the DIVIDE query corresponding to the running example detecting
the showering activity. Listing 3 defines the sensor query rule for the corresponding type of activity rule. The
rule’s antecedence with the relevant context of the sensor query rule is described in lines 2–24. In short, it looks
for AR rules relevant to the current room of the patient, following the definition of location-dependent activity
monitoring in Section 3.1.

Listing 3: Sensor query rule of the generic DIVIDE query detecting an ongoing activity in a patient’s routine, for an
activity rule type with a single condition on a certain property of which a value should cross a lower threshold

1 {
2 ?model rdf:type ActivityRecognition:ActivityRecognitionModel ;
3 <https://w3id.org/eep#implements> [rdf:type ActivityRecognition:Configuration ;
4 KBActivityRecognition:containsRule ?a] .
5 ?a rdf:type KBActivityRecognition:ActivityRule ;
6 ActivityRecognition:forActivity [rdf:type ?activityType] ;
7 KBActivityRecognition:hasCondition [
8 rdf:type KBActivityRecognition:RegularThreshold ;
9 KBActivityRecognition:isMinimumThreshold "true"^^xsd:boolean ;
10 saref-core:hasValue ?threshold ;
11 Sensors:analyseStateOf [rdf:type ?analyzed] ;
12 KBActivityRecognition:forProperty [rdf:type ?prop]
13] .
14
15 ?activityType rdfs:subClassOf KBActivityRecognition:DetectableActivity .
16
17 ?sensor rdf:type saref-core:Device ; saref-core:measuresProperty ?prop_o ;
18 Sensors:isRelevantTo ?room ; Sensors:analyseStateOf [rdf:type ?analyzed] .
19 ?prop_o rdf:type ?prop .
20
21 ?prop rdfs:subClassOf KBActivityRecognition:ConditionableProperty .
22 ?analyzed rdfs:subClassOf KBActivityRecognition:AnalyzableForCondition .
23
24 ?patient MonitoredPerson:hasIndoorLocation ?room .
25 }
26 =>
27 {
28 _:q rdf:type sd:Query ;
29 sd:pattern sd-query:pattern ;
30 sd:inputVariables (("?sensor" ?sensor) ("?threshold" ?threshold) ("?activityType" ?activityType)
31 ("?patient" ?patient) ("?model" ?model) ("?prop_o" ?prop_o)) ;
32 sd:windowParameters (("?range" 30 time:seconds) ("?slide" 10 time:seconds)) .
33
34 _:p rdf:type ActivityRecognition:ActivityPrediction ;
35 ActivityRecognition:forActivity [rdf:type ?activityType] ;
36 ActivityRecognition:activityPredictionMadeFor ?patient ;
37 ActivityRecognition:predictedBy ?model ; saref-core:hasTimestamp _:t .
38 } .
39
40 sd-query:pattern rdf:type sd:QueryPattern ;
41 sh:prefixes sd-query:prefixes-activity-showering ;
42 sh:construct """
43 CONSTRUCT {
44 _:p a KBActivityRecognition:RoutineActivityPrediction ;
45 ActivityRecognition:forActivity [a ?activityType] ;
46 ActivityRecognition:activityPredictionMadeFor ?patient ;
47 ActivityRecognition:predictedBy ?model ; saref-core:hasTimestamp ?now .
48 }
49 FROM NAMED WINDOW :win ON <http://protego.ilabt.imec.be/idlab.homelab> [RANGE ?{range} STEP ?{slide}]
50 WHERE {
51 BIND (NOW() as ?now)
52 WINDOW :win { ?sensor saref-core:makesMeasurement [
53 saref-core:hasValue ?v ; saref-core:hasTimestamp ?t ;
54 saref-core:relatesToProperty ?prop_o] .
55 FILTER (xsd:float(?v) > xsd:float(?threshold)) }
56 }
57 ORDER BY DESC(?t) LIMIT 1""" .
58
59 sd-query:prefixes-activity-showering rdf:type owl:Ontology ;
60 sh:declare [sh:prefix "xsd" ;

61 sh:namespace "http://www.w3.org/2001/XMLSchema#"^^xsd:anyURI] ;
62 sh:declare [sh:prefix "saref-core" ;
63 sh:namespace "https://saref.etsi.org/core/"^^xsd:anyURI] ;
64 sh:declare [sh:prefix "ActivityRecognition" ;
65 sh:namespace "https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/"^^xsd:anyURI] ;
66 sh:declare [sh:prefix "KBActivityRecognition" ;
67 sh:namespace "https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/

KBActivityRecognition/"^^xsd:anyURI] .

Generic query The generic query definition is contained inside the consequence of the sensor query rule. It consists
of three main aspects: the generic query pattern, its input variables, and its static window parameters.

The generic query pattern is a string representation of the actual RSP-QL query that will be the result of the
DIVIDE query derivation. This pattern is however still generic: some of its query variables still need to be substituted
by actual values to obtain the correct and valid RSP-QL query. Similarly, the window parameters of the input stream
windows of the RSP-QL query also need to be substituted.

The input variables that need to be substituted by the semantic reasoner in the generic query pattern are defined as
a N3 list. Every item in this list represents one input variable. This input variable is a list itself as well: the first item
represents the string literal of the variable in the generic query pattern to be substituted, the second item is the query
variable that should occur in the sensor query rule’s antecedence so that it is instantiated by the semantic reasoner if
the rule is applied in the proof during the query derivation.

Similarly, the definition of the static window parameters is also a list of lists. Static window parameters are
variables that should also be substituted by the semantic reasoner during the query derivation, but in the stream
window definition instead of the query body or output. They are static as their value is directly defined by the value
of the corresponding variable. Every item of the outer list is an inner list of three items. The first item represents
the string literal of the variable in a window definition of the generic query pattern. The second item can either be a
query variable or literal defining the value of the window parameter. If this is a query variable, it will be substituted
during the rule evaluation based on the matching value in the rule’s antecedence, similarly to the input variables.
The third item defines the unit of the value.

In Listing 3, the generic query definition is described in lines 28–32 and lines 40–67. More specifically,
lines 28–29 and lines 40–67 define the generic query pattern, whereas lines 30–31 and line 32 define the input
variables and static window parameters of the generic query, respectively.

Inspecting the example in Listing 3 in further detail, the generic RSP-QL query pattern string is de-
fined in lines 43–57. The query filters observations on the defined stream data window :win of a certain
sensor ?sensor with a value for the observed property ?prop_o that is higher than a certain threshold
?threshold (WHERE clause in lines 50–56). For every match of this pattern, output triples are constructed
that represent an ongoing activity of type ?activityType in the routine of a patient ?patient, predicted
by the activity recognition model ?model (CONSTRUCT clause in lines 43–48). These six variables are ex-
actly the six input variables as defined in lines 30–31: their values will be instantiated during the query deriva-
tion. Note that the window parameter definitions specified in line 32 of Listing 3 define a window size of 30
seconds and a window sliding step of 10 seconds.

Ontology consequences The ontology consequences are the second main part of the sensor query rule’s conse-
quence. This part describes the direct effect of a query result in a real-time reasoning context. This effect is obtained
when a stream window of the generic RSP query would fulfill the pattern of the WHERE clause but no additional
reasoning has been done (yet) to know the indirect consequences of this matching pattern. This is an essential aspect
to understand: the purpose of DIVIDE is to derive queries that can make conclusions that are valid with the given
context, through a single RSP-QL query without any reasoning involved. In a context without DIVIDE, these same
indirect conclusions could only be made by performing an additional semantic reasoning step, based on the direct
conclusions that are directly known from the matching query pattern. In other words, the triples defining the ontol-
ogy consequences can be the same as the output of the generic RSP-QL query and thus the consequence of the rule
representing the DIVIDE query’s goal. However, in practice, it will often require an additional semantic reasoning
step to see whether the ontology consequences actually imply the output of the generic RSP-QL query.

In the running example, the direct consequences of a sensor observation matching the WHERE clause in
lines 50–56 of Listing 3 would be the fact that an ongoing activity of the given type is detected for the given
patient (lines 34–37). The indirect consequences represented by the definitions in the RSP-QL query output
(lines 44–47) state that this is an activity in the patient’s routine.

5.1.3. Context enrichment
Prior to the start of the query derivation with the semantic reasoner, the current context can still be enriched by

executing one or more SPARQL queries on this context. The context enrichment of a DIVIDE query consists of this
ordered set of valid SPARQL queries.

It is important to note that context-enriching queries are not only used to add general context to the model, but
also for the dynamic window parameter substitution as will be explained in Section 6.5.

For the running example, no context-enriching queries are part of the DIVIDE query definition. However,
Appendix A discusses the definition of a related DIVIDE query that does include a context enrichment.

5.1.4. DIVIDE query parser
As an end user of DIVIDE, it is not required to define a DIVIDE query according to its internal representation to

properly initialize DIVIDE. Instead, the recommended way to define a DIVIDE query is by specifying an ordered
collection of existing SPARQL queries that are applied in an existing rule-based stream reasoning system, or through
an already existing RSP-QL query. Through DIVIDE, this set of ordered queries will be replaced in the semantic
platform by a single RSP query that performs a semantically equivalent task. To enable this, DIVIDE contains a
query parser, which converts such an external DIVIDE query definition its internal representation. The goal of this
approach is to make it easy for an end user to integrate DIVIDE into an existing semantic (stream) reasoning system,
without having to know the details of how DIVIDE works.

DIVIDE is applied in a cascading system architecture. It considers its equivalent regular (stream) reasoning sys-
tem as a semantic reasoning engine in which the set of SPARQL queries is executed sequentially on a data model
containing the ontology (TBox) triples and rules, context (ABox) triples, and triples representing the sensor obser-
vations in the data stream. Each query in the ordered collection, except for the final one, should be a CONSTRUCT
query, and its outputs are added to the data model on which (incremental) rule reasoning is applied before the next
query in the chain is executed.

The definition of a DIVIDE query as an ordered set of SPARQL queries includes a context enrichment with zero
or more context-enriching queries, exactly one stream query, zero or more intermediate queries, and either no or
exactly one final query. Besides these queries, such a DIVIDE query definition also includes a set of stream windows
(required), a solution modifier (optional), and a variable mapping from stream query to final query (optional). The
remainder of this subsection will discuss these different inputs in this DIVIDE query definition.

Stream query and context enrichment In the ordered set of SPARQL queries, it is important that there is exactly
one query that reads from the stream(s) of sensor observations. This query is called the stream query. In some cases,
this query will be the first in the chain. If this is not the case, any preceding queries are defined as context-enriching
queries in the DIVIDE query definition. Importantly, the WHERE clause conditions of the stream query should be
part of named graphs defined as data inputs with a FROM clause, except for special SPARQL constructs such as a
FILTER or BIND clause. The IRIs of the named graphs are used to distinguish which data is considered as part of
the context, and which data will be put on the data stream. For the data streams, the named graph IRI should reflect
the stream IRI. This stream IRI should also be defined as a stream window.

Final query The final query in the ordered set of SPARQL queries is called the final query in DIVIDE. A final
query is optional: if it does not exist, the stream query is considered the final query.

Intermediate queries The intermediate queries are an ordered list of zero or more SPARQL queries. This list
contains those queries in the original set of SPARQL queries that are executed between the stream and final query.

Stream windows Each data stream window that should be included as input in the resulting RSP-QL query should
be explicitly defined. It consists of a stream IRI, a window definition, and a set of default window parameter values.

The stream IRI represents the IRI of the data stream. This IRI should exactly match the name of a named graph
defined in the stream query. The window definition defines the specification of how the windows are created on
the stream. If the user wants to define variable window parameters, named variables should be inserted into the
places that will be instantiated during the query derivation. In DIVIDE, two types of variable window parameters
exist: static and dynamic window parameters. Static window parameters might be substituted similarly to an input
variable during the DIVIDE query derivation. Hence, the variable name of this window parameter should appear in
the WHERE clause of the stream query, in a named graph that is not corresponding to a stream window. This will
ensure that the variable name can be substituted as a regular input variable. During the DIVIDE query derivation,
dynamic window parameters are substituted before static parameters. A dynamic window parameter can be defined
in the output of a context-enriching query. In case no context-enriching query yields a value for the dynamic window
parameter variable, the value of the static window parameter with the same variable name will be substituted. If no
such static window parameter is defined, a default value will be used. Hence, for each such variable in the window
definition that is not defined as a static window parameter, this default value should be defined by the end user.

Solution modifier If the resulting RSP-QL query should have a SPARQL solution modifier, this can be included in
the DIVIDE query definition. Any unbound variable names in the solution modifier should be defined in a named
graph of the stream query’s WHERE clause that represents a stream window.

Variable mapping of stream to final query If a final query is specified, it often occurs that certain query variables in
both the stream and final query actually refer to the same individuals. To make sure that DIVIDE parses the DIVIDE
query input correctly, the mapping of these variable names should be explicitly defined. This is a manual required
step. Often, they will have the same variable names, making this mapping trivial.

Parsing the end user definition of a DIVIDE query to its internal representation The DIVIDE query parser can
construct the goal, sensor query rule and context enrichment of a DIVIDE query from its end user definition. The
context enrichment requires no parsing, while the goal and sensor query rule are composed from the different inputs.

The goal of the DIVIDE query is directly constructed from the final query. If it is a CONSTRUCT query, the
content of the WHERE clause is put in the antecedence of the goal, while the content of the CONSTRUCT clause
represents the goal’s consequence. For any other query form, the WHERE clause of the final query is used for both
the goal’s antecedence and consequence. If no final query is available, the antecedence and consequence of the goal
are copied from the result of the stream query. If the stream query is no CONSTRUCT query, the SELECT, ASK or
DESCRIBE result clause is first converted to a triple pattern containing all its unbound variables.

The sensor query rule is the most complex part to construct. In the standard case, disregarding any exceptions, the
antecedence of the rule is composed from all named graph patterns in the WHERE clause of the stream query that
do not represent a stream graph. The ontology consequences in the consequence of the sensor query rule are copied
from the stream query’s output. The generic RSP-QL query pattern is constructed from different parts. Its resulting
CONSTRUCT, SELECT, ASK or WHERE clause is directly copied from the result clause of the final query, or the
stream query if no final query is present. Its input stream window definitions are constructed using the defined stream
windows. The WHERE clause contains the content of the stream graphs in the stream query’s WHERE clause, and
the special SPARQL patterns that are not put inside a named graph pattern. If a solution modifier is specified, it is
appended to the generic RSP-QL query pattern. The input variables and window parameters of the sensor query rule
are derived by analyzing the stream query, final query and the variable mapping between both. Any intermediate
queries are converted to additional semantic rules that are appended to the main sensor query rule.

Finally, it is worth noting that a DIVIDE query can alternatively also be defined through an existing RSP-QL
query. Such a definition is quite similar to the definition described above, with a few differences. The main difference
is that by definition, no intermediate and final queries will be present since the original system already uses RDF
stream processing and individual RSP-QL queries. This means no variable mapping should be defined either. Hence,
this definition is typically more simple than the definition of a DIVIDE query as a set of SPARQL queries.

For the running use case example, the DIVIDE query that performs the monitoring of the showering activity
rule can be defined as a set of ordered SPARQL queries. The DIVIDE query parser will translate this definition
into the internal representation of this DIVIDE query, exactly as discussed in the previous subsections. This end
user definition is discussed in detail in Section A.2 of Appendix A.

5.2. Initialization of the DIVIDE ontology

To properly perform the query derivation, an ontology should be specified as input to DIVIDE by the end user.
During initialization, this ontology will be loaded into the system. By definition, this ontology is considered not
to change often during the system’s lifetime, in contrast with the context data. Therefore, the ontology should be
preprocessed by the semantic reasoner wherever possible. This will speed up the actual query derivation process,
since it avoids that the full ontology is loaded and processed every time the DIVIDE query derivation is triggered.
To what extent the ontology can be preprocessed depends on the semantic reasoner used.

For the running example, the triples and axioms in the KBActivityRecognition module of the Activity
Recognition ontology are preprocessed, including the definitions in all its imported ontologies.

5.3. Initialization of the DIVIDE components

To properly initialize DIVIDE, it should have knowledge about the components it is responsible for. A component
is defined as an entity in the IoT network on which a single RSP engine runs. For each DIVIDE component, the
following information should be specified by an end user for the correct initialization of DIVIDE:

– The name of the graph (ABox) pattern in the knowledge base that contains the context specific for the entity
that this component’s RSP engine is responsible for. A typical example in the eHealth scenario is a graph
pattern of a specific patient, containing all patient information.

– A list of any additional graph patterns in the knowledge base that contain context relevant to the entity that this
component’s RSP engine is responsible for. An example is generic information on the layout of the environment
in which the patient’s smart home is situated. Such context information is relevant to multiple components, and
is therefore stored in separate graphs in the knowledge base.

– The type of the RSP engine of this component (e.g., C-SPARQL).
– The base URL of the RSP engine’s server API. This API should support registering and unregistering RSP

queries, and pausing and restarting an RSP stream. It will be used during the DIVIDE query derivation.

Upon initialization, all component information is processed and saved by DIVIDE. For every graph pattern asso-
ciated with at least one component, DIVIDE should actively monitor for any updates to this ABox in the knowledge
base, to trigger the query derivation for the relevant components when updates occur.

6. DIVIDE query derivation

Whenever DIVIDE is alerted of a context change in the knowledge base, the DIVIDE query derivation is triggered
for every DIVIDE query. Based on the name of the updated ABox graph and the components known by the system,
DIVIDE knows for which components the query derivation process should be started. This process can be executed
independently, i.e., in parallel, for each combination of component and DIVIDE query. Hence, this section will
focus on the query derivation task for a single component and a single DIVIDE query.

The DIVIDE query of the running example, that performs the monitoring of the showering activity rule, will
be further used in this section to illustrate the query derivation process. The query derivation is triggered if any
relevant context for a given component is updated. For this example, this context consists of all information

about the patient and the smart home. Moreover, it also contains the output of the RSP queries: the in-home
patient location and the detected ongoing activities.

The DIVIDE query derivation task for one RSP engine and one DIVIDE query consists of several steps, which
are executed sequentially: (i) enriching the context, (ii) semantic reasoning on the enriched context to construct a
proof containing the details of derived queries and how to instantiate them, (iii) extracting these derived queries from
the proof, (iv) substituting the instantiated input variables in the generic RSP-QL query pattern for every derived
query, (v) substituting the window parameters in a similar way, and (vi) updating the active RSP queries on the
corresponding RSP engine. The input of the query derivation is the updated context, which consists of the set of
triples in the context graph(s) of the knowledge base that are associated with the given component’s RSP engine. In
the following subsections, the DIVIDE query derivation action steps are further detailed. Figure 2 shows a schematic
overview of these steps on the bottom part. For every step, the inputs and outputs are detailed on the figure.

6.1. Context enrichment

Prior to actually deriving the RSP queries for the given DIVIDE query, the context data model can still be en-
riched. This is done by executing the ordered set of context-enriching queries corresponding to the DIVIDE query
with a SPARQL query engine, if there are any, possibly after performing rule-based reasoning with the ontology
axioms. The result of this step is a data model containing the original context triples and all triples in the output of
any of the context-enriching queries, if there are any. Note that the output of the context-enriching queries can also
contain dynamic window parameters to be used in the window parameter substitution step of the query derivation.

The generic DIVIDE query corresponding to the running example of detecting the showering activity does
not contain any context-enriching query. Hence, the updated context will directly be sent to the input of the next
step. In Section A.3 of Appendix A, two additional examples are discussed of DIVIDE queries related to the
running example that do contain context-enriching queries.

6.2. Semantic reasoning to derive queries

Starting from the enriched context data model, the semantic reasoner used within DIVIDE is run to perform the
actual query derivation. This way, the reasoner will define whether the DIVIDE query should be initialized for the
given context. If so, it specifies with what values the input variables and static window parameters, as defined in the
query’s sensor query rule consequence, should be substituted in the generic query pattern of the DIVIDE query.

The inputs of the semantic reasoner in this step consist of the preprocessed ontology (i.e., all triples and rules
extracted from its axioms), the enriched context triples, the sensor query rule and the goal of the DIVIDE query.
Given these inputs, the reasoner performs semantic reasoning to construct and output a proof with all possible rule
chains in which the goal of the DIVIDE query is the final rule applied. Every such rule chain will be (partially)
different and correspond to a different set of instantiated query variables appearing in the goal’s rule.

To allow the semantic reasoner to construct a rule chain that starts from the context and ontology triples and ends
with the goal rule, the sensor query rule is crucial. If the inputs allow the reasoner to derive the set of triples in the
antecedence of the sensor query rule for a certain set of query variables, the rule can be evaluated for this set of
variables. However, the semantic reasoner will only actually evaluate the rule for this set and include it in the rule
chain, if the triples in the consequence of the sensor query rule (and more specifically, the part with the ontology
consequences) allow the semantic reasoner to derive the antecedence of the goal rule. This can be either directly
(i.e., without semantic reasoning) or indirectly (i.e., after rule-based semantic reasoning). If this is not the case, the
sensor query rule will not help the semantic reasoner in constructing a rule chain where the goal is the last rule
applied, for the given set of sensor query rule variables. Hence, if the proof contains an instantiation of the sensor
query rule for a given set of query variables, this implies that the generic RSP-QL query of this DIVIDE query
should be instantiated for this set. This should be done with those query variables of this set that are present in the
list of input variables or window parameters of the sensor query rule’s consequence.

To reassure that this process works, consider the DIVIDE query parser’s translation of the ordered set of SPARQL
queries in the end user DIVIDE query definition into its internal representation. If the original stream query in the
SPARQL input would yield a query result, the final query’s WHERE clause might have a matching pattern, and thus
an output. This is equivalent to the potential evaluation of the sensor query rule in the proof, depending on whether
the sensor query rule’s consequence directly or indirectly leads to a matching antecedence of the goal rule.

When the query derivation is executed for the DIVIDE query of the running example, the inputs will include
the showering AR rule in Listing 1 that is defined in the preprocessed ontology. In the proof constructed by
the semantic reasoner, the DIVIDE query’s sensor query rule of Listing 3 would be instantiated once for the
showering activity, if the current location of the patient is the bathroom. The step in the rule chain of the
reasoner’s proof in which this happens, is shown in Listing 4. This proof shows that the relative humidity sensor
with the given ID can detect the showering activity for patient with ID 157 if its value is 57 or higher. If the
current context would describe another patient location than the bathroom, or would not define showering as
part of the routine of the patient with ID 157, the proof would not contain this sensor query rule instantiation.

Listing 4: One step of the proof constructed by the semantic reasoner used in DIVIDE during the DIVIDE query
derivation for the generic DIVIDE query of the running use case example. It shows how the sensor query rule in
Listing 3 is instantiated in the proof’s rule chain. [...] is a placeholder for omitted parts that are not of interest.

1 @prefix r: <http://www.w3.org/2000/10/swap/reason#>.
2
3 <#lemma3> a r:Inference;
4 r:gives {
5 _:sk_0 a sd:Query.
6 _:sk_0 sd:pattern sd-query:pattern.
7 _:sk_0 sd:inputVariables (
8 ("?sensor" <https://dahcc.idlab.ugent.be/Homelab/SensorsAndActuators/70:ee:50:67:3e:78>)
9 ("?threshold" "57"^^xsd:float)
10 ("?activityType" ActivityRecognition:Showering)
11 ("?patient" patients:patient157)
12 ("?model" :KBActivityRecognitionModel)
13 ("?prop_o" <https://dahcc.idlab.ugent.be/Homelab/SensorsAndActuators/org.dyamand.types.common.

RelativeHumidity>)
14).
15 _:sk_0 sd:windowParameters (("?range" 30 time:seconds) ("?slide" 10 time:seconds)).
16 _:sk_1 a ActivityRecognition:ActivityPrediction.
17 _:sk_1 ActivityRecognition:forActivity _:sk_2.
18 _:sk_2 a ActivityRecognition:Showering.
19 _:sk_1 ActivityRecognition:activityPredictionMadeFor patients:patient157.
20 _:sk_1 ActivityRecognition:predictedBy :KBActivityRecognitionModel.
21 _:sk_1 saref-core:hasTimestamp _:sk_3.
22 };
23 r:evidence (<#lemma8> [...] <#lemma31>);
24 [...]
25 r:rule <#lemma32>.

6.3. Query extraction

The proof in the output of the semantic reasoning step can contain instantiations of the sensor query rule. If not,
the proof will be empty, since this means that the semantic reasoner has not found any rule chain that leads to an
instantiation of the goal rule. Every sensor query rule instantiation in the proof contains the list of input variables
and window parameters that need to be substituted into the generic RSP-QL query of the considered DIVIDE query.
In the query extraction step, DIVIDE will extract these definitions from every sensor query rule instantiation in the
proof. Hence, the output of this step is a set of zero, one or more extracted queries.

The query extraction happens through two forward reasoning steps with the semantic reasoner used in DIVIDE.
The outputs of both steps are combined to construct the output of the query extraction. The first reasoning step
extracts the relevant content from the sensor query rule instantiations in the proof. For each instantiation, this content

includes the instantiated input variables and window parameters, as well as a reference to the query pattern in which
they need to be substituted. The second forward reasoning step of the query extraction retrieves any defined window
parameters from the enriched context that are associated with the instantiated RSP-QL query pattern. Such window
parameters may have been added to the enriched context during the context enrichment step. They will be used as
dynamic window parameters during the window parameter substitution, while the window parameters occurring in
the sensor query rule instantiations are considered as static window parameters.

For the running example, the output of the extraction for the proof step in Listing 4 is presented in lines 4–12
of Listing 5. Line 15 of this listing presents the output of the second step. For this query example, there are no
dynamic window parameters, which defaults the output of this second query extraction step to an empty list.

In Section A.3 of Appendix A, a related example is presented that does include dynamic window parameters.

Listing 5: Output of the query extraction step of the DIVIDE query derivation, performed for the running example
on the proof with a single sensor query rule instantiation presented in the proof step of Listing 4. The extraction of
the dynamic window parameters (line 15) is done on the enriched context outputted by the context enrichment step.

1 @prefix : <file:///home/divide/.divide/query-derivation/10-10-129-31-8175-/activity-ongoing/20211220_194006/
proof.n3#>.

2
3 # output of the first reasoning step of the query extraction
4 :lemma3 a sd:Query.
5 :lemma3 sd:inputVariables (
6 ("?sensor" <https://dahcc.idlab.ugent.be/Homelab/SensorsAndActuators/70:ee:50:67:3e:78>)
7 ("?threshold" "57"^^xsd:float) ("?activityType" ActivityRecognition:Showering)
8 ("?patient" patients:patient157) ("?model" :KBActivityRecognitionModel)
9 ("?prop_o" <https://dahcc.idlab.ugent.be/Homelab/SensorsAndActuators/org.dyamand.types.common.

RelativeHumidity>)
10).
11 :lemma3 sd:staticWindowParameters (("?range" 30 time:seconds) ("?slide" 10 time:seconds)).
12 :lemma3 sd:pattern sd-query:pattern.
13
14 # output of the second reasoning step of the query extraction
15 :lemma3 sd:dynamicWindowParameters ().

6.4. Input variable substitution

In this step, DIVIDE substitutes the input variables of each query from the query extraction output into the
associated RSP-QL query pattern. To achieve this, a collection of N3 rules have been defined that allow to substitute
the input variables into the query body in a deterministic way. Moreover, they ensure that the substitution is correct
for IRIs and literals of any data type. To perform the substitution, the semantic reasoner used in DIVIDE performs
a forward reasoning step. The input of this reasoning step consists of the substitution rules, the output of the query
extraction step and the query pattern of the considered DIVIDE query. For each query in the query extraction output,
the output of this step consists of a set of triples that define the partially substituted RSP-QL query body.

The output of the input variable substitution step for the running example is presented in Listing 6. This
substitution is performed using the generic RSP-QL query body referenced in the output of the query extraction
in Listing 5. This query body is shown in Listing 3. In the output, lines 1–13 redefine the prefixes, which will be
required in a further step to construct the full RSP-QL query. Line 16 shows the current state of the instantiated
RSP-QL query body: input variables have already been substituted, but the window parameters still need to be
substituted. The static and dynamic window parameters that will be used for substitution in the following step,
are propagated from the output of the query extraction step (lines 19–20).

Listing 6: Output of the input variable substitution step of the DIVIDE query derivation, performed for the running
example on the query extraction output presented in Listing 5. The substitution is done using the generic RSP-QL
query body of the corresponding DIVIDE query presented in Listing 3.

1 sd-query:prefixes-activity-showering a owl:Ontology.
2 sd-query:prefixes-activity-showering sh:declare _:bn_1.
3 _:bn_1 sh:prefix "xsd".
4 _:bn_1 sh:namespace "http://www.w3.org/2001/XMLSchema#"^^xsd:anyURI.
5 sd-query:prefixes-activity-showering sh:declare _:bn_2.
6 _:bn_2 sh:prefix "saref-core".
7 _:bn_2 sh:namespace "https://saref.etsi.org/core/"^^xsd:anyURI.
8 sd-query:prefixes-activity-showering sh:declare _:bn_3.
9 _:bn_3 sh:prefix "ActivityRecognition".
10 _:bn_3 sh:namespace "https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/"^^xsd:anyURI.
11 sd-query:prefixes-activity-showering sh:declare _:bn_4.
12 _:bn_4 sh:prefix "KBActivityRecognition".
13 _:bn_4 sh:namespace "https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/KBActivityRecognition/"^^xsd:

anyURI.
14
15 _:sk_20 a sd:Query.
16 _:sk_20 sd:queryBody " CONSTRUCT { _:p a KBActivityRecognition:RoutineActivityPrediction ;

ActivityRecognition:forActivity [a <https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/Showering
>] ; ActivityRecognition:activityPredictionMadeFor <http://protego.ilabt.imec.be/idlab.homelab/patients
/patient157> ; ActivityRecognition:predictedBy <https://dahcc.idlab.ugent.be/Ontology/
ActivityRecognition/KBActivityRecognition/KBActivityRecognitionModel> ; saref-core:hasTimestamp ?now . }
FROM NAMED WINDOW :win ON <http://protego.ilabt.imec.be/idlab.homelab> [RANGE ?{range} STEP ?{slide}]

WHERE { BIND (NOW() as ?now) WINDOW :win { <https://dahcc.idlab.ugent.be/Homelab/SensorsAndActuators/70:
ee:50:67:3e:78> saref-core:makesMeasurement [saref-core:hasValue ?v ; saref-core:hasTimestamp ?t ;
saref-core:relatesToProperty <https://dahcc.idlab.ugent.be/Homelab/SensorsAndActuators/org.dyamand.types
.common.RelativeHumidity>] . FILTER (xsd:float(?v) > xsd:float(\"57\"^^xsd:float)) } } ORDER BY DESC(?t
) LIMIT 1 ".

17 _:sk_20 sh:prefixes sd-query:prefixes-activity-showering.
18 _:sk_20 sd:pattern sd-query:pattern.
19 _:sk_20 sd:staticWindowParameters (("?range" 30 time:seconds) ("?slide" 10 time:seconds)).
20 _:sk_20 sd:dynamicWindowParameters ().

6.5. Window parameter substitution

In this step, the window parameters are also substituted in the partially instantiated queries to obtain the resulting
RSP-QL query bodies. This is the final step that is performed by the semantic reasoner used in DIVIDE.

In general, DIVIDE offers the possibility to define the window parameters of derived RSP queries using seman-
tic definitions. Currently, context-aware window parameters can be defined by an end user via the definition of a
DIVIDE query. By separating the window parameter substitution from the other query derivation steps, DIVIDE
offers the flexibility to trigger this substitution for other reasons than a context change. An example of this could be
a device monitor observing that the resources of the device cannot handle the current query execution frequency.

Currently, to enable the substitution of use case dependent window parameters, DIVIDE makes the distinction
between static and dynamic window parameters. For a static window parameter, the variable behaves as a regular
input variable. This means that it should be defined in the consequence of a DIVIDE query’s sensor query rule with
a triple similar to the following one:

_:q sd:windowParameters (("?range" ?var time:seconds)) .

This requires the variable ?var to occur in the sensor query rule’s antecedence. When defining a DIVIDE query
as an end user using an ordered set of existing SPARQL queries, this can be achieved by ensuring that the variable
name of this window parameter appears in the WHERE clause of the stream query, in a named graph that is not cor-
responding to a stream window. By definition, static window parameter variables will always receive a value in the
query extraction output that can be used for substitution. In addition, dynamic window parameters are dynamically
defined as triples in the outputs of context-enriching queries, similar to the following ones:

sd-query:pattern sd:windowParameters (
[sd-window:variable "range" ; sd-window:value 30 ; sd-window:type time:seconds]) .

Importantly, dynamic window parameters will always overwrite static ones. This means that during the window
parameter substitution, dynamic window parameters will be substituted first. Next, static window parameters are
substituted for those window parameter variables in the RSP-QL query body that have not yet been substituted.

The substitution order of static and dynamic window parameters implies a few important things. Multiple dy-
namic window parameters can be defined in different context-enriching queries of the same DIVIDE query, to han-
dle different situations. It is however the responsibility of the end user that no more than one definition occurs for
each window parameter variable in the enriched context. If multiple values are defined for the same window pa-
rameter variable, the one that is substituted will be chosen arbitrarily. If no value is defined for a window parameter
variable in the enriched context either, the value of the static window parameter with the same variable name will
be substituted. However, if no static window parameter value is defined for this variable either, the default value in
the end user definition of the DIVIDE query will be substituted. To make this work, DIVIDE will define a window
parameter in the sensor query rule of the DIVIDE query with the given default value, for each such variable.

In the running example, the definition of the generic DIVIDE query associated with the detection of an on-
going showering activity does not contain any context-enriching query that defines a dynamic window param-
eter. However, Section A.3 of Appendix A discusses an example of a related DIVIDE query that does contain
dynamic window parameter definitions in its context-enriching queries.

The actual substitution of window parameters is very similar to the input variable substitution. For both the static
and dynamic window parameters, a forward reasoning step is performed with the semantic reasoner used in DIVIDE.
The inputs of the reasoner are the output of the previous step and a collection of N3 rules that ensure the correct
substitution in a deterministic way. The unit of the window parameter, which is either a valid XML Schema duration
string or a time unit, defines how the window parameter value is exactly substituted in the query body string.

6.6. RSP engine query update

The output of the window parameter substitution step is a set of instantiated, valid RSP-QL queries that are
contextually relevant for the given component. These queries are however still presented as a series of semantic
triples. This final step constructs the actual RSP-QL query string, translates the query to the correct query language
and updates the registered queries at the component’s RSP engine.

Query construction This step constructs an actual RSP-QL query from the set of prefixes and the instantiated
query body triples in the output of the window parameter substitution step.

For the running example, the RSP-QL query resulting from the query construction step is presented in List-
ing 7. This query is the result of performing the window parameter substitution and query construction on the
output of the input variable substitution step presented in Listing 6.

Query translation The definition of a DIVIDE component contains the query language of its RSP engine. If this
language differs from RSP-QL, e.g., C-SPARQL, the RSP-QL query is translated in this step to this other language.

Query registration update The output of the previous step is a set of translated RSP queries for the given DIVIDE
query. Since the DIVIDE query derivation is triggered because of a detected context change relevant to this com-
ponent, the queries on the RSP engine of this component should be updated to reflect this new situation. To do so,
DIVIDE keeps track of the queries that are currently registered on the RSP engine for the given DIVIDE query. In
this step, DIVIDE semantically compares the new set of instantiated translated RSP queries with this existing set of
registered queries. Based on this comparison, any registered queries that are no longer in the new set of contextually
relevant RSP queries are unregistered. New queries that are not running yet on the RSP engine, are registered.

For completeness, it is important to mention that during the full DIVIDE query derivation, the query processing on
the RSP engine of the corresponding component should ideally be temporarily paused. This is to avoid that incorrect
filtering is done, since DIVIDE already knows that the active queries might no longer be contextually relevant as
soon as DIVIDE is informed of a context change for this component. During the pause, incoming observations on

the RSP engine’s streams should be buffered temporarily. This way, the queries can be restarted as soon as the RSP
query update step finishes, and the buffered stream data can be fed to the RSP engine with their original timestamps.

Listing 7: Final RSP-QL query that is the result of performing the window parameter substitution and query con-
struction steps of the DIVIDE query derivation, performed for the running example on the input variable substitution
output presented in Listing 6.

1 PREFIX ActivityRecognition: <https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/>
2 PREFIX KBActivityRecognition: <https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/

KBActivityRecognition/>
3 PREFIX saref-core: <https://saref.etsi.org/core/>
4 PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
5
6 CONSTRUCT {
7 _:p a KBActivityRecognition:RoutineActivityPrediction ;
8 ActivityRecognition:forActivity [
9 a <https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/Showering>] ;
10 ActivityRecognition:activityPredictionMadeFor
11 <http://protego.ilabt.imec.be/idlab.homelab/patients/patient157> ;
12 ActivityRecognition:predictedBy
13 <https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/KBActivityRecognition/

KBActivityRecognitionModel> ;
14 saref-core:hasTimestamp ?now .
15 }
16 FROM NAMED WINDOW :win ON <http://protego.ilabt.imec.be/idlab.homelab> [RANGE PT30S STEP PT10S]
17 WHERE {
18 BIND (NOW() as ?now)
19 WINDOW :win {
20 <https://dahcc.idlab.ugent.be/Homelab/SensorsAndActuators/70:ee:50:67:3e:78>
21 saref-core:makesMeasurement [
22 saref-core:hasValue ?v ; saref-core:hasTimestamp ?t ;
23 saref-core:relatesToProperty <https://dahcc.idlab.ugent.be/Homelab/SensorsAndActuators/org.

dyamand.types.common.RelativeHumidity>] .
24 FILTER (xsd:float(?v) > xsd:float("57"^^xsd:float))
25 }
26 }
27 ORDER BY DESC(?t) LIMIT 1

7. Implementation of the DIVIDE system

The previous sections have described DIVIDE from a methodological point of view, irregardless of implementa-
tion details. This section zooms in on our implementation of DIVIDE.

7.1. Technologies

DIVIDE is implemented in Java as a set of Java JAR modules. These modules include the DIVIDE engine, which
is the core of DIVIDE, the DIVIDE reasoning module and the DIVIDE server.

The DIVIDE reasoning module implements the ontology preprocessing and the query derivation steps with the
semantic reasoner used in DIVIDE. Our implementation uses the EYE reasoner [72], which fulfills the requirements
of the semantic reasoner explained in Section 4. This N3 reasoner runs in a Prolog virtual machine.

The DIVIDE server module is an executable that starts up DIVIDE. It exposes a REST API that allows to add,
delete and request information about DIVIDE queries and DIVIDE components in the DIVIDE system.

7.2. Configuration of DIVIDE

The configuration of DIVIDE is provided through a main JSON file. It includes details about different aspects of
DIVIDE. In addition, the DIVIDE components can be defined in a separate file. An example of the JSON configu-
ration of the DIVIDE system is provided in Appendix B.

Knowledge base The type of the knowledge base (e.g., Apache Jena, RDFox) should be configured, if it is de-
ployed by the DIVIDE server. This is the preferred option when deploying new systems. If DIVIDE is deployed in
an existing system, an existing Knowledge Base can also be used. In that case, the system will be responsible for
monitoring context updates relevant to components registered to DIVIDE, and triggering the query derivation in the
DIVIDE engine for those components whenever such a context update occurs.

Ontology To configure the ontology used by DIVIDE, the relevant ontology files should be specified.

Reasoner and engine The configuration of the DIVIDE reasoner and engine consists of a series of flags that allow
to change the default DIVIDE behavior. For example, DIVIDE can be configured to handle TBox definitions in
context graphs during the query derivation. Moreover, the parser can be configured to automatically create a variable
mapping between the stream and final query based on equal variable names.

DIVIDE queries For every DIVIDE query, a separate JSON file should be linked in the configuration. This file
can include the items of the internal representation of a DIVIDE query, or the end user definition of a DIVIDE
query. In the latter case, the implementation of the DIVIDE query parser ensures that the parsed DIVIDE queries
result in valid RSP-QL queries after the query derivation. This is achieved by validating the inputs, renaming the
query variables to avoid any mismatches, ordering the input variables and static window parameters to obtain a
deterministic substitution, and handling query variables in special constructs such as GROUP BY clauses.

The JSON configuration of the DIVIDE query for the running use case example can be found in Appendix B.

Server For the DIVIDE server, the host and port of the exposed REST API is defined. If DIVIDE deploys the
Knowledge Base as well, the port of the Knowledge Base REST API available for context updates is also specified.

DIVIDE components The components known by DIVIDE should be defined in an additional CSV file, which
contains one entry per component. The properties of every component entry are separated by a semicolon.

7.3. Implementation of the ontology preprocessing

During the initialization of DIVIDE, the configured ontology is preprocessed with the EYE reasoner in three
steps. First, an N3 copy of the full ontology is created. Second, specialized ontology-specific rules are created from
the original rules taken from the OWL 2 RL profile description [10]. Starting the EYE reasoning process from these
rules will reduce the computational complexity of the reasoning [73]. Third, an image of the EYE reasoner, which
has already loaded the ontology and specialized rules, is compiled within Prolog. This precompiled Prolog image
is the result of the ontology preprocessing. By starting the semantic reasoning step of the query derivation process
from this image, the triples and rules do not need to be loaded into the EYE reasoner each time it is called during
the DIVIDE query derivation. This allows to make the semantic reasoning step significantly more efficient.

Although considered infrequent, ontology changes can be handled by DIVIDE. If DIVIDE is hosting the Knowl-
edge Base, ontology changes can be made by using the Knowledge Base REST API. Any TBox change will result
in DIVIDE reloading the ontology, redoing the ontology preprocessing, and triggering the query derivation for all
DIVIDE queries and components. This is a computationally intensive operation.

7.4. Implementation of the DIVIDE query derivation

The DIVIDE query derivation is managed by the DIVIDE engine. To decouple the scheduler of query derivation
tasks from their actual parallel execution, the DIVIDE engine manages a blocking task queue and a dedicated
processing thread for every DIVIDE component in the system.

Different tasks can be scheduled by the DIVIDE engine in the blocking task queue of a DIVIDE component. The
main task type is a query derivation for one or all DIVIDE queries. In case of a context change, the query derivation
is scheduled for all DIVIDE queries. However, when a new DIVIDE query is added to the engine via the server API,
the query derivation is only scheduled for the new DIVIDE query. In case the query execution should be performed
for multiple DIVIDE queries, the query derivation steps are executed in parallel threads for every DIVIDE query.
Another task type is the removal of a DIVIDE query from a component, which requires all related RSP queries to

be unregistered from the component’s RSP engine. This task is scheduled for all DIVIDE queries of a component
when that component is removed, or for all components and one DIVIDE query when this DIVIDE query is deleted.

The following paragraphs present some further implementation details of some DIVIDE query derivation steps.

Context enrichment This step involves the execution of SPARQL queries prior to the actual query derivation.
Hence, this is the only semantic step of the query derivation that is not necessarily performed by the EYE reasoner.
This is the case if the queries contain SPARQL constructs that cannot be translated to a valid N3 rule. In this case,
the queries are executed in Java by using Apache Jena. In the other case, the queries are translated to N3 rules which
are then applied on the set consisting of triples and, if reasoning is enabled, also consisting of the ontology rules.

RSP engine query update This final step of the query derivation is not performed with the EYE reasoner. To update
the query registrations at the RSP engines, the REST APIs of the RSP engine servers are used.

8. Evaluation set-ups

This section presents the set-up of two evaluations of the DIVIDE system. First, the performance of DIVIDE
is evaluated by measuring the duration of the different key actions taken by DIVIDE during its initialization and
query derivation. Second, the real-time execution of RSP-QL queries generated by the DIVIDE query derivation is
evaluated. This is done by comparing the real-time DIVIDE set-up with other well-known real-time approaches.

General information about the collected data, the ontology and context, and activity rules used for these eval-
uations are presented in Section 8.1. The detailed set-ups of both individual evaluations are further described in
Section 8.2 and Section 8.3, respectively. Supportive information relevant to the evaluation set-ups of this paper is
publicly available at https://github.com/IBCNServices/DIVIDE/tree/master/swj2022.

8.1. Evaluation scenarios

All evaluations are performed on the eHealth use case described in Section 3.1. This section zooms in on the
details of the evaluation scenarios of this use case.

8.1.1. Ontology
The ontology of the evaluation system is the Activity Recognition ontology as an extension of the existing

DAHCC ontology [66], as presented in Section 3.2. This includes the KBActivityRecognition ontology and
its imports. The imported ontologies include the ActivityRecognition, MonitoredPerson, Sensors
AndActuators and SensorsAndWearables modules of the DAHCC ontology and its imported ontologies.

8.1.2. Realistic dataset for rule extraction and simulation
To properly perform the evaluations presented in this paper, a realistic data set is used that is the result of a large

scale data collection process. This data collection took place in the imec-UGent HomeLab from June 2021 until
October 2021. The HomeLab is an actual standalone house located on the UGent Campus Zwijnaarde, offering a
unique residential test environment for IoT services, as it is equipped with all kinds of sensors and actuators. It
contains different rooms that represent a typical home: an entry hallway, a ground floor toilet, a living room and
kitchen, a staircase to the first floor, and a bathroom, master bedroom, hallway and toilet on the first floor. Prior to
the data collection period, a literature study, observational studies and interviews with caregivers were performed
to derive the activity types that are important to detect in a patient’s home. Based on these activities, a list of
properties was derived that could be of relevance to observe in order to detect these activities. These properties
were then translated to the required sensors, which were all installed in the HomeLab. The data collected during the
data collection period in the HomeLab is used for the evaluation in two ways: to extract realistic rules for activity
recognition, and to create a realistic data set for simulation during the real-time evaluations.

Throughout the data collection, data was obtained from two sources relevant to this evaluation: a wearable de-
vice, and the in-home contextual sensors. For the former, the patient was equipped with an Empatica E4 wearable
device [74]. It has a 3-axis accelerometer (32 Hz) as well as different sensors to measure a person’s physiological
data: blood volume pulse (64 Hz) and derived inter beat interval of heart rate, galvanic skin response (4 Hz) and

https://github.com/IBCNServices/DIVIDE/tree/master/swj2022

skin temperature (4 Hz). For the latter, as explained, a wide range of sensors was installed in the HomeLab. These
sensors measure localization, the number of people in a room, relative humidity, indoor temperature, motion, light
intensity, sound, air quality, usage of water, electric power consumption of multiple devices, interaction with light
switches and other buttons, the state of windows, doors, blinds, and others. During the data collection, participants
labeled their activities, which were mapped by the researchers to the activities in the DAHCC ontology.

8.1.3. Context
The context for the evaluations, as considered by DIVIDE, consists of three main parts. The first part is the de-

scription of a patient living in a smart home, including the patient’s wearables and a routine. For this part, the exact
definitions in Listing 10 of Appendix A are used. The second part is a single triple representing the patient’s location
in the home, which is normally derived by a specific query. For the evaluation scenarios, the location of the patient
in the home will always be the bathroom. The third part is the description of all sensors, actuators and wearables of
the patient’s smart home with the DAHCC ontology concepts. The smart home used in this evaluation scenario is
the HomeLab. The instantiated example modules _Homelab and _HomelabWearables of the DAHCC ontol-
ogy contain an actual representation of all sensors, actuators and wearables used within the HomeLab. The ABox
definitions in these ontology modules represent the second part of the context used for the evaluations. Note that for
these evaluations, the small set of TBox definitions present in both modules are also considered part of the ontology.

8.1.4. Activity rules
From the data collected during the large scale data collection in the HomeLab, data-driven rule mining algorithms

were created that have extracted some realistic rules that can recognize some of the DAHCC activities from the data.
For the evaluations of DIVIDE in this paper, rules for three bathroom activities are considered: toileting, showering
and brushing teeth. Based on the analysis, the following rules were extracted:

– Toileting: the person present in the HomeLab is going to the toilet if a sensor that analyzes the energy con-
sumption of the water pump has a value higher than 0.

– Showering: the person present in the HomeLab bathroom is showering if the relative humidity in the bathroom
is at least 57%.

– Brushing teeth: the person present in the HomeLab bathroom is performing the brushing teeth activity if in the
same time window (a) the sensor that analyzes the water running in the bathroom sink measures water running,
and (b) the activity index value of the person’s acceleration (measured by a wearable) is higher than 30. The
activity index based on acceleration is defined as the mean variance of the acceleration over the three axes [75].

These three activity rules have been semantically described using the Activity Recognition ontology. The resulting
descriptions are part of the KBActivityRecognition ontology module. They are detailed in Appendix C.

The three given activity rules are the only rules present in the KBActivityRecognition ontology module
during the evaluations. To represent each activity rule within DIVIDE, a DIVIDE query is created for each rule. Be-
cause of the completely similar definition, the generic DIVIDE query corresponding to the toileting and showering
activity rules is the same. The DIVIDE queries are defined as an ordered collection of SPARQL queries.

8.2. Performance evaluation of DIVIDE

To derive the contextually relevant RSP queries, DIVIDE performs multiple steps, both during initialization and
the query derivation. To evaluate the performance of DIVIDE, the duration of the main steps is measured for the
given evaluation scenarios. In concrete, the duration of the following steps is measured:

1. the ontology preprocessing step with EYE of the Activity Recognition ontology;
2. the DIVIDE query parsing step with Java of the toileting DIVIDE query defined as SPARQL input;
3. the DIVIDE query derivation step for the toileting and brushing teeth DIVIDE queries separately, split up

between the different EYE steps: semantic reasoning, query extraction, input variable substitution and window
parameter substitution (note that the showering DIVIDE query is the same as the toileting DIVIDE query, and
is therefore not evaluated twice).

The duration of these steps is measured from within the execution of the DIVIDE server Java JAR, which is
configured with the scenario’s ontology and DIVIDE queries to allow performing evaluation 1 and 2. To perform
evaluation 3, the full context of the scenario is sent as new context to the DIVIDE Knowledge Base server.

While evaluating the performance of the DIVIDE query parser, the correctness of the parsing is also validated.

Technical specifications The evaluation is performed on a device with a 2800 MHz quad-core Intel Core i5-
7440HQ CPU and 16 GB DDR4-2400 RAM.

8.3. Real-time evaluation of derived DIVIDE queries

The task of DIVIDE is to manage the RSP queries on the registered RSP engines. These RSP queries are char-
acterized by the fact that they do not require any more reasoning during their continuous evaluation, since semantic
reasoning during the query derivation ensures that they are contextually relevant at every point in time. This section
compares the real-time performance of evaluating these derived RSP queries on the C-SPARQL RSP engine [17].

8.3.1. Evaluation of DIVIDE in comparison with real-time reasoning approaches
This evaluation compares the DIVIDE real-time approach with other traditional approaches that do require real-

time reasoning. The goals of the evaluation are to understand how DIVIDE compares to these traditional set-ups in
terms of processing performance, and to understand the differences, advantages and drawbacks of the approaches.

To have a fair comparison, the real-time reasoning approaches should all reason within the same reasoning profile
as DIVIDE, i.e., OWL 2 RL. Most approaches use RDFox [11], as this is known as one of the fastest OWL 2 RL
(Datalog) reasoning engines that exist in the current state-of-the-art. Others use the Apache Jena rule reasoner.

Set-ups Different set-ups are considered for this evaluation. Most of the set-ups are streaming set-ups, meaning
that they operate on windows taken from data streams. For every streaming set-up, Esper is the technology used to
manage the windowing and to generate the window triggers [76].

1. DIVIDE approach using C-SPARQL without reasoning: regular C-SPARQL engine [17]. No ontology or
context data is loaded into the engine, and no reasoning is performed during the continuous query evaluation.

2. Streaming RDFox: streaming version of RDFox. Consists of one engine that pipes Esper for windowing with
RDFox for reasoning, via a processing queue. Initially, the ontology and context data are loaded into the
data store of the RDFox engine, and a reasoning step is performed. Upon every window trigger generated by
Esper, the window content is added as one event to a processing queue. When available, RDFox takes an event
from the queue, incrementally adds it to the RDFox data store (i.e., it performs incremental reasoning with
the event scheduled for addition), and executes the registered queries in order. If there are multiple queries
registered, query X incrementally adds its results to the data store, before query X + 1 is executed. Finally,
RDFox performs incremental reasoning with the event and all previous query outputs scheduled for deletion
(i.e., incremental deletion).

3. C-SPARQL piped with (non-streaming) RDFox: Initially, the RDFox data store contains the ontology and
context data, and a reasoning step is performed. The queries registered on C-SPARQL listen to the observation
stream, and run continuously on the stream window data and on the ontology and context triples. The axioms
in the ontology are converted to a set of rules. Rule reasoning is performed during each query evaluation using
these rules by C-SPARQL, which uses the Apache Jena rule reasoner with a hybrid forward and backward rea-
soning algorithm. C-SPARQL sends each query result to the event stream of a regular non-streaming RDFox
engine, which adds it to a processing queue. Upon processing time, it incrementally adds the event to the data
store, executes the registered queries in order, and incrementally deletes the event from the data store.

4. RDFox (non-streaming): RDFox engine wrapped into a server, that listens to the observation stream. Each
incoming observation is added to a queue, which is processed by a separate thread. This thread takes an event
from the queue, adds it to RDFox, performs incremental reasoning, and executes the registered queries in order.
If there are multiple queries registered, query X incrementally adds its results to the data store, before query
X + 1 is executed. Because this is a non-streaming version of RDFox, the event triples and triples constructed
by the intermediate queries are not removed from the data store after processing.

5. Adapted Streaming RDFox: adapted streaming version of RDFox. This set-up only differs in one aspect from
the original streaming RDFox set-up (2): before an event is added to RDFox, it checks the overlap between the
event triples and existing triples in the data store. If overlapping triples are found, they are not added again to
RDFox, and – most importantly – they are also not removed afterwards, so that no previously existing triples
are removed from the data store after the event processing.

6. Semi-Streaming RDFox: mix between streaming RDFox set-up (2) and non-streaming RDFox set-up (4).
This set-up only differs in one aspect from the original streaming RDFox set-up: the event triples and triples
constructed by intermediate queries are not removed from the data store after processing. Hence, the only
difference with the non-streaming RDFox set-up is that events are not added directly to the queue from the
observation stream, but grouped together on Esper window triggers.

7. Streaming Jena: streaming version of the Apache Jena rule reasoner, similar to the streaming RDFox set-up
(2). The only difference is the fact that during initialization, a set of rules is extracted from the ontology and
loaded together with the ontology triples into the Apache Jena rule reasoner. Processing of events from the
processing queue is done by this reasoner: it takes events, add them to the reasoner’s data model, performs
forward rule reasoning using the RETE algorithm, and executes the registered queries in order. Temporal query
results are also added to the reasoner’s data model, which are removed after processing of the event together
with the event triples, followed by a final reasoning step. This set-up uses Apache Jena v3.7.

Each set-up is deployed with an associated WebSocket server to which an external component can connect to
send data to the registered data streams. Each set-up involving RDFox uses RDFox v5.2.1, via the JRDFox Java jar,
which is the Java bridge to the native RDFox engine. The RDFox data store used is the default par-complex-nn
store, indicating a parallel data store using a complex indexing scheme with 32-bit integers.

Simulated data To create a simulation dataset to use in the evaluations, an anonymous representative portion is
extracted from the dataset obtained with the large-scale data collection in the HomeLab. It contains real sensor
observations of all HomeLab sensors and an Empatica E4 wearable worn by a real person living in the HomeLab
for a day. Hence, the frequencies and values of the different observations are representative for a real smart home.

The simulated data for the scenarios is changed in two aspects: (i) timestamps are shifted to real-time timestamps,
and (ii) the values for the sensors relevant to the evaluated activity are modified to ensure that its conditions are
fulfilled all the time. In other words, the simulation for the brushing teeth scenario described below will lead to a
detected brushing teeth activity during the full course of the scenario, and similarly for the other activities.

One hour of data from the anonymous data set used in this evaluation contains data of 231 different sensors,
together producing 670,118 observations in this hour. 605,090 of these observations are produced by the 4 sensors
of the Empatica E4 wearable, the remaining 65,028 observations are produced by 227 sensors in the HomeLab.

Specific scenarios Three specific scenarios, one for each activity rule in the general scenario, are constructed for
this evaluation:

– Toileting scenario: Simulated HomeLab data for a period of 30 minutes is replayed at real rate, in batches of 1
second. For the streaming set-ups, the streaming queries are evaluated on a sliding window of 60 seconds with
a sliding step of 10 seconds.

– Showering scenario: Simulated HomeLab data for a period of 20 minutes is replayed at real rate, in batches
of 1 second. For the streaming set-ups, the streaming queries are evaluated on a sliding window of 60 seconds
with a a sliding step of 10 seconds.

– Brushing teeth scenario: Simulated HomeLab data for a period of 30 minutes is replayed at real rate, in batches
of 1 second. For the streaming set-ups, the streaming queries are evaluated on a sliding window of 30 seconds
with a sliding step of 10 seconds.

The purpose of the evaluations is to measure and study the executions of the query evaluations and associated
operations of the reasoner or engine, such as the semantic reasoning, both individually and progressively over time.

Replaying the data is performed by a data simulation component running on an external device in the same local
network, to realistically represent the different sensor gateways. During simulation, this component connects as a
client to the WebSocker server of the evaluated set-up, and sends the observations in each batch as a single message

over the WebSocket connection to the appropriate data streams. This implies that one incoming event is received by
the set-ups every second. Hence, the streaming set-ups will add such an event to Esper for windowing every second,
while the non-streaming set-up will trigger the in-order evaluation of the registered set-ups every second.

Evaluation queries To properly compare the different set-ups for each specific scenario, different versions of the
SPARQL and C-SPARQL queries are created. In concrete, the following adaptations are made:

– For set-up 1, the C-SPARQL query as outputted by DIVIDE is registered.
– For set-ups 2, 4, 5, 6 and 7, the SPARQL definition of the DIVIDE query is modified to obtain two queries reg-

istered to the single reasoning service. The first reasoning query is the stream query of the SPARQL definition,
from which the graph specifications are removed. The second query is the final query of this definition. Hence,
the evaluated queries that are executed with RDFox or Apache Jena are regular SPARQL queries that involve
semantic reasoning and are not rewritten by DIVIDE.

– For set-up 3, the SPARQL definition of the DIVIDE query is modified to obtain two queries. The first reasoning
query is derived from the stream query of the SPARQL definition: the graph specifications are removed, and
the query is translated to C-SPARQL syntax by adding the relevant FROM clauses that specify the query input:
the static resources and the data stream window definition. This query is registered to the C-SPARQL engine.
The second query is identical to set-up 2 and is registered to RDFox.

During an evaluation run, only the quer(y)(ies) related to the activity rule of the scenario are deployed on the
engines. Queries related to other activity rules or aspects like location monitoring are not registered to the engines.

Measurements For each presented set-up, the total execution time metric is measured for each event. This
metric is defined as the time starting from a generated event until the timestamp where an instance of the
RoutineActivityPrediction is returned as output by the corresponding query. In a set-up with multiple
queries that are executed in order, this is always the output of the final query in the chain. The definition of a gen-
erated event differs for each set-up: in the streaming set-ups, this is the time of an Esper window trigger; in the
non-streaming set-up 4, this is the time of an incoming set of sensor observations.

Technical specifications All evaluations are run on a typical processing device in the IoT world: an Intel NUC,
model D54250WYKH. It has a 1300 MHz dual-core Intel Core i5-4250U CPU (turbo frequency 2600 MHz) and 8
GB DDR3-1600 RAM.

8.3.2. Real-time evaluation of derived DIVIDE queries on a Raspberry Pi
DIVIDE is considered as a semantic component in a cascading reasoning set-up in an IoT network, which involves

running RSP queries on local devices. These devices can be low-end devices with few resources in an IoT context.
Hence, it is important to evaluate the real-time performance of continuously executing the RSP queries outputted by
DIVIDE on a low-end device like a Raspberry Pi. This is the topic of the final evaluation.

For this evaluation, only the C-SPARQL baseline set-up (1) of the previous section is considered. All other
properties of this evaluation are identical to those used for the evaluation in the previous section.

Technical specifications This evaluation is performed on a Raspberry Pi 3, Model B. This Raspberry Pi model has
a Quad Core 1.2GHz Broadcom BCM2837 64bit CPU, 1GB RAM and MicroSD storage.

9. Evaluation Results

This section presents the results of the three evaluations described in Section 8. All results contain data of multiple
evaluation runs, always excluding 3 warm-up and 2 cool-down runs.

9.1. Performance evaluation of DIVIDE

Figure 3 shows the distribution of the duration of two initialization steps of the DIVIDE system: the preprocess-
ing of the Activity Recognition ontology, and the parsing of the toileting query specified as SPARQL input. The

(a) Ontology preprocessing (b) Query parsing for toileting query

Figure 3. Performance results of the initialization of the DIVIDE system: boxplot distributions of total execution times per step

(a) Boxplot distribution of query derivation time for the toileting and brushing teeth DIVIDE query

(b) Relative times for query derivation substeps with EYE reasoner, averaged over all runs of the three DIVIDE queries

Figure 4. Performance results of the query derivation of the DIVIDE system

preprocessing of the ontology on average takes 9,640 ms, with a standard deviation (SD) of only 42 ms. The average
duration of the query parsing is only 64.87 ms (SD 2.76 ms). It was also validated that the parsing of the end user
definition of the DIVIDE query to its internal representation was done correctly.

Figure 4 shows the performance results of the query derivation with DIVIDE, for the DIVIDE query correspond-
ing to the toileting activity rule (also corresponds to the showering rule) and the DIVIDE query corresponding to
the brushing teeth activity rule. Subfigure 4(a) shows the distribution of the duration of the query derivation for each
individual query. The average durations of the query derivation are 3,578 ms (SD 38 ms) and 2,968 ms (SD 37 ms)
for the toileting and brushing teeth DIVIDE queries, respectively.

Subfigure 4(b) shows the percentage of time taken up by the different substeps, averaged over all runs for the
three DIVIDE queries. These substeps include all steps performed with the EYE reasoner: the reasoning (47.27%
on average), the query extraction (27.32% on average), the input variable substitution (9.44% on average) and the
window parameter substitution (10.93% on average). The remaining time (5.04% on average) is overhead of the
DIVIDE implementation, including internal threading and memory operations.

9.2. Evaluation of DIVIDE in comparison with real-time reasoning approaches

Figure 5 shows the results of the comparison of the real-time evaluation with DIVIDE on a C-SPARQL engine
with different real-time reasoning approaches, for the toileting query. The results show the evolution over time of
the total execution time from the event generation until the routine activity prediction is generated by the engine.
The measurements included in the graphs are averaged over the evaluation runs. For three setups, there are no
measurements shown for the full time course of the evaluation, which takes 30 minutes. These set-ups are the pipe
of C-SPARQL with RDFox set-up (3), the adapted streaming RDFox set-up (5) and the streaming Jena set-up (7).

Figure 5. Results of the comparison of the DIVIDE real-time query evaluation approach with real-time reasoning approaches, for the toileting
query. For each evaluation set-up, the results show the evolution over time of the total execution time from the generated event (either a windowed
event in a streaming set-up or an incoming event in a non-streaming set-up) until the routine activity prediction as output of the final query. For
all set-ups, measurements are shown for the processed event, either incoming or windowed, at every 10 seconds. All plotted execution times are
averaged over the evaluation runs.

These missing measurements are caused by the systems running out of memory, causing them to stop evaluating the
queries for the remainder of the scenario. The DIVIDE baseline set-up (1) has the lowest average total execution time
from 960 seconds into the evaluation. Before this timestamp, the non-streaming RDFox set-up (4) is the quickest.

Figure 6 shows similar results for the real-time evaluation of the showering query. The same three set-ups run out
of memory at a certain point, causing missing measurements for the remainder of the evaluation runs. Already after
550 seconds into the evaluation, the DIVIDE baseline set-up (1) has the lowest average total execution time.

Figure 7 shows similar results of the comparison of the real-time evaluation of DIVIDE with the real-time rea-
soning approaches, but for the brushing teeth query. The properties of the graph are similar to those of the graph
presenting the results for the toileting query. In these results, only the non-streaming RDFox set-up (4) has no
measurements for the full time course of the evaluation scenario due to the engine running out of memory.

In Appendix D, additional results of the evaluation runs over time are included. These results visualize the distri-
bution of the total execution times for the different set-ups at different times during the evaluation runs.

9.3. Real-time evaluation of derived DIVIDE queries on a Raspberry Pi

Figure 8 shows the results of the evaluation of the DIVIDE set-up on the Raspberry Pi 3. These results visualize
the distribution of the individual execution times of the RSP queries generated by DIVIDE with the C-SPARQL
baseline set-up, for the toileting, showering and brushing teeth scenarios. For the toileting query, the average total

Figure 6. Results of the comparison of the DIVIDE real-time query evaluation approach with real-time reasoning approaches, for the showering
query. For each evaluation set-up, the results show the evolution over time of the total execution time from the generated event (either a windowed
event in a streaming set-up or an incoming event in a non-streaming set-up) until the routine activity prediction as output of the final query. For
all set-ups, measurements are shown for the processed event, either incoming or windowed, at every 10 seconds. All plotted execution times are
averaged over the evaluation runs.

execution time is 3,666 ms (SD 318 ms). This average number is 3,699 ms (SD 286 ms) and 3,001 ms (SD 174 ms)
for the showering and brushing teeth scenarios, respectively.

10. Discussion

Including DIVIDE as a component in a semantic IoT platform allows to perform context-aware monitoring of
patients in homecare scenarios. This is possible because DIVIDE is designed to fit in a cascading architecture: it
derives and manages contextually relevant RSP queries that require no additional reasoning while they are being
executed, which makes them perfectly suitable to run on local low-end devices in the patient’s home environment.

An end user of DIVIDE will design the IoT platform architecture for a specific use case within a certain applica-
tion domain. By employing DIVIDE in a cascading reasoning architecture, DIVIDE enables privacy by design to a
certain extent. As such, DIVIDE helps the end user to integrate privacy by design into the application, by following
some of the privacy by design principles. More specifically, DIVIDE leaves its end users in full control to specifi-
cally define which privacy-sensitive data is exposed to the outside world. This data will typically consist of different
levels of abstractions of the raw data observed by the IoT sensors. The end user control of exposed data directly
follows from the definition of the DIVIDE queries: these queries exactly define which semantic concepts will be
filtered by the local RSP engines, and sent over the IoT network to the central reasoner on a central server. Only the
outputs of those queries will ever leave the local environment of the patient; all other data will be kept locally. This

Figure 7. Results of the comparison of the DIVIDE real-time query evaluation approach with real-time reasoning approaches, for the brushing
teeth query. For each evaluation set-up, the results show the evolution over time of the total execution time from the generated event (either a
windowed event in a streaming set-up or an incoming event in a non-streaming set-up) until the routine activity prediction as output of the final
query. For all set-ups, measurements are shown for the processed event, either incoming or windowed, at every 10 seconds. All plotted execution
times are averaged over the evaluation runs.

Figure 8. Results of evaluating the DIVIDE real-time query evaluation approach with the C-SPARQL baseline set-up (1), on a Rasp-
berry Pi 3, Model B. The results show the total execution time distribution over the engine’s runtime and multiple runs, for the toileting, show-
ering and brushing teeth DIVIDE queries.

way, DIVIDE helps its end users to adhere to the embedded, user-centric, and visibility and transparency principles
of privacy by design. By embedding DIVIDE into a cascading architecture, the design can consider the interests
of the patients and be transparent about the data being sent over the network (i.e., the outputs of the generic RSP
queries in the DIVIDE query definitions). Nevertheless, the research, implementation and integration of additional
privacy solutions into the application design is required to optimally achieve privacy preservation. For example, in

the described use case scenario, the patient’s in-home location and detected activities comprise the only information
that is ever leaving the home. While this ensures all other privacy-sensitive data is kept locally, it does not guarantee
the preservation of this small set of privacy-sensitive data that is leaving the patient’s environment. Such additional
privacy solutions that need to be built into the application design will often be use case specific, according to the use
case requirements. Hence, this requires additional, use case specific privacy research that is considered out of scope
of the presented research.

With respect to security, note that the integration of DIVIDE into a semantic IoT platform does not guarantee any
additional security to the system. Currently, the communication within DIVIDE is only protected via the standard
SSL/TLS encryption associated with the HTTPS protocol, which is not sufficient to ensure maximum security.
Hence, an additional security system or framework should be integrated into a semantic IoT platform architecture
that involves DIVIDE. Existing security systems and frameworks should be researched to achieve this. However,
this is considered to be out of scope of the presented research.

A DIVIDE query is generic by nature, which ensures that you should not define one DIVIDE query for every
individual reasoning or filtering task that should be performed in the use case. In the activity recognition use case
scenario discussed in this paper, one should only define a generic DIVIDE query per type of activity rule, instead of
per activity rule individually. The generic nature of a DIVIDE query ensures that DIVIDE can derive the instantiated
queries from it that are contextually relevant at any given point in time. This is achieved by listening to context up-
dates in the knowledge base, and automatically triggering the query derivation upon a context change for all compo-
nents that are affected by this context change. This is an improvement compared to systems where the management
of the queries on the stream processing components of the IoT platform is still a manual, labor-intensive and thus
highly impractical task. On the other hand, generic semantic queries can also be processed by reasoning engines,
but while this is certainly feasible with current existing semantic reasoners for a single home environment, it might
become more complex if this needs to be managed for a full network with for example many smart homes.

By deploying DIVIDE in a cascading architecture, more benefits are obtained than solely the privacy control
for the end user, generic query definition and context-awareness. Since the high frequency and high volume data
streams are processed locally, this data should not be transferred over the network. This significantly reduces net-
work bandwidth usage and network delay impacting the system’s performance. In addition, the data does not need
to be processed by the central reasoner, which now only receives the outputs of the local RSP queries to do further
processing. As such, the main resources of the server can be saved for the high-priority situations. In the presented
use case scenario, an example is when an activity is detected that is not in the patient’s routine: when this prediction
is received by the central reasoner, it can investigate the cause of the issue and trigger further actions such as gen-
erating an alarm when needed. Meanwhile, the server resources can also be used by DIVIDE to derive the updated
location monitoring query to ensure that the patient’s location is followed up more closely.

When DIVIDE is used as a component in a semantic IoT platform to derive and manage the local RSP queries, it
is of course important that the queries derived by DIVIDE have a good performance that is comparable to existing
state-of-the-art stream reasoning systems. The results of this comparison with the C-SPARQL RSP engine running
on an Intel NUC device demonstrate that the filtering RSP queries perform very well for the different activity de-
tection queries that each correspond to a generic real-time reasoning set-up. The results show how the C-SPARQL
queries are only outperformed by the classic non-streaming RDFox reasoning engine if you only look at the pro-
cessing of single events. This can easily be explained by the fact that the events processed by this RDFox set-up
contain fewer observations, and thus triples, than the events processed by C-SPARQL, which are larger batches of
data grouped in data windows. Hence, due to the incremental reasoning in RDFox, this set-up initially performs
best. However, looking at the evolution of the total execution times over time, the DIVIDE baseline set-up starts to
perform better after a while. This is because the performance of the DIVIDE set-up stays constant over time, while
the total execution time of the queries on the RDFox set-up increases over time because events are not removed
from the data store, increasing the size of the data store on every execution. Therefore, we have also included a com-
parison with a streaming version of RDFox. This set-up also performs constant over time, and is outperformed by a
slight margin only by DIVIDE. This is mainly because RDFox still has to do some reasoning, which, even though
this happens very efficiently with RDFox, is not required for the evaluation of the RSP queries with C-SPARQL in
the baseline set-up. The streaming set-up of RDFox used in the evaluations makes a few assumptions that can still
be optimized by looking at overlapping events and ensuring they are not removed after the processing of an event.

However, in this optimized, adapted streaming RDFox setup, the processing of incoming events cannot keep up with
the rate of the windowed events, causing the processing delay to build up. This leads to very long query execution
times and memory issues in some cases. Moreover, looking at the results that involve reasoning with Apache Jena,
it is clear that the set-ups using this semantic reasoner perform way worse than the DIVIDE and optimal RDFox
set-ups. This is also true for the pipe of C-SPARQL with RDFox, in which C-SPARQL is performing rule-based
reasoning with Apache Jena in the first query. This reasoning step causes the bad performance entirely on its own.
This learns that using the built-in rule reasoning support of C-SPARQL is not efficient compared to alternative set-
ups. As a conclusion, over time, DIVIDE performs comparable or even slightly better than the best RDFox set-ups,
making it an ideal solution to integrate in a semantic platform to manage the local RSP queries, given the other main
advantages. Ideally, this is combined in the cascading architecture with a central reasoner that does use a performant
semantic reasoner such as RDFox.

In IoT networks, devices with resources comparable to those of an Intel NUC are often unavailable locally.
Therefore, it is important that the RSP queries can also be continuously executed on low-end devices with fewer
resources. Otherwise, the data would still have to be sent to other devices with more resources running more centrally
in the network that would then host the RSP engines. This would imply that all other advantages related to privacy,
network usage and server resources do no longer apply. Therefore, the evaluation of the C-SPARQL baseline set-
up was also performed on a Raspberry Pi. The results demonstrate that the queries can still be efficiently and
consistently executed on such devices with way fewer resources than an Intel NUC. Specifically for this evaluation,
the queries take approximately 10 times longer than on the Intel NUC, but take still well below the query execution
frequency of 10 seconds. This is an additional advantage when deploying a system involving DIVIDE, as no large
scale investment in expensive high-end hardware is required. In real set-ups, actually deploying a Raspberry Pi may
however not be very practical or realistic. However, the resources of a Raspberry Pi are very comparable to other
local devices such as wearable devices like the smartwatches in Samsung Galaxy Watch or Apple Watch series. Note
that RDFox can also be used instead of C-SPARQL to run the queries derived by DIVIDE on a local low-end device,
since RDFox can successfully run on an ARM based edge device like a Raspberry Pi or a smartphone as well [13].
This implies that the use of a RDFox set-up would also ensure that data can be processed locally instead of being
sent to a server. Also note that RDFox is able to handle any arbitrary OWL 2 RL ontology, including recursive ones.

Up to now, we have only looked at the real-time evaluation of RSP queries derived by DIVIDE. They perform well
in realistic homecare monitoring environments, but another important aspect is the performance of DIVIDE itself.
The results of the DIVIDE performance evaluation show that the main portion of time during the initialization of
DIVIDE is taken by the preprocessing of the ontology. Of course, the duration of the preprocessing depends on the
number of triples and axioms defined in the ontology, which is use case specific. In any case, this is a task that should
only happen once, given the assumption in DIVIDE that ontology updates do not happen. Nevertheless, DIVIDE
does support ontology updates, but they require the ontology preprocessing to be redone. Besides the initialization,
it is important to inspect the duration the query derivation process when a context change is observed. For this step,
the performance results show that for the given evaluation use case scenario, the query derivation typically takes
around 3 to 4 seconds. This is an order of magnitude higher than the time needed to perform real-time reasoning
with RDFox during the query evaluation on an incoming event. However, the execution frequency of the query
derivation is a few orders of magnitude smaller than the frequency of the event processing: events are processed on
every window trigger or incoming observation, which is every 10 seconds or every second in the evaluation use case
scenario. As you are not expecting a context change every 10 seconds, this shows that the performance results of
the query derivation step are perfectly acceptable. In addition, the results show that the largest portion of the time
is taken up by the different steps performed with the EYE reasoner. The biggest portion of the time, almost 50%, is
spent on generating the proof with the EYE reasoner. The results show that only less than 5% of the query derivation
step is overhead induced by the DIVIDE implementation.

When integrating DIVIDE into a semantic IoT platform, it is important to note that DIVIDE considers all seman-
tic specifications to be accurate. Hence, DIVIDE considers it the responsibility of its end users to ensure that the
semantic definitions in the knowledge base and the DIVIDE queries are correctly defined. For example, in the use
case scenario described in this paper, DIVIDE assumes that all activity rules defined in the Activity Recognition
ontology correctly detect the corresponding activity types. Thus, DIVIDE will not take any measures itself to avoid
any misleading of the system: if the end user wants to abuse DIVIDE to generate incorrect outputs, such as incor-

rectly detected activities in the described use case scenario, this is possible. Hence, it is important that all semantic
definitions and DIVIDE queries of a use case are validated before they are integrated into DIVIDE.

To be able to use DIVIDE in a real IoT platform set-up, it is important that DIVIDE is practically usable. There-
fore, we have implemented DIVIDE in a way that tries to maximize its practical usability. First, DIVIDE is available
as an executable Java JAR component that can easily be run in a server environment, allowing for easy integra-
tion into an existing IoT platform. The main configuration of the server, engine, DIVIDE queries and components
can be easily created and modified with straightforward JSON and CSV files. Importantly, DIVIDE also does not
hinder RSP engines to have active queries managed manually or by other system components, ensuring that the
inclusion of DIVIDE into a semantic platform is not an all-or-nothing choice. In addition, the REST API exposed
by the DIVIDE server implies that the configuration of DIVIDE is not fixed: components and DIVIDE queries can
be easily added or removed, increasing the flexibility of the system. The internal implementation ensures that such
changes are correctly handled and reflected on the RSP engines as well. Moreover, the implementation of the query
parser allows the flexible and straightforward end user definition of a DIVIDE query. This allows existing sets of
queries to be used with DIVIDE to perform semantically equivalent tasks after only a small configuration effort.
This way, no inner details of DIVIDE need to be known by end users who want to integrate it into their system.
Our implementation of the parser also validates the DIVIDE query definitions given by the end user, and provides a
human-friendly explanation about what is wrong in case the input is invalid. As a result, we believe that DIVIDE is
perfectly suited in an IoT set-up where it is deployed in a cascading architecture.

11. Conclusion

This paper has presented the DIVIDE system. DIVIDE is designed as a semantic component that can automati-
cally and adaptively derive and manage the queries of the stream processing components in a semantic IoT platform,
in a context-aware manner. Through a specific homecare monitoring use case, this paper has shown how DIVIDE
can divide the active queries across a cascading IoT set-up, and conquer the issues of existing systems by fulfilling
important requirements related to data privacy preservation, performance, and usability.

Reaching back to the research objectives outlined in Section 1, we have achieved these in this paper with DIVIDE
in the following ways:

1. DIVIDE automatically triggers the derivation of the semantic queries of a stream processing component when
changes are observed to context information that is relevant to that specific component. This way, DIVIDE
automatically ensures that the active queries on each component are contextually relevant at all times. This
process is context-aware and adaptive by design, minimizing the manual configuration effort for the end user to
the initial query definition only. Once the system is deployed, no configuration changes are required anymore.

2. By performing semantic reasoning on the current context during the query derivation, DIVIDE ensures that
the resulting stream processing queries can perform all relevant monitoring tasks without doing real-time
reasoning. The evaluations on the use case scenario demonstrate how this ensures that DIVIDE performs
comparable or even slightly better than state-of-the-art stream reasoning set-ups involving RDFox in terms of
query execution times. This implies that the queries can also be executed in real-time on low-end devices with
few resources, as demonstrated by the evaluations. The cascading architecture in which DIVIDE is adopted
ensures minimal network congestion and optimal usage of the central resources of the network.

3. Through the definition of a DIVIDE query, an end user can make the window parameters of the stream pro-
cessing queries context-dependent with DIVIDE.

4. By adopting a cascading reasoning architecture, DIVIDE manages the queries for the stream processing com-
ponents that are running on local IoT devices. Integrating DIVIDE into a semantic IoT platform enables pri-
vacy by design to a certain extent: it leaves the end users, who design the platform architecture for a specific
use case, in full control to specify in the DIVIDE query definitions which privacy-sensitive data is kept locally
by the local stream processing queries, and which data (abstractions) in the query outputs are sent over the IoT
network to the central services.

5. Generic queries in DIVIDE can be easily defined by only slightly adapting existing SPARQL or RSP-QL
queries, ensuring DIVIDE is practically usable.

There are multiple interesting future pathways related to DIVIDE that are worth investigating. First, the cascading
architectural set-up in which DIVIDE is ideally deployed can be further exploited. By including the monitoring of
device, network and/or stream characteristics into DIVIDE, the distribution of semantic stream processing queries
across the IoT network could be dynamically adapted to optimize both local and global system performance. Such
a monitor could also exploit the dynamic window parameter substitution functionality of DIVIDE to adapt these
parameters to the monitored conditions. Second, the current implementation of DIVIDE only supports use cases that
reason in the OWL 2 RL profile. However, the EYE reasoner used supports extending the rule set to obtain higher
expressivity. Doing so would introduce support for higher expressivity use cases in DIVIDE.

Acknowledgements

This research is part of the imec.ICON project PROTEGO (HBC.2019.2812), co-funded by imec, VLAIO, Tele-
vic, Amaron, Z-Plus and ML2Grow. Bram Steenwinckel (1SA0219N) is funded by a strategic base research grant
of Fund for Scientific Research Flanders (FWO), Belgium. Pieter Bonte (1266521N) is funded by a postdoctoral
fellowship of FWO.

Availability of data and materials

Supportive information relevant to the evaluation set-ups of this paper is publicly available at https://github.
com/IBCNServices/DIVIDE/tree/master/swj2022. This page also refers to the source code of DIVIDE at https:
//github.com/IBCNServices/DIVIDE/tree/master/src/divide-central, additional details of the DAHCC ontology at
https://dahcc.idlab.ugent.be, and the described dataset used to construct the evaluation rules and simulation data at
https://dahcc.idlab.ugent.be/dataset.html.

References

[1] K. Jaiswal and V. Anand, A Survey on IoT-Based Healthcare System: Potential Applications, Issues, and Challenges, in: Advances in
Biomedical Engineering and Technology, A.A. Rizvanov, B.K. Singh and P. Ganasala, eds, Springer Singapore, 2021, pp. 459–471.
doi:10.1007/978-981-15-6329-4_38.

[2] X. Su, J. Riekki, J.K. Nurminen, J. Nieminen and M. Koskimies, Adding semantics to Internet of Things, Concurrency and Computation:
Practice and Experience 27(8) (2015), 1844–1860. doi:10.1002/cpe.3203.

[3] C.C. Aggarwal, N. Ashish and A. Sheth, The Internet of Things: A Survey from the Data-Centric Perspective, in: Managing and Mining
Sensor Data, C.C. Aggarwal, ed., Springer US, 2013, pp. 383–428. doi:10.1007/978-1-4614-6309-2_12.

[4] P. Barnaghi, W. Wang, C. Henson and K. Taylor, Semantics for the Internet of Things: early progress and back to the future, International
Journal on Semantic Web and Information Systems (IJSWIS) 8(1) (2012), 1–21. doi:10.4018/jswis.2012010101.

[5] D. Dell’Aglio, E. Della Valle, F. van Harmelen and A. Bernstein, Stream reasoning: A survey and outlook, Data Science 1(1–2) (2017),
59–83. doi:10.3233/DS-170006.

[6] P. Bonte, F. Ongenae and F. De Turck, Subset reasoning for event-based systems, IEEE Access 7 (2019), 107533–107549.
doi:10.1109/ACCESS.2019.2932937.

[7] K. Abouelmehdi, A. Beni-Hssane, H. Khaloufi and M. Saadi, Big data security and privacy in healthcare: A Review, Procedia Computer
Science 113 (2017), 73–80. doi:10.1016/j.procs.2017.08.292.

[8] A. Cavoukian, Privacy by design, Office of the Information and Privacy Commissioner, 2009. https://www.ipc.on.ca/wp-content/uploads/
Resources/7foundationalprinciples.pdf.

[9] M. Dürst and M. Suignard, Internationalized Resource Identifiers (IRIs), RFC - Proposed Standard, Internet Engineering Task Force (IETF),
2005. https://datatracker.ietf.org/doc/rfc3987/.

[10] B. Motik, B.C. Grau, I. Horrocks, Z. Wu, A. Fokoue, C. Lutz et al., OWL 2 Web Ontology Language Profiles (Second Edition), W3C
Recommendation, World Wide Web Consortium (W3C), 2012. https://www.w3.org/TR/owl2-profiles/.

[11] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu and J. Banerjee, RDFox: A highly-scalable RDF store, in: The Semantic Web - ISWC 2015:
Proceedings, Part II of the 14th International Semantic Web Conference, Springer, Cham, Switzerland, 2015, pp. 3–20. doi:10.1007/978-
3-319-25010-6_1.

[12] J. Urbani, C. Jacobs and M. Krötzsch, Column-oriented datalog materialization for large knowledge graphs, in: Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, OJS/PKP, 2016. doi:10.1609/aaai.v30i1.9993.

https://github.com/IBCNServices/DIVIDE/tree/master/swj2022
https://github.com/IBCNServices/DIVIDE/tree/master/swj2022
https://github.com/IBCNServices/DIVIDE/tree/master/src/divide-central
https://github.com/IBCNServices/DIVIDE/tree/master/src/divide-central
https://dahcc.idlab.ugent.be
https://dahcc.idlab.ugent.be/dataset.html
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://www.ipc.on.ca/wp-content/uploads/Resources/7foundationalprinciples.pdf
https://datatracker.ietf.org/doc/rfc3987/
https://www.w3.org/TR/owl2-profiles/

[13] J. Lee, T. Hwang, J. Park, Y. Lee, B. Motik and I. Horrocks, A context-aware recommendation system for mobile devices, in: Proceedings
of the ISWC 2020 Demos and Industry Tracks: From Novel Ideas to Industrial Practice, co-located with 19th International Semantic Web
Conference (ISWC 2020), K. Taylor, R. Goncalves, F. Lecue and J. Yan, eds, CEUR Workshop Proceedings, 2020. https://ceur-ws.org/
Vol-2721/paper489.pdf.

[14] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf and J. Hendler, N3Logic: A logical framework for the World Wide Web, Theory and
Practice of Logic Programming 8(3) (2008), 249–269. doi:10.1017/S1471068407003213.

[15] R. Cyganiak, D. Wood, M. Lanthaler, G. Klyne, J.J. Carroll and B. McBride, RDF 1.1 concepts and abstract syntax, W3C Recommendation,
World Wide Web Consortium (W3C), 2014. https://www.w3.org/TR/rdf11-concepts/.

[16] X. Su, E. Gilman, P. Wetz, J. Riekki, Y. Zuo and T. Leppänen, Stream reasoning for the Internet of Things: Challenges and gap analysis,
in: Proceedings of the 6th International Conference on Web Intelligence, Mining and Semantics (WIMS 2016), Association for Computing
Machinery (ACM), New York, NY, USA, 2016, pp. 1–10. doi:10.1145/2912845.2912853.

[17] D.F. Barbieri, D. Braga, S. Ceri, E. Della Valle and M. Grossniklaus, C-SPARQL: a continuous query language for RDF data streams,
International Journal of Semantic Computing 4(1) (2010), 3–25. doi:10.1142/S1793351X10000936.

[18] D. Le-Phuoc, M. Dao-Tran, J.X. Parreira and M. Hauswirth, A native and adaptive approach for unified processing of linked streams and
linked data, in: The Semantic Web - ISWC 2011: Proceedings, Part I of the 10th International Semantic Web Conference, Springer, Berlin,
Heidelberg, 2011, pp. 370–388. doi:10.1007/978-3-642-25073-6_24.

[19] R. Tommasini and E. Della Valle, Yasper 1.0: Towards an RSP-QL Engine, in: Proceedings of the ISWC 2017 Posters & Demonstrations
and Industry Tracks, co-located with 16th International Semantic Web Conference (ISWC 2017), CEUR Workshop Proceedings, 2017.
https://ceur-ws.org/Vol-1963/paper487.pdf.

[20] R. Tommasini, P. Bonte, F. Ongenae and E. Della Valle, RSP4J: An API for RDF Stream Processing, in: The Semantic Web: Proceedings of
the 18th International Conference, ESWC 2021, R. Verborgh, K. Hose, H. Paulheim, P.-A. Champin, M. Maleshkova, O. Corcho, P. Ristoski
and M. Alam, eds, Springer, Cham, Switzerland, 2021, pp. 565–581. doi:10.1007/978-3-030-77385-4_34.

[21] D. Dell’Aglio, E. Della Valle, J.-P. Calbimonte and O. Corcho, RSP-QL semantics: A unifying query model to explain heterogeneity of
RDF stream processing systems, International Journal on Semantic Web and Information Systems (IJSWIS) 10(4) (2014), 17–44. https:
//dl.acm.org/doi/10.5555/2795081.2795083.

[22] D.F. Barbieri, D. Braga, S. Ceri, E.D. Valle and M. Grossniklaus, Incremental reasoning on streams and rich background knowledge, in:
The Semantic Web: Research and Applications: Proceedings, Part I of the 7th Extended Semantic Web Conference, ESWC 2010, Springer,
Cham, Switzerland, 2010, pp. 1–15. doi:10.1007/978-3-642-13486-9_1.

[23] S. Komazec, D. Cerri and D. Fensel, Sparkwave: continuous schema-enhanced pattern matching over RDF data streams, in: Proceedings of
the 6th ACM International Conference on Distributed Event-Based Systems (DEBS 2012), Association for Computing Machinery (ACM),
New York, NY, USA, 2012, pp. 58–68. doi:10.1145/2335484.2335491.

[24] B. Motik, Y. Nenov, R.E.F. Piro and I. Horrocks, Incremental update of datalog materialisation: the backward/forward algorithm, in:
Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, OJS/PKP, 2015. doi:10.1609/aaai.v29i1.9409.

[25] J. Urbani, A. Margara, C. Jacobs, F.v. Harmelen and H. Bal, Dynamite: Parallel materialization of dynamic RDF data, in: The Semantic Web
- ISWC 2013: Proceedings, Part I of the 12th International Semantic Web Conference, Springer, Berlin, Heidelberg, 2013, pp. 657–672.
doi:10.1007/978-3-642-41335-3_41.

[26] F. Lécué, Diagnosing Changes in An Ontology Stream: A DL Reasoning Approach, in: Proceedings of the Twenty-Sixth AAAI Conference
on Artificial Intelligence, OJS/PKP, 2012. doi:10.1609/aaai.v26i1.8113.

[27] E. Thomas, J.Z. Pan and Y. Ren, TrOWL: Tractable OWL 2 reasoning infrastructure, in: The Semantic Web: Research and Applications:
Proceedings, Part II of the 7th Extended Semantic Web Conference, ESWC 2010, Springer, Berlin, Heidelberg, 2010, pp. 431–435, Springer.
doi:10.1007/978-3-642-13489-0_38.

[28] A. Mileo, A. Abdelrahman, S. Policarpio and M. Hauswirth, StreamRule: a nonmonotonic stream reasoning system for the semantic web,
in: Web Reasoning and Rule Systems: Proceedings of the 7th International Conference, RR 2013, Springer, Berlin, Heidelberg, 2013,
pp. 247–252. doi:10.1007/978-3-642-39666-3_23.

[29] H. Beck, M. Dao-Tran and T. Eiter, LARS: A logic-based framework for analytic reasoning over streams, Artificial Intelligence 261 (2018),
16–70. doi:10.1007/978-3-319-73117-9_6.

[30] H.R. Bazoobandi, H. Beck and J. Urbani, Expressive Stream Reasoning with Laser, in: The Semantic Web - ISWC 2017: Proceedings, Part
I of the 16th International Semantic Web Conference, Springer, Cham, Switzerland, 2017, pp. 87–103. doi:10.1007/978-3-319-68288-4_6.

[31] X. Ren, O. Curé, H. Naacke and G. Xiao, BigSR: real-time expressive RDF stream reasoning on modern Big Data platforms, in: 2018 IEEE
International Conference on Big Data (Big Data), IEEE, New York, NY, USA, 2018, pp. 811–820. doi:10.1109/BigData.2018.8621947.

[32] P. Bonte, R. Tommasini, F. De Turck, F. Ongenae and E.D. Valle, C-Sprite: Efficient Hierarchical Reasoning for Rapid RDF Stream
Processing, in: Proceedings of the 13th ACM International Conference on Distributed and Event-based Systems, 2019, pp. 103–114.
doi:10.1145/3328905.3329502.

[33] T.-L. Pham, M.I. Ali and A. Mileo, Enhancing the scalability of expressive stream reasoning via input-driven parallelization, Semantic Web
10(3) (2019), 457–474. doi:10.3233/SW-180330.

[34] D. Anicic, P. Fodor, S. Rudolph and N. Stojanovic, EP-SPARQL: a unified language for event processing and stream reasoning, in: Pro-
ceedings of the 20th International Conference on World Wide Web (WWW 2011), Association for Computing Machinery (ACM), New
York, NY, USA, 2011, pp. 635–644. doi:10.1145/1963405.1963495.

[35] D. Luckham, The Power of Events: An introduction to Complex Event Processing in Distributed Enterprise Systems, Addison-Wesley
Professional, 2002.

https://ceur-ws.org/Vol-2721/paper489.pdf
https://ceur-ws.org/Vol-2721/paper489.pdf
https://www.w3.org/TR/rdf11-concepts/
https://ceur-ws.org/Vol-1963/paper487.pdf
https://dl.acm.org/doi/10.5555/2795081.2795083
https://dl.acm.org/doi/10.5555/2795081.2795083

[36] D. Dell’Aglio, M. Dao-Tran, J.-P. Calbimonte, D. Le Phuoc and E. Della Valle, A query model to capture event pattern matching in
RDF stream processing query languages, in: Knowledge Engineering and Knowledge Management: Proceedings of the 20th International
Conference, EKAW 2016, Springer, Cham, Switzerland, 2016, pp. 145–162. doi:10.1007/978-3-319-49004-5_10.

[37] D.C. Luckham and B. Frasca, Complex Event Processing in Distributed Systems, Computer systems laboratory technical report CSL-TR-
98-754, Stanford University, 1998. https://www.unix.com/pdf/CEP_in_distributed_systems.pdf.

[38] J.-P. Calbimonte, J. Mora and O. Corcho, Query rewriting in RDF stream processing, in: The Semantic Web: Latest Advances and New Do-
mains: Proceedings of the 13th International Conference, ESWC 2016, Springer, Cham, Switzerland, 2016, pp. 486–502. doi:10.1007/978-
3-319-34129-3_30.

[39] D. Puiu, P. Barnaghi, R. Tönjes, D. Kümper, M.I. Ali, A. Mileo, J.X. Parreira, M. Fischer, S. Kolozali, N. Farajidavar et al., CityPulse:
Large Scale Data Analytics Framework for Smart Cities, IEEE Access 4 (2016), 1086–1108. doi:10.1109/ACCESS.2016.2541999.

[40] F. Heintz, J. Kvarnström and P. Doherty, Bridging the sense-reasoning gap: DyKnow - stream-based middleware for knowledge processing,
Advanced Engineering Informatics 24(1) (2010), 14–26. doi:10.1016/j.aei.2009.08.007.

[41] D. Anicic, S. Rudolph, P. Fodor and N. Stojanovic, Stream reasoning and complex event processing in ETALIS, Semantic web 3(4) (2012),
397–407. doi:10.3233/SW-2011-0053.

[42] Ö.L. Özçep, R. Möller and C. Neuenstadt, A stream-temporal query language for ontology based data access, in: KI 2014: Advances
in Artificial Intelligence: Proceedings of the 37th Annual German Conference on AI, Springer, Cham, Switzerland, 2014, pp. 183–194.
doi:10.1007/978-3-319-11206-0_18.

[43] G. Xiao, L. Ding, B. Cogrel and D. Calvanese, Virtual knowledge graphs: An overview of systems and use cases, Data Intelligence 1(3)
(2019), 201–223. doi:10.1162/dint_a_00011.

[44] H. Stuckenschmidt, S. Ceri, E. Della Valle and F. Van Harmelen, Towards expressive stream reasoning, in: Semantic Challenges
in Sensor Networks, Dagstuhl Seminar Proceedings, Schloss Dagstuhl-Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2010.
doi:10.4230/DagSemProc.10042.4.

[45] P. Bonte, R. Tommasini, E. Della Valle, F. De Turck and F. Ongenae, Streaming MASSIF: cascading reasoning for efficient processing of
iot data streams, Sensors 18(11) (2018), 3832. doi:10.3390/s18113832.

[46] I. Kalamaras, N. Kaklanis, K. Votis and D. Tzovaras, Towards Big Data Analytics in Large-Scale Federations of Semantically Heteroge-
neous IoT Platforms, in: Artificial Intelligence Applications and Innovations: Proceedings of AIAI 2018 IFIP 12.5 International Workshops,
L. Iliadis, I. Maglogiannis and V. Plagianakos, eds, Springer, Cham, Switzerland, 2018, pp. 13–23. doi:10.1007/978-3-319-92016-0_2.

[47] P. Chamoso, A. González-Briones, F. De La Prieta, G.K. Venyagamoorthy and J.M. Corchado, Smart city as a distributed platform: Toward
a system for citizen-oriented management, Computer Communications 152 (2020), 323–332. doi:10.1016/j.comcom.2020.01.059.

[48] F. Cirillo, G. Solmaz, E.L. Berz, M. Bauer, B. Cheng and E. Kovacs, A standard-based open source IoT platform: FIWARE, IEEE Internet
of Things Magazine 2(3) (2019), 12–18. doi:10.48550/arXiv.2005.02788.

[49] Sofia2, Sofia2 – Technology for Innovators, 2020, Accessed: 2022-03-10. https://sofia2.com.
[50] S. Soursos, I.P. Žarko, P. Zwickl, I. Gojmerac, G. Bianchi and G. Carrozzo, Towards the cross-domain interoperability of IoT plat-

forms, in: 2016 European conference on networks and communications (EuCNC), IEEE, New York, NY, USA, 2016, pp. 398–402.
doi:10.1109/EuCNC.2016.7561070.

[51] A. Felfernig, S.P. Erdeniz, P. Azzoni, M. Jeran, A. Akcay and C. Doukas, Towards configuration technologies for IoT gateways, in: Pro-
ceedings of the 18th International Configuration Workshop, 2016, pp. 73–76. https://ase.ist.tugraz.at/wp-content/uploads/sites/34/2016/07/
configuration-technologies-iot-16.pdf.

[52] A. Bröring, S. Schmid, C.-K. Schindhelm, A. Khelil, S. Käbisch, D. Kramer, D. Le Phuoc, J. Mitic, D. Anicic and E. Teniente, Enabling
IoT ecosystems through platform interoperability, IEEE software 34(1) (2017), 54–61. doi:10.1109/MS.2017.2.

[53] A. Cimmino, V. Oravec, F. Serena, P. Kostelnik, M. Poveda-Villalón, A. Tryferidis, R. García-Castro, S. Vanya, D. Tzovaras and C. Grimm,
VICINITY: IoT semantic interoperability based on the web of things, in: 15th International Conference on Distributed Computing in Sensor
Systems (DCOSS), IEEE, New York, NY, USA, 2019, pp. 241–247. doi:10.1109/DCOSS.2019.00061.

[54] M. Ganzha, M. Paprzycki, W. Pawłowski, P. Szmeja and K. Wasielewska, Semantic interoperability in the Internet of Things: An overview
from the INTER-IoT perspective, Journal of Network and Computer Applications 81 (2017), 111–124. doi:10.1016/j.jnca.2016.08.007.

[55] A. Javed, S. Kubler, A. Malhi, A. Nurminen, J. Robert and K. Främling, bIoTope: Building an IoT Open Innovation Ecosystem for Smart
Cities, IEEE Access 8 (2020), 224318–224342. doi:10.1109/ACCESS.2020.3041326.

[56] G. Marques, A.K. Bhoi and K.S. Hareesha (eds), IoT in Healthcare and Ambient Assisted Living, Springer Singapore, 2021.
doi:10.1007/978-981-15-9897-5.

[57] M. Javaid and I.H. Khan, Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 Pandemic, Journal of Oral
Biology and Craniofacial Research 11(2) (2021), 209–214. doi:10.1016/j.jobcr.2021.01.015.

[58] H.K. Bharadwaj, A. Agarwal, V. Chamola, N.R. Lakkaniga, V. Hassija, M. Guizani and B. Sikdar, A review on the role of machine learning
in enabling IoT based healthcare applications, IEEE Access 9 (2021), 38859–38890. doi:10.1109/ACCESS.2021.3059858.

[59] R. Zgheib, S. Kristiansen, E. Conchon, T. Plageman, V. Goebel and R. Bastide, A scalable semantic framework for IoT healthcare applica-
tions, Journal of Ambient Intelligence and Humanized Computing (2020), 1–19. doi:10.1007/s12652-020-02136-2.

[60] S. Jabbar, F. Ullah, S. Khalid, M. Khan and K. Han, Semantic interoperability in heterogeneous IoT infrastructure for healthcare, Wireless
Communications and Mobile Computing 2017 (2017). doi:10.1155/2017/9731806.

[61] F. Ullah, M.A. Habib, M. Farhan, S. Khalid, M.Y. Durrani and S. Jabbar, Semantic interoperability for big-data in heterogeneous IoT
infrastructure for healthcare, Sustainable cities and society 34 (2017), 90–96. doi:10.1016/j.scs.2017.06.010.

[62] F. Ali, S.R. Islam, D. Kwak, P. Khan, N. Ullah, S.-j. Yoo and K.S. Kwak, Type-2 fuzzy ontology–aided recommendation systems for
IoT–based healthcare, Computer Communications 119 (2018), 138–155. doi:10.1016/j.comcom.2017.10.005.

https://www.unix.com/pdf/CEP_in_distributed_systems.pdf
https://sofia2.com
https://ase.ist.tugraz.at/wp-content/uploads/sites/34/2016/07/configuration-technologies-iot-16.pdf
https://ase.ist.tugraz.at/wp-content/uploads/sites/34/2016/07/configuration-technologies-iot-16.pdf

[63] V. Subramaniyaswamy, G. Manogaran, R. Logesh, V. Vijayakumar, N. Chilamkurti, D. Malathi and N. Senthilselvan, An ontology-
driven personalized food recommendation in IoT-based healthcare system, The Journal of Supercomputing 75(6) (2019), 3184–3216.
doi:10.1007/s11227-018-2331-8.

[64] P. Schaar, Privacy by design, Identity in the Information Society 3(2) (2010), 267–274. doi:10.1007/s12394-010-0055-x.
[65] C. Kurtz, M. Semmann and T. Böhmann, Privacy by design to comply with GDPR: a review on third-party data processors, in: Proceedings

of the 24th Americas Conference on Information Systems (AMCIS) 2018, 2018. https://aisel.aisnet.org/amcis2018/Security/Presentations/
36/.

[66] B. Steenwinckel, M. De Brouwer, M. Stojchevska, J. Van Der Donckt, J. Nelis, J. Ruyssinck, J. van der Herten, K. Casier, J. Van Ooteghem,
P. Crombez, F. De Turck, S. Van Hoecke and F. Ongenae, Data Analytics For Health and Connected Care: Ontology, Knowledge Graph
and Applications, in: Proceedings of the 16th EAI Pervasive Healthcare conference, 2022. https://dahcc.idlab.ugent.be.

[67] L. Daniele, F. den Hartog and J. Roes, Created in Close Interaction with the Industry: The Smart Appliances REFerence (SAREF) Ontology,
in: Formal Ontologies Meet Industry, Springer, Cham, Switzerland, 2015, pp. 100–112. ISBN 978-3-319-21545-7. doi:10.1007/978-3-319-
21545-7_9.

[68] M. Girod-Genet, L.N. Ismail, M. Lefrançois and J. Moreira, ETSI TS 103 410-8 V1.1.1 (2020-07): SmartM2M; Extension to SAREF; Part
8: eHealth/Ageing-well Domain, Technical Report, ETSI Technical Committee Smart Machine-to-Machine communications (SmartM2M),
2020. https://www.etsi.org/deliver/etsi_ts/103400_103499/10341008/01.01.01_60/ts_10341008v010101p.pdf.

[69] I. Esnaola-Gonzalez, J. Bermúdez, I. Fernández and A. Arnaiz, Two Ontology Design Patterns toward Energy Efficiency in Buildings,
in: Proceedings of the 9th Workshop on Ontology Design and Patterns (WOP 2018), co-located with 17th International Semantic Web
Conference (ISWC 2018), CEUR Workshop Proceedings, 2018, pp. 14–28. https://ceur-ws.org/Vol-2195/pattern_paper_2.pdf.

[70] M. De Brouwer, F. Ongenae, P. Bonte and F. De Turck, Towards a cascading reasoning framework to support responsive ambient-intelligent
healthcare interventions, Sensors 18(10) (2018), 3514. doi:10.3390/s18103514.

[71] D. Arndt, P. Bonte, A. Dejonghe, R. Verborgh, F. De Turck and F. Ongenae, SENSdesc: Connect sensor queries and context, in: 11th
International Joint Conference on Biomedical Engineering Systems and Technologies, 2018, pp. 1–8. doi:10.5220/0006733106710679.

[72] R. Verborgh and J. De Roo, Drawing conclusions from linked data on the web: The EYE reasoner, IEEE Software 32(3) (2015), 23–27.
doi:10.1109/MS.2015.63.

[73] D. Arndt, B. De Meester, P. Bonte, J. Schaballie, J. Bhatti, W. Dereuddre, R. Verborgh, F. Ongenae, F. De Turck, R. Van de Walle et al.,
Improving OWL RL reasoning in N3 by using specialized rules, in: International Experiences and Directions Workshop on OWL (OWLED)
2015, Springer, 2015, pp. 93–104. doi:10.1007/978-3-319-33245-1_10.

[74] Empatica, E4 wristband, 2020, Accessed: 2020-10-23. https://www.empatica.com/research/e4.
[75] J. Bai, C. Di, L. Xiao, K.R. Evenson, A.Z. LaCroix, C.M. Crainiceanu and D.M. Buchner, An activity index for raw accelerometry data

and its comparison with other activity metrics, PloS one 11(8) (2016), e0160644. doi:10.1371/journal.pone.0160644.
[76] EsperTech, Esper, Accessed: 2022-03-29.

Appendix A. Additional details of homecare monitoring use case and running example

This appendix includes additional details about the homecare monitoring use case, which is described in Section 3,
and its running example that is used in the discussion of the DIVIDE methodology in Section 4, 5 and 6.

A.1. Semantic representation of use case and running example

This part of the appendix provides additional details of how the homecare monitoring use case and its running
example are semantically represented with the Activity Recognition ontology.

– Listing 8 gives an overview of all prefixes used in the listings with semantic content in this paper.
– Listing 9 lists some ontology definitions that specify when a showering activity prediction corresponds

to the routine of a patient and when it does not, based on the activities defined in this patient’s routine.
Based on these definitions, a semantic reasoner can define a recognized activity as an instance of either
RoutineActivityPrediction or NonRoutineActivityPrediction. The desired output of the
semantic AR service consists of instances of these classes and their relations.

– Listing 10 gives an example context description of a patient in the described use case scenario. The current
location of this patient in the service flat is the bathroom.

– The description of the HomeLab service flat is given in the instantiated example modules _Homelab and
_HomelabWearable of the DAHCC ontologies. The most relevant descriptions of these modules with re-
spect to the running example are presented in Listing 11. As can be observed, for each sensor in the home, the
observed properties are defined through the measuresProperty object property, and the analyzed entity is
specified with the analyseStateOf property.

https://aisel.aisnet.org/amcis2018/Security/Presentations/36/
https://aisel.aisnet.org/amcis2018/Security/Presentations/36/
https://dahcc.idlab.ugent.be
https://www.etsi.org/deliver/etsi_ts/103400_103499/10341008/01.01.01_60/ts_10341008v010101p.pdf
https://ceur-ws.org/Vol-2195/pattern_paper_2.pdf
https://www.empatica.com/research/e4

Listing 8: Overview of all prefixes used in the listings with semantic content in this document

Activity Recognition ontology including DAHCC ontology modules
@prefix KBActivityRecognition: <https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/

KBActivityRecognition/> .
@prefix ActivityRecognition: <https://dahcc.idlab.ugent.be/Ontology/ActivityRecognition/> .
@prefix MonitoredPerson: <https://dahcc.idlab.ugent.be/Ontology/MonitoredPerson/> .
@prefix SensorsAndActuators: <https://dahcc.idlab.ugent.be/Ontology/SensorsAndActuators/> .
@prefix SensorsAndWearables: <https://dahcc.idlab.ugent.be/Ontology/SensorsAndWearables/> .
@prefix Sensors: <https://dahcc.idlab.ugent.be/Ontology/Sensors/> .

instances in use case scenario
@prefix : <http://divide.ilabt.imec.be/idlab.homelab/> .
@prefix patients: <http://divide.ilabt.imec.be/idlab.homelab/patients/> .
@prefix Homelab: <https://dahcc.idlab.ugent.be/Homelab/SensorsAndActuators/> .
@prefix HomelabWearable: <https://dahcc.idlab.ugent.be/Homelab/SensorsAndWearables/> .

SAREF and extensions
@prefix saref-core: <https://saref.etsi.org/core/> .
@prefix saref4ehaw: <https://saref.etsi.org/saref4ehaw/> .
@prefix saref4bldg: <https://saref.etsi.org/saref4bldg/> .
@prefix saref4wear: <https://saref.etsi.org/saref4wear/> .

other imports
@prefix time: <http://www.w3.org/2006/time#> .
@prefix eep: <https://w3id.org/eep#> .

generic prefixes
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix xml: <http://www.w3.org/XML/1998/namespace> .

definitions within DIVIDE
@prefix sd: <http://idlab.ugent.be/sensdesc#> .
@prefix sd-query: <http://idlab.ugent.be/sensdesc/query#> .
@prefix sh: <http://www.w3.org/ns/shacl#> .

Listing 9: Example of how different subclass and equivalence relations between concepts are defined in the
KBActivityRecognition ontology module of the Activtiy Recognition ontology, allowing a semantic rea-
soner to derive whether an activity prediction corresponds to a person’s routine or not. To improve readability, all
definitions are listed in Manchester syntax and the KBActivityRecognition: prefix is replaced by :.

1 :RoutineActivityPrediction SubClassOf: ActivityRecognition:ActivityPrediction
2 :NonRoutineActivityPrediction SubClassOf: ActivityRecognition:ActivityPrediction
3
4 :RoutineShoweringActivityPrediction SubClassOf: :RoutineActivityPrediction
5 :RoutineShoweringActivityPrediction EquivalentTo:
6 :RoutineActivityPrediction and :ShoweringActivityPrediction
7 :RoutineShoweringActivityPrediction SubClassOf: :ShoweringActivityPrediction
8 :RoutineShoweringActivityPrediction EquivalentTo:
9 :ShoweringActivityPrediction and
10 (ActivityRecognition:activityPredictionMadeFor some :UserWithShoweringRoutine)
11
12 :NonRoutineShoweringActivityPrediction SubClassOf: :NonRoutineActivityPrediction
13 :NonRoutineShoweringActivityPrediction EquivalentTo:
14 :NonRoutineActivityPrediction and :ShoweringActivityPrediction
15 :NonRoutineShoweringActivityPrediction SubClassOf: :ShoweringActivityPrediction
16 :NonRoutineShoweringActivityPrediction EquivalentTo:
17 :ShoweringActivityPrediction and
18 (ActivityRecognition:activityPredictionMadeFor some :UserWithoutShoweringRoutine)
19
20 :ShoweringActivityPrediction SubClassOf: ActivityRecognition:ActivityPrediction
21 :ShoweringActivityPrediction EquivalentTo:
22 ActivityRecognition:ActivityPrediction and
23 (ActivityRecognition:forActivity some ActivityRecognition:Showering)
24
25 :UserWithShoweringRoutine EquivalentTo:
26 saref4ehaw:User and
27 (MonitoredPerson:hasRoutine some (

28 ActivityRecognition:Routine and
29 (ActivityRecognition:consistsOf some ActivityRecognition:Showering)))
30 :UserWithoutShoweringRoutine EquivalentTo:
31 saref4ehaw:User and
32 (:doesNotHaveActivityInRoutine some ActivityRecognition:Showering)

Listing 10: Context description of the example patient in the use case scenario and corresponding running example,
in RDF/Turtle syntax. Only a selected set of context definitions are presented, some are omitted.

1 # patient with ID 157 lives in a smart home called the HomeLab
2 patients:patient157 rdf:type saref4ehaw:Patient ;
3 MonitoredPerson:livesIn Homelab:homelab .
4
5 # patient has a location tag
6 patients:patient157 rdf:type saref4wear:Wearer .
7 Homelab:AQURA_10_10_145_9 saref4wear:isLocatedOn patients:patient157 ;
8 MonitoredPerson:hasLocation Homelab:homelab .
9
10 # patient has a morning routine consisting of a series of activities
11 patients:patient157 MonitoredPerson:hasRoutine :MorningRoutine_patient157 .
12 :MorningRoutine_patient157 rdf:type ActivityRecognition:MorningRoutine ;
13 ActivityRecognition:consistsOf _:A1, _:A2, _:A3, _:A4, _:A5, _:A6 ;
14 ActivityRecognition:nextActivity _:A1 .
15 _:A1 rdf:type ActivityRecognition:WakingUp ;
16 _:A2 rdf:type ActivityRecognition:Toileting .
17 _:A3 rdf:type ActivityRecognition:Showering .
18 _:A4 rdf:type ActivityRecognition:BrushingTeeth .
19 _:A5 rdf:type ActivityRecognition:EatingMeal .
20 _:A6 rdf:type ActivityRecognition:WatchingTVActively .
21 _:A1 ActivityRecognition:nextActivity _:A2 .
22 _:A2 ActivityRecognition:nextActivity _:A3 .
23 _:A3 ActivityRecognition:nextActivity _:A4 .
24 _:A4 ActivityRecognition:nextActivity _:A5 .
25 _:A5 ActivityRecognition:nextActivity _:A6 .
26
27 # patient is currently located in the bathroom
28 patients:patient157 MonitoredPerson:hasIndoorLocation Homelab:bathroom .

Listing 11: Context description of the service flat of the example patient in the use case scenario and corresponding
running example, in RDF/Turtle syntax. Only a selected set of context definitions are presented, some are omitted.

1 # the HomeLab building consists of a bathroom on the first floor
2 Homelab:homelab rdf:type saref4bldg:Building .
3 Homelab:firstfloor rdf:type SensorsAndActuators:Floor ;
4 saref4bldg:isSpaceOf Homelab:homelab .
5 Homelab:bathroom rdf:type SensorsAndActuators:BathRoom ;
6 saref4bldg:isSpaceOf Homelab:firstfloor .
7
8 # the bathroom contains a Netatmo sensor that measures, among others, relative humidity
9 <https://dahcc.idlab.ugent.be/Homelab/SensorsAndActuators/70:ee:50:67:3e:78>
10 rdf:type Homelab:Netatmo ;
11 core:measuresProperty Homelab:org.dyamand.types.airquality.CO2 ,
12 Homelab:org.dyamand.types.common.AtmosphericPressure ,
13 Homelab:org.dyamand.types.common.Loudness ,
14 Homelab:org.dyamand.types.common.RelativeHumidity ,
15 Homelab:org.dyamand.types.common.Temperature ;
16 Sensors:analyseStateOf Homelab:bathroom ;
17 saref4bldg:isContainedIn Homelab:bathroom .
18 Homelab:Netatmo rdf:type owl:Class ;
19 rdfs:subClassOf saref-core:Sensor .
20 Homelab:org.dyamand.types.common.RelativeHumidity
21 rdf:type SensorsAndActuators:RelativeHumidity .
22
23 # the HomeLab consists of a location system that can detect the room in which
24 # the patient is located based on a tag system
25 Homelab:AQURA_10_10_145_9 core:consistsOf Homelab:AQURA_10_10_145_9.Tag .
26 Homelab:AQURA_10_10_145_9.Tag rdf:type saref4bldg:Sensor ;
27 Sensors:analyseStateOf Homelab:AQURA_10_10_145_9 ;

28 core:measuresProperty Homelab:org.dyamand.aqura.AquraLocationState_Protego_User .
29 Homelab:org.dyamand.aqura.AquraLocationState_Protego_User
30 rdf:type SensorsAndActuators:Localisation .

A.2. End user definition of running example’s DIVIDE query as an ordered collection of SPARQL queries

The DIVIDE query corresponding to the running example is detailed in Section 5.1. This query can be defined
by an end user as an ordered collection of existing SPARQL queries. This definition can then be translated by the
DIVIDE query parser to its internal representation. This appendix section details this end user definition.

The stream and final queries of the definition are shown in Listing 12 and 13, respectively. There are no inter-
mediate queries. The context enrichment also consists of an empty set of queries, since the stream query is the first
query in the ordered set of SPARQL queries used in the stream reasoning system. However, Section A.3 of this
appendix discusses a related DIVIDE query that does include a context enrichment and intermediate queries.

Moreover, the DIVIDE query definition contains one stream window with the following properties:

– Stream IRI: http://protego.ilabt.imec.be/idlab.homelab
– Window definition: RANGE PT?rangeS STEP PT?slideS
– Default window parameter values: ?range has a default value of 30, ?slide has default value 10

This window definition contains the two variable window parameters ?range and slide. The definition of a
default value for both window parameters implies that they are not used as static window parameters. This can be
confirmed by observing their absence in the WHERE clause of the stream query in Listing 12.

In addition, the DIVIDE query definition contains the following solution modifier: ORDER BY DESC(?t)
LIMIT 1. This solution modifier contains the unbound variable name ?t, which is allowed since it is present in a
stream graph of the stream query (Listing 12, line 14).

The variable mapping of stream to final query consists of the stream query variables ?activityType,
?patient, and ?model, which are all mapped to the same variable name in the final query. In addition, it con-
tains the mapping of the variable ?now in the stream query to the variable ?t in the final query. The reason for
this final mapping becomes clear when inspecting the corresponding generic RSP-QL query pattern in the internal
representation of this DIVIDE query (Listing 3, lines 43–57): the literal object of the hasTimestamp property in
the resulting query output indeed corresponds to the ?now variable.

Listing 12: Stream query of the end user definition of the DIVIDE query of the running example that performs the
monitoring of the showering activity rule.

1 CONSTRUCT {
2 _:p rdf:type ActivityRecognition:ActivityPrediction ;
3 ActivityRecognition:forActivity [rdf:type ?activityType] ;
4 ActivityRecognition:activityPredictionMadeFor ?patient ;
5 ActivityRecognition:predictedBy ?model ; saref-core:hasTimestamp ?now .
6 }
7 FROM NAMED <http://protego.ilabt.imec.be/idlab.homelab>
8 FROM NAMED <http://protego.ilabt.imec.be/context>
9 WHERE {
10 BIND (NOW() as ?now)
11
12 GRAPH <http://protego.ilabt.imec.be/idlab.homelab> {
13 ?sensor saref-core:makesMeasurement [
14 saref-core:hasValue ?v ; saref-core:hasTimestamp ?t ;
15 saref-core:relatesToProperty ?prop_o] .
16 }
17
18 GRAPH <http://protego.ilabt.imec.be/context> {
19 ?model rdf:type ActivityRecognition:ActivityRecognitionModel ;
20 <https://w3id.org/eep#implements> [
21 rdf:type ActivityRecognition:Configuration ;
22 KBActivityRecognition:containsRule ?a] .
23 ?a rdf:type KBActivityRecognition:ActivityRule ;
24 ActivityRecognition:forActivity [rdf:type ?activityType] ;
25 KBActivityRecognition:hasCondition [

26 rdf:type KBActivityRecognition:RegularThreshold ;
27 KBActivityRecognition:isMinimumThreshold "true"^^xsd:boolean ;
28 saref-core:hasValue ?threshold ;
29 Sensors:analyseStateOf [rdf:type ?analyzed] ;
30 KBActivityRecognition:forProperty [rdf:type ?prop]
31] .
32
33 ?activityType rdfs:subClassOf KBActivityRecognition:DetectableActivity .
34 }
35
36 FILTER (xsd:float(?v) > xsd:float(?threshold))
37
38 GRAPH <http://protego.ilabt.imec.be/context> {
39 ?sensor rdf:type saref-core:Device ; saref-core:measuresProperty ?prop_o ;
40 Sensors:isRelevantTo ?room ; Sensors:analyseStateOf [rdf:type ?analyzed] .
41 ?prop_o rdf:type ?prop .
42
43 ?prop rdfs:subClassOf KBActivityRecognition:ConditionableProperty .
44 ?analyzed rdfs:subClassOf KBActivityRecognition:AnalyzableForCondition .
45
46 ?patient MonitoredPerson:hasIndoorLocation ?room .
47 }
48 }

Listing 13: Final query of the end user definition of the DIVIDE query of the running example that performs the
monitoring of the showering activity rule.

1 CONSTRUCT {
2 _:p rdf:type KBActivityRecognition:RoutineActivityPrediction ;
3 ActivityRecognition:forActivity [rdf:type ?activityType] ;
4 ActivityRecognition:activityPredictionMadeFor ?patient ;
5 ActivityRecognition:predictedBy ?model ; saref-core:hasTimestamp ?t .
6 }
7 WHERE {
8 ?p rdf:type KBActivityRecognition:RoutineActivityPrediction ;
9 ActivityRecognition:forActivity [rdf:type ?activityType] ;
10 ActivityRecognition:activityPredictionMadeFor ?patient ;
11 ActivityRecognition:predictedBy ?model ; saref-core:hasTimestamp ?t .
12 ?activityType rdfs:subClassOf KBActivityRecognition:DetectableActivity .
13 }

A.3. Additional use case examples associated with running example

The running example of the homecare monitoring use case focuses on the detection of in-home activities that are
part of the patient’s routine. However, this example does not cover three aspects of the DIVIDE query derivation:
the associated DIVIDE query does not have context-enriching queries, no intermediate queries, and no definitions
of variable window parameters. Therefore, this appendix zooms in on those aspects for two DIVIDE queries that
relate to the DIVIDE query of the running example.

A.3.1. Additional example 1: query detecting activities not in the patient’s routine
The first additional example focuses on the DIVIDE query that performs the monitoring of the shower-

ing activity rule in case the activity is not part of the patient’s routine. This DIVIDE query is very simi-
lar to the DIVIDE query of the running example. However, the output of this DIVIDE query should con-
tain instances of the class NonRoutineActivityPrediction. From the ontology definitions in Listing 9,
it follows that the derivation of such instances requires the association between patient and activity with the
doesNotHaveActivityInRoutine property for every activity type that is not in the patient’s routine. How-
ever, such definitions are not present in the regular patient context described in Listing 10. Hence, in an existing
stream reasoning system applying the DIVIDE query’s equivalent as a set of ordered SPARQL queries, the evalua-
tion of the stream query would be preceded by an additional query that is enriching the context with this informa-
tion. In the DIVIDE query definition, this first SPARQL query would be defined as a context-enriching query. It is
presented in Listing 14 for illustration purposes.

Listing 14: Context-enriching query in the definition of the DIVIDE query that detects an ongoing activity that is
not in a patient’s routine. It enriches the context with all activity types that are not part of the patient’s routines.

1 CONSTRUCT {
2 ?p KBActivityRecognition:doesNotHaveActivityInRoutine [rdf:type ?activityType] .
3 }
4 WHERE {
5 ?p rdf:type saref4ehaw:Patient .
6
7 ?activityType rdf:type owl:Class ;
8 rdfs:subClassOf KBActivityRecognition:DetectableActivity .
9
10 FILTER NOT EXISTS {
11 ?p MonitoredPerson:hasRoutine ?routine .
12 ?routine ActivityRecognition:consistsOf ?routineActivity .
13 ?routineActivity rdf:type ?activityType .
14 }
15 }

A.3.2. Additional example 2: indoor location monitoring query
The second additional example focuses on the DIVIDE query that corresponds to the monitoring of the patient’s

location in the home. This DIVIDE query includes variable dynamic window parameters and an intermediate query.

Dynamic window parameters The DIVIDE query contains two context-enriching queries that define multiple dy-
namic window parameters. These queries are shown in Listing 15. The dynamic window parameters defined in the
output of these queries are constructed based on the current context concerning any ongoing activity for this patient.
It makes a distinction between two scenarios: when an activity not in the patient’s routine is ongoing (first query),
and when an activity in the patient’s routine is ongoing (second query). Note that for the default case when no activ-
ity is currently ongoing, no dynamic window parameters are defined: in those cases, default values for the window
parameter variables will be substituted as static window parameters. Moreover, note that the two graph patterns in
the WHERE clauses of the queries are semantically distinct: there will never be more than one query for which the
graph pattern in the WHERE clause has a matching set of variables. This ensures that there is at most one value
defined for the two window parameter variables in the enriched context.

Listing 15: Context-enriching queries that define dynamic window parameters for the DIVIDE query that performs
the monitoring of the patient’s location in the home. They define the window parameters of this location query based
on the current context about any ongoing activity for this patient that is or is not part of the patient’s known routine.

1 # first context-enriching query
2 CONSTRUCT {
3 sd-query:pattern sd:windowParameters (
4 [sd-window:variable "range" ; sd-window:value 30 ; sd-window:type time:seconds]
5 [sd-window:variable "slide" ; sd-window:value 30 ; sd-window:type time:seconds])
6 } WHERE {
7 ?patient rdf:type saref4ehaw:Patient ; MonitoredPerson:livesIn ?home .
8 ?prediction1 rdf:type KBActivityRecognition:RoutineActivityPrediction ;
9 ActivityRecognition:activityPredictionMadeFor ?patient .
10 FILTER NOT EXISTS {
11 ?prediction2 rdf:type KBActivityRecognition:NonRoutineActivityPrediction ;
12 ActivityRecognition:activityPredictionMadeFor ?patient . }
13 }
14
15 # second context-enriching query
16 CONSTRUCT {
17 sd-query:pattern sd:windowParameters (
18 [sd-window:variable "range" ; sd-window:value 5 ; sd-window:type time:seconds]
19 [sd-window:variable "slide" ; sd-window:value 5 ; sd-window:type time:seconds])
20 } WHERE {
21 ?patient rdf:type saref4ehaw:Patient ; MonitoredPerson:livesIn ?home .
22 ?prediction1 rdf:type KBActivityRecognition:NonRoutineActivityPrediction ;
23 ActivityRecognition:activityPredictionMadeFor ?patient .
24 FILTER NOT EXISTS {
25 ?prediction2 rdf:type KBActivityRecognition:RoutineActivityPrediction ;
26 ActivityRecognition:activityPredictionMadeFor ?patient . }
27 }

Intermediate query The output constructed by the stream query in this DIVIDE query’s definition, is the following:

?patient MonitoredPerson:hasIndoorLocationString ?v ;
saref-core:hasTimestamp ?t .

The value of ?v contains the string representation of the indoor location, as measured by the localization system.
However, this does not yet define the location with its actual ontology entity IRI. Therefore, an intermediate query
could be used to make this translation. This way, the final query can look for the most recent location IRI. The
example of such a combination of intermediate and final query is presented in Listing 16. Note that it would also be
possible and semantically equivalent to integrate the translation done in the intermediate query into the final query.
However, for readability purposes, it is often better to have multiple, simpler SPARQL queries like in this example.

Listing 16: Example of intermediate query and final query in the end user definition of the DIVIDE query that
performs the monitoring of the patient’s location in the home. The solution modifier of the final query would be
ORDER BY DESC(?t) LIMIT 1 to retrieve the most recent location only.

1 # intermediate query
2 CONSTRUCT {
3 ?patient MonitoredPerson:hasIndoorLocationOfInterest [
4 saref-core:hasValue ?room; saref-core:hasTimestamp ?t] .
5 } WHERE {
6 ?patient MonitoredPerson:hasIndoorLocationString [
7 saref-core:hasValue ?l ; saref-core:hasTimestamp ?t] .
8
9 ?room rdf:type saref4bldg:BuildingSpace ; rdfs:label ?roomLabel .
10 FILTER (xsd:string(?roomLabel) = xsd:string(?l))
11 }
12
13 # final query
14 CONSTRUCT {
15 ?patient MonitoredPerson:hasIndoorLocation ?room .
16 } WHERE {
17 ?patient MonitoredPerson:hasIndoorLocationOfInterest [
18 saref-core:hasValue ?room; saref-core:hasTimestamp ?t] .
19 }

Appendix B. Configuration of the DIVIDE implementation

This appendix gives some examples of how our implementation of DIVIDE, which is presented in Section 7,
should be concretely configured.

– Listing 17 shows an example of the JSON configuration of the DIVIDE system.
– Listing 18 contains the JSON configuration of the DIVIDE query for the running use case example discussed

in Section 5.1. In other words, parsing the configured DIVIDE query with the DIVIDE query parser leads to
the DIVIDE query goal in Listing 2 and the sensor query rule in Listing 3.

Listing 17: Example JSON configuration of the DIVIDE system

1 {
2 "divide": {
3 "kb": { "type": "Jena", "baseIri": "http://protego.ilabt.imec.be/idlab.homelab/" },
4 "ontology": {
5 "dir": "definitions/ontology/",
6 "files": ["KBActivityRecognition.ttl", "ActivityRecognition.ttl", "MonitoredPerson.ttl",
7 "Sensors.ttl", "SensorsAndActuators.ttl", "SensorsAndWearables.ttl",
8 "_Homelab_tbox.ttl", "_HomelabWearable_tbox.ttl",
9 "imports/eep.ttl", "imports/affectedBy.ttl", "imports/cpannotationschema.ttl",
10 "imports/saref.ttl", "imports/saref4bldg.ttl", "imports/saref4ehaw.ttl", "imports/saref4wear.ttl"]

11 },
12 "queries": { "sparql": ["divide-queries/activity-showering.json"] },
13 "reasoner": { "handleTboxDefinitionsInContext": false },
14 "engine": {
15 "parser": {
16 "processUnmappedVariableMatches": false, "validateUnboundVariablesInRspQlQueryBody": true
17 },
18 "stopRspEngineStreamsOnContextChanges": true
19 }
20 },
21 "server": { "host": "localhost", "port": { "divide": 8342, "kb": 8343 } }
22 }

Listing 18: End user definition of the DIVIDE query of the running example that performs the monitoring of the
showering activity rule. The content of the file named stream-query.sparql is presented in Listing 12, the
content of the file named final-query.sparql is presented in Listing 13.

1 {
2 "streamWindows": [{
3 "streamIri": "http://protego.ilabt.imec.be/idlab.homelab",
4 "windowDefinition": "RANGE PT?{range}S STEP PT?{slide}S",
5 "defaultWindowParameterValues": { "?range": "30", "?slide": "10" }
6 }],
7 "streamQuery": "stream-query.sparql",
8 "finalQuery": "final-query.sparql",
9 "solutionModifier": "ORDER BY DESC(?t) LIMIT 1",
10 "streamToFinalQueryVariableMapping": {
11 "?activityType": "?activityType", "?patient": "?patient", "?model": "?model", "?now": "?t"
12 },
13 "contextEnrichment": {
14 "queries": [], "doReasoning": true, "executeOnOntologyTriples": true
15 }
16 }

Appendix C. Semantic activity rules of the DIVIDE evaluation scenarios

This appendix contains the semantic description of the activity rules used in the evaluation of the DIVIDE
system, as presented in Section 8.1.4. These rules include a rule for the toileting, showering and brushing teeth
activity. They are semantically defined using the Activity Recognition ontology presented in Section 3.2, in the
KBActivityRecognition ontology module. To improve readability, the KBActivityRecognition: pre-
fix is replaced by the : prefix in all semantic listings of this appendix.

– Toileting: the person present in the HomeLab is going to the toilet if a sensor that analyzes the energy con-
sumption of the water pump has a value higher than 0. This translates into the following activity rule definition:

:toileting_rule rdf:type :ActivityRule ;
ActivityRecognition:forActivity :_Toileting ;
:hasCondition :toileting_condition01 .

:toileting_condition01 rdf:type :RegularThreshold ;
:forProperty :_EnergyConsumption ;
Sensors:analyseStateOf :_Pump ;
:isMinimumThreshold "true"^^xsd:boolean ;
saref-core:hasValue "1.0E-5"^^xsd:float .

– Showering: the person present in the HomeLab bathroom is showering if the relative humidity in the bathroom
is at least 57%. This translates into the following activity rule definition:

:showering_rule rdf:type :ActivityRule ;
ActivityRecognition:forActivity :_Showering ;
:hasCondition :showering_condition01 .

:showering_condition01 rdf:type :RegularThreshold ;
:forProperty :_RelativeHumidity ;
Sensors:analyseStateOf :_BathRoom ;
:isMinimumThreshold "true"^^xsd:boolean ;
saref-core:hasValue "57.0"^^xsd:float .

– Brushing teeth: the person present in the HomeLab bathroom is performing the brushing teeth activity if in the
same time window (a) the sensor that analyzes the water running in the bathroom sink measures water running,
and (b) the activity index value of the person’s acceleration (measured by a wearable) is higher than 30. The
activity index based on acceleration is defined as the mean variance of the acceleration over the three axes.
This translates into the following activity rule definition:

:brushing_teeth_rule rdf:type :ActivityRule ;
ActivityRecognition:forActivity :_BrushingTeeth ;
:hasCondition :brushing_teeth_condition01 .

:brushing_teeth_condition01 rdf:type :AndCondition ;
:firstCondition :brushing_teeth_condition02 ;
:secondCondition :brushing_teeth_condition03 .

:brushing_teeth_condition02 rdf:type :RegularThreshold ;
:forProperty :_WaterRunning ;
Sensors:analyseStateOf :_Room ;
:isMinimumThreshold "true"^^xsd:boolean ;
saref-core:hasValue "1.0E-5"^^xsd:float .

:brushing_teeth_condition03 rdf:type :MeanVarianceThreshold ;
:forProperty :_WearableAcceleration ;
Sensors:analyseStateOf :_Patient ;
:isMinimumThreshold "true"^^xsd:boolean ;
saref-core:hasValue "30.0"^^xsd:float .

Appendix D. Additional results of the evaluation of DIVIDE in comparison with real-time reasoning
approaches

This appendix contains additional results of comparing the real-time evaluation of RSP queries derived by
DIVIDE on a C-SPARQL engine, with the other evaluation set-ups that do involve real-time reasoning. These results
are complementary to the results shown in Section 9.2, for the evaluation set-up as discussed in Section 8.3.1.

Figure 9 includes two boxplots that show the distribution of the total query execution times for the evaluation
of the toileting DIVIDE query, for each set-up over the multiple evaluation runs. The distribution is shown for two
timestamps corresponding to the mean values that are visualized in the timeline of Figure 5. Hence, the distributions
correspond to the total execution times measured during the same corresponding evaluation runs. Subfigure 9(a)
shows the distribution for the total execution times for the event, either streaming or incoming, generated 60 seconds
after starting the data simulation. Subfigure 9(b) visualizes this distribution for the event generated 1300 seconds
after the start of the data simulation. The results show how the non-streaming RDFox set-up has the smallest total
execution times in the beginning of the simulation after only 60 seconds, while DIVIDE has smaller total execution
times after 1300 seconds. Note that the boxplot distributions after 1300 seconds do not include results for the pipe
of C-SPARQL with RDFox set-up (3), the adapted streaming RDFox set-up (5) and the streaming Jena set-up (7)
due to those systems running out of memory before reaching this timestamp in the evaluation.

Figure 10 shows results completely similar to the results in Figure 9, but for the brushing teeth query. The distri-
butions that are visualized correspond to the mean values that are visualized in the timeline of Figure 7. Additional
results for the showering query are omitted due to their high similarity with the results of the other queries.

(a) At 60 seconds (b) At 1300 seconds

Figure 9. Results of the comparison of the DIVIDE real-time query evaluation approach with real-time reasoning approaches, for the toileting
query. For each evaluation set-up, the results show a boxplot distribution of the total execution time from the generation event (either a windowed
event in a streaming set-up or an incoming event in a non-streaming set-up) until the routine activity prediction as output of the (final) query. The
distribution is shown for two timestamps corresponding to the mean values for this timestamp plotted in Figure 5.

(a) At 60 seconds (b) At 1300 seconds

Figure 10. Results of the comparison of the DIVIDE real-time query evaluation approach with real-time reasoning approaches, for the brushing
teeth query. For each evaluation set-up, the results show a boxplot distribution of the total execution time from the generation event (either a
windowed event in a streaming set-up or an incoming event in a non-streaming set-up) until the routine activity prediction as output of the (final)
query. The distribution is shown for two timestamps corresponding to the mean values for this timestamp plotted in Figure 7.

	Introduction
	Background
	Research objectives and paper contribution
	Paper organization

	Related work
	Semantic Web, stream processing and stream reasoning
	Semantic IoT platforms and privacy preservation

	Use case description and set-up
	Use case description
	Activity recognition ontology
	Architectural use case set-up

	Overview of the DIVIDE system
	Initialization of the DIVIDE system
	Initialization of the DIVIDE queries
	Goal
	Sensor query rule with generic query pattern
	Context enrichment
	DIVIDE query parser

	Initialization of the DIVIDE ontology
	Initialization of the DIVIDE components

	DIVIDE query derivation
	Context enrichment
	Semantic reasoning to derive queries
	Query extraction
	Input variable substitution
	Window parameter substitution
	RSP engine query update

	Implementation of the DIVIDE system
	Technologies
	Configuration of DIVIDE
	Implementation of the ontology preprocessing
	Implementation of the DIVIDE query derivation

	Evaluation set-ups
	Evaluation scenarios
	Ontology
	Realistic dataset for rule extraction and simulation
	Context
	Activity rules

	Performance evaluation of DIVIDE
	Real-time evaluation of derived DIVIDE queries
	Evaluation of DIVIDE in comparison with real-time reasoning approaches
	Real-time evaluation of derived DIVIDE queries on a Raspberry Pi

	Evaluation Results
	Performance evaluation of DIVIDE
	Evaluation of DIVIDE in comparison with real-time reasoning approaches
	Real-time evaluation of derived DIVIDE queries on a Raspberry Pi

	Discussion
	Conclusion
	Acknowledgements
	Availability of data and materials
	References
	Appendix A. Additional details of homecare monitoring use case and running example
	Semantic representation of use case and running example
	End user definition of running example's DIVIDE query as an ordered collection of SPARQL queries
	Additional use case examples associated with running example
	Additional example 1: query detecting activities not in the patient's routine
	Additional example 2: indoor location monitoring query

	Appendix B. Configuration of the DIVIDE implementation
	Appendix C. Semantic activity rules of the DIVIDE evaluation scenarios
	Appendix D. Additional results of the evaluation of DIVIDE in comparison with real-time reasoning approaches

