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Over the last two decades, research in hyperspectral imaging has been increasing and its

use in horticulture is expected to be spreading in the coming years. The emerging tech-

niques are currently gaining interest of the research community. However, there are still

challenges to the applicability. In this review we demonstrate that hyperspectral imaging

can be used as an effective tool for fruit, vegetables and mushrooms in assessing quality

parameters related to well defined variables that can be analysed in the laboratory, as well

as complex properties such as maturity, ripeness, detection of biotic defects, physiological

disorders, mechanical damages, and sensory quality. Therefore, this paper starts by giving

an overview of the quality concept of produce, measuring principles, theory and analysis of

hyperspectral imaging systems. Then, emerging techniques to monitor and assess quality

parameters, both pre- and postharvest, are described, as well as applications of these are

reviewed and discussed. Afterwards, this review proceeds by illustrating the current and

potential use of artificial intelligence and its subdomains, machine learning and deep

learning, for hyperspectral imaging analysis in horticulture. Lastly, some challenges and

considerations for future research are highlighted, including improvement of data avail-

ability, possible solutions for an improved integration of artificial intelligence and the

transfer of knowledge from research parameters to parameters relevant for industrial

stakeholders.

© 2022 The Authors. Published by Elsevier Ltd on behalf of IAgrE. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Nomenclature

R2
c Coefficient of determination in calibration

R2
p Coefficient of determination in prediction

AI Artificial Intelligencer

ANN Artificial Neural Network

CARS Competitive Adaptive Reweighted Sampling

CLS Classical Least Squares

CNN Convolutional Neural Network

DL Deep learning

DMC Dry matter content

EAU Enzyme activity unit

ECR Extended collaborative representation

EMCVS Ensemble Monte Carlo Variable Selection

ExG Excess Green

Faster R-CNN Faster region based convolutional neural

network

FCNN Fully connected network

GMM Gaussian Mixture Model

InGaAs Indium Gallium Arsenide

IP-T Image processing-thresholding

kNN k-Nearest Neighbors

LDA Linear Discriminant Analysis

LEDs Light-Emitting Diodes

LS-SVM Least squares-support vector machine

Mask R-CNN Mask region based convolutional neural

network

MCR Multivariate Curve Resolution

MC-UVE Monte Carlo-uninformative variable elimination

MFA Multifactorial analysis

ML Machine learning

MLP Multilayer Perceptron

MLR Multiple Linear Regression

MNF Minimum noise fraction

mRMR Minimum redundancy maximum relevance

OCA Overall classification accuracy

PC Parallelepiped classification

PCA Principal Component Analysis

PCIP Pseudo-color image processing method

PCR Principal Component Regression

PLS-DA Partial Least Squares Discriminant Analysis

PLSR Partial Least Squares Regression

POD Peroxidase

PPO Polyphenol oxidase

QDA Quadratic Discriminant Analysis

RBF Radial Basis Function

RF Random Forest

RFr Random frog

RMSEc Root mean square in calibration

RMSEp Root mean square in prediction

ROC Receiver operating characteristic

ROI Region of interest

SAE Sparse autoencoder

SFS Sequential forward selection

SLRS Stepwise Linear Regression Selection

SPA Successive Projections Algorithm

SSAE Stacked sparse autoencoder

SSC Soluble solid content

SVM Support vector machine

SVM-DA Support Vector Machine Discriminant Analysis

SVMR Support Vector Machine Regression

SWIR Short wave infrared

TSS Total soluble solids

Tukey's HSD Honestly significant difference

VGG Visual Geometry Group

VI Vegetation indices

VIP Variable Importance in Projection

VIS-NIR Visible to near infrared

XGBoost Extreme gradient boost

ε-SVMs Epsilon-support vector machines
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1. Introduction

Fresh fruit and vegetables are essential food products for

human nutrition due to the balanced supply of nutrients such

as sugars, organic acids, vitamins, pro-vitamins, and min-

erals, as well as non-nutritional, beneficial compounds such

as fibres and secondary metabolites. Commercially, the global

market of fresh produce has a high economic importance.

Challenges along the supply chain of fresh produce occur in all

stages. Production processes need to bemanaged sustainably,

while producing high quality products. At harvest, the matu-

rity stage is typically an important factor not only affecting the

product quality at harvest, but also susceptibility of the

product in postharvest. In postharvest, the main task is

maintaining the good quality of perishable products as long as

possible to avoid food waste and economical losses. Conse-

quently, knowledge of factors related to produce quality in the

pre-harvest, harvest, and postharvest stages is relevant for
producer, harvest manager, storage manager, in packaging

facilities, direct marketing on the farm, local markets, global

distributor, wholesaler, and consumer. Throughout the pro-

duction to consumption chain, the term quality is used

continuously, but its meaning varies depending on the stage

in the chain. However, in all these stages, the term “quality” is

related to the degree of excellence and the absence of defect

on the product (absence of defect and blemishes, cultivar-

typical ripeness, freshness, non-harmful amount of residues

considering pesticides and other chemicals, and cleanliness).

It frequently describes sensory properties (appearance,

colour, texture, taste, and aroma) and nutritional properties

(Valero & Serrano, 2010). Quality can therefore be examined

from the perspective of product or from the perspective of

manager and consumer.

Considering fresh fruit, in 2022, sales revenue and average

per capita consumption of fresh fruit are expected to be $

630,683 million and 33.9 kg, respectively. Furthermore, the

estimated annual growth rate of this market is 5.56% (Statista,

https://doi.org/10.1016/j.biosystemseng.2022.07.013
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Fig. 1 e Number of published journal articles between 2000

and 2020 using the term “hyperspectral imaging” and its

various variations such as “spectral imaging”, “chemical

imaging”, and “imaging spectroscopy”, as well as the term

“fruit”, “vegetable” or “mushroom” (Science, 2021).
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2021a). Quality keeping properties depend largely on the

properties of the skin serving as barrier for water vapour and

against mechanical stress, as well as on the physiological

climacteric response of the fruit. As a result, the postharvest

life varies between a few days (e.g., for soft berries) to one year

(e.g., apple). From the consumer's point of view, the quality is

sensory and based on the appearance of the fruit and assessed

by uniformity in size, peel colour, skin gloss, perfect shape and

peel, and absence of disease (Civille & Oftedal, 2012). In terms

of product quality, parameters related to the physiology and

maturity of fruit (such as moisture content, firmness, soluble

solid content, acidity, chlorophyll, carotenoids and flavonoids

pigments, ethylene production, respiration rate, etc.) are

important for keeping quality measures. Such properties

should be examined by analytical methods (Chen, 2015).

However, appearance and physical dimensions can be ana-

lysed inline. This procedure is limited only by the mechanical

susceptibility of the perishable product and economical

viewpoints.

The edible parts of vegetables are commonly classified

based on the portion of the plant that is consumed. Those

classes are leaves (e.g., lettuce), stems (e.g., asparagus), roots

(e.g., parsnip), bulbs (e.g., onion) and flowers (e.g., broccoli).

The importance of vegetables can be illustrated by their ex-

pected average per capita consumption, 71.0 kg in 2022, an

expected global revenue of $ 941,818 million in 2022 and its

expected annual growth rate of 5.40% (Statista, 2021b). Vege-

table quality is therefore of high importance for all stake-

holders across the supply chain. The chemical and physical

basis for fruit and vegetables quality are colour, size, shape,

wholeness, presence of defects, flavour, aroma, taste, texture,

nutritional value, and the consistency of those parameters

(Barrett et al., 2010). However, points for checking the product

quality can differ between classes of vegetables, e.g., flower

vegetables should not contain brown brushing marks while

stem vegetables should have a crisp texture.

Edible mushrooms have been consumed worldwide since

ancient times as a delicacy due to their specific aroma and

texture, or as a component of staple sustenance during food

shortage. Whereas in recent times, edible mushrooms have

been considered as a boost to healthy nutrition of human

beings due to its low energy level, high proportion of dietary

fibre content and other supply of nutrients such as minerals,

vitamins, lipids, and proteins (Kalac, 2016). While over the

2000 edible mushroom species found on the earth, only 100

can be commercially cultivated, and only 10e20 can be culti-

vated on an industrial scale (Kalac, 2016). Until 2019, the total

world production of cultivated mushrooms reached nearly 11

million metric tons. Agaricus bisporus is one of the most

cultivated species (Kalac, 2019) and is marketed both in

immature (white button mushrooms, brown mushrooms,

crimini/cremini or chestnut mushrooms) and mature state

(portobello mushrooms) (Kalac, 2016). Conversely to fruit and

vegetables, mushrooms are the most perishable food items.

The lifetime of their fruiting bodies in nature is around 10e14

days, while shelf-life can be even shorter than 3 days at

ambient temperature due to their high water content, high

respiration rate, water loss under low humidity storage con-

dition, lack of physical protection from mechanical damage

during transportation and othermicrobial attack or enzymatic
oxidation happened during the pre- or postharvest stages

(Kalac, 2019; Lin et al., 2019). From the consumer point of view,

the quality of mushrooms is determined by colour, texture,

cleanliness, and sensory parameters. Colour changes caused

by perturbation or enzymatic browning can be detected by the

consumers directly and critically affect the commercial values

of mushrooms in the market (Lin et al., 2019). Therefore,

monitoring mushroom quality become critical for the manu-

facturers and dealers.

Hyperspectral imaging sensor could be used as an alter-

native for time consuming and costly destructive sampling. A

review of the literature shows that hyperspectral imaging can

be used as an effective tool for fruit, vegetables and mush-

rooms in assessing quality parameters both on defined vari-

ables (e.g., colour, firmness, acidity, sugar) and complex

properties (e.g., maturity, ripeness, detection of biotic defects,

physiological disorders, mechanical damages, sensory qual-

ity). A literature search in the title, abstract, and keywords

sections of journal articles was performed in the Web of Sci-

ence Core Collection using the term “hyperspectral imaging”

and its various variations such as “spectral imaging”, “chem-

ical imaging”, and “imaging spectroscopy” as well as the term

“fruit”, “vegetables” or “mushrooms”. Results show that 1767

documents are indexed based on the word combinations in

the years 2000e2020 (Science, 2021). The publication of doc-

uments in this area increased in recent years (Fig. 1). It is ex-

pected that the use of hyperspectral imaging technology in the

horticultural industry will be considered even more in the

coming years. Actually a high percentage of 5.2% (93 articles)

of the papers in the first search, on the use of hyperspectral

imaging for evaluating the fruit, vegetables or mushroom

quality published between 2000 and 2020, are review papers.

Most review papers, however, limit the focus on fruit quality

parameters (Li et al., 2015; Lu et al., 2020; Pathmanaban et al.,

2019; Wang et al., 2016) or more general on agricultural ap-

plications (Benelli et al., 2020). The present review aims to

close the few gaps, examining the application of hyperspectral

imaging in predicting quality-related indices, as well as the

detection of defects, namely, physiological disorders, me-

chanical damages, and fungal infections.

https://doi.org/10.1016/j.biosystemseng.2022.07.013
https://doi.org/10.1016/j.biosystemseng.2022.07.013


b i o s y s t em s e ng i n e e r i n g 2 2 2 ( 2 0 2 2 ) 1 5 6e1 7 6 159
In addition, this review also focuses on the added value of

the rapidly developing capabilities of Artificial Intelligence (AI)

in processing hyperspectral imaging for quality assessment of

vegetables, fruit and mushrooms, as well as the associated

challenges. Due to the recent technological evolution, AImade

tremendous progress in both research and the business world

and its techniques are already integrated in various applica-

tions (e.g., voice assistance, smart cars, facial recognition,

search engines, etc.). AI techniques also caught the attention

of the horticultural, agricultural and food domain, introducing

new possibilities for the development of smart systems,

especially since the emergence of Machine Learning (ML). ML

is a subbranch of AI, which dealswith algorithms that attempt

to learn to recognise patterns in data, and use these to make

decisions (Nturambirwe & Opara, 2020). As vast amounts of

data are produced in hyperspectral imaging systems, the

analysis and interpretation of these data pose many chal-

lenges and remain a bottle neck in many horticultural and

agricultural applications (Signoroni et al., 2019; Weersink

et al., 2018). The majority of current applications in these

sectors use RGB images (Dhiman et al., 2022), as the

computing power needed to process such databases is sub-

stantially lower than the one needed for hyperspectral imag-

ing systems. Furthermore, they are generally easier and

cheaper to obtain. However, as computing power becomes

cheaper andmore accessible, the use of AI and ML in research

of hyperspectral imaging systems begins to increase. Behind

this success lies, on the one hand, the advantage of hyper-

spectral imaging over RGB cameras, i.e. the large amount of

information captured in a single image, which in many cases

is not visible to the human eye. AI techniques applied to

hyperspectral imaging data can be used to reveal correlations

with the aforementioned quality parameters, as it can exploit

the richness of the spectral and spatial information. On the

other hand, nowadays, there is also the rise of a relatively new

and promising subbranch of ML, i.e., Deep Learning (DL). DL

gained a lot of importance as it has improved the efficiency

and quality of diverse applications in comparison with tradi-

tional machine learning models (Jaiswal et al., 2021). For the

quality control of fresh produce, the combination of hyper-

spectral data with innovative techniques within AI therefore

opens up many possibilities.

An analogous literature search in the Web of Science

database using the term “hyperspectral imaging” and its var-

iations in combination with the term “artificial intelligence”,

or its subdomains “machine learning” and “deep learning”,

and “fruit”, “vegetables” or “mushrooms”, yields amuch lower

number of results. Respectively 28 documents in 2021, 21

documents in 2020 and in the years before only 0 to 7 results,

with a first search result of 2012 (Science, 2022). Even though

the explicit focus on the application of AI for quality assess-

ment of fruit, vegetables and mushrooms with hyperspectral

imaging received limited attention in the past, the recent in-

crease in the number of studies illustrates that this topic is

expected to become more important in the near future.

Overall, both searches show that the number of works about

fruit has a clear majority compared to vegetables or

mushrooms.

Moreover, a similar trend to the first literature search is

observed here, namely the presence of various review papers.
However, these review papers have a different focus within

the contexts of AI for quality assessment. In general, the focus

on hyperspectral imaging is more narrow, as the presence of

RGB analysis with AI is more prevalent (Dhiman et al., 2022;

Meenu et al., 2021; Naranjo-Torres et al., 2020; Nturambirwe&

Opara, 2020). In addition, some review papers have a broader

context, giving a general overview of AI applications in food

and agricultural products (Fracarolli et al., 2021; Megeto et al.,

2021), or on multiple hyperspectral imaging applications

(Jaiswal et al., 2021). As above,many reviews also focusmainly

on fruit aspects, both quality (Dhiman et al., 2022; Jaiswal

et al., 2021) and, for example, fruit detection (Koirala et al.,

2019; Naranjo-Torres et al., 2020). In this review, the focus is

on the combination of the potential of hyperspectral imaging

in context of quality assessment in fruit, vegetables and

mushrooms, with the possibilities and applications of AI in

this context.

The remainder of this review paper is therefore organised

in four sections. Section 2 introduces hyperspectral imaging,

both from a theoretical and application point of view. This

section also provides an overview of the most common

wavelengths in the reviewed literature, as well as a short

summary of the models typically used. Section 3 provides a

thorough overview of the state-of-the-art parameters related

to quality assessment of fruit, vegetables and mushrooms,

ranging from qualitative parameters to defect detection. To

illustrate the potential of hyperspectral imaging analysis with

AI, Section 4 presents a high-level description of the recent

developments in AI, focussing on the machine learning

branch and its subbranch deep learning. In this section, the

models that were already mentioned in previous sections, are

also discussed in more detail in combination with associated

tasks and applications in agriculture, horticulture and food.

Finally, based on the lessons learned throughout the paper,

Section 5 pinpoints some challenges and future consider-

ations to improve the analysis and applicability of hyper-

spectral imaging for quality assessment of fruit, vegetables

and mushrooms.
2. Hyperspectral imaging

2.1. Theory

Hyperspectral imaging was originally developed for remote

sensing applications around 1985 (Goetz et al., 1985). During

the last two decades, it was gradually employed in diverse

research areas of agriculture and foods to acquire comple-

mentary information on both images and chemical composi-

tions of research objects (Gowen, O'Donnell, Taghizadeh,

Cullen, et al., 2008). Hyperspectral imaging is an advanced

technique that integrates conventional imaging and spec-

troscopy (e.g., infrared, Raman, fluorescence, etc.) of an object

to attain a data form of a three-dimensional (3-D) hypercube

including the two-dimensional (2-D) digital images (X*Y)

attached with the third dimensional spectral information (l)

(Amigo et al., 2013). Therefore, hyperspectral images are

constructed of a deck of spatial image planes aligned along the

spectral wavelength; each image plane assigned to each single

wavelength band visually depicts information of the pixelwise

https://doi.org/10.1016/j.biosystemseng.2022.07.013
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product at each wavelength. Consequently, each pixel in an

image contains a spectrum representing the light absorbing,

reflecting, emitting and/or scattering properties of the spatial

region represented by that pixel, although each pixel spec-

trum may be influenced by its neighboring pixels due to

various optical, instrumental, and background effects. The

resulting spectrum acts like a fingerprint, which can be used

to estimate the composition of that pixel.

Hyperspectral imaging technology can engage with spec-

ular reflected, transmitted, emitted, and diffusely scattered

light. Hyperspectral imaging technology is commonly limited

to wavelength ranges of 400e2500 nm. Although other wave-

length ranges could also be imaged, this reviewwas limited to

this wavelength range. Hyperspectral images can be obtained

by using cameras with charge coupled device or comple-

mentary metal oxide semiconductor sensors for the visible to

near infrared (VIS-NIR) wavelength range of 400e1000 nm,

and by using Indium Gallium Arsenide (InGaAs) detectors for

the longer wavelength range of 950e2500 nm. Commonly

available illumination systems used for hyperspectral image

acquisition are halogen lamps, light-emitting diodes (LEDs),

and laser. In addition, there are three typical ways of scanning

configuration including whisker-broom (i.e., point scan),

push-broom (i.e., line scan), and staring imager configuration

(i.e., plane scan) (Amigo & Grassi, 2020). In order to obtain

reliable images, spatial calibration and spectral reflectance

calibration are critical in the image acquisition process.

Spatial calibration is required to fix the angles and the dis-

tances of illumination systems to the objects, to adjust the

frame period and integration time, and to decide on the frame

size and resolution of image acquisition. The spectral reflec-

tance calibration accounts for the background spectral

response of the instrument and the “dark” camera response.

Thus, the corrected reflectance values ofmeasured signals are

calculated on pixel-by-pixel basis (Amigo et al., 2013).

After data acquisition, pre-processing of hyperspectral

imaging data aims to carry out spatial and spectral operations

to remove irrelevant information and noise from the images

and the spectra collected, and to reduce the dimensionality of

data for further analysis. As shown in Fig. 2, the spatial op-

erations include the removal of dead pixels and spikes by

image filtering methods, selection of the region of interest

(ROI), creating masks for background information removal

using thresholds and classifiers (e.g., principal component

analysis (PCA), K-means, etc.), and reducing image sizes by

performing data binning or interpolation.

Then the spatially corrected data cube is unfolded into a 2-

D data frame and spectral operations involve spectral data

pre-processing algorithms, including baseline correction, de-

rivative conversion, normalisation, centering, etc., to enhance

the main spectral features. As the collected spectral infor-

mation in the full spectral rangemay be redundant to relate to

specific chemical imaging, spectral compression methods

including PCA, Successive Projections Algorithm (SPA),

Competitive Adaptive Reweighted Sampling (CARS), Stepwise

Linear Regression Selection (SLRS), etc., can be used for

further hyperspectral data compression. Furthermore, spec-

tral variable selection algorithms, such as Variable Impor-

tance in Projection (VIP), SLRS, EnsembleMonte Carlo Variable

Selection (EMCVS), CARS, etc., can be employed with Partial
Least Squares Regression (PLSR), Principal Component

Regression (PCR), Multiple Linear Regression (MLR), Partial

Least Squares Discriminant Analysis (PLS-DA), etc., to select

the most relevant spectral variables tomaintain a smaller and

even more condensed size of the variable group. On the other

hand, the enhanced spectral variables can be deployed in the

development of multispectral imaging techniques to speed up

the data acquisition processes in real applications. A more

condensed size allows for a faster computational progress in

the next step of either supervised and unsupervised classifi-

cation and/or regression modelling by for example PCA, K-

means clustering, PLS-DA, Support Vector Machine Discrimi-

nant Analysis (SVM-DA), Linear Discriminant Analysis (LDA),

Artificial Neural Network (ANN), etc.; or quantification of

target compounds by quantisation and resolution analysis

strategies including PLSR, Support Vector Machine Regression

(SVMR), ANN for regression, MLR, Multivariate Curve Resolu-

tion (MCR), Classical Least Squares (CLS), etc. (Amigo et al.,

2013). Consequently, the developed models or algorithms are

applied on each acquired hypercube to generate chemical

distribution maps. Additionally, domain statistical methods

are performed on the distribution maps to demonstrate the

model performances.

2.2. Sensor technology, wavelength selection and
analysis

Table 1 provides an overview on the hyperspectral research

carried out in the fields of fruit, vegetables and mushrooms

within the last decade. Studies and research adjacent to

hyperspectral imaging were omitted, e.g., the detection of

pathogens with Raman spectroscopy for onions (Gan et al.,

2017), downy mildew detection through chlorophyll fluores-

cence for lettuce (Bauriegel et al., 2014), detecting internal rot

of onions through transmittance by avoiding wavelengths

with strong absorption peaks of chlorophyll and water (Sun

et al., 2018).

The sensors used in these studies were diverse and ranging

from commercial hyperspectral sensors, such as Cubert, Imec,

HySpex, Bayspec, Specim and Headwall, towards more

experimental setups. A recent review of commercial hyper-

spectral sensors and prices was carried out by Appeltans et al.

(2020). Within this review, the most abundantly used wave-

length range was 900e1050 nm, over 90% of journal articles

used this region of the electromagnetic spectrum. In addition,

the VIS-NIR region from 450 to 850 nm was also used in

68e88% of studies. Sensors capturing shorter (<400 nm) and

longer wavelengths (between 1100 and 2500 nm) were only

used in less than 30% of hyperspectral studies in the fields of

fruit, vegetables and mushrooms. The use of wavelength

ranges is similar in both fruit, vegetables and mushrooms

research and thus appear related to the availability of sensor

technology and relevant quality parameters. Lower availabil-

ity and higher cost of other sensors (Appeltans et al., 2020) are

the most probable cause of this distribution. This is especially

true for hyperspectral imaging sensors used in field condi-

tions, where lower signal to noise ratio of SWIR sensors limits

the potential in field research.

Papers highlighted in Table 1 were screened for results on

spectral variable selection to point out meaningful

https://doi.org/10.1016/j.biosystemseng.2022.07.013
https://doi.org/10.1016/j.biosystemseng.2022.07.013


Fig. 2 e Flowchart of hyperspectral image pre-processing and processing.
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wavelengths. The number of journal articles that mention

relevant wavelength in a specific region were depicted in

Fig. 3. The most abundantly used wavelengths regions were

601e850 nm,which ismentioned in over 50% of all studies. For

quality parameters, 651e700 nm was the most studied region

with over 13 mentions within separate studies. As shown in

Fig. 3, for all other wavelengths regions, more research was

carried out on defect detection compared to analysis of quality

parameters.

The number of journal articles related to hyperspectral

imaging research for fruit was more abundant in most of the

wavelength regions. However, for vegetables the regions be-

tween 300e450, 501e550, 901e950 and 1001e2500 nm were

mentioned more frequently. In addition, the wavelength

range between 451 and 500 nmwas shown relevant in studies

related to quality of mushrooms: half of all studies specifying

this range were studies on mushrooms (n ¼ 4).

Based on the studies presented in Table 1, 118 prediction

models for one parameter were published in the fields of fruit,

vegetables and mushrooms research within the last decade.

The most prevalent prediction algorithm in the reviewed

studies is PLSR, used 41 times with an average performance

indicator coefficient of determination in the prediction (R2
p) of

0.78 (n ¼ 35). Other regression models are used less, namely

PCR in 14modelswith an average R2
p of 0.83 (n¼ 11) andMLR in

7models with an average R2
p of 0.81 (n¼ 7). PLS-DA is themost

used classification predictionmodel, with 11 occasions and an

average overall classification accuracy (OCA) of 89.4% (n ¼ 10),

followed by LDA on 4 occasions with an average OCA of 86.8%

(n ¼ 4). Prediction models used for both regression and clas-

sification were SVM, ANN and Convolutional Neural Network

(CNN). SVMwas used in 24 models and had an average OCA of

87% (n ¼ 10) and R2
p of 0.82 (n ¼ 13), ANN was used for 9
prediction models and had an average OCA of 95.3% (n ¼ 6)

and R2
p of 0.81 (n¼ 3) andCNN for 11 predictionmodelswith an

average OCA of 87.3% (n ¼ 7) and R2
p of 0.81 (n ¼ 4). Overall,

SVM and PLSR were the most used algorithms for predicting

fruit, vegetable and mushroom quality from hyperspectral

information in the last decade. Section 4 takes a closer look at

the capabilities of these models, associated tasks and the

potential evolution to newer models.

3. Quality assessment and parameters

As mentioned in Section 2, parameters for the quality

assessment of fruit, vegetables and mushrooms were divided

into two categories, namely (i) qualitative properties

(including ripeness and maturity), and (ii) parameters related

to defects.

Maturity is an important term in the quality assessment

and has two different definitions. On the one hand, physio-

logical maturity is achieved when the fruit is able to ripen

after harvest. On the other hand, horticultural maturity (or

commercial maturity) means that the fruit has ripened to the

point that it can be sold in terms of appearance and edibility.

Maturity in the fruit has its own complexities which led to the

development of a large number of physicochemical indices for

its diagnosis. In the following, physiological maturity and

horticultural maturity will both be assessed through quality

variables.

The most relevant quality-related parameters are pig-

ments, firmness and elastic modulus, moisture content and

dry matter, soluble solids content (SSC), and acidity. These

parameters all influence shelf life and resistance to decay and

mechanical damage. Defects in fruit, vegetables and mush-

rooms, especially those obtained during the storage process,

https://doi.org/10.1016/j.biosystemseng.2022.07.013
https://doi.org/10.1016/j.biosystemseng.2022.07.013


Table 1 e Crops vs quality parameters, ripeness parameters and defects, limited to studies published in the last 10 years.

Crop Industrial parameter Prediction modela Performance References

Quality/ripeness

Apple Firmness PLSR R2
p ¼ 0.87 Te Ma et al. (2021b)

Apple Moisture content LS-SVM R2
p ¼ 0.96; RMSEp ¼ 0.45 Dong and Guo (2015)

Avocado Dry matter SVM R2
p ¼ 0.90; RMSEp ¼ 2.6 g/kg Diaz et al. (2021)

Banana Chlorophyll PCR R2
p ¼ 0.79; RMSEp ¼ 5.98 � 10�4% Saputro et al. (2018)

Banana TSS, moisture and firmness MLR R2
p ¼ 0.85, 0.87 and 0.91 Rajkumar et al. (2012)

Banana Carotenoids PLSR R2
p ¼ 0.94; RMSEp ¼ 0.79 Permata et al. (2017)

Grape Anthocyanin PLSR R2
p ¼ 0.86 Diago et al. (2016)

Grape SSC ε-SVMs R2
p ¼ 0.92 Gutierrez et al. (2019)

Grape Titratable acidity PLSR R2
p ¼ 0.82e0.95 Baiano et al. (2012)

Honey peach Chlorophyll PLS-DA R2
p ¼ 0.74 Sun, Wang, et al. (2017)

Kiwifruit Acidity PLSR R2
c ¼ 0.64; RMSEc ¼ 0.14 Ma et al. (2021a)

Mango Titratable acidity MLR R2
p ¼ 0.81; RMSEp ¼ 0.24% Rungpichayapichet et al. (2017)

Mango Dry matter content CNN, PLS-DA F1 ¼ 0.97 Wendel et al. (2018)

Orange SSC ANN R2
p ¼ 0.55 RMSEp ¼ 0.86% Riccioli et al. (2021)

Pear SSC, firmness SAE-FCNN R2
p ¼ 0.89, 0.92; RMSEp ¼ 1.81 N, 0.22% Yu et al. (2018)

Persimmon SSC, firmness PLS R2
p ¼ 0.76, 0.88; RMSEp ¼ 1.40 �Brix Wei et al. (2020)

Plum Firmness MLR R2
p ¼ 0.69; RMSEp ¼ 0.63 kg/cm2 Meng et al. (2021)

Strawberry Anthocyanin PLSR R2
p ¼ 0.63e0.87 Cho et al. (2021)

Strawberry Ripeness CNN AlexNet OCA ¼ 98.6% Gao et al. (2020)

Asparagus Shelf life PLS-DA OCA ¼ 82e91% S�anchez et al. (2013)

Broccoli Total glucosinolates PLSR SECV ¼ 1.75 mmol/g DM Hern�andez-Hierro et al. (2014)

Lettuce Chlorophyll/anthocyanin

content

e NR Simko et al. (2016)

Pepper TSS, dry matter, osmotic

potential, ascorbic acid,

total chlorophyll,

carotenoids content and

firmness

PLSR, PCR, SVM, Kernel R2
p ¼ 0.93, 0.92, 0.9, 0.77, 0.91, 0.92 and 0.65 Ignat et al. (2014)

Pepper TSS, total chlorophyll,

carotenoid and ascorbic

acid content

PLSR R2
p ¼ 0.79, 0.92, 0.93 and 0.61; RMSEp ¼ 1.1 Brix % Schmilovitch et al. (2014)

Spinach N, water content PLS R2
p ¼ 0.41, 0.87; RMSEp ¼ 0.26%, 0.85% Corti et al. (2017)

Tomato Elasticity ANN R2
p ¼ 0.90; RMSEp ¼ 0.11 Mollazade et al. (2015)

Tomato Chlorophyll, carotene PLS R2
p ¼ 0.73, 0.82; RMSEp ¼ 0.30, 0.25 Polder et al. (2004)

Tomato Colour (L*, a*, b*, H, Ch) PLSR, PCR R2
p ¼ 0.86, 0.93, 0.42, 0.95 and 0.51 van Roy et al. (2017)

Tomato Ripeness (6 and 3 classes) PLS-DA OCA ¼ 80.2e88.4% and 84.4e92.1% Zhu et al. (2015)

Tomato SSC, pH PLS R2
p ¼ 0.38 and 0.59; RMSEp ¼ 0.5 and 0.17 Huang, Lu, Hu, et al. (2018)

Mushroom Bolete sp. identification CNN ResNet OCA ¼ 99.76% Dong et al. (2021)

Defects

Apple Bruising PLS-DA OCA > 90% Luo et al. (2012)

Blueberry Mechanical damage CNN ResNet/ResNeXt OCA ¼ 88.4, 87.8%; F1 ¼ 0.90, 0.89 Wang et al. (2018)

Date Microbial infection LDA, QDA OCA ¼ 91e100% Teena et al. (2014)

Jujube Bruising CARS-PLS-DA OCA ¼ 91.1% Yuan et al. (2021)

Jujube Chilling injury LDA OCA ¼ 98.3% Lu et al. (2018)

Kiwifruit Bruising PC OCA ¼ 85.5% Lu and Tang (2012)
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Loquat Bruising, browning XGBoost OCA ¼ 95.9% Munera et al. (2021)

Mango Mechanical damage kNN OCA ¼ 98% Rivera et al. (2014)

Olive Verticillium wilt LDA/SVM OCA ¼ 59%e79.2% Calderon et al. (2015)

Orange Scarring IP-T OCA ¼ 91.5% Li et al. (2011)

Orange Fungal diseases PCIP OCA ¼ 98.6% Li et al. (2016)

Honey peach Chilling injury ANN OCA ¼ 96.87% Sun, Gu, et al. (2017)

Honey peach Fungal diseases PLSR OCA ¼ 98.7% Sun, Wang, et al. (2017)

Peach Bruising MNF OCA ¼ 87.5% Zhang et al. (2015)

Peach Bruise, Sound Watershed OCA ¼ 96.5% (bruise); 97.5 (sound) Li et al. (2018)

Capsicum Tomato Spotted Wilt virus SVM OCA ¼ 93.6% (VNIR), 91.5% (SWIR) Moghadam et al. (2017)

Cucumber Chilling injury SVM OCA ¼ 90.5% Cen et al. (2016)

Cucumber Bruising e e Lu et al. (2011)

Cucumber Subsurface yellow spots SVM OCA ¼ 98% Lu and Lu (2019)

Cucumber Disease ECR (SVM, LDA) OCA > 94.7% Li et al. (2020)

Cucumber Defects CNN-SSAE OCA ¼ 88.3e91.1% Liu et al. (2018)

Lettuce Biological contamination VI OCA > 91% Mo et al. (2017)

Onion Sour skin, neck rot e e Wang et al. (2014)

Spinach E. coli ANN R2
p ¼ 0.97 Siripatrawan et al. (2011)

Squash Powdery mildew RBF OCA ¼ 89% early disease stage

OCA ¼ 96% late disease stage

Abdulridha, Ampatzidis, Roberts, et al. (2020)

Tomato Puncture force, slope and

flesh firmness

PLS R2
p ¼ 0.85, 0.90 and 0.74; RMSEp ¼ 1.59 N,

0.52 N/mm and 1.00 N

Huang, Lu, Xu, et al. (2018)

Tomato Fusarium, root crown

disease

SVM OCA ¼ 74e90% Abu-Khalaf (2015)

Tomato Bacterial Spot ANN OCA ¼ 98% Abdulridha, Ampatzidis, Kakarla, et al. (2020)

Tomato Target Spot ANN OCA > 96% Abdulridha, Ampatzidis, Kakarla, et al. (2020)

Mushroom Brown blotch PLS-DA OCA > 95% Gaston et al. (2010b)

Mushroom Enzymatic browning, casing

soil (Colour Lab)

PLS-DA OCA ¼ 98e100% Taghizadeh et al. (2011b)

Mushroom Colour (Lab) PLSR RMSEc ¼ 1.5 Taghizadeh et al. (2011a)

Mushroom Bruising (moisture content) PLS-DA OCA ¼ 100% Esquerre et al. (2012)

Mushroom Cobweb disease SVM OCA ¼ 77.27e100% Parrag et al. (2014)

Mushroom Mechanical damage

(Colour)

SVM, ANN OCA ¼ 92.48e94.19% Rojas-Moraleda et al. (2016)

Mushroom Browning (Colour) PLS-DA OCA ¼ 69.4e94.5% Mollazade (2017)

a ANN (Artificial neural network), CARS (Competitive adaptive reweighted sampling), CNN (Convolutional neural network), EAU (Enzyme activity unit), ECR (Extended collaborative representation),

EMCVS (Ensemble Monte Carlo variable selection), Faster R-CNN (Faster region based convolutional neural network), FCNN (Fully connected network), GMM (Gaussian mixture model), IP-T (Image

processing-thresholding), kNN (k-Nearest neighbors), LDA (Linear discriminant analysis), LS-SVM (Least squares-support vector machine), MFA (Multifactorial analysis), MC-UVE (Monte Carlo-

uninformative variable elimination), MLR (Multiple linear regression), MNF (Minimum noise fraction), mRMR (Minimum redundancy maximum relevance), NR (not reported), OCA (Overall clas-

sification accuracy), PC (Parallelepiped classification), PCA (Principal component analysis), PCIP (Pseudo-color image processing method), PCR (Principal component regression), PLS (Partial least

squares), PLS-DA (Partial least squares discriminant analysis), PLSR (Partial least squares regression), QDA (Quadratic discriminant analysis), R2
c (Coefficient of determination in cross-validation), R2

p

(Coefficient of determination in prediction), RBF (Radial basis function), RF (Random forest), RFr (Random frog), RMSEc (Rootmean square in calibration), RMSEp (Rootmean square in prediction), ROC

(Receiver operating characteristic), SAE (Sparse autoencoder), SFS (Sequential forward selection), SPA (Successive projections algorithm), SSAE (Stacked sparse autoencoder), SSC (Soluble solid

content), SVM (Support vector machine), SLRS (Stepwise linear regression selection), TSS (Total soluble solids), Tukey's HSD (honestly significant difference), VI (Vegetation Indices), XGBoost

(Extreme gradient boost), ε-SVMs (Epsilon-support vector machines).
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Fig. 3 e Number of published journal articles contained

within this review (Table 1) that highlight relevant

wavelengths within the specified wavelength range, to

estimate quality parameters or defects.

Fig. 4 e Pigment standards: absorption spectra of pigments

in acetone (Walsh et al., 2020).
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can be the result of one or more different parameters,

including physiological disorders, mechanical damage, and

fungal infections. Most of the horticultural applications of

hyperspectral imaging on quality parameters were carried out

for fruit and edible vegetable fruits and done postharvest, a

review by Lu et al. (2020) provides good examples.

3.1. Pigments

Chlorophyll, which is responsible for photosynthesis, is a

green pigment found in most fruits. This pigment absorbs the

main part of blue and red light and reflects the green light

through the electromagnetic spectrum. Most fruit change

colour as part of the ripening process. Colour changes in the

fruit are due to the enhanced degradation rate of chlorophyll

and sometimes production of carotenoids or flavonoids

(Walsh et al., 2020) (Fig. 4). Carotenoids are the second com-

mon group of pigments in nature and cause yellow to red

colour. Flavonoids are water-soluble pigments mostly located

in the vacuole, that are responsible for a red or purple colour.

Saputro et al. (2018) developed an optical system based on

hyperspectral imaging to detect the ripening of banana by

predicting the amount of chlorophyll pigment in the peel of

fruit. After wavelength selection with PCA, PCR and SVMs

were used to predict the amount of chlorophylls and deter-

mine the ripeness of banana at three levels (immature,

mature and verymature). In this study, very good results were

obtained in predicting chlorophyll content (R2
p ¼ 0.79 and Root

Mean Squared Error of the prediction (RMSEp) ¼ 5.98 � 10�4%)

and determining the ripening level. Permata et al. (2017) re-

ported similar results in the same wavelength range in pre-

dicting the ripening level of banana through the estimation of

carotenoids pigment (R2
p ¼ 0.94 and RMSEp ¼ 0.79%). In

another study, hyperspectral imaging thewavelength range of

400e1700 nm was used to predict anthocyanins, at different

stages of maturity of strawberry (Cho et al., 2021). The highest

accuracy (86%) was obtained using spectral information in
order to create spatial distribution maps of this pigment on

the surface of strawberry.

Similar to fruit, colour is an as important qualitative

parameter for vegetables and pigments play a key role in

quality determination. As a result, the ability to determine and

quantify pigments is a popular research topic. Simko et al.

(2016) successfully developed a non-destructive method

using hyperspectral imaging to determine chlorophyll and

anthocyanin content for lettuce (R2
p values of 0.81 and 0.74,

respectively). Moreover, Simko et al. (2016) used sensor fusion

with linear and non-linear regression methods to determine

total chlorophyll and carotenoid content. Their research

aimed to predict the maturity stages of bell peppers utilising

optical absorbance at 470, 649 and 664 nm. Results regarding

total chlorophyll content were moderate achieving an R2
pof

0.44, however, for carotenoids, the results were more than

promising with an R2
p of 0.87. The same wavelengths for

determining chlorophyll and carotenoid content in bell pep-

perwere also used by Schmilovitch et al. (2014) in combination

with PLSRwith results being only slightly better for carotenoid

content, R2
p of 0.93 compared to 0.92 for chlorophyll. Polder

et al. (2004) also investigated pigments in tomatoes by

measuring chlorophyll and carotenes in the range of

400e700 nm in combination with PLSR, achieving an R2
p of 0.73

and 0.82, respectively.

In addition to the estimation of pigments, research on

hyperspectral imaging focussing exclusively on colour were

conducted as well. van Roy et al. (2017) successfully used

hyperspectral imaging tomeasure the colour of vine tomatoes

(R2
p ¼ 0.9). Moreover, Huang et al. (2014) used hyperspectral

imaging towards predicting edamame beans colour during the

drying process achieving an R2
p of 0.94 while using images

acquired between 400 and 1000 nm.

Due to the lack of protection cuticles on the surface,

mushrooms are very perishable compared with fruit and

other vegetables. Colour change on the surface of white but-

ton mushrooms from bright white to brown manifests the

trend of mushroom quality deterioration. Browning effects on

mushrooms are mainly caused by a complex series of enzy-

matic reactions of polyphenol oxidase (PPO) and peroxidase

(POD) enzymes. Other important factors influencing colour
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change include pre-harvest conditions, postharvest treat-

ments and storage conditions, mechanical damages during

handling and microbial/fungal infections (Lin et al., 2019).

Hunter L-value measurement and conventional RGB imaging

were widely applied, non-destructive methods for monitoring

colour change on mushroom surface until hyperspectral im-

aging techniques within the VIS-NIR were implemented in

mushroom studies by Gowen, O'Donnell, Taghizadeh, Cullen,

et al. (2008). PLSR was applied to successfully predict L-values

of mushrooms with an RMSEp of 1.36 by Taghizadeh et al.

(2011b). Furthermore, MLR and PCR models were shown to

predict the measured L*- and b*-values of sliced white button

mushrooms under various storage conditions (R2
p ¼ 0.95 and

0.75; RMSEp ¼ 0.47 and 0.66) (Gowen, O'Donnell, Taghizadeh,

Gaston, et al., 2008). In addition, different studies investi-

gated the detection of discolouration caused by the PPO

enzymatic reaction using hyperspectral imaging (Gaston et al.,

2010a; Mollazade, 2017). The brown colour patterns were

detected using both PLS-DA (Mollazade, 2017) and PCRmodels

(Gaston et al., 2010a). However, the colour references of

mushrooms used for the model development were obtained

using a colorimeter to measure the selected areas of mush-

room cap surface, which is limited in a small measurement

area on the mushroom surface; thus bias of colour prediction

is a common issue using the developed models.

3.2. Firmness and elasticity

Tissue changes occur naturally during fruit growth on the tree,

while after harvest and during storage, these changes continue.

Fruit tissue changes occur due to chemical changes in the

middle septum and primary cell wall components, such as

pectins, cellulose, and hemicellulose, which accelerate the

softening of the flesh. Firmness and elasticity are two impor-

tant indices to assess changes in fruit tissue (Mehl et al., 2002).

Firmness and elasticity are quality parameters frequently

approached with spectroscopy in the visible and short wave

infrared wavelength range, but there is common under-

standing thatmechanical properties cannot bemeasuredwith

point spectroscopy (Walsh et al., 2020). However, other im-

aging technology have been employed with more success.

Studies show that firmness can be measured by means of

time-resolved and spatially-resolved approaches. Recently, a

method called multifiber-based spatially resolved spectra

collection was developed to measure the firmness of the fruit

(Ma et al., 2021b). In this method, a number of optical fibres,

located at certain distances from the point of entry of light

into the samples, are used to transfer the returned photons

from inside the fruit to the hyperspectral imaging system. The

acquired spectra in the wavelength range of 600e1100 nm

were analysed using the CARS and PLSR combination. The

results showed that the region 750e960 nmpredicted firmness

with high accuracy (R2
p ¼ 0.87).

Compared to fruit, elasticity and firmness of (leafy) vege-

tables and mushrooms have not drawn so much interest,

although researchers tried to develop solutions in order to

predict them. Mollazade et al. (2015) used multispectral im-

aging, ANN and images captured at 660 nm to estimate tomato

elasticity with R2
p values of 0.90. Furthermore, Huang, Lu, Xu,
et al. (2018) predicted tomato firmness with satisfactory re-

sults (R2
p ¼ 0.74) using spectra in the range of 550e1650 nm.

Thus, both publications found around elasticity and firmness

in vegetables, deal with tomatoes, which are anatomically

challenging considering the light passes through the tissue.

3.3. Moisture content and dry matter

Fresh fruit contain 80e95% water, depending on the type of

product. During transpiration, water vapour is transferred

from the intercellular space of fruit tissue to the surrounding

air. Decreasing moisture leads to wilting and lack of brittle-

ness of fruit with adverse effects on the appearance, tissue,

taste, and volume of the product. Decreasing moisture con-

tent is also a primary cause of postharvest damages such as

physiological disorders (Kader, 2002).

In some fruits, such as avocados, it is necessary to use in-

ternal quality indicators to determine the degree of ripeness

(Clark et al., 2007). Studies show that the dry matter content

(DMC) of avocados can be measured with acceptable accuracy

using hyperspectral images acquired in the wavelength range

of 400e1000 nm (Girod et al., 2008). Because the first to third

overtones (vibration absorption bands) of the water molecule

are in the wavelength range of 700e1200 nm, it should be

possible to predict the moisture content in fruit tissue in this

wavelength range (Siregar et al., 2017). Also, since a strong

absorption peak of the water molecule related with the OeH

stretching first overtone occurs at the wavelength of

1450 nm, moisture content was predicted with high accuracy

(R2
p ¼ 0.96 and RMSEp ¼ 0.45) in this region for kiwifruit and

apple (Dong & Guo, 2015; Liu & Guo, 2015).

As for vegetables, only for spinach, which has a moisture

content between 90 and 99%, research on hyperspectral im-

aging for the determination of moisture content and dry

matter was found. Corti et al. (2017) estimated moisture con-

tent using PLS modelling and hyperspectral imaging in the

range of 400e1000 nm.

Fresh mushrooms normally contain over 90% of moisture,

and are therefore very sensitive to environmental tempera-

ture and humidity. Mushrooms stored under high tempera-

ture and low humidity will result in moisture loss, and

consequently discolouration and deformation of mushroom

surfaces. Both the spectral wavelength ranges of 400e1000 nm

and 950e1700 nm can be used for determining moisture

content in mushrooms. Gowen, O'Donnell, Taghizadeh,

Gaston, et al. (2008) developed MLR and PCR models using

the acquired hyperspectral data over 400e1000 nm for the

prediction of moisture content in mushrooms. Lin et al. (2019)

successfully predicted moisture contents in whole or sliced

white button mushrooms by PLSR models developed using

hyperspectral imaging data over the wavelength range of

950e1655 nm. The attained statistic results revealed R2
pvalues

of 0.89 and 0.71 for the moisture content prediction in

mushroom slices and whole mushrooms, respectively.

3.4. Soluble solids content

In many fruits, starch is accumulating during the growth of

fruit, which is then converted to sugar during the ripening

https://doi.org/10.1016/j.biosystemseng.2022.07.013
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process. The amount of sugar increases as the fruit ripens.

Since most SSC in the fruit is sugar and a direct and close

relationship exists between both, the percentage of total SSC

is thereforemeasured to determine the total amount of sugars

(OECD, 2018).

Measuring SSC level using hyperspectral imaging was

successful in indoor conditions for various fruits, such as or-

ange (Zhang et al., 2020), persimmon (Wei et al., 2020), and

apple (Tian et al., 2019). Gutierrez et al. (2019) recently used a

portable NIR spectrophotometer in the wavelength range of

400e1000 nm to predict the amount of SSC by ε-SVM. The

results showed the possibility of hyperspectral imaging for

real-time SSC predictions in grape berry (R2
p ¼ 0.92, RMSEp-

¼ 1.27 �Brix). This study opened new possibilities for hyper-

spectral imaging in the field of precision horticulture to

evaluate the maturity and quality of fruit on-the-go.

Regarding vegetables or mushrooms, SSC appears to be of

low importance to the scientific community. The only publi-

cation found was again about tomatoes. For them, SSC is one

of the most important parameters for quality and maturity.

However, results of Huang, Lu, Hu, et al. (2018) determining

SSC using spectroscopy in the range of 550e1300 nm PLS

models were poor (R2
p ¼ 0.38).

3.5. Acidity

In most fruit, the ratio of sugar to acid determines the taste,

and as a result, this ratio is used as an indicator to determine

the horticultural maturity of fruit. At the beginning of the

ripening process, due to the low sugar content and the high

acidity of fruit, the sugar to acid ratio is low and the fruit tastes

sour. During ripening, the acidity of fruit decreases and the

amount of sugar and consequently the ratio of sugar to acidity

increases. The acidity of overripe fruit is very low and there-

fore the fruit loose taste (OECD, 2018).

Baiano et al. (2012) investigated the possibility of predicting

titratable acidity and sensory index of taste in table grape. The

results showed a correlation between the actual titratable

acidity values and the values obtained from the PLSR model

generated by the pre-processed reflectance spectra (R2
p > 0.82).

Recently, Ma et al. (2021a) developed a method to make 3-D

(360-degree) spatial distribution maps of the acidity in the

fruit from hyperspectral images in the wavelength range of

1002e2300 nm (R2
c ¼ 0.64 and RMSEc ¼ 0.14).

Similar to SCC and elasticity and firmness, tomatoes were

the only vegetables of which researchers assessed the acidity

using hyperspectral imaging. Tomato acidity defines the

ripening of the fruit while also being of particular importance

to the food processing industry (specific pH requirements to

avoid the growth of pathogens). Huang, Lu, Hu, et al. (2018)

used a spectroscopy system to predict pH in tomatoes with

moderate success (R2
p ¼ 0.59).

3.6. Physiological disorders

Physiological disorders are the result of dysfunction of phys-

iological processes within fruit tissues. It is very difficult to

distinguish physiological disorders from each other. Some

expand before harvesting the fruit and increase sharply
during cold storage. However, some are caused by unfav-

ourable storage conditions. Low temperature breakdown

(chilling and freezing) is the most common type of physio-

logical disorder of horticultural products. Chilling occurs due

to storage at low temperatures (10e13 �C). Freezing is caused

by the formation of ice crystals in the tissues of products

stored at a temperature below its freezing point. Due to low

temperature breakdown, cell membranes, including mito-

chondria and chloroplasts, collapse and, as a result, a series of

secondary reactions such as the accumulation of toxins (e.g.,

ethanol and acetaldehyde), as well as change in cell structure

occurs (Kratsch & Wise, 2000).

Hyperspectral imaging can detect low temperature break-

downs in the wavelength range of 400e1000 nm for several

fruits, such as jujube (Lu et al., 2018) and peach (Pan et al.,

2016). Pan et al. (2016) reported that chill-damaged peaches

can be separated from healthy ones with an OCA of 95.8%

using ANN. Sun, Gu, et al. (2017) detected chilling injuries in

peach fruit by monitoring fruit tissue changes and moisture

content. The optimal wavelengths found in the visible area

correspond to the absorption of light by the colours yellow,

orange, and red. The other optimal wavelengths were 675 nm

and 970 nm, which are respectively related to the absorption

peak of chlorophyll a and the second overtone OeH stretching

of water molecule.

For vegetables, one of the most common researched

physiological disorders is chilling injury, particularly in cu-

cumbers. Both Moghadam et al. (2017) and Cen et al. (2016)

investigated the detection of chilling injury in cucumbers

using hyperspectral imaging, with the latter achieving an OCA

of 91.6% and higher for two- and three-class classification

when applying an SVM classifier. Moreover, Lu and Lu (2019)

used SVM and hyperspectral imaging in the range of

700e900 nm to successfully detect cucumberswith subsurface

yellowish spots, a physiological disorder whose cause is still

unknown (OCA > 98%). Another example of a vegetable crop

that suffers physiological disorders during refrigeration is

lettuce. Discolouration and browning can occur, and although

these disorders do not result in loss of nutrients, nor cause

health issues, they make the products unappealing to con-

sumers. Mo et al. (2015) managed to achieve an OCA above

99.9% using hyperspectral imaging to classify lettuce based on

discolouration and browning during refrigerator storage.

For mushrooms, Gowen et al. (2009) applied PCA combined

with LDA to detect discolouration caused by freeze damage.

The LDA model applied to the PCA scores was used to classify

pixels into undamaged and damaged classes and achieved an

OCA above 95%; highlighting the spectral variability that can

arise from the use of pixel spectra in modelling.

3.7. Mechanical damage

Mechanical damage is considered as a type of stress that oc-

curs during harvesting and after harvesting of produce. This

stress is associated with physiological and morphological

changes if the mechanical force applied is greater than its

elastic threshold, the cell wall of fruit tissue is destroyed and

tissue cohesion is reduced. As a result, intracellular contents

leak out of the cell and enter the intercellular space. Enzymes

in secreted intracellular substances, such as POD and PPO
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enzymes, cause the breakdown of tissues, and as a result,

bruising or browning can occur. Tissues that aremechanically

damaged are a key factor in determining the attack of path-

ogens that cause flesh rot (Martinez-Romero et al., 2004;

Miller, 1992).

Several studies reported a higher reflectance in the range of

530e930 nm of both peel and flesh of healthy fruits compared

to that of mechanically damaged fruits, e.g., for loquat

(Munera et al., 2021), orange (Li et al., 2011), and peach (Zhang

et al., 2015). This difference in reflectance is due to changes in

concentration of chlorophylls and carotenoids pigments that

absorb light at wavelengths of 680 nm and 500 nm, respec-

tively, and indicates a change in colour due to mechanical

stress on fruit tissue cells. Conversely, in the wavelength

range of 940e970 nm, light absorption in the bruising area

decreases. The reason for this is attributed to changes in the

structure of the fruit tissue or some degree of dryness in the

peel, caused by the rupture of the cell wall e due to me-

chanical damages e and a resulting drop in moisture and

hardening of fruit tissue. Studies also showed that the range

of 730e830 nm can be used for early detection of bruising

because in the damaged area the concentration of interstitial

water increases andwatermolecules cause greater absorption

of light (Luo et al., 2012; Zhang et al., 2015; Zhu & Li, 2019).

For vegetables, Lu et al. (2011) tried to detect bruising on

cucumbers. They caused the damage by applying mechanical

load and acquired images in the spectral range of

700e1000 nm. Their research suggests that such defects could

be detected by analysing enhanced scattering coefficient

during optical evaluation.

Bruise damage on white button mushrooms through

hyperspectral imaging was performed by Gowen, O'Donnell,

Taghizadeh, Cullen, et al. (2008). PCA on spectral data in the

400e1000 nm wavelength range achieved an OCA above 79%

on the discoloured patterns. In addition, both PLS-DAmodel in

combination with EMSCV (Esquerre et al., 2012) and ANN/SVM

(Rojas-Moraleda et al., 2016) were successful in discriminating

mechanical damaged mushrooms.

3.8. Fungal and bacterial infections

Mature fruit are more sensitive to damage during harvest and

therefore, to the attack of pathogens that need damaged tis-

sue for penetrating. Fruit may be contaminated before harvest

in the field or after harvest during transportation and storage

processes. Postharvest diseases that cause fruit loss are

diverse, but fungal infections are considered the most com-

mon type of disease in ripe fruits due to their low acidity and

highmoisture content (Valero & Serrano, 2010). Hyperspectral

imaging was used very limitedly to detect fungal infections in

fruits. Sun, Wang, et al. (2017) found that the amount of

chlorophyll decreases significantly when pathogens infect the

peach fruit. It is therefore possible to indirectly detect fungal

contamination in fruit using spectral data at wavelengths of

617, 675, and 818 nm, which correspond to the absorption of

light by chlorophyll pigment. The results showed that un-

healthy samples can be separated from healthy ones with

98.8% accuracy using PLSR. Mehl et al. (2002) found significant

differences between the reflectance spectra of healthy and

infected apples in the visible area of the electromagnetic
spectrum, and also in the area corresponding to the chloro-

phyll absorption peak (700 nm). These optimal wavelengths

were able to distinguish healthy apples from infected apples

with an OCA of 76%, 85%, and 95% for Red Delicious, Golden

Delicious, and Gala cultivars, respectively. Calderon et al.

(2015) used hyperspectral imagery and SVM to classify verti-

cillium wilt-infected olive trees, with promising results: an

OCA between 59 and 79%.

On the other hand, hyperspectral imaging found many

applications in vegetable fungal infection detection. Wang

et al. (2014) used wavelengths between 550 and 1650 to

detect Botrytis aclada-infected onions and concluded that

spectral differences were present. Abdulridha, Ampatzidis,

Roberts, et al. (2020) used hyperspectral imaging in the

380e1020 nm range to classify healthy and powdery mildew

infected squash with excellent results. The classification of

asymptomatic squash in the field was 89%while for late-stage

infected vegetables the accuracy reached 96%. Abu-Khalaf

(2015) and Abdulridha, Ampatzidis, Kakarla, et al. (2020) both

used hyperspectral imaging to classify fungal tomato dis-

eases. Abu-Khalaf (2015) investigated Fusarium oxysporum and

Rhizoctonia solaniwhile Abdulridha, Ampatzidis, Kakarla, et al.

(2020) focused on target spot. Both achieved impressive ac-

curacies, i.e. 90% for Fusarium and Rhizoctonia and 99% for

target spot.

Mushrooms can be easily attacked by fungal or bacterial

diseases. Coweb disease, caused by Cladobotryum dendroides

subspecies, is one of the most notable fungal infections on

white button mushrooms. Cobweb disease can cause cap

spotting and brownish rot on the mushroom sporocarp.

Parrag et al. (2014) investigated push-broom hyperspectral

imaging configuration over 900e1700 nm for the detection of

the cobweb disease on white button mushrooms in the early

stages of infection. In this study, SVM was employed to

discriminate fungal infections on the surface of mushroom

sporocarp before they became obviously visible, and achieved

over 75% of correct classification. Brown blotch disease is

another fungal infection of white button mushrooms and is

mainly caused by Pseudomonas tolaasii. Gaston et al. (2010b)

used PLS-DA modelling strategy on VIS-NIR hypercube data

to discriminate the brown blotches caused by bacterial

infection, the browning effects from mechanical damage and

the undamaged mushrooms with on OCA above 95%.

3.9. Other uses of hyperspectral imaging for quality
assessment

The applications of hyperspectral imaging in the vegetable

sector are numerous and not limited to the categories of pa-

rameters presented above. S�anchez et al. (2013) accurately

predicted the harvest month and growing method of aspar-

agus with accuracies ranging between 82 and 91% for the

growing method and between 87 and 98% for the harvest

month. Hern�andez-Hierro et al. (2014) reported opportunities

of hyperspectral imaging to quantify glucosinolates in broc-

coli in the wavelength range of 950e1650 nm. Besides, Susic

et al. (2018) used hyperspectral imaging to distinguish be-

tween abiotic (water-stress) and biotic stress (nematode

infestation) in tomatoes. The accuracy for differentiating be-

tween well-watered and water-deficient plants was up to
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100%, and between 90 and 100% when classifying nematode-

infested plants. Moreover, hyperspectral imaging was used

to detect contaminants in vegetables. For example, Mo et al.

(2017) developed a discrimination method for biological con-

taminants (worms) in fresh-cut lettuce with excellent accu-

racies ranging between of 97% and 100%, and Siripatrawan

et al. (2011) proposed a detection system for Escherichia coli in

packaged fresh spinach by combining hyperspectral imaging

with chemometrics, thus allowing for a rapid and easy inter-

pretation. Furthermore, other diseases also attracted the in-

terest of researchers. Moghadam et al. (2017) classified tomato

wilt spotted virus-infected capsicum plants and Luo et al.

(2012) used hyperspectral imaging in the range of

400e2500 nm to recognise anthracnose and brown spot on

cucumber. The evaluation of ripeness was also studied. Zhu

et al. (2015) evaluated the ripeness of tomatoes using PLS-DA

by classifying them into one of six ripeness grades and ach-

ieved an OCA between 80.2% and 88.4% depending on the

ripeness grade.

The application of hyperspectral imaging for leafy vegeta-

bles, such as lettuce, celery, spinach, and brassica, tends to

focus more on phenotyping and breeding (Tripodi et al., 2018).

Important quality parameters could be determined with

hyperspectral imaging, e.g., dry matter, total soluble solids

and polyphenols in leeks (Golubkina et al., 2018) and celery

(Golubkina et al., 2020). Current applications are limited to

nitrogen and water content estimation for spinach with R2
p

values of 0.41 and 0.87, respectively (Corti et al., 2017; Diezma

et al., 2013).

Within this review, studies weremostly carried out on fresh

plant material. Information on quality parameters and

biochemical constitution could also be obtained through dry

material with the advantage of a homogeneous product and a

repeatablemeasurementandsetupcompared to freshmaterial.

Although the applications are limited, some examples are the

estimation of capsaicinoids in hot peppers (Park& Bae, 2008) or

glucosinolates for broccoli (Hern�andez-Hierro et al., 2014).
4. Application of machine learning for
hyperspectral data analysis

This section is organised into two parts. First, typical tasks in

machine learning are discussed in more detail. Several ML

models were already presented in the previous sections, and

are now further illustrated in the context of the various tasks

within ML. Then, in the second part, the focus shifts to a

relatively new sub-branch of ML: deep learning. Here, a brief

explanation is given of what DL is, and illustrates the state of

the art with some examples of applications of DL in the hor-

ticultural sector.

4.1. Machine learning tasks

ML can be used in different kinds of tasks and applications,

but in general classification and regression are the most

common one. These tasks are also often close to each other

and are even combined in certain applications, aswas actually

already evident from the applications of the various parame-

ters in Section 3.
4.1.1. Classification
A first and very common task in ML is classification. It aims to

predict discrete responses and to classify data into different

categories by assigning a class label to each data point. In

recent years, different ML techniques were implemented for

classification problems concerning the quality assessment of

fruits and vegetables. In the reviewed works, the most com-

mon models for classification tasks are (i) SVM and (ii) PLS-

(DA).

A common application of classification in the horticultural

and agricultural domain concerns the classification between

healthy and affected plants or fruits. Among the reviewed

papers (Table 1), SVM reached accuracies ranging from 79.2%

(Calderon et al., 2015) to 100% (Susic et al., 2018), depending on

the specific classification problem, in these cases verticillium

wilt in olive trees and nematodes in tomatoes, respectively.

Similar accuracies were found for PLS models, also depending

on the problem and the various parameters. Yuan et al. (2021)

used a CARS-PLS-DA model to discriminate between internal

bruised and non-bruised Lingwu long jujube, resulting in an

accuracy for the calibration and prediction set of 87% and 91%,

respectively (Yuan et al., 2021). A PLS-DA model for the clas-

sification of potato tubers infectedwith blackspot was used by

Lopez-Maestresalas et al. (2016) resulting in an accuracy of

98.56%. Wendel et al. (2018) also used a PLS-DA for the clas-

sification of mango maturity (dry matter content) and

compared it with a CNN approach (Section 4.2), resulting in an

F1-score of more than 97%.

Although SVM and PLS(-DA) are strongly represented for

classification tasks with hyperspectral imaging, other ML

techniques are also used with high accuracies for some tasks,

including LDA (Teena et al., 2014), Quadratic Discriminant

Analysis (QDA) (Teena et al., 2014), k-Nearest Neighbors (kNN)

(Rivera et al., 2014), Adaptive Bayes in combination with a

Gaussian Mixture Model (GMM) (Bauer et al., 2011), Random

Forest (RF) (Loggenberg et al., 2018), Radial Basis Function (RBF)

(Abdulridha, Ampatzidis, Roberts, et al., 2020) and ANN such as

Multilayer Perceptron (MLP) (Abdulridha, Ampatzidis, Kakarla,

et al., 2020; Gutierrez et al., 2018). In the aforementioned work

of Calderon et al. (2015) of verticillium wilt in olive trees, LDA

performed worse than SVMwith an accuracy of 59% compared

to 79%. Gutierrez et al. (2018) compared models based on SVM

and MLP for the classification of grapevine varieties, and ach-

ieved the best results for the models trained with MLP. In

general, it can be concluded that the employment of different

data, models and tasks, as well as the use of different metrics,

complicates comparison of the results between the different

works (Kamilaris & Prenafeta-Boldu, 2018). As was also already

seen in Section 3, most studies deal with classification of fruits,

while (leafy) vegetables are less represented.

4.1.2. Regression
Regression is a second important task in ML, used to model

the correlation between dependent variable and independent

variables. Although there is an enormous variation of appli-

cations with regression for quality detection in fruit and veg-

etables, two applications seem more common, namely the

modelling of SSC (e.g., of pepper (Ignat et al., 2014),

persimmon (Wei et al., 2020), kiwifruit (Ma et al., 2021a), apple

(Ma et al., 2021b), mango (Rungpichayapichet et al., 2017)), and
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of firmness (e.g., of banana (Rajkumar et al., 2012), tomato

(Huang, Lu, Xu, et al., 2018), mango (Rungpichayapichet et al.,

2017)). However, as already mentioned, there are many other

uses for regression models as well, such as modeling/predic-

tion of water and nitrogen contents (spinach (Corti et al.,

2017)), titratable acidity (mango (Rungpichayapichet et al.,

2017)), pH (tomato (Huang, Lu, Xu, et al., 2018)), maturity

estimation (mango (Wendel et al., 2018)). Analogous to previ-

ous observations, fruit is more represented than (leafy) vege-

tables in the various applications.

Some of the most widely used ML models for this type of

applications are PLS(R) (Corti et al., 2017; Huang, Lu, Hu, et al.,

2018; Huang, Lu, Xu, et al., 2018; Ma et al., 2021a, 2021b; Wei

et al., 2020) and MLR (Rajkumar et al., 2012).

4.1.3. Other ML tasks
Of course, the possible tasks in ML are not limited to classifi-

cation and regression, although these do account for the

largest share in the application of ML in horticulture and

agriculture. Another ML task is object detection, where the

goal is to localise and detect certain objects in an image (e.g.,

humans, cars, animals, etc.). In horticultural sector, this is

mainly reflected in applications such as localising fruits for

automatic fruit counting (Song et al., 2014) or to develop a

picking robot (Peng et al., 2019). However, most of these ap-

plications are (still) based on RGB data. A more common use

case of object detection with hyperspectral data is to detect

defects such as mechanical damage (Rivera et al., 2014) and

diseases (Lopez-Maestresalas et al., 2016). This task is more-

over closely related to classification, as in most cases it also

involves assigning a class or type to the detected object.

Analogous models are used, e.g., kNN for the detection of

mechanical damage in mangos (Rivera et al., 2014) or PLS-DA

for the detection of blackspot in potato (Lopez-Maestresalas

et al., 2016), with a comparable OCA of 98% and 94%,

respectively.

In addition, segmentation can also be seen as a typical ML

task, related to both classification and detection task. Seg-

mentation aims to label each pixel in an image as a pointwise

classification. In this way, similarly labelled pixels can be

grouped, creating segments in the image, to simplify an image

and give an exact outline of the objects inside of it. Li et al.

(2018) used an improved watershed segmentation on multi-

spectral images of peaches to discriminate bruised from

sound regions.

It can be concluded, based on the various studies

mentioned, that there is a wide range of ML models available.

Therefore, given a specific problem, determining the most

appropriate model to replace the more traditional manual

methods to assess fruit and vegetable quality, is challenging.

4.2. Deep learning

DL techniques use deeper ANN through the use of more

neurons, more layers and more complex ways of connections

between layers. The advantage of these deeper techniques lies

in their ability to learn features automatically rather than

relying on manual feature engineering, as is the case with

more traditional ML techniques (LeCun et al., 2015). In this

way, the system can solvemore complex problems, is flexible,
and is therefore able to capturemore variability in data, which

is interesting in for horticultural applications. A common type

of network for multidimensional data is a CNN, as fully con-

nected neural networks (FCNN), such as MLP, are not optimal

for this kind of data. In a FCNN, a neuron in a given layer is

connected to all other neurons in the next layer, resulting in a

huge amount of input formultidimensional data. Moreover, in

this data, information is typically spread across the different

dimensions, which makes linear processing not an optimal

strategy. After all, if a neuron contains a particular piece of

information, it is more likely that the environment sur-

rounding it will also contain relevant, spatial information.

Neurons are thus not linearly connected in a convolutional

layer, but rather through a local system of receptive fields over

the depth of the input data. A CNN typically consists of mul-

tiple convolutional layers, each of which attempts to extract a

certain type of features from the data. Using these layers,

different representations of the input data are created,

ranging from more general representations in the first layers

to more specific representations deeper in the network.

In the last years, DL was widely studied and improved the

state of the art in many different sectors (LeCun et al., 2015).

DL research in different sectors opened a window of oppor-

tunity for applications in horticulture, agriculture and food.

Kamilaris and Prenafeta-Boldu (2018) provide an overview of

the first applications of DL in precision agriculture, showing

its importance in recent agricultural applications such as crop

and/or weed detection and classification, disease detection,

fruit counting, yield estimation, and plant phenotyping, being

closely related to horticultural applications. The interest in

and the use of DL in the food domain is also rising. Zhou et al.

(2019) present an overview of the research progress of DL in

food, with applications such as food recognition and classifi-

cation, calorie estimation and quality detection. Naranjo-

Torres et al. (2020) specifically focus on the use of CNN for

fruit image processing (e.g., fruit classification, detection,

quality control) and observes that in this research domain

CNNs were not yet represented before 2019. In addition,

Fracarolli et al. (2021) state that one of the main objectives of

future agriculture will be increasing food quality, and that DL

can play in important role in this. Although the number of

studies with DL is increasing, there are still many unexplored

opportunities, including the combination of DL with hyper-

spectral data for the quality assessment of fruits and

vegetables.

To the best of our knowledge, most of the works involving

DL for applications with fruit, mushrooms and vegetables

make use of RGB data. It is typically used for the detection of

the fruits in a bigger image as a vital element of an autono-

mous robotic platform. For example, Peng et al. (2019) pro-

posed a classification algorithm using a CNN to classify

images into either a tomato or not. Liu et al. (2019) also used a

convolutional network, but proposed a pixel-wise segmenta-

tion method using Mask Region Based Convolutional Neural

Network (Mask R-CNN), based on Excess Green (ExG) for cu-

cumbers. Nonetheless, there are already a few cases where DL

was successful in combinationwith hyperspectral imaging for

the quality assessment of fruit, mushrooms and vegetables,

most of which date back to the last five years. It demonstrates

strong capabilities for the different ML tasks, addressing
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different variants of a CNN. In the eight papers reviewed about

this topic, only one paper does not mention a convolutional

network. In this work, Yu et al. (2018) applied a two-step

method to predict firmness and SSC of postharvest Korla

fragrant pear by extracting deep spectral features using a

Sparse Autoencoder (SAE) and feeding those to a FCNN.

In all other works, both common CNN architectures such

as AlexNet, Visual Geometry Group (VGG), ResNet etc. (Dong

et al., 2021; Gao et al., 2020; Garillos-Manliguez & Chiang,

2021; Wang et al., 2018), and self-composed CNN (Liu et al.,

2018; Nagasubramanian et al., 2018) emerge. The self-

composed architecture of Nagasubramanian et al. (2018)

consists of convolutional and pooling layers for the classifi-

cation of healthy and charcoal rot-infected soybean. Liu et al.

(2018) also proposed a self-composed architecture, in combi-

nation with a Stacked SAE (SSAE), constructed by stacking

multiple SAEs hierarchically on top of each other and so

creating a two-step method CNN-SSAE, inverted compared to

the one of Yu et al. (2018). In the cascaded system of Liu et al.,

the CNN is used to localise surface defective regions based on

the RGB extracted wavelengths of the hyperspectral image.

The SSAE then uses the image parts of the defective regions as

input for classification.

In contrast to self-composed architectures, numerous

variants of existing CNN architectures have been proposed in

recent years. These can be used, with appropriate modifica-

tions and whether or not pretrained, for various applications

and datasets, including hyperspectral ones. Wang et al. (2018),

Gao et al. (2020) and Dong et al. (2021) respectively used

ResNet/ResNeXt, AlexNet and ResNet in their systems to

detectmechanical damage in blueberries, strawberry ripeness

and species identification of bolete mushrooms. Garillos-

Manliguez and Chiang (2021) compared different architec-

tures, i.e., MobileNet/MobileNetV2, ResNet50/ResNeXt50,

VGG16/VGG19 and AlexNet for maturity estimation of papaya,

which resulted in a corresponding range of accuracies be-

tween 55% and 88%, making AlexNet the best option in this

case. The accuracies of the self-composed architectures range

from 88.3 to 95.7%, which is comparable to the accuracies of

the works using known architectures. However, it is still

difficult to compare the results of different works, given the

large differences in datasets and metrics used (Kamilaris &

Prenafeta-Boldu, 2018; Meenu et al., 2021). Both strategies

have interesting characteristics and many possibilities, but

besides the choice between a self-composed or existing CNN,

it is mainly important to fine-tune the hyperparameters of the

network to the desired application and corresponding data-

sets, taking into account an acceptable train and validation

time with existing hardware.

In addition, two studies used multimodal data to combine

the sensitivity of hyperspectral imaging and the precision of

RGB images. By using multiple modalities of information, the

information of one modality (in this case RGB data) can

complement and/or reinforce the other modalities to over-

come the limitations of using only one type of data. Garillos-

Manliguez and Chiang (2021) used this technique for matu-

rity estimation of papaya by combining the information of

RGB-data (e.g., morphological changes) and hyperspectral

data (e.g., internal properties). Different popular architectures

(i.e., MobileNet, MobileNetV2, ResNet50, ResNeXt50, VGG16,
VGG19, and AlexNet) were adapted toward the multimodal

data. Sa et al. (2016) used multimodal data (RGB and NIR) to

focus on the detection of fruits (sweet pepper and rock melon,

but adaptable to other fruits) with a Faster R-CNN network,

analogous to application in the works of Liu et al. (2019) and

Peng et al. (2019) as basis for an autonomous harvesting robot.

They compared early and late fusion of the multimodal data

and concluded that the late fusion method performs better,

with an F1-score of 0.84 compared to 0.80 for early fusion, 0.82

for RGB only and 0.80 for NIR only.

Some works not only used DL techniques, but also

compared them with earlier presented ML techniques.

Wendel et al. (2018) compared PLS and CNN for the classifi-

cation of mango maturity. The different CNNs had slightly

higher F1-scores of 0.985 and 0.989, than PLS with a mean F1-

score of 0.972. The same trend is visible in the work of Wang

et al. (2018) about the detection of internal mechanical dam-

age in blueberries. The CNNs (ResNet/ResNeXt) resulted in F1-

scores of 0.8952 and 0.8905, and thus outperformed SMO

(F1 ¼ 0.83), linear regression (F1 ¼ 0.78), RF (F1 ¼ 0.75), bagging

(F1 ¼ 0.73) and MLP (F1 ¼ 0.80) techniques.

It can be concluded that DL techniques have great potential

for hyperspectral imaging systems, as they can simplify the

overall processing pipeline. Although there are still many

challenges to overcome, which are highlighted in Section 5 as

DL will certainly be further explored in the near future. In

addition, a similar trend as for ML techniques can be observed

about the ratio fruit/vegetables: DL for applications concern-

ing fruit are more present in papers then (leafy) vegetables.

Thus, the use of DL, certainly in combination with vegetable

data, is an interesting gap to explore in the coming years.
5. Future considerations

In general, the main challenges with hyperspectral imaging

for quality assessment of fruit, vegetables and mushrooms,

are related to data availability and reliability of the available

models and results, especially when considering the applica-

bility. A lot of different studies have already been done on

many diverse cases, but in general they tend to lack a more

practical focus. Only a few studies (Li et al., 2011; Riccioli et al.,

2021; Schmilovitch et al., 2014) carried out true test set vali-

dations outside of calibration/training dataset from a different

year or orchard, not simply splitting a single dataset. More-

over, to achieve reliable prediction models and increased

knowledge transfer from researchers to horticultural practice,

research should focus more on repeatability and the transfer

from research parameters (chlorophyll content, firmness,

SSC) to relevant industrial parameters. Furthermore, suc-

cessful non-destructive assessment of quality parameters

with hyperspectral imaging on the field, during storage and

handling and on the shelf, can lead to the optimal use of

production inputs and a reduction of food waste, while

ensuring safe and high-quality food.

The end goal of hyperspectral imaging systems is generally

not to work towards a practical application. Data acquisition

processes for inline applications should be carried out more

rapidly. Multispectral imaging techniques that focus on a

smaller set of relevant wavelength ranges for the specific
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application should be used. Although several techniques

already exist to reduce redundant wavelengths in the (statis-

tical) analysis (Section 2.1), the development and stand-

ardisation of spectral compression methods and variable

selection algorithms should certainly be considered in the

near future. Finally, before (hyper-)spectral imaging systems

find their way into mainstream applications, (pre-)processing

and analysis of spectral imaging system should strive towards

standards to handle spectral information and facilitate avail-

ability of spectral data. At the moment, a lot of different

models and parameters are used in a lot of use cases, it is

difficult to generalise toward practice.

DL techniques are powerful ML methods that recently

showed their supremacy on various applications (LeCun et al.,

2015), however, it has shortcomings as well. More data will

generally be needed when a problem becomes more complex

(Kamilaris & Prenafeta-Boldu, 2018), and so, the training time

will also increase, certainly with hyperspectral imaging (Zhou

et al., 2019). Besides that, most of the aforementioned works

must be considered a proof of concept, rather than opera-

tional methods which are directly applicable in practice. This

is because they mostly rely on supervised models, requiring

an extensive labelled training dataset, which is very time-

intensive and therefore an expensive process, certainly for

hyperspectral data. Labelling is a big bottleneck in supervised

ML techniques, and in general, DL has an even bigger need for

large datasets due to its complexity.

The success of DL methods in various sectors, is partly due

to the availability of large-scale, labelled and public datasets,

such as ImageNet (Deng et al., 2009). In the case of limited

availability of labelled data, transfer learning can provide a

solution. Here, a network is first pretrained on a large and

generic database such as ImageNet and then further opti-

mised based on the limited dataset (Utkin et al., 2016). The

major drawback, however, is that most of the available large

datasets consist of RGB images, making the transition to

hyperspectral data not evident (Signoroni et al., 2019).

Consequently, it would be useful for further research of DL

techniques, as well as for more concrete and practical use, to

build and share a large-scale database of images capturing

various defects in fruits and vegetables (Nturambirwe &

Opara, 2020).

Another challenge concerns the intrinsic variability of

horticultural data, so the current trend is incorporating more

and more labelled datasets is unlikely to be sufficient. After

all, this variability makes it difficult to generalise such su-

pervisedmodels to the varying conditions in horticulture (e.g.,

cultivars, different growth stages, lighting condition, etc.),

let alone to other crop species or applications (Slaughter et al.,

2008). This immediately leads to the important nuance, as

mentioned above, regarding the results discussed in the pre-

vious sections: in almost all cases, the test dataset was similar

to the training dataset, which does not sufficiently test the

generalisation capabilities of the network. Generalisation is

an important aspect, certainly taking into account the prac-

tical applicability of the models.

Hence, there is a trend towards developing DL methods

that avoid the high amounts of labelled data, such as unsu-

pervised and semi-supervised learning techniques in different
(research) sectors (Guo et al., 2019). In unsupervised methods,

the system will independently detect patterns in the input

data, without an annotated ground truth (Sathya & Abraham,

2013). Although, the drawback of those methods is that there

is no way to force the method to detect a desired signal.

Weakly or semi-supervised techniques, being a combination

of both, can combine the advantages of both techniques. In

those systems, only a small part of the input dataset must be

labelled, with the bulk of the data remaining unlabelled. The

system itself can then be understood as an unsupervised

detection of patterns, combined with specialisation on the

annotated data. Different attempts were made to reduce the

labelling bottleneck with DL, as well as ML, in the broad sector

of agriculture and horticulture. However, most examples use

RGB data and were applied in arable farming. For example,

Potena et al. (2017) introduced an algorithm for automatic

selection of a good covering subset to be labelled (cfr. the

knapsack problem) to detect weeds in sunflower fields and Di

Cicco et al. (2016) proposed a method to create synthetic

additional data of weeds. Another interesting research area in

the field of weakly supervised learning, is the use of active

learning, based on iteratively querying the user. For example,

Hu et al. (2018) describe an active learning algorithm (esti-

mated error reduction) using hyperspectral imaging to classify

blueberry damage by using only nine labelled samples. An

alternative solution to the high need for data, is the use of

synthetic data, which will certainly be explored in the near

future.

Despite the differences in the reviewed works (e.g., RGB,

other crops, limited testing), it may be of interest to further

develop and apply these types of techniques and concepts to

hyperspectral images in the context of quality assessment for

fruit and vegetables. The transfer of ML techniques from other

applications and other types of data will therefore be an

interesting challenge in the future. To this end, it is important

that the current methods become standardised and made

comparable as much as possible, whereby the availability of a

public dataset will play an important role.
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