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Abstract—Indoor positioning systems using Ultra Wideband
(UWB) achieve high positioning accuracy (<30 cm). However,
traditional localization approaches require many packet ex-
changes (e.g. two-way ranging) or challenging clock synchro-
nization (e.g. time difference of arrival). To remedy this, we
propose active fingerprinting using the channel impulse response
(CIR) from a single UWB packet received at each UWB anchor.
The proposed neural network anchor-subset selection method
with Savitzky-Golay filter achieves a low mean absolute error
(20.9—87.0 cm), in contrast to signal strength based fingerprint-
ing approaches that realize accuracies of 2—3 m. Finally, with
CIR interpolation the data collection overhead is reduced.

Index Terms—UWB, fingerprinting, neural networks

I. INTRODUCTION

Indoor positioning systems (IPSs) are an active field of
research in domains such as industry 4.0, home automation,
warehouse inventory management, sports activity tracking,
healthcare, etc. Wi-Fi and Bluetooth Low Energy (BLE)
technologies are often utilized since they are already present in
existing communication networks [1]. Typically, these systems
rely on received signal strength indicators (RSSIs) to estimate
the distance, which results in a 2 —3 m error (the “positioning
accuracy”) due to the presence of non-line-of-sight (NLOS)
and multi-path fading effects [2]. More recently, phase-based
receivers have been proposed to offer higher accuracy, but
these solutions require more expensive hardware and antenna
systems [3]. Ultra Wideband (UWB) positioning systems are
gaining a lot of attention by the research community and
are appearing in consumer products e.g., Apple and Samsung
mobile phones. The UWB technology offers a very high
temporal resolution due to the use of a high wireless bandwidth
to transmit packets and is more resistant to multi-path fading
effects, which are significant advantages over other competing
technologies [4]. This allows UWB positioning systems to
accurately (sub-1 ns) estimate the time of flight (TOF) between
a positioning tag and anchor. Three main approaches are used
to determine accurate 2D and 3D positions in UWB posi-
tioning systems: (i) two way ranging (TWR) (e.g. asymmetric
double-sided TWR) ensures accurate TOF ranging, without
clock synchronization between the tag and anchor and can
mitigate processing time differences between the two ranging
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devices [5] [6], (i1) time difference of arrival (TDOA) uses one-
way communication, with the tag typically sending an UWB
packet received by each anchor (the opposite way also exists),
and calculates the difference in the time when the packet was
received at each anchor [7], and (iii) angle of arrival (AOA),
a technique to calculate the angle between the sending and
receiving devices [8]. For 2D or 3D positioning, different
approaches are used: trilateration for TWR, multilateration
for TDOA and triangulation for AOA triangulation. Although
these approaches have already demonstrated accurate results,
they are not without drawbacks. TWR involves sending three
packets between each tag-anchor pair. The amount of packets
sent, increases when many anchors are used, which limits
scalability, positioning update rates and energy consumption.
TDOA and AOA do not require multiple packets between
each tag-anchor pair. However, these approaches remain chal-
lenging, needing clock synchronization between the receiving
anchors or require expensive antenna hardware to calculate
TDOA and AOA, respectively. Fingerprinting approaches do
not have such requirements as they typically rely on RSSI
measurements at each anchor. Moreover, off-the-shelf (OTS)
UWB chips, i.e. the Decawave DW 1000, can provide more
fine-grained information such as first- and multipath signal
amplitudes, making them an excellent candidate for finger-
printing [9].

Related work for UWB fingerprinting is summarized in
Table 1. The authors of [10] and [11] both use feature-based
data from Wi-Fi and UWB technologies, and from UWB
CIRs, respectively, on simulated data to predict 2D positions,
with a mean absolute error (MAE) of 65-200 cm. In [10] a
large number of transmissions are required to estimate one 2D
position. In [12] the ranges of UWB TWR are used to predict
2D positions in NLOS conditions, with a MAE of 6-23 cm.
However, using ranges does require more UWB transmissions
(3 / UWB anchor) and limits scalability. At the time of writing,
only a small number of research papers use the information in
channel impulse responses (CIRs) for fingerprinting [13] [14].
The authors of [13] do not predict 2D positions, but limit the
precision to larger indoor zones, while also requiring TWR in
their setup. Similar to the work proposed in this paper, [14]
uses CIRs to predict 2D positions using deep learning and
achieves a MAE of 100 cm. However, only simulated data
is used for training and evaluation, and it is unclear to what
extent the methodology performs well in real environments
with complex signal propagation characteristics. Additionally,
data from fixed anchor sets are used to fingerprint, making the
solution only feasible in environments where all anchor nodes
remain within the same collision domain.



TABLE I: Related works for UWB fingerprinting shows differ-
ences in data input, prediction outputs, wether TWR was used,
number of evaluated real or simulated environments, required
transmissions (tx) / fingerprint (FP), ML model used and the
reported accuracy.

Paper  Input Prediction TWR  Environments Tx/FP Model  Accuracy
[10] Features 2D Simulated 50 kNN 200 cm
[11] Features 2D Simulated 1 DNN 65 cm
[12] Ranges 2D v 1 3/anchor kNN 6-23 cm
[13] CIR Zones v 2 1 DNN  99%

[14] CIR 2D Simulated 1 NN 100 cm
This CIR 2D 2 1 CNN 21-87 cm

In short, none of the above works focus on machine learning
(ML) using raw CIR signals from OTS UWB devices to pre-
dict 2D positions. Additionally, to the best of our knowledge
no previous works have addressed the challenge of missing
data in NLOS conditions, as will be illustrated in Section II.
To fill this gap, the contributions in this paper are as follows:

1) An active fingerprinting IPS method requiring a single
UWRB packet transmission to limit communication over-
head, power consumption and anchor synchronization.

2) The fingerprinting IPS combines convolutional neural
networks (CNNs), CIR information, an anchor-subset
selection and a Savitzky-Golay smoothing filter.

3) Evaluation using real UWB data captured in realistic
NLOS conditions with low cost OTS UWB devices and
an environment modified from the one used for training.

4) CIR interpolation to boost the accuracy of the IPS and
reduce the collection effort of labelled samples.

The remainder of this paper is structured as follows: Section
II presents the system description, including the system model
and data collection and Section III presents the proposed
methodology. Experimental results are analysed in Section IV
and is followed by conclusions and future work in Section V.

II. SYSTEM DESCRIPTION

In this section we describe the UWB IPS model which uses
CIRs to train machine learning based fingerprinting models.
Additionally, the performed data collection is presented.

A. System model

We define the system model as an UWB IPS which includes
N anchors a,,, for n € [1...N] and a tag ¢, as illustrated in
Fig. 1. In a typical TWR scheme, 3 x N UWB packets are
exchanged. In the proposed active UWB fingerprinting setup,
only 1 UWB packet is broadcasted from the tag. Instead of
having high precision TOF information at each anchor a,,, we
only collect the CIR. Additionally, whereas most fingerprinting
solutions focus on the RSSI to estimate the position of a
mobile tag, the CIR offers much richer information. The CIR
can be defined as follows:

K
CIR,, (t) =Y ard(t —7,) +n(t), (1)

k=1
where ¢ is the timestamp for each CIR sample (1016 samples,
sampled at a temporal resolution of 1 ns); K is the number of
multipath components; § is the Dirac delta function; «y and
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Fig. 1: The UWB fingerprinting CIR-based system model with
N = 7 anchors. Direct paths are displayed in yellow with an
example of a multi-path signal in blue. These signals construct
a CIR at each anchor. A positioning solution needs to uphold
missing CIRs due to NLOS (indicated in red).

Tk are the amplitude and the time delay of the k-th multipath
components, respectively; and n is the channel’s additive white
Gaussian noise. Not only can the RSSI of first- and multi-paths
(arriving further in time through reflective surfaces) be used
for fingerprinting, but also their relative time delays which are
representative of a location. However, as illustrated in Fig. 1,
in strong NLOS conditions not all anchors a, will receive
the UWB packet sent by the tag ¢ if the signal attenuation
was too large. Therefore, there is a need for a solution which
works with M anchors, where M < N in NLOS conditions.
As such, in the next subsection we present the performed
data collection, which includes NLOS to generate realistic
conditions in order to develop and evaluate the proposed
methodology in this paper.

B. Data collection

To evaluate the proposed method, we use a dataset recorded
in an industrial production hall setting', as depicted in Fig. 3.
The environment consists of an area of 300 m? and is partially
enclosed by reflecting walls. Various metallic objects (metal
shelves, absorber/reflector elements and an industrial vehicle)
introduce reflection, absorption and scattering, so that a mix-
ture of LOS and NLOS connections exist. After capturing one
dataset in this environment, an additional dataset was produced
in a modified environment. To this end, two large interfering
objects (the industrial vehicle and metal storage containers)
were moved to a different location the environment to create
different signal propagation conditions, with changed position-
related radio signatures. The recording hardware consists of a
mobile tag, held by a pedestrian and 7 anchors placed around
the recording area at a height of 1.5 m. This UWB hardware is
based on the Decawave DW1000 and configured with a center
frequency of 4 GHz and a bandwidth of 499.2 MHz. The
recorded CIRs are obtained with a temporal resolution of about
1 ns. As a positioning reference system, the highly accurate
QualiSys optical motion capture system with an accuracy in
the 1 mm range tracks the mobile tag.

I The dataset was part of the IPIN 2021 track 7 competition and is publicly
available at https://evaal.aaloa.org/2021/call-for-competitions



CIR Anchor-subsets Convolutional neural network Predicted Savitzky-Golay
q ] Output dimensionality (Data width x Channels (=R) x Filters) L. .
interpolation 200x 100X 50X 50X  25x  25«R positions filter
R Rx64 Rx64 Rx32 Rx32 x32 256 32 16
CIR a4 — .
CIR a, \ ! I K N K o
A A L D) D D . X , .
1
CIR as > A\ X X A E E E .ll-.J X2
ty CIR ay P P P T N \ \ 3 Y >
ClRas__———— U (0} (0] T S S S U
ty i R — T (e} (0] E E E E -
ag _—
¢ =1l L L N Y2 Model metrics
t 4 CIR a; k=2, 666,034 parameters
& = = Yk 13,814,706 FLOPs
Conv64 2x1 Conv32 2x1 | | | | |
k=K=7 x(61) x (10,2) ReLU ReLU ReLU Linear
CIR a, _ Stride = (2,1) Stride = (1,1) Dropout 25%  BatchNorm  BatchNorm
R=3 ReLU ReLU

Dropout 15% Dropout 15%

Layer dimensionality- Conv layers: Filters x (width filter x height filter)
- MaxPool layers: dimensionality reduction (width x height)
- Dense layers: layer size

Fig. 2: Our active UWB fingerprinting includes CIR interpolation (sample reduction), anchor-subset selection (support missing
CIRs), a CNN (predict tag position) and a Savitzky-Golay filter to smooth localization paths. The first CNN layer dimension
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Fig. 3: Picture of the recording environment, where the anchor
positions are highlighted with light green circles.

III. METHODOLOGY

In this section, we describe the proposed fingerprinting-
based IPS using CIR data, as is illustrated in Fig. 2. Next
to using all CIRs received at each anchor, we also propose
an anchor-subset method to solve the problem when not all
CIRs arrived in NLOS conditions. Additionally, we describe
the CNN to make localization predictions and show how a
Savitzky-Golay smoothing filter can be integrated. Finally, we
propose CIR interpolation to limit the number of collected
UWRB packets further and reduce the data collection effort.

A. Proposed anchor-subset method

The indoor environment evaluated in this paper contains
N = 7 UWB anchors. We can combine the CIRs from each
of these anchors to estimate the position of the tag at a given
time ¢. However, when M < 7 anchors receive a CIR at time
t, no prediction can be made, which would be the case in large
environments. Instead, we propose a method with multiple
anchor-subsets and joined ML models, which contains the
following steps: (i) generate K unique subsets of size R out of
N anchors, (ii) for each subset k, train a model M Ly, using R
CIRs, (iii) once trained, predict K positions at time ¢ with K
models M Ly. As such, for each time ¢, there are K unique
subsets of N anchors generating K positions, lowering the

probability of anchor combinations with missing CIRs at time
t. During the evaluation in this paper, we found that increasing
R resulted in a minor increased accuracy and chose R = 3 as a
trade-off between accuracy and support for large environments.
Additionally, we found that increasing K slightly improved the
accuracy, but also the computational complexity. As such, we
chose K = 7 as a trade-off between accuracy and complexity
of the setup. The selected unique combinations using K =7
and R = 3 from all 7 anchors yielded anchor combinations:
[1,3,5], [2,4,6], [3,5,7], [4,6,1], [5,7,2], [6,1,3], [7,2,4].

B. CNNs

We propose a CNN to extract features in the CIR and make
predictions about the position of the tag. In typical UWB IPSs,
multiple anchors N are used to determine the position of the
tag. Similarly, we can combine the CIRs from R anchors
and provide it as multi-dimensional input to the CNN. The
architecture of the CNN used in this paper, is shown in Fig.
2. The input layer corresponds to R anchor dimensions, while
the following convolutional layers ensure effective feature ex-
traction, which have already been successfully used for NLOS
detection, error correction and on simulated fingerprinting CIR
data for UWB localization systems [14]-[16]. Finally, fully
connected layers learn from these features and predict the x
and y coordinate of the tag in the two output neurons. Starting
from the model in [15], these layers were fine tuned in an
experimental way to increase the performance in this use case.

C. Savitzky-Golay filter

To obtain a smooth localized trajectory, multiple filter types
can be effectively used (moving averages, particle filters,
Kalman filters, Savitzky-Golay filters, etc. [17]). In this paper,
we selected the Savitzky-Golay filter due to its implementation
simplicity (no prior information about the positioning accuracy
distribution is necessary) and due to its good smoothing
capabilities with low degree polynomials when considering
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Fig. 4: Performance in the same environment and modified environment datasets with all anchors and with anchor-subsets.

a set of 2D position points along a driven trajectory [18].
For IPSs with multiple positions over a time period 7', the
filter becomes effective at generating a smooth path, which
is expected in systems used for tracking mobile tags. More
specifically, we used a filter window of length 23, which
was experimentally derived, while the order of the polynomial
(used to fit the samples on a polynomial curve) was set to 5.

D. Interpolation

A typical drawback of a fingerprinting-based IPS is the
requirement of a dense dataset, captured at a high sampling
rate, which results in a large number of positions for training
[12]. We propose to facilitate data collection by interpolat-
ing CIRs between two known positions. In this paper, we
investigate this by leaving out captured samples at a fixed
interval, achieving a p-times data rate reduction with factors
p = [1,2,3] (p = 1 is no reduction). Next, we try to
reconstruct the missing CIR by applying linear interpolation
between two consecutive remaining CIRs. To evaluate CIR
interpolation, we train models on the reduced data with factor
p with and without interpolated CIRs. The results then are
captured on two test sets, which contain all collected CIRs.

IV. ANALYSIS AND EXPERIMENTAL RESULTS

In this section, we first analyse the proposed methodologies
where all anchors or selected anchor-subsets are used. Next,
the selected anchor-subsets without and with the Savitzky-
Golay filter are evaluated and finally, a sample reduction of
2x and 3x is applied without and with CIR interpolation. The
ML models are trained on a dataset with 27,946 CIRs and are
evaluated on (i) a test dataset in the same environment and
(ii) a test dataset in a modified environment, both with 4,993
CIRs. The CNNs were trained for 500 epochs and loaded
weights with the lowest MAE loss (on a 25% training data
split). Furthermore, the training used a batch size of 256 and
the Adam optimizer with a learning rate of 0.001.

A. All anchors vs anchor-subsets models

The performance in the same environment and modified
environment (compared to the training environment) with
all anchors and with anchor-subsets is illustrated in Fig.

TABLE II: The results show improvements using the Savitzky-
Golay filter across the evaluation metrics (mean absolute
error (MAE), second quartile (Q2), third quartile (Q3), 95th
percentile (P95)) and demonstrate the benefits of CIR interpo-
lation under sample reduction (SR) conditions. In a modified
environment the accuracy decreases, but is still comparable to
traditional UWB TWR.

MAE Q2 Q3 Pos
Same environment (cm) (cm)  (cm) (cm)
No filter 23.5 142 24.1 67.9
Filter 20.9 123 20.0 60.0
SR = 2x w/o interpolation  21.6 140 21.1 62.0
SR = 2x with interpolation ~ 21.2 124 202 59.7
SR = 3x w/o interpolation 25.6 144 25.1 84.7
SR = 3x with interpolation ~ 23.8 142 246 71.7
UWB TWR 60.1 28.6  76.0 211.1
Modified environment
No filter 92.2 585 107.6 3043
Filter 87.0 51.2 1027 2959
SR = 2x w/o interpolation ~ 98.1 63.1 1212 3164
SR = 2x with interpolation ~ 95.3 59.0 1163 312.1
SR = 3x w/o interpolation 105.6  68.7 1442  329.0
SR = 3x with interpolation ~ 99.6 63.9 129.7 3220
UWB TWR 66.8 253  88.0 237.8

4. In the same environment, an accuracy improvement can
be observed for the anchor-subsets method as compared to
using all anchors. In the modified environment, the result
becomes more nuanced. While the accuracy still is higher
for the anchor-subsets method in the lower percentiles, the
situation changes around the 75th percentile. Here, using all
anchor CIR information results in a higher accuracy, while the
accuracy of both approaches start to again match in the higher
percentiles. Still, the anchor-subset method has the ability to
predict positions, even with missing CIRs (in NLOS). Hence,
we choose this method for the following evaluation.

B. Evaluation of the Savitzky-Golay filter

In Table II, the results of both no filter and with filter
are given in the first two rows for the same and modified
environment. For comparison reasons, we also include the
accuracy when using the more traditional TWR approach in
the table. The usage of the Savitzky-Golay filters improves the
accuracy in both environments. On average, a decreased error
of 2.5-5 cm is measured, while the Pg5 decreases up to 8.4



cm. As such, the best accuracy with the proposed fingerprint-
ing methodology (CNN + selected anchors + Savitzky-Golay
filter) in the same environment is a MAE error of 20.9 cm,
which outperforms the accuracy of traditional TWR in these
NLOS conditions, while requiring only 1 UWB packet. As
expected, the MAE is decreased in a modified environment
(in this case to 87.0 cm), due to differences in multi-path and
NLOS signals, unknown to the trained CNN. Still, this error
is considerably lower than the numbers reported ( 2-3 m) with
traditional fingerprinting methods using BLE and Wi-Fi.

C. Evaluation of sample reduction and CIR interpolation

Finally, we evaluate the performance of the proposed
method when the number of measured samples is significantly
smaller (denoted by sample reduction (SR)) due to a lower
data rate (5 and 3.3 Hz) compared to the 10 Hz present in
the dataset. Table II shows the results of both SR = 2x
and SR = 3x combined without and with CIR interpolation.
The MAE increases by 0.7 cm and 11.1 cm in the same
and modified environment, respectively. These numbers further
increase when applying a SR = 3, with a MAE of 4.7 cm
and 18.6 cm, in the two environments, respectively. Applying
CIR interpolation to the training dataset can decrease these
numbers again to 0.3 cm and 8.3 cm for SR = 2, while with
an SR = 3 the numbers decrease to 2.9 cm and 12.6 cm
difference, in both environments, respectively. This is an up
to 6 cm and 10.3 cm increase in accuracy for SR = 2 and
SR = 3, respectively, which illustrates the potential of data
interpolation when limiting the number of UWB packets and
reducing the required data collection effort.

V. CONCLUSIONS AND FUTURE WORK

UWRB indoor positioning systems can reach a high accuracy
(< 30 cm), however, they require either transmitting a large
number of packets or realizing challenging (multi-hop) clock
synchronization. In this paper we proposed an UWB finger-
printing positioning method using multiple CNNs trained on
CIRs of unique anchor-subset combinations. After applying
a Savitzky-Golay smoothing filter, we reached a MAE of
20.9-87.0 cm, which surpasses the accuracy of traditional
RSSI-based fingerprinting systems in real conditions, and even
outperforms UWB TWR in the considered challenging NLOS
environments. Finally, we have also demonstrated sample
reduction with linear CIR interpolation, which increased the
accuracy up to 10.3 cm. To further improve the accuracy,
tweaking the parameters R (number of input CIRs) and K
(number of models) and using a higher sampling collection
rate have a major impact. A minor impact is found by the
choice of the smoothing filters, anchor selection (although cru-
cial in large UWB deployments) and additional ML finetuning.
With the proposed solution, tags can stay longer in sleep mode,
consume less energy, deployments can be more scalable with-
out challenging clock synchronization. Based on the outcome
of this paper, future work can investigate in which scenarios
selecting all or subsets of anchors can benefit the accuracy
of UWB fingerprinting systems. To further reduce the number
of labels, future work can explore unsupervised learning and

data augmentation, while also exploiting federated and transfer
learning to quickly adapt to new environments.
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