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Effects of acute psychosocial 
stress on source level EEG power 
and functional connectivity 
measures
Gert Vanhollebeke 1,2*, Mitchel Kappen 1, Rudi De Raedt 1,3, Chris Baeken 1,4, 
Pieter van Mierlo 2,5 & Marie‑Anne Vanderhasselt 1,5

The usage of EEG to uncover the influence of psychosocial stressors (PSSs) on neural activity 
has gained significant attention throughout recent years, but the results are often troubled by 
confounding stressor types. To investigate the effect of PSSs alone on neural activity, we employed a 
paradigm where participants are exposed to negative peer comparison as PSS, while other possible 
stressors are kept constant, and compared this with a condition where participants received neutral 
feedback. We analyzed commonly used sensor level EEG indices (frontal theta, alpha, and beta power) 
and further investigated whether source level power and functional connectivity (i.e., the temporal 
dependence between spatially seperated brain regions) measures, which have to our knowledge not 
yet been used, are more sensitive to PSSs than sensor level‑derived EEG measures. Our results show 
that on sensor level, no significant frontal power changes are present (all p’s > 0.16), indicating that 
sensor level frontal power measures are not sensitive enough to be affected by only PSSs. On source 
level, we find increased alpha power (indicative of decreased cortical activity) in the left‑ and right 
precuneus and right posterior cingulate cortex (all p’s < 0.03) and increased functional connectivity 
between the left‑ and right precuneus (p < 0.001), indicating that acute, trial based PSSs lead to 
decreased precuneus/PCC activity, and possibly indicates a temporary disruption in the self‑referential 
neural processes of an individual.

Stress can be defined as the mental and physical reaction to personal or environmental stimuli that are deemed 
threatening to an  individual1. Research has consistently shown that, when endured for a prolonged time, stress 
negatively impacts both the onset and progression of a variety of illnesses such as coronary heart disease, depres-
sion, and anxiety  disorder2–5.

Given this repeatedly reported link between stress and disease, a significant amount of research has been dedi-
cated towards better understanding how stress affects individuals, and which stimuli lead to a stress  response6,7. 
Psychosocial stress has been identified as one of the most important forms of stress throughout an individual’s life 
given its strong link with the development of  psychopathology8. Psychosocial stress, present in either unpredict-
able or uncontrollable social situations which are deemed unpleasant or  threatening9, has obtained its prominent 
position due to the abundance of social interactions throughout daily  life8,10–12.

The role of the brain in the perception of stimuli as stressful and its reaction to stressors as the controlling 
agent of the following stress response has been a central focus of psychosocial stress  research13–15. Initially, brain 
activity related to psychosocial stress has been studied mainly with functional magnetic resonance imaging 
(fMRI), and multiple brain regions have been identified that are involved in the psychosocial stress response. 
Cortical regions commonly found are the anterior insula (often coactive with parts of the inferior frontal gyrus 
such as the pars triangularis and pars opercularis), the anterior and posterior cingulate gyrus (ACC, PCC), 
the precuneus (often coactive with the PCC), and the orbitofrontal cortex (for various systematic reviews and 
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meta-analyses,  see13,16–20). Subcortical regions such as the (para)hippocampus, thalamus, lentiform nucleus, 
caudate nucleus, putamen, and amygdala are also consistently reported to be  involved13,16,19. Aside from fMRI, 
electroencephalography (EEG) has been employed increasingly throughout recent years for the investigation 
of psychosocial stress-related brain activity. Our recent systematic review identified a total of 13 EEG measures 
that have been employed in psychosocial stress  research9. Most commonly employed is frontal alpha asymme-
try (with conflicting results between studies), alpha power (which decreases significantly due to psychosocial 
stressors), and beta power (which generally increases, although not significantly in our meta-analysis). Less 
commonly utilized measures are other power measures such as delta, theta, and sigma power, power ratios (the 
combination of power values from spatially distinct electrodes or from different frequency bands) and functional 
connectivity (FC, the study of temporal dependence between spatially distinct neural  events21)  measures9. EEG 
is also increasingly used for the detection of mental stress with machine learning, again showing the rise of this 
neuroimaging technique in stress  research22.

A variety of neuroimaging-compatible paradigms have been developed for the investigation of psychosocial 
stress. Although all paradigms employ a psychosocial stressor (e.g., negative feedback and peer comparison in 
the Montreal Imaging Stress Task  (MIST23), social exclusion in the Cyberball  paradigm24, or social-evaluative 
threat in the Trier Social Stress Test  (TSST25)), these psychosocial stressors are often accompanied by other 
stressors such as cognitive stressors (e.g., imposed time limits or task demands). This co-occurrence of stressor 
types makes it difficult to directly link the measured neural activity to the unique social aspect of the employed 
paradigm. Research has shown that different psychosocial stress paradigms evoke different neuronal responses 
from  individuals16, and a significant amount of research is being conducted for the development of EEG-based 
systems for the detection of psychosocial  stress22, so any ambiguity in neural activity changes due to co-occurring 
stressor types needs further clarification.

In a recent article, Ehrhardt and colleagues (2021) have explicitly investigated the contribution of various 
individual stressor types (cognitive effort, time pressure, and social-evaluative threat) to changes in alpha and 
beta band power of frontal electrodes (F7, F3, Fz, Fpz, F4 and F8). The sobering results from their analysis have 
shown that the employed psychosocial stressor (social-evaluative threat, the fear of being judged  negatively26) 
does not significantly alter power in either the alpha or beta band, indicating that results attributed to the social 
component of a stress paradigm instead seem to reflect changes in cognitive  processing27.

Although this implication is highly significant for the research field, psychosocial stress may be detectable 
by other EEG measures than frontal alpha or beta power. Sensor level-derived EEG measures are known to be 
affected by volume conduction, understood as the spreading of electrical signals from a single brain source 
throughout the  head28,29. Psychosocial stressor-induced neural changes might therefore not be sufficiently reg-
istered by sensor level-derived EEG measures or can be overpowered by other spontaneous brain  activity30. The 
usage of EEG source imaging, which projects the signals measured at the electrodes back to the neural sources 
within the  brain31, and the corresponding source space is therefore of special interest. Aside from source level 
power measures, functional connectivity measures might also capture changes induced by psychosocial stressors 
and thus give more insight into the neuronal psychosocial stress response.

To investigate whether purely psychosocial stressors affect source level-derived EEG indices, we developed a 
paradigm where participants were exposed to a psychosocial stressor while keeping co-occurring stressors such 
as time pressure or task demands constant between both conditions. Participants were instructed to solve Raven’s 
matrices of different levels of  difficulty32. After each matrix, participants received (comparative) feedback which 
was manipulated to induce psychosocial stress. In the control condition, participants received neutral feedback 
(i.e., the participant performs on par with other individuals), and in another condition, the negative condition, 
negative feedback (i.e., the participant performs (progressively) worse than other individuals). Time limits were 
kept equal between both conditions and to further eliminate possible interferences of the task itself, and only 
data collected during the feedback exposure were analyzed. To evaluate whether the applied stressor was suc-
cessful in eliciting a stress response, electrocardiography (ECG) data and state questionnaires, self-assessment 
manikins  (SAM33), were also collected throughout the study. The SAM contains two scales: arousal (degree of 
activation due to the stimuli, from low to high) and valence (experienced emotional reaction to the stimuli, 
from negative to positive).

The research questions of the current study are threefold. Firstly, we investigated whether the psychosocial 
stressor elicits a physiological and mental response from the participants. We hypothesized that in the ECG 
signal, similarly to other psychosocial stressors, we would find an increase in sympathetic reactivity, identified 
by an increased heart rate acceleration, during the negative-, compared to the control  condition34–36. We further 
hypothesized that in the SAM, in line with prior research, an increase in the arousal scale and a decrease in the 
valence scale would be  found37. Secondly, we tried to reproduce the results found by Ehrhardt and colleagues 
(2021) and therefore computed frontal theta, alpha, and beta power at the sensor level, and compared the 
negative to the control condition. We hypothesized that similar to those results, no changes in these commonly 
used EEG measures due to a psychosocial stressor alone would be found. Finally, we investigated whether the 
purely psychosocial aspect of a stressor would be effective enough to affect source level-derived EEG measures. 
Therefore, we investigated the cortical regions commonly found in fMRI research (i.e., the anterior insula, ACC, 
PCC, precuneus, and orbitofrontal cortex; see above) and computed both their band power (theta, alpha, and 
beta) and the functional connectivity between them. Functional connectivity was estimated using amplitude 
envelope correlation (AEC), a robust connectivity  measure38,39. Given previous fMRI research, we hypothesized 
an increase in beta power in the anterior insula and an increase in alpha power in the precuneus and  PCC16. We 
had no specific directional hypotheses regarding the functional connectivity estimates.
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Results
Given that this article is part of a larger project, the SAM and ECG analysis (sections  "ECG results" and "SAM 
results") have also been described in another  article40. We refer the interested reader to the aforementioned article 
by Kappen and colleagues (2022) for further information.

ECG results. A Generalized Linear Mixed Model (GLMM) with gama distribution (R formula = IBI-dif-
ference ~ Condition + (1|Participant_ID)) revealed a significant interaction effect for IBI-difference x Condition. 
During the negative feedback,  IBI2 to  IBI7 (with  IBI0 being the one closest to the feedback onset) were sig-
nificantly lower than during the control feedback (p’s <  = 0.001), thus indicating that negative feedback resulted 
in an increased heart rate acceleration, confirming our hypothesis that negative feedback would result in an 
increase in sympathetic reactivity.

SAM results. The GLMMs with gamma distributions (one for each axis of the SAM; R formula = Scale_
score ~ Condition + (1|Participant_ID)) revealed a significant Condition effect for both valence and arousal. 
Valence decreased significantly during the negative condition compared to the control condition (p < 0.001), 
confirming our  hypothesis37. Arousal also decreased significantly between the control condition and negative 
condition (p = 0.034), contradicting our  hypothesis37.

EEG results. A summary of all EEG results (regardless of significance) can be found in the supplementary 
materials (link: https:// osf. io/ xjstp). In the following sections, only significant results will be described.

Sensor level. The frequentist statistical analysis from GLMMs with gamma distributions (R formula = Pow-
erValue ~ Condition + (1|Participant) indicated that no significant changes for the sensor level analyses (frontal 
theta, alpha and beta power) were found (p’s > 0.16). The subsequent Bayesian statistical analysis provided mod-
erate evidence in favor of the null hypothesis for theta power (BF01 = 6.40) and beta power (BF01 = 8.79). For 
alpha power, the Bayesian analysis provided anecdotal evidence in favor of the null hypothesis (BF01 = 1.24).

Source level. Five source level results are significant, all significant results are from GLMMs with gamma 
distributions (R formula = PowerValue ~ Condition + (1|Participant) for relative power measures  ; R for-
mula = FCValue ~ Condition + (1|Participant) for functional connectivity (FC) measures). The relative alpha 
power of the right posterior cingulate cortex (ß = 0.018; SE = 0.0042; t = 4.202; p < 0.001; standardized effect size 
(SES) = 0.1 with 95% confidence interval (CI) = 0.05; 0.15), left precuneus (ß = 0.013; SE = 0.004; t = 3.124; p = 0.03; 
SES = 0.07; CI = 0.03;0.12) and right precuneus (ß = 0.02; SE = 0.004; t = 4.385; p < 0.001; SES = 0.11, CI = 0.06; 
0.16) all increase significantly in the negative- compared to the control condition, confirming our hypothe-
sis. The functional connection in the alpha frequency range between the left- and right precuneus (ß = 0.017; 
SE = 0.002; t = 8.188; p < 0.001; SES = 0.08; CI = 0.06; 0.1)) also increased in the negative condition. One further 
functional connection (between the right PCC and right precuneus in the beta frequency range) remained sig-
nificant after multiple comparison correction, but the model failed to converge due to the minimal difference 
between conditions, and thus will not be discussed further. All other analyses revealed no significant differences 
between conditions (p’s > 0.15), contradicting our other hypotheses regarding an increase in beta power in the 
anterior  insulae16. For all models, sex did not improve the models significantly (all p’s > 0.12).

Discussion and conclusion
Previous research investigating the neural signature of the psychosocial stress response through means of EEG 
has identified changes in several EEG indices, most notably band  power9. A recent article by Ehrhardt and 
colleagues (2021), however, has shown that two of the most commonly investigated indices, frontal alpha, and 
beta power, do not seem sensitive enough to change significantly by psychosocial stressors alone. Previously 
reported alfa and beta band power changes might therefore not reflect the influence of psychosocial stressors 
themselves, but rather the influence of co-occurring stressors such as time pressure or cognitive processes related 
to the task at hand. While this insight is puzzling and demands reflection within the research field, it is possible 
that other EEG indices, such as source level-derived power and functional connectivity measures, do change 
significantly due to psychosocial stressors alone. To investigate this, we exposed a large sample of healthy adults 
to a psychosocial stressor using a within-subjects design by providing manipulated feedback. Participants were 
shown either a personal performance on par with a comparison group (control condition) or a worse personal 
performance compared to a group of high-achieving peers (negative condition). We kept other stressors such 
as time limits or cognitive tasks constant in both conditions and to further exclude cognitive processing-related 
oscillatory interferences, we only analyzed the EEG data collected during feedback exposure. Aside from EEG 
data, we also collected ECG data to investigate whether psychosocial stressors lead to a short-term physiological 
reaction and a state questionnaire, the self-assessment manikin, to probe the mental state of the participants.

Analysis of the IBIs from the ECG data during the feedback revealed that during the negative condition, the 
IBI-difference from  IBI2 to  IBI7 was significantly shorter than during the control condition, indicating a higher 
heart rate acceleration during the negative  condition40. Heart rate acceleration is a sign of sympathetic nerv-
ous (re)activity, which is known to be increased due to  stress35,36,41. The higher heart rate acceleration during 
the negative condition, therefore, indicates a higher short-term sympathetic reactivity, indicating the effect of 
the psychosocial stressor. Results of the SAM showed a significant decrease in both valence and arousal. The 
decrease in valence aligns with our hypothesis and indicates the effect of the negative feedback on the mood of 
the participants. The decrease in arousal does not align with our hypothesis, and might reflect a possible order 
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effect due to the control condition being before the negative condition or an unclear translation of the word 
arousal to Dutch (which has the same translation of the English word excitement). Given the increased heart 
rate acceleration and decrease in valence in the negative condition however, we conclude that the psychosocial 
stress induction was successfull.

Analysis of the EEG data shows that on the sensor level, frequentist statistical analysis revealed no significant 
changes in either theta, alpha, or beta power of frontal electrodes between conditions. These results reaffirm 
the results of Ehrhardt and  colleagues27 and show that, when employing frequentist statistics, psychosocial 
stressors alone are not capable of inducing significant changes in these commonly employed sensor level EEG 
measures. The subsequent Bayesian analyses further provided moderate evidence in favor of the null hypothesis 
(i.e., psychosocial stressors do not lead to significant changes in sensor level band power of frontal electrodes) 
for theta and beta power. For theta power, the BF01 was 6.4, suggesting that our results are 6.4 times more likely 
to be observed under the null hypothesis. Our recent systematic review found contradicting results regarding 
theta power, which might be explained by the fact that this EEG measure is not sensitive enough to detect psy-
chosocial stress related neuronal changes, as our results  suggest9. Similarly, the BF01 for beta power was 8.79, 
suggesting that the null hypothesis is 8.79 more likely given our results. This result is also in line with our recent 
meta-analysis, which revealed a non-significant effect size for beta power across  studies9. Contrary to the Bayes 
factors for theta and beta power, only anecdotal evidence in favor of the null hypothesis for alpha power was 
found (BF01 being 1.24). Our meta-analysis for alpha power identified a significant effect size, and alpha power 
was found to be the best feature for mental stress detection in another recent  review9,22. Although our results 
regarding alpha power at frontal electrodes align with those of Ehrhardt and  colleagues27, no strong evidence 
was found for the null hypothesis either. Future studies should therefore further examine the exact influence of 
psychosocial stressors on frontal alpha power changes. While the weight of this conclusion cannot be ignored, 
it should be noted that in both the article of Ehrhardt and colleagues (2021) and the current article, subtle psy-
chosocial stressors are employed. Ehrhardt and colleagues (2021) used a video camera and the announcement 
of the analysis of performance and behavior while in the current article manipulated feedback was employed 
as a psychosocial stressor. It is possible that more potent psychosocial stressors, such as direct exposure to an 
unfriendly panel of experts in the  TSST25, are capable of inducing sensor level EEG changes (for an overview of 
articles that use the TSST with EEG, see the supplementary materials  of9). Further is it also possible that band 
power changes in other electrodes, aside from those investigated in the current article, are sensitive to psycho-
social stressor induced neural changes. An exploratory whole-brain, sensor-level analysis for theta, alpha, and 
beta power was conducted (link: https:// osf. io/ epk8c) that indicated no significant changes in the theta and beta 
range (theta power results: https:// osf. io/ zepu4; beta power results: https:// osf. io/ dq27w), but showed that alpha 
power changed significantly between the neutral and negative feedback condition for several parietal electrodes 
(link: https:// osf. io/ pkejw). These significant changes might reflect the observed effect in the precuneus and PCC 
and demonstrate the value of assessing psychosocial stress at electrodes outside of the commonly investigated 
frontal  electrodes9. Regardless, technical problems in sensor level analyses related to volume conduction, whereby 
activity of (mainly) occipital neural generators are picked up by frontal electrodes, should be considered and 
sensor level power measures therefore, need to be interpreted with severe  caution29.

In the source space, in contrast to the non-significant results of the commonly employed sensor level EEG 
indices, a significant increase in alpha power in the right precuneus and posterior cingulate cortex (PCC), as well 
as the left precuneus, are found in the negative, compared to the control condition. Furthermore, an increase in 
functional connectivity between the left and right precuneus, computed using amplitude envelope correlation, 
was observed. The significant changes found in source space all point to a single direction: an increase of activity 
and connectivity in the alpha band of the precuneus/PCC complex. Oscillations in the alpha frequency range 
are assumed to reflect an inhibitory coordination system within the  brain42,43 and increases in alpha power are 
therefore expected to reflect decreases in cortical  activity44. Our results thus implicate that a short-term psy-
chosocial stressor leads to an acute decrease in cortical activity of the precuneus/PCC cluster. This decrease in 
precuneus/PCC activity aligns with a recent meta-analysis of fMRI studies studying psychosocial stress, which 
also found a decrease in (BOLD) activity in the precuneus and  PCC16. Interestingly, studies investigating trial-
based manipulation-free social comparisons also report changes in precuneus and PCC  activity45,46. These studies, 
however, sometimes find increased precuneus/PCC activity, an incongruence also identified in another review 
of fMRI studies employing a variety of  stressors19. This incongruence mainly highlights the complex interactions 
within the brain and indicates the necessity for further investigation. Finally, precuneus/PCC activity is also 
found in an EEG study investigating social  comparisons47. This study, which employed event-related potentials 
(ERPs) to investigate social comparisons, identified the (pre)cuneus as the generator of an ERP (early negativity) 
when participants felt shameful in a social context, linking the cluster again to negative social  comparison47. 
Taken together, our results show that uncontrollable negative peer comparison leads to decreased activity of the 
precuneus/PCC complex.

The precuneus/PCC complex is a key region of the default mode network (DMN), a network active when 
no external tasks are presented to an individual which has been linked with self-reflective, internally directed 
 thoughts48. Several studies have also identified increased activity in the precunes/PCC complex during tasks 
related to self-reflection49–51. These activations can be explained by the integrative model of the PCC from 
Cavanna and colleagues, which poses that PCC activity increases when thoughts are more internally  focussed52. 
Consequently, decreased activity of the precuneus and PCC have also been linked with tasks that are less self 
oriented when compared to more self-oriented  tasks50. Activity changes in the precuneus and PCC have further 
been reported during emotion regulation. In a recent article of Guendelman and colleagues, it was shown that 
increased activity of the precuneus/PCC (contrary to our findings of decreased activity) was associated with both 
lower self-reported stress as well as decreased autonomic sympathetic activation during emotion  regulation53. 
Increased precuneus activity has also been reported in women with higher self-compassion, and was further 
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linked with decreased levels of perceived stress during the viewing high arousal negative valence  pictures54. Dis-
rupted precuneus/PCC activity is further identified in several stress-related psychiatric disorders, such as post-
traumatic stress  disorder55, social anxiety  disorder56, and  depression57. Taken together, our results of decreased 
precuneus/PCC activity might thus imply a short-term attentional shift from internal towards external focus for 
the regulation of an acute external threat (i.e., a psychosocial stressor)52,58,59.

While our results are promising and show that psychosocial stressors do lead to significant changes in EEG 
indices, it should be noted that these observed changes are small. The likely reason for the small effect sizes is 
the subtlety of the employed stressor and inherently limited sensitivity of EEG as a neuroimaging  technique30. In 
conclusion, in this article, we have shown that source level-derived EEG indices are, contrary to the commonly 
utilized sensor level-derived indices alpha and beta power of frontal electrodes, sensitive enough to investigate 
neuronal changes due to purely psychosocial stressors. The modest effect sizes hint at the limited capability of 
EEG to capture subtle mental changes in an individual. We therefore advise other researchers in the field to (1) 
use large participant groups; (2) employ within-subject designs and (3) use potent psychosocial stressors such as 
the TSST to further investigate the effects of pure psychosocial stressors on neural activity, as measured by EEG.

Materials and methods
Participants. A convenience sample of eighty-three healthy, Dutch-speaking individuals was recruited from 
the general population through internet postings on social media. All participants were right-handed, had no 
personal or familial history of epilepsy, have not had any neurosurgical procedure throughout their life, did not 
have any psychiatric-, neurological-, substance abuse-, heart-, respiratory-, or eye disorder in their life, had no 
metal or magnetic objects in their body or brain, were not using any psychoactive medication and had no skin 
conditions at the level of the head. All participants refrained from caffeine and nicotine in the two hours leading 
up to the experiment. Data was collected between 10 a.m. and 5 p.m. Data from 10 participants was not used 
(two participants had incomplete data, and eight participants were excluded due to insufficient EEG data qual-
ity based on visual inspection or remaining epoch amount after artifact rejection), resulting in a final dataset of 
73 participants (47 females,  Mage = 22.8,  SDage = 5.3, Age range = 18–47 years). The experiment was conducted in 
accordance with the Declaration of Helsinki and was approved by the Medical Ethical Committee of the Ghent 
University Hospital (registration number: B670201940636). Participants received €30 for their participation.

Experimental procedure. Study paradigm. Before in-person data collection, participants gave their in-
formed consent and filled in trait questionnaires (this study is part of a larger project, and these trait question-
naires are not further discussed in this article) through the online platform  Limesurvey60. In-person data was 
collected in a dedicated room at the Department of Neurology at the Ghent University hospital. Upon arrival, 
participants gave their written consent again (on paper), after which the EEG and ECG electrodes were applied 
(total duration between 20 and 45 min). After electrode placement, participants were seated in a chair in front 
of a computer monitor (Dell E2216H) at a distance of around 60 cm and were told to remain seated and move as 
little as possible to reduce the presence of motion artifacts in the data. Instructions and tasks for the experiment 
were given using E-Prime 2.0 (Psychology Software Tools, Pittsburgh, PA) and the SAMs were collected using a 
custom app on a tablet (Huawei MediaPad M5).

After the introduction and electrode placement, participants rested for 10 min with closed eyes (habitua-
tion), after which they filled in a SAM questionnaire (see section "Self-assessment manikin"). Following the 
initial resting period, the control condition was presented. In the control condition, participants solved a series 
of Raven’s matrices (see section "Trial and feedback") in three blocks, with each block either lasting six minutes 
or ending when the participant solved all 11 matrices assigned to the block. After each block, participants filled 
in a SAM. After the control condition, participants rested again for 10 min (followed by a SAM) after which the 
negative condition was presented. The negative condition was identical to the control condition, aside from a 
manipulation during the feedback (see section "Trial and feedback"). After the negative condition, participants 
rested for a third time for 10 min (followed by a final SAM), after which they were debriefed about the goal of 
the study, and payment information was collected. The study paradigm is shown in Fig. 1.

Trial and feedback. In both the control and negative condition, participants were instructed to solve Raven’s 
matrices. Raven’s matrices are a visual exercise where eight figures are presented in a 3 × 3 raster with an empty 
space in the lower right part of the raster (see Fig. 1, bottom for an example). The goal of the exercise is to 
select the ninth figure (from 8 possibilities) which completes the raster by identifying the pattern shared by the 
eight initially shown  figures32. Shown above the Raven’s matrix was a countdown timer, which showed the time 
left to solve the Raven’s matrix in seconds. Three levels of difficulty were defined for the Raven’s matrices and 
the allowed time to solve each problem depended on the difficulty of the individual matrix (20 s for easy, 45 s 
for medium, and 100 s for difficult; see OSF (link: https:// osf. io/ py63g) for further information regarding the 
Raven’s matrices). Participants solved the matrices by pressing a number between 1 and 8 with their right hand 
on the keyboard Numpad, corresponding to one of the eight possible solutions. When the Raven’s matrix ended 
(either through a response of the participant, or a time-out) a feedback screen consisting of three components 
was shown for six seconds. The first component (top) was a three-colored (red, yellow, green) comparison bar 
containing two arrows indicating 1) the individual and 2) the average performance of a comparison group; the 
second component (center) was a single word indicating the evaluation of the participant’s response (“correct!”, 
“incorrect!” or “time-out!”); the third component (bottom) was a short text showing the participant how long 
it took him/her to solve the matrix, and a comparison to the aforementioned average performance (see Fig. 1, 
bottom).

https://osf.io/py63g
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Cover story and manipulation. To induce psychosocial stress, participants were told that the study investigated 
possible EEG indices that might be indicative of future (either academic or professional) success in life. Par-
ticipants were told that to investigate this, they would solve a well-known IQ test (i.e., Raven’s matrices) while 
EEG data was collected. Participants were further told that to assess future success, their performance would be 
compared with two groups. Firstly, they would be compared with a control group of average individuals (i.e., the 
control condition) and afterward, they would be compared to individuals which achieved significant academic 
or professional success in their life (i.e., the negative condition). Finally, participants were told that their per-
formance was calculated based on both the correctness of their answers and the time it took to solve each trial.

The manipulation happened in the feedback that the participants received. During the control condition, 
regardless of the performance of the participant, the feedback showed that the individual performance was 
about equal to the average performance of the comparison group. This was shown in the comparison bar (top) 
and the short text (bottom), which declared what percentage of the subjects in the comparison group found the 
correct answer. During the negative condition, in each block participants’ performance started roughly on par 
with the comparison group, but became progressively worse while the participant progressed through the block, 
regardless of the true performance of the participant (see supplemental Fig. 2; link: https:// osf. io/ wpukf). The 
progression from being on par to performing below the average was chosen to increase the believability of the 
feedback. This was shown in the comparison bar, which indicated that the personal score decreased while the 
average score remained similar throughout the exercises. The short sentence at the bottom also changed slightly, 
now indicating what percentage of people found the answer quicker than the participant when they answered 

Figure 1.  Visualization of the study paradigm. Off-Site: start of the study where a participant reads and signs 
the informed consent and afterwards completes the trait questionnaires. On-Site: part of the study where the 
participant comes to the University Hospital. SAM: moment when a self-assessment manikin questionnaire 
is recorded. Preparation: participant signs the informed consent again, EEG and other electrodes are applied. 
Rest: Resting-State, eyes closed EEG recording. Control Condition: participant performs the task, with neutral 
feedback. Negative Condition: participants performs the task, but receives negative feedback, regardless of their 
performance. Debriefing: end of the experiment. Participants are told about the goal of the study, are told that 
the feedback in the negative condition was not real, and are thanked for their participation. Block 1/2/3: block of 
a condition. Each block lasts either 6 min, or ends when a participant has solved all 11 Raven’s Matrices assigned 
(randomly) to the specific block.

https://osf.io/wpukf
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correctly, or which amount of participants did find the correct answer when the participant answered incorrectly 
or did not give an answer in time (see Fig. 1, bottom).

Self-assessment manikin. To assess the mental state of the participants throughout the experiment, the self-
assessment manikin (SAM), a non-verbal questionnaire that assesses the state affective reaction of an individual, 
was  conducted33,61. The SAM consists of three rows, each containing 9 pictures, indicating various levels of 
arousal and valence, and the participants selected a picture in each row that best corresponded to their emotional 
state at that moment. The picture scale corresponds to a Likert scale (range 1–9). The SAM was chosen, aside 
from its simple design and easy interpretation, to make it less likely that participants became aware of the goal of 
the study (i.e., repeated questions related to “stress” or “negative feelings” might make participants suspicious). 
The pictures as well as the corresponding instructions can be found on OSF (picture link: https:// osf. io/ 6sy5t; 
instruction link: https:// osf. io/ se7qj).

ECG analysis. To assess whether negative feedback elicited a physiological reaction, the ECG data were 
analyzed during the feedback segments. Event-related cardiac responses, computed using inter-beat intervals 
(IBIs) which indicate the time between individual heartbeats, were therefore  analyzed62,63. To analyze the feed-
back moments, the R-peak closest to the onset of the feedback was selected and the IBI compared to the previ-
ous R-peak was computed and defined as  IBI0. From  IBI0, the three preceding IBIs  (IBI-3,  IBI-2,  IBI-1) and eight 
subsequent IBIs  (IBI1 until  IBI8) were also computed (see supplementary materials for more information, link: 
https:// osf. io/ yvzr5). All IBIs were then re-referenced to  IBI-2, thus obtaining IBI-difference scores (similar to 
previous research, see Gunther Moor et al.62; van der Veen et al.63). Positive/negative IBI-difference scores can be 
interpreted as a heart rate acceleration/deceleration (compared to the reference IBI;  IBI-2).

EEG equipment and analysis. EEG equipment. EEG data was collected at 57 standard locations accord-
ing to the international 10–10 system using a 64-channel, Ag/AgCl electrode Waveguard cap (ANT Neuro, the 
Netherlands) combined with a MICROMED SD LTM 64 EEG amplifier (Micromed S.p.A., Mogliano, Italy). 
Cz was used for online referencing while AFz was used as ground. Given the limited recording channels of the 
amplifier, four channels (PO7, PO8, O1, O2) were omitted from EEG recording for physiological data record-
ing (electrocardiography (ECG) and electrodermal activity (EDA))). Electrode impedances were kept below 20 
kΩ during data acquisition and data was collected at a sampling rate of 512 Hz. Data was filtered online using a 
high-pass filter at 0.008 Hz.

Preprocessing. EEG data were preprocessed using BrainVision Analyzer (Version 2.1., Brain Products GmbH, 
Gilching, Germany). Before preprocessing, the complete control and negative condition segments were extracted 
from the continuous EEG recording. The following preprocessing steps were performed for both EEG segments 
identically. Firstly, irrelevant channels for EEG preprocessing (i.e., ECG and EDA channels) were removed. Sec-
ondly, all data were filtered (50 Hz (Notch Filter), 1–40 Hz (IIR bandpass filter, 48 decibels/octave)). Thirdly, bad 
channels (channels with high amounts of electrical noise, identified by visual inspection) were interpolated (top-
ographic spline interpolation, spline order = 4, maximal degree of Legendre polynomials = 10, lambda = 1e-5). 
Fourthly, Independent Component Analysis (ICA) with standard settings was performed and components 
representing eye movements, heart rhythm activity, or muscle movement were manually selected (based on 
their topography and time course) and removed. Afterward, remaining artifacts were detected based on three 
criteria: gradient (maximum allowed voltage step of 50 µV/ms), min–max (maximum allowed voltage range of 
200 µV/200 ms), and low activity (minimum of 0.5 µV/100 ms). Artifacts detected by this method were tagged 
200  ms before and after the identified artifact. Epochs of 6.2  s were created based on the feedback triggers 
(200 ms before until 6 s (feedback exposure duration) after the trigger) and epochs containing artifacts were 
removed. Finally, the EEG data were re-referenced to an average reference, and data was exported in EDF + for-
mat for further analysis. A visual representation of the preprocessing pipeline and the preprocessed data (not the 
raw data) can be found on OSF (link: https:// osf. io/ qxmgy).

Sensor level analysis. For the sensor level analysis (i.e., analysis of the time series measured by the electrodes) 
average power in the theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) frequency band of 6 frontal elec-
trodes (F7, F3, Fz, FPz, F4, F8) was computed. Preprocessed EEG data were first converted from EDF + format to 
MATLAB .mat files for further usage (these files can be found on OSF; link: https:// osf. io/ tywxp). Relative power, 
meaning the average power in a defined frequency band divided by the total power of the considered spectrum 
(1–40 Hz), was computed. Power of the EEG signals was computed using Welch’s spectral power density estimate 
(MATLAB function: pwelch) and a 1/f noise correction is employed with the correction exponent equal to  one30. 
Relative power was computed for each of the aforementioned electrodes separately and the average of these val-
ues is calculated to obtain a mean power estimate of the frontal cortical regions. All sensor level analyses were 
performed using custom code in MATLAB and can be found on OSF (link: https:// osf. io/ tywxp).

Source level analysis. Source modeling. EEG source modeling was performed using the Brainstorm 
 Toolbox64. The USCBrain atlas and corresponding T1 weighted MRI image were used for this processing step 
as no individual MRI images of the participants were  available65. The T1 image is an average image from five 
different high-resolution MRI scans from a single right-handed female. The EEG electrodes were co-registered 
to the MRI image using LPA, RPA, FPz, and Oz as landmarks and the obtained coordinates were converted 
to the corresponding MNI coordinates. To construct the head model, the SimNIBS mri2mesh Finite Element 

https://osf.io/6sy5t
https://osf.io/se7qj
https://osf.io/yvzr5
https://osf.io/qxmgy
https://osf.io/tywxp
https://osf.io/tywxp
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Method (FEM, known for its high spatial  resolution66) was employed, resulting in a 5-layer (scalp, skull, gray 
matter, white matter, and cerebrospinal fluid) FEM mesh of 642,359  vertices67,68. To solve the forward problem 
and obtain the leadfield matrix, evenly spaced (5 mm) dipoles were defined in the gray matter (15,269 in total), 
and the placement of the electrodes was finalized by visual inspection using the aforementioned landmarks and 
projecting the electrodes directly on the scalp. The forward model and corresponding leadfield matrix were 
obtained using the DUNEURO toolbox within  Brainstorm69. Isotropic conductivities were used (scalp = 0.43, 
skull = 0.008, GM = 0.33, WM = 0.14, CSF = 1.79) and the default options were used for the FEM solver type and 
source model. To solve the inverse problem, the orientation of the dipoles was constrained and set to be normal 
to the cortex and current density maps (unit Ampere-Meters) were obtained using the weighted minimum norm 
estimation method (wMNE, known for the limited spatial  leakage70,71) with default options for depth weighting 
and regularization. Sensor noise was estimated using the diagonal of the noise covariance matrix. Finally, time 
series of all scouts of the USCBrain atlas (65 regions in each hemisphere, 130 in total) were obtained by taking 
the mean of all dipole values belonging to a scout. The obtained scout time series were extracted from the Brain-
storm toolbox for subsequent analyses. The standard settings for the different steps can be found on OSF (link : 
https:// osf. io/ 8t9rq).

Mapping of brain regions to atlas regions. As indicated in the introduction, various brain regions of inter-
est (ROI) have been identified in previous  research13,16–20. Based on the literature, we selected 10 regions (five 
regions in each hemisphere) for further investigation: the anterior insula (combined with parts of the pars tri-
angularis and opercularis), the ACC , the PCC, the precuneus, and the orbitofrontal cortex. Table 1 shows which 
regions (called scouts) of the USCBrain atlas have been selected for further analysis. Given the limited temporal 
resolution of EEG, multiple USCBrain scouts were combined for the anterior insula and orbitofrontal cortex to 
obtain brain regions that are within the spatial resolution possibilities of EEG. If multiple regions of the atlas 
were selected, a single time series was obtained by extracting the first principal component of the selected time 
series using principal component analysis. The selected brain ROIs are shown in Fig. 2.

Table 1.  Conversion of brain ROIs to scouts of the USCBrain  Atlas65.

Brain ROI USCBrain Scouts (L) USCBrain scouts (R)

Anterior insula

Insula—anterior L Insula—anterior R

Pars Opercularis—Inferior L Pars Opercularis—Inferior R

Pars Opercularis—Superior L Pars Opercularis—Superior R

Pars Triangularis—Middle L Pars Triangularis—Middle R

Pars Triangularis—Posterior L Pars Triangularis—Posterior R

PCC Cingulate Gyrus—Posterior L Cingulate Gyrus—Posterior R

Precuneus Precuneus—Inferior L Precuneus—Inferior R

ACC Cingulate Gyrus—Anterior L Cingulate Gyrus—Anterior R

Orbitofrontal cortex

Anterior Orbito-frontal Gyrus L Anterior Orbito-frontal Gyrus R

Gyrus Rectus L Gyrus Rectus R

Middle Orbito-frontal Gyrus L Middle Orbito-frontal Gyrus R

Figure 2.  Visualization of the investigated brain ROIs. (1): Anterior Insula; (2): Orbitofrontal Cortex; (3): 
Precuneus; (4): Posterior Cingulate Cortex (PCC); (5): Anterior Cingulate Cortex (ACC). Note: Only the left 
hemisphere is shown in this figure, the contralateral ROIs are also included in the analyses. 

https://osf.io/8t9rq
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Power analysis. Power analysis on source level was conducted identically as on sensor level (see section "Sensor 
level analysis"). Relative power of the theta (4–8 Hz), alpha (8–13 Hz), and beta (13–30 Hz) frequency range was 
computed for the brain regions defined in Table 1. All source level power analyses were performed using custom 
code in MATLAB. The analysis scripts can be found on OSF (link: https:// osf. io/ tywxp).

Functional connectivity analysis. To assess functional connections between the brain ROIs (see Table  1), 
amplitude envelope correlation (AEC), a robust linear, undirected, and bivariate FC measure was  used38,39,72,73. 
To calculate AEC, the time series of each brain region were band-passed so only the signals in a specific fre-
quency range were considered (see Fig. 3.1). The band-passed signals were then pairwise orthogonalized (see 
Fig. 3.2.) using a stabilized Gram-Schmidt orthogonalization algorithm. Orthogonalization was performed to 
minimize the effect of spatial leakage due to the blurring effect of the weighted minimum norm estimation, which 
could lead to spurious functional  connections74. Since this orthogonalization method is non-symmetric (i.e., 
GSO(Sig1,  Sig2) does not equal GSO(Sig2,  Sig1)), orthogonalization was performed twice and all steps described 
below were conducted on each pair of orthogonalized signals. The final FC value was obtained by averaging the 
two FC values. Next, the power envelope of the orthogonalized time series was obtained by applying a Hilbert 
transform (MATLAB function: hilbert) and subsequently taking the absolute value of the Hilbert-transformed 
signal (see Fig. 3.3). Finally, the correlation between both power envelopes was calculated, resulting in a single 
AEC value that describes the functional connectivity strength between two brain regions (see Fig. 3.4). This 
analysis was conducted for each epoch and frequency band separately, and the final AEC value was obtained by 
averaging the epoch-specific AEC values.

Due to the large amount of possible functional connections which can be computed (for 10 brain regions and 
3 frequency bands; 135 connections), initial results of the source power analysis were used to reduce the search 
space for the FC analysis. These initial results showed changes in activity within the alpha and beta frequency 
range and showed that the left and right precuneus seemed to be highly affected. Therefore only connections 
between the left or right precuneus and the other regions in the alpha and beta frequency range were considered. 
This led to 34 (17 connections, 2 frequency bands) possible connections. All source level functional connectivity 
analyses were performed using custom code in MATLAB. The scripts can be found on OSF (link: https:// osf. 
io/ tywxp).

Statistical analysis. Statistical analysis was conducted using R (version 4.1.1.) and RStudio (version 
2022.02.1.). All information regarding the statistical analysis can be found on OSF (the script: https:// osf. io/ 
u8zyv; information regarding used packages: https:// osf. io/ ekfcp; how to run the analysis: https:// osf. io/ vgz3x; 
how to convert EEG results to statistical tables: https:// osf. io/ 389r4; the script of the Bayesian analysis : https:// 
osf. io/ 76jev).

SAM analysis. For the SAM analysis (and all subsequent analyses), generalized linear mixed models (GLMMs) 
were employed (R package: lme4). The score on each scale (valence, arousal) was defined as a dependent variable, 
while the condition (control, negative) was used as a fixed effect and participant ID as a random effect (R for-

Figure 3.  Visualization of the functional connectivity analysis. (1): Selection of the timeseries of brain ROIs of 
interest. (2): Preparing the timeseries by bandpass filtering (to only investigate the frequency band of interest) 
and orthogonalization (to eliminate spatial leakage due to the blurring of the minimum norm estimation). 
(3): Computing the amplitude envelope of each timeseries using the Hilbert transform. (4): Computing the 
correlation between the timeseries to obtain the AEC value. The orthogonalization step is performed twice, as 
are all subsequent steps for each set of orthogonalized timeseries.

https://osf.io/tywxp
https://osf.io/tywxp
https://osf.io/tywxp
https://osf.io/u8zyv
https://osf.io/u8zyv
https://osf.io/ekfcp
https://osf.io/vgz3x
https://osf.io/389r4
https://osf.io/76jev
https://osf.io/76jev
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mula: Scale_score ~ Condition + (1|Participant_ID)). Two models were trained: a linear mixed model (LMM) and 
a generalized linear mixed model (GLMM) using a gamma distribution and identity link. The models were com-
pared using the Akaike Information Criterion (AIC), which assesses how much variance in the data is explained 
by the model (i.e., a lower AIC score indicates more variance is explained), and the model with the lowest AIC 
score was selected. The possible added value of participants’ sex was assessed by building a new model with sex 
included as a fixed effect (R formula: Scale_Score ~ Condition + Sex + (1|Participant_ID)) and comparing both 
models using an ANOVA test (type III). Given the preference for parsimonious models (i.e., models with fewer 
fixed or random effects are easier to interpret, and are less likely to  overfit79), if the ANOVA showed that the 
model with sex as effect did not explain the variance in the data significantly better (i.e., the p-value of the 
ANOVA test is > 0.05) it was concluded that the sex of the participants did not contribute significantly and was 
therefore excluded from the model. See Kappen et al.40 for a detailed explanation.

ECG analysis. Analysis of the ECG-IBI data was similar to the SAM analysis. The twelve IBI-differences  (IBI-3 
to  IBI12) were the dependent variable, condition (positive, negative) a fixed effect, and participant ID a random 
effect (R formula: IBI-difference ~ Condition + (1|Participant_ID)). The possible added value of sex was assessed 
identically as the SAM analysis (see section "SAM analysis"). Contrary to the SAM analysis, however, only a 
linear model was computed due to the presence of negative values for the dependent variable, which is incom-
patible with gamma distributions. See Kappen et al., (2022) for further explanations.

EEG power analysis. Before the statistical analysis of the EEG measures was performed, participants who did 
not have at least 15 epochs for both conditions (i.e., the neutral and negative feedback condition) were not 
included in the analysis, which lead to the exclusion of three participants. A full overview of the epoch amount 
for each participant can be found on OSF (link: https:// osf. io/ 49azx).

Frequentist statistical analysis. For both the sensor and source power analyses, a similar approach as the SAM 
and ECG analysis was employed. The power values of either the mean of the frontal electrodes or the individual 
brain regions were the dependent variable, while the condition was a fixed effect and the participant ID a ran-
dom effect (R formula: PowerValue ~ Condition + (1|Participant)). Both an LMM and GLMM were trained, given 
the fixed range of power values ([0, 1]; 0 = no power; 1 = all power) and model selection was performed using 
AIC (see section "SAM analysis"). The possible added value of sex was assessed identically as in section "SAM 
analysis". Estimated marginal means (EMMs) were computed (using the emmeans function), and the p-value 
from the Condition contrast was obtained. To gain further insight into the results, standardized effect sizes (SES, 
similar to Cohen’s D but adapted for non-normal disributions) and corresponding confidence intervals (CI) 
were computed (eff_size function).

Bayesian statistical analysis. For the sensor power analyses, a subsequent Bayesian analysis was conducted, as 
we hypothesized the absence of a significant difference between conditions. Firstly, two GLMMs with gamma 
distributions were trained for the power values of each frequency band separately. The first model was identi-
cal to the model described in the previous section, with the power value as dependent variable, the condition 
and participant sex as fixed effect and the participant ID as random effect (R formula: PowerValue ~ Condi-
tion + Sex + (1|Participant)). The second model (the null model) was trained without the condition as fixed effect 
(R formula: PowerValue ~ Sex + (1|Participant)). The Bayes factor (BF01) comparing both models was computed 
using the formula by Wagenmakers, which employs the Bayes Information Criterion (BIC) and does not require 
the definition of prior  distributions75. BF01 compares the likelihood of the data under the null model, which did 
not include condition as a fixed effect  (H0) with the likelihood of the data under the alternative model, which 
includes condition as fixed effect  (HA). Larger BF01 values suggest the presence of evidence that favors the null 
hypothesis  (H0) and the obtained BF01 factors were interpreted according to  Jeffreys76.

EEG functional connectivity analysis. For FC values, statistical analyses were conducted similarly to section 
“EEG power analysis”. The main difference is that, since AEC has a range of [-1, 1], gamma GLMMs are not 
always possible given the inability of gamma GLMMs to work with non-positive values. Therefore, LMMs are 
always trained, and if possible (i.e., the currently considered functional connection does not have negative values 
for any participant) gamma GLMMs were trained. The further analysis was conducted as described in section 
“EEG power analysis”.

Multiple comparison correction. To correct for the multiple tests that were conducted (67; 3 (sensor level 
power), 30 (10 × 3 source level power), 34 (17 × 2 source level FC)), all obtained p-values were corrected for 
multiple comparisons using the false discovery rate correction method  (FDR77). These FDR-corrected p-values 
are reported in the result section.

Ethical approval. Ethical approval for the current study was obtained from the Medical Ethical committee 
of the Ghent University Hospital (registration number: B670201940636). 

Consent to participate. All participants signed an informed consent form before participating to the study.
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Limitations
Some limitations in the current study can be noted. Firstly, the possibility of an order effect due to the positioning 
of the conditions is present. This positioning was chosen since counterbalancing would only have been possible 
when the resting time between conditions would be multiple hours (or days), given the long recovery phase 
of  stressors78. However, as our results are in line with previous neuroimaging research (both fMRI and EEG), 
we believe that if present, order effects will have a minimal influence on our results. Secondly, the psychosocial 
stressor that was employed is subtle, which likely reduces the effect sizes. This makes it difficult to generalize 
our findings to all psychosocial stressors. Thirdly, the feedback screen consisted of multiple parts, so it might be 
possible that some confounding effect are introduced. Fourthly, the amount of EEG electrodes is relatively low 
for EEG source imaging. Related to this, a template MRI image is also used, which does not perfectly match the 
brain structure of the participants. The sizes of the chosen source level brain regions however are quite large, 
which makes the misattribution of electrical activity to regions not likely. Finally, it should be mentioned that 
aside from the brain regions investigated in this study, other regions, mainly subcortical regions not accessible by 
EEG due to their deep location within the brain, are also consistently reported in previous studies. It is likely that, 
to better understand the reaction of the brain to psychosocial stressors, these regions should also be considered.

Data availability
All data, except for the raw EEG data, is available on OSF (link: https:// osf. io/ 5qew6/).

Code availability
Code is available on OSF (link: https:// osf. io/ 5qew6) and Github (link: https:// github. com/ dx2r/ PhD_ EEG_ 
Pipel ine).

Received: 9 January 2023; Accepted: 24 May 2023

References
 1. Folkman, S. & Lazarus, R. S. Stress, Appraisal, and Coping (Springer, 1984).
 2. Daviu, N., Bruchas, M. R., Moghaddam, B., Sandi, C. & Beyeler, A. Neurobiological links between stress and anxiety. Neurobiol. 

Stress 11, 100191 (2019).
 3. Mazure, C. M. Life stressors as risk factors in depression. Clin. Psychol. Sci. Pract. 5, 291–313 (1998).
 4. Sara, J. D. et al. Association between Work-Related stress and coronary heart disease: A review of prospective studies through the 

job strain, Effort-Reward balance, and organizational justice models. J. Am. Heart Assoc. 7, e008073 (2018).
 5. Tennant, C. Work-related stress and depressive disorders. J. Psychosom. Res. 51, 697–704 (2001).
 6. Biondi, M. & Picardi, A. Psychological stress and neuroendocrine function in humans: The last two decades of research. Psychother. 

Psychosom. 68, 114–150 (1999).
 7. Mauno, S., Herttalampi, M., Minkkinen, J., Feldt, T. & Kubicek, B. Is work intensification bad for employees? A review of outcomes 

for employees over the last two decades. Work Stress 37, 100–125 (2022).
 8. Dedoncker, J., Vanderhasselt, M.-A., Ottaviani, C. & Slavich, G. M. Mental health during the COVID-19 pandemic and beyond: 

The importance of the vagus nerve for biopsychosocial resilience. Neurosci. Biobehav. Rev. 125, 1–10 (2021).
 9. Vanhollebeke, G. et al. The neural correlates of psychosocial stress: A systematic review and meta-analysis of spectral analysis EEG 

studies. Neurobiol. Stress 18, 100452 (2022).
 10. Backé, E.-M., Seidler, A., Latza, U., Rossnagel, K. & Schumann, B. The role of psychosocial stress at work for the development of 

cardiovascular diseases: A systematic review. Int. Arch. Occup. Environ. Health 85, 67–79 (2012).
 11. Siegrist, J. Chronic psychosocial stress at work and risk of depression: Evidence from prospective studies. Eur. Arch. Psychiatry 

Clin. Neurosci. 258, 115 (2008).
 12. Vanderhasselt, M.-A., Remue, J., Ng, K. K., Mueller, S. C. & De Raedt, R. The regulation of positive and negative social feedback: 

A psychophysiological study. Cogn. Affect. Behav. Neurosci. 15, 553–563 (2015).
 13. Dedovic, K., D’Aguiar, C. & Pruessner, J. C. What stress does to your brain: A review of neuroimaging studies. Can. J. Psychiatry 

54, 6–15 (2009).
 14. McEwen, B. S. Physiology and neurobiology of stress and adaptation: Central role of the brain. Physiol. Rev. 87, 873–904 (2007).
 15. McEwen, B. S. The brain is the central organ of stress and adaptation. Neuroimage 47, 911 (2009).
 16. Berretz, G., Packheiser, J., Kumsta, R., Wolf, O. T. & Ocklenburg, S. The brain under stress-A systematic review and activation 

likelihood estimation meta-analysis of changes in BOLD signal associated with acute stress exposure. Neurosci. Biobehav. Rev. 
124, 89–99 (2021).

 17. Cacioppo, S. et al. A quantitative meta-analysis of functional imaging studies of social rejection. Sci. Rep. 3, 1–3 (2013).
 18. Kogler, L. et al. Psychosocial versus physiological stress - Meta-analyses on deactivations and activations of the neural correlates 

of stress reactions. Neuroimage 119, 235–251 (2015).
 19. van Oort, J. et al. How the brain connects in response to acute stress: A review at the human brain systems level. Neurosci. Biobehav. 

Rev. 83, 281–297 (2017).
 20. Wang, H., Braun, C. & Enck, P. How the brain reacts to social stress (exclusion)–A scoping review. Neurosci. Biobehav. Rev. 80, 

80–88 (2017).
 21. Friston, K. J. Functional and effective connectivity in neuroimaging: A synthesis. Hum. Brain Mapp. 2, 56–78 (1994).
 22. Katmah, R. et al. A review on mental stress assessment methods using EEG signals. Sensors 21, 5043 (2021).
 23. Dedovic, K. et al. The montreal imaging stress task: Using functional imaging to investigate the effects of perceiving and processing 

psychosocial stress in the human brain. J. Psychiatry Neurosci. 30, 319–325 (2005).
 24. Williams, K. D., Cheung, C. K. T. & Choi, W. Cyberostracism: Effects of being ignored over the Internet. J. Pers. Soc. Psychol. 79, 

748–762 (2000).
 25. Kirschbaum, C., Pirke, K. M. & Hellhammer, D. H. The ’Trier Social Stress Test’–a tool for investigating psychobiological stress 

responses in a laboratory setting. Neuropsychobiology 28, 76–81 (1993).
 26. Dickerson, S. S. Emotional and physiological responses to social-evaluative threat. Soc. Personal. Psychol. Compass 2, 1362–1378 

(2008).
 27. Ehrhardt, N. M., Fietz, J., Kopf-Beck, J., Kappelmann, N. & Brem, A.-K. Separating EEG correlates of stress: Cognitive effort, time 

pressure, and social-evaluative threat. Eur. J. Neurosci. https:// doi. org/ 10. 1111/ ejn. 15211 (2021).

https://osf.io/5qew6/
https://osf.io/5qew6
https://github.com/dx2r/PhD_EEG_Pipeline
https://github.com/dx2r/PhD_EEG_Pipeline
https://doi.org/10.1111/ejn.15211


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:8807  | https://doi.org/10.1038/s41598-023-35808-y

www.nature.com/scientificreports/

 28. Nunez, P. L., Nunez, M. D. & Srinivasan, R. Multi-scale neural sources of EEG: Genuine, equivalent, and representative. A tutorial 
review. Brain Topogr. 32, 193–214 (2019).

 29. Schaworonkow, N. & Nikulin, V. V. Is sensor space analysis good enough? Spatial patterns as a tool for assessing spatial mixing of 
EEG/MEG rhythms. Neuroimage. https:// doi. org/ 10. 1101/ 2021. 09. 11. 459914 (2021).

 30. Cohen, M. X. Analyzing Neural Time Series Data: Theory and Practice (MIT Press, Berlin, 2014).
 31. Michel, C. M. & Brunet, D. EEG source imaging: A practical review of the analysis steps. Front. Neurol. 10, 325 (2019).
 32. Raven, J. C. & Court, J. H. Raven’s Progressive Matrices (Western Psychological Services Los Angeles, 1938).
 33. Bradley, M. M. & Lang, P. J. Measuring emotion: The self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. 

Psychiatry 25, 49–59 (1994).
 34. Kudielka, B. M., Schommer, N. C., Hellhammer, D. H. & Kirschbaum, C. Acute HPA axis responses, heart rate, and mood changes 

to psychosocial stress (TSST) in humans at different times of day. Psychoneuroendocrinology 29, 983–992 (2004).
 35. Taelman, J., Vandeput, S., Spaepen, A. & Huffel, S. V. Influence of mental stress on heart rate and heart rate variability. in 4th 

European conference of the international federation for medical and biological engineering 1366–1369 (Springer, 2009).
 36. Vrijkotte, T. G., Van Doornen, L. J. & De Geus, E. J. Effects of work stress on ambulatory blood pressure, heart rate, and heart rate 

variability. Hypertension 35, 880–886 (2000).
 37. Kuppens, P., Tuerlinckx, F., Russell, J. A. & Barrett, L. F. The relation between valence and arousal in subjective experience. Psychol. 

Bull. 139, 917 (2013).
 38. Colclough, G. L. et al. How reliable are MEG resting-state connectivity metrics?. Neuroimage 138, 284–293 (2016).
 39. Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M. & Engel, A. K. Large-scale cortical correlation structure of spontaneous oscil-

latory activity. Nat. Neurosci. 15, 884–890 (2012).
 40. Kappen, M. et al. Acoustic speech features in social comparison: How stress impacts the way you sound. Sci. Rep. 12, 22022. https:// 

doi. org/ 10. 1038/ s41598- 022- 26375-9 (2022).
 41. Ziegler, M. G. Psychological stress and the autonomic nervous system. In Primer on the Autonomic Nervous System (eds Robertson, 

D. et al.) (Elsevier, 2012).
 42. Jensen, O. & Mazaheri, A. Shaping functional architecture by oscillatory alpha activity: Gating by inhibition. Front. Hum. Neurosci. 

4, 186 (2010).
 43. Mathewson, K. E. et al. Pulsed out of awareness: EEG alpha oscillations represent a pulsed-inhibition of ongoing cortical process-

ing. Front. Psychol. 2, 99 (2011).
 44. Allen, J. J. B., Coan, J. A. & Nazarian, M. Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry 

in emotion. Biol. Psychol. 67, 183–218 (2004).
 45. Fliessbach, K. et al. Social comparison affects reward-related brain activity in the human ventral striatum. Science 318, 1305–1308 

(2007).
 46. Lindner, M. et al. Neural patterns underlying social comparisons of personal performance. Soc. Cogn. Affect. Neurosci. 10, 569–576 

(2015).
 47. Sánchez-García, J. et al. Neural dynamics of pride and shame in social context: An approach with event-related brain electrical 

potentials. Brain Struct. Funct. 226, 1855–1869 (2021).
 48. Fransson, P. & Marrelec, G. The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence 

from a partial correlation network analysis. Neuroimage 42, 1178–1184 (2008).
 49. Johnson, S. C. et al. Neural correlates of self-reflection. Brain 125, 1808–1814 (2002).
 50. Lou, H. C. et al. Parietal cortex and representation of the mental self. Proc. Natl. Acad. Sci. 101, 6827–6832 (2004).
 51. Buckner, R. L. & Carroll, D. C. Self-projection and the brain. Trends Cogn. Sci. 11, 49–57 (2007).
 52. Cavanna, A. E. & Trimble, M. R. The precuneus: A review of its functional anatomy and behavioural correlates. Brain 129, 564–583 

(2006).
 53. Guendelman, S., Bayer, M., Prehn, K. & Dziobek, I. Regulating negative emotions of others reduces own stress: Neurobiological 

correlates and the role of individual differences in empathy. Neuroimage 254, 119134 (2022).
 54. Pires, F. B. et al. Self-compassion is associated with less stress and depression and greater attention and brain response to affective 

stimuli in women managers. BMC Womens Health 18, 1–7 (2018).
 55. Andrewes, D. G. & Jenkins, L. M. The role of the amygdala and the ventromedial prefrontal cortex in emotional regulation: Impli-

cations for post-traumatic stress disorder. Neuropsychol. Rev. 29, 220–243 (2019).
 56. Yuan, C. et al. Precuneus-related regional and network functional deficits in social anxiety disorder: A resting-state functional 

MRI study. Compr. Psychiatry 82, 22–29 (2018).
 57. Grimm, S. et al. Increased self-focus in major depressive disorder is related to neural abnormalities in subcortical-cortical midline 

structures. Hum. Brain Mapp. 30, 2617–2627 (2009).
 58. Cabanis, M. et al. The precuneus and the insula in self-attributional processes. Cogn. Affect. Behav. Neurosci. 13, 330–345 (2013).
 59. Leech, R. & Sharp, D. J. The role of the posterior cingulate cortex in cognition and disease. Brain 137, 12–32 (2014).
 60. Schmitz, C. LimeSurvey: An open source survey tool. LimeSurvey Proj. Hambg. Ger. https:// www. limes urvey. org/ (2012).
 61. Lang, P. J. Self-assessment manikin. Gainesv. FL Cent. Res. Psychophysiol. Univ. Fla. (1980).
 62. Gunther Moor, B., Crone, E. A. & van der Molen, M. W. The heartbrake of social rejection: Heart rate deceleration in response to 

unexpected peer rejection. Psychol. Sci. 21, 1326–1333 (2010).
 63. van der Veen, F. M., van der Molen, M. W., Sahibdin, P. P. & Franken, I. H. The heart-break of social rejection versus the brain 

wave of social acceptance. Soc. Cogn. Affect. Neurosci. 9, 1346–1351 (2014).
 64. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D. & Leahy, R. M. Brainstorm: A user-friendly application for MEG/EEG analysis. 

Comput. Intell. Neurosci. 2011, e879716 (2011).
 65. Joshi, A. A. et al. A hybrid high-resolution anatomical MRI atlas with sub-parcellation of cortical gyri using resting fMRI. J. 

Neurosci. Methods 374, 109566 (2020).
 66. Cuffin, B. N., Schomer, D. L., Ives, J. R. & Blume, H. Experimental tests of EEG source localization accuracy in spherical head 

models. Clin. Neurophysiol. 112, 46–51 (2001).
 67. Thielscher, A., Antunes, A. & Saturnino, G. B. Field modeling for transcranial magnetic stimulation: A useful tool to understand 

the physiological effects of TMS? in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology 
Society (EMBC) 222–225 (2015). doi:https:// doi. org/ 10. 1109/ EMBC. 2015. 73183 40.

 68. Windhoff, M., Opitz, A. & Thielscher, A. Electric field calculations in brain stimulation based on finite elements: An optimized 
processing pipeline for the generation and usage of accurate individual head models. (2013).

 69. Medani, T. et al. Realistic head modeling of electromagnetic brain activity: an integrated Brainstorm-DUNEuro pipeline from 
MRI data to the FEM solutions. in Medical Imaging 2021: Physics of Medical Imaging vol. 11595 1369–1376 (SPIE, 2021).

 70. Stenroos, M. & Hauk, O. Minimum-norm cortical source estimation in layered head models is robust against skull conductivity 
error. Neuroimage 81, 265–272 (2013).

 71. Song, J. et al. EEG source localization: Sensor density and head surface coverage. J. Neurosci. Methods 256, 9–21 (2015).
 72. Brookes, M. J. et al. Measuring functional connectivity using MEG: methodology and comparison with fcMRI. Neuroimage 56, 

1082–1104 (2011).
 73. Brookes, M. J., Woolrich, M. W. & Barnes, G. R. Measuring functional connectivity in MEG: A multivariate approach insensitive 

to linear source leakage. Neuroimage 63, 910–920 (2012).

https://doi.org/10.1101/2021.09.11.459914
https://doi.org/10.1038/s41598-022-26375-9
https://doi.org/10.1038/s41598-022-26375-9
https://www.limesurvey.org/
https://doi.org/10.1109/EMBC.2015.7318340


13

Vol.:(0123456789)

Scientific Reports |         (2023) 13:8807  | https://doi.org/10.1038/s41598-023-35808-y

www.nature.com/scientificreports/

 74. Nunez, P. L. & Srinivasan, R. Electric Fields of the Brain: The Neurophysics of EEG (Oxford University Press, 2006).
 75. Wagenmakers, E.-J. A practical solution to the pervasive problems of p values. Psychon. Bull. Rev. 14, 779–804 (2007).
 76. Jeffreys, H. Theory of Probability 3rd edn. (Oxford University Press, Oxford, 1961).
 77. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. 

Soc. Ser. B Methodol. 57, 289–300 (1995).
 78. Vaisvaser, S. et al. Neural traces of stress: Cortisol related sustained enhancement of amygdala-hippocampal functional connectiv-

ity. Front. Hum. Neurosci. 7, 313 (2013).
 79. Bates, D., Kliegl, R., Vasishth, S. & Baayen, H. Parsimonious Mixed Models. Preprint at https:// doi. org/ 10. 48550/ arXiv. 1506. 04967 

(2018).

Author contributions
G.V., M.K. and M.A.V. designed the study. G.V. and M.K. collected the data. M.K. conducted the ECG and Ques-
tionnaire analysis. G.V. conducted the EEG analysis. G.V. wrote the first draft of the article. All authors helped 
with the interpretation of the results and the final version of the article and gave approval for publication. All 
participant explicitely gave consent for the publication of the current article.

Funding
Ir. G.V. was supported by a grant from the Bijzonder Onderzoeksfonds (Grant Number : BOFSTA2017002501). 
G.V. and P.V.M. were supported by the Swiss National Science Foundation (Grant Number: CRS115-180365).

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to G.V.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.48550/arXiv.1506.04967
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Effects of acute psychosocial stress on source level EEG power and functional connectivity measures
	Results
	ECG results. 
	SAM results. 
	EEG results. 
	Sensor level. 
	Source level. 


	Discussion and conclusion
	Materials and methods
	Participants. 
	Experimental procedure. 
	Study paradigm. 
	Trial and feedback. 
	Cover story and manipulation. 
	Self-assessment manikin. 

	ECG analysis. 
	EEG equipment and analysis. 
	EEG equipment. 
	Preprocessing. 
	Sensor level analysis. 
	Source level analysis. 
	Source modeling. 
	Mapping of brain regions to atlas regions. 
	Power analysis. 
	Functional connectivity analysis. 


	Statistical analysis. 
	SAM analysis. 
	ECG analysis. 
	EEG power analysis. 
	Frequentist statistical analysis. 
	Bayesian statistical analysis. 

	EEG functional connectivity analysis. 
	Multiple comparison correction. 

	Ethical approval. 
	Consent to participate. 

	Limitations
	References


