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Abstract

We analyze the asymptotics of waiting time distributions in the two-class accumulating

priority queue with general service times. The accumulating priority queue was suggested

by Kleinrock in the 60s - he coined it time-dependent priority - to diversify waiting time

objectives of different classes in a paramaterized way. It also avoids the typical starvation

problem of regular priority queues. All customers build up priority linearly while waiting in

the queue but at a class-dependent rate. At a service opportunity epoch, the customer with

highest priority present is served. Stanford and colleagues recently calculated the Laplace-

Stieltjes Transform (LST) of the waiting time distributions of the different classes, but only

invert these LSTs numerically. In this paper, we analytically calculate the asymptotics of

the corresponding distributions from these LSTs. We show that different singularities of the

LST can play a role in the asymptotics, depending on the magnitude of service differentiation

between both classes.
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1 Introduction

A static priority scheduling is a simple and efficient way to reduce waiting times of part of

the customers in a queue (the high-priority customers) at the expense of the other customers

(low-priority customers). Therefore, priority queues with diverse arrival and service time char-

acteristics have been analyzed abundantly in the past (see e.g. [6, 16, 17, 20]). Such a priority

scheduling is, in particular, effective if the fraction of high-priority customers is low, since the

waiting times of these customer can be reduced vastly without significantly increasing the wait-

ing times of the other customers. However, in case of numerous high-priority customers (even

occasionally), queues with a priority scheduling suffer from starvation of the low-priority cus-

tomers [11,19].
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Several solutions for the starvation problem have been proposed and implemented. Weighted Fair

Queueing and Weighted Round Robin are popular scheduling disciplines in telecommunication

networks, where the next customer (packet) to be served is chosen in some fair way [3]. Queues

with these scheduling disciplines are usually not easy to analyze and therefore queueing theory

and performance analysis researchers have turned to the analysis of theoretical ideal disciplines,

like Generalized Processor Sharing and Discriminatory Processor Sharing [2, 13, 21]. Other

scheduling disciplines that are less drastic than static priority include priority with priority

jumps [10,11], place reservation systems [4] and threshold-based scheduling [7].

In this paper, we study one particular scheduling that alleviates the starvation problem, namely

the accumulating priority queue. In this queue, all customers build up priority linearly with

the time they are waiting in the queue, but at class-dependent rates. This means that high-

priority customers build up priority faster than low-priority customers, but also that low-priority

customers that are already waiting a long time have built up a considerable amount of priority.

At a service opportunity epoch, the customer in the queue with the highest priority level is

served next. This scheduling was suggested by Kleinrock [6] as the ‘time-dependent priority

queue’. Stanford et al. [14] later coined it the ‘accumulating priority queue’. In computer

operating systems, the process is known as ‘aging’ [12, 22]. This scheduling can be generalized

to non-linearly increasing priority levels, but Li et al. [9] have proved that many systems with

common non-linear priority levels can be reduced to a system with linear levels in the sense that

they lead to the same exact waiting times (and sample paths of buffer occupancies).

We study the asymptotics of the waiting time distributions in the two-class accumulating pri-

ority queue with start priority levels equal to 0 for all arriving customers. Stanford et al. [14]

succeeded in calculating the Laplace-Stieltjes Transform (LST) of these distributions and these

will be the start for our analysis. Using singularity analysis of these LSTs (cf., [1]), we calculate

asymptotics of the waiting time density functions wi(t), i = 1, 2 of the two classes, i.e., we

find expressions that are asymptotically equal to wi(t) for t → ∞. The rates of increase of the

two priority levels only impact the waiting time distributions through their ratio γb, which is

therefore an important parameter that captures the priority differentiation between both classes.

Therefore, we thoroughly study the influence of this parameter on the asymptotics and prove

several interesting properties of the behavior of these asymptotics.

The paper is structured as follows. We first make the model we study explicit, summarize results

of interest of [14], and lay out the methodology for analyzing asymptotic behavior in section

2. We also transform the LSTs from [14] somewhat in this section. Before calculating and

analyzing the asymptotic behavior of the waiting times of both classes in sections 5 and 6, we do

the same for some auxiliary variables, the accreditation periods of both classes in sections 3 and

4. In particular, we study the impact of the (relative) priority level rates on these asymptotics

and illustrate our findings through some numerical examples. We end this paper with some

conclusions and future work, and further discussion on the relevance of our results.

2 Preliminaries

In this section, we first explain the model. We then write down the expressions of the LSTs of

the waiting time distributions as calculated in [14], and transform these expressions in a more
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explicit form. We also briefly look into two extreme cases. Finally, we elucidate our methodology

for analysis of the asymptotic behavior of the variables of interest.

2.1 Model

We assume a continuous-time queue with two classes of customers, say, class 1 and class 2.

Customers of class i arrive to the queueing system according to a Poisson process with rate

λi, i = 1, 2. There is one server to serve the customers. Service times of class-i customers

are distributed according to a general distribution with density function b(i)(t), mean 1/µi, and

LST B̃(i)(s), i = 1, 21. We further assume that the distributions of the service times are ‘class-I’

distributions2, as coined in [1], i.e., the LST B̃(i)(s) has a dominant (right-most) singularity

−sB(i) in the left-half plane with sB(i) > 0 and the B̃(i)(s) going to ∞ for s → −sB(i) .3 The

load of class-i is defined as ρi = λi/µi, i = 1, 2.

The accumulating priority scheduling is defined as follows: a class-i customer accumulates prior-

ity at rate bi starting at 0 upon arrival. So if a class-i customer arrived at time t′ its accumulated

priority at time t ≥ t′ equals bi · (t− t′). Each time the server becomes available, the customer

with the highest accumulated priority present starts service. Service is never interrupted. We

assume b1 ≥ b2, i.e., the priority level of class-2 customers does not grow faster than that of

class-1 customers. The scheduling discipline is work conserving and as a result the stability

condition is given by ρ := ρ1 + ρ2 < 1.

2.2 Reformulation of the Expressions for the LSTs from [14]

Define W̃ (i)(s) as the LST of the stationary waiting time distribution. Stanford et al. [14] found

the following results for these LSTs4:

W̃ (i)(s) = 1− ρ+ ρṼ (i)(s/bi), i = 1, 2, (1)

with

Ṽ (1)(s) =
b2
b1
Ṽ (2)(s) +

(1− ρ)(b1 − b2)
b1(1− σ1)

Ṽ (1,0)(s) +
(ρ− σ1)(b1 − b2)

b1(1− σ1)
Ṽ (2)(s)Ṽ (1,1)(s),

Ṽ (2)(s) =
1

−Γ̃
(2)′
0 (0)

[
1 + Γ̃

(2)′
2 (0)

(
λ2 + λ1

b2
b1

)] [
1− Γ̃

(2)
0 (b2s)

]
b2s−

(
λ2 + λ1

b2
b1

)[
1− Γ̃

(2)
2 (b2s)

] ,

Ṽ (1,0)(s) =
1

−B̃(2)′
0 (0)

[
1− ρ1

(
1− b2

b1

)] [
Γ̃
(2)
0 (b2s)− B̃(2)

0 (b1s)
]

(
1− b2

b1

){
b1s− λ1

[
1− B̃(1)(b1s)

]} ,

1In this paper, we denote the LST corrsesponding to a density funtion f(t) by F̃ (s).
2Not to be confused with class-1 customers.
3Other distribution types can be treated as well, but make the (writing down of the) analysis more cumbersome.

We refer to [1] for more details.
4We follow notation of Stanford et al. [14] as closely as possible.
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Ṽ (1,1)(s) =
1

−B̃(2)′
2 (0)

[
1− ρ1

(
1− b2

b1

)] [
Γ̃
(2)
2 (b2s)− B̃(2)

2 (b1s)
]

(
1− b2

b1

){
b1s− λ1

[
1− B̃(1)(b1s)

]} ,

Γ̃
(2)
i (s) = B̃

(2)
i

(
s+ λ1

(
1− b2

b1

)[
1− Γ̃(1)(s)

])
, i = 0, 2,

Γ̃(1)(s) = B̃(1)

(
s+ λ1

(
1− b2

b1

)[
1− Γ̃(1)(s)

])
,

B̃
(2)
0 (s) =

λ1B̃
(1)(s) + λ2B̃

(2)(s)

λ1 + λ2
,

B̃
(2)
2 (s) =

λ1
b2
b1
B̃(1)(s) + λ2B̃

(2)(s)

λ1
b2
b1

+ λ2

,

σ1 =
ρ1(b1 − b2)

b1
.

Explicit substitution of all these expressions in (1) shows that W̃ (i)(s) only depends on b1 and

b2 through their ratio γb := b2/b1. We find

W̃ (1)(s) =
1− ρ{

s− λ1
[
1− B̃(1)(s)

]}{
γbs− λ1γb

[
1− Γ̃(1)(γbs)

]
− λ2

[
1− Γ̃(2)(γbs)

]}
·
({
s− λ1

[
1− Γ̃(1)(γbs)

]}{
γbs− λ2(1− γb)

[
1− B̃(2)(s)

]}
−λ2s

[
B̃(2)(s)− Γ̃(2)(γbs)

])
, (2)

W̃ (2)(s) = (1− ρ)
s+ λ1(1− γb)

[
1− Γ̃(1)(s)

]
s− λ1γb

[
1− Γ̃(1)(s)

]
− λ2

[
1− Γ̃(2)(s)

] , (3)

with

Γ̃(i)(s) = B̃(i)
(
s+ λ1(1− γb)

[
1− Γ̃(1)(s)

])
, i = 1, 2. (4)

The random variables corresponding with Γ̃(i)(s) are called ‘accreditation periods’ in [14]. Note

that Γ̃(1)(s) is implicitly defined, cf. (4) for i = 1, and can, for general B̃(1)(s), not be calculated

explicitly.5 All other functions depend on this Γ̃(1)(s). Derivatives in s = 0 can, however, be

calculated explicitly. For instance, we have

Γ̃(1)′(0) = − 1

µ1

1

1− ρ1(1− γb)
.

Numerical inversion of the LSTs is also feasible, cf. [14].

5For exponential service times of class 1, an explicit expression is possible.
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2.3 Special Cases γb = 0 and γb = 1

We end this preliminary section with a discussion on the two limit cases γb = 0 (b2 = 0 or

b1 =∞) and γb = 1 (b1 = b2), since these reduce to well-known scheduling disciplines for which

the asymptotics of the densities of the waiting times are well understood.

When γb = 0, class-1 customers have non-preemptive priority over class-2 customers. The

expressions of the LSTs of the waiting times simplify to

W̃ (1)(s) =
(1− ρ)s+ λ2

[
1− B̃(2)(s)

]
s− λ1

[
1− B̃(1)(s)

] , (5)

W̃ (2)(s) = (1− ρ)
s+ λ1

[
1− Γ̃(1)(s)

]
s− λ2

[
1− Γ̃(2)(s)

] ,
with

Γ̃(i)(s) = B̃(i)
(
s+ λ1

[
1− Γ̃(1)(s)

])
, i = 1, 2.

These are indeed consistent with the results for the M/G/1 non-preemptive priority queue, cf.

for instance [16]. In the priority queue, Γ̃(i)(s) is the LST of the busy period of class-1 (high-

priority) customers started by a class-i customer, i = 1, 2 (in case of class-2 this is to be regarded

as an exceptional first service time). Comparison of the expression of this LST with (4) shows

that the accreditation period in the accumulating priority queue is nothing more than a busy

period in an equivalent system with (reduced) arrival rate λ1(1− γb) for the class-1 customers.

This shows that the priority of class-1 customers, which is absolute for γb = 0, is more alleviated

for larger γb > 0. Since asymptotics in the priority queue are well understood (cf. [1]) and this

LST of the busy period plays a major role in them (see also further), this already demonstrates

that asymptotics in the accumulating priority queue relate to that in the priority queue to some

extent.

When γb = 1, all customers gain priority at the same rate and the system results in a FCFS

system. The expressions of the LSTs of the waiting times simplify to

W̃ (i)(s) =
(1− ρ)s

s− λ1
[
1− B̃(1)(s)

]
− λ2

[
1− B̃(2)(s)

] , i = 1, 2.

These are indeed consistent with the results for the M/G/1 queue where the service times are a

probabilistic mixture of class-1 and class-2 service times.

2.4 Methodology

In this paper, we develop the asymptotics of the waiting time distributions in the accumulating

priority queue, i.e., we establish approximate expressions for the density function of the waiting

times, i = 1, 2, which are asymptotically exact for t→∞. This derivation is based on dominant

singularity analysis of the corresponding LSTs. The asymptotic behavior of a distribution is
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determined by the location of the rightmost singularity of the LST (which is a non-positive real

number) and the type of that singularity (pole with certain multiplicity, branchpoint, . . . ). More

precisely if we find A and γ for an LST F̃ (s) with rightmost singularity −s∗ such that

F̃ (s) ∼ A · (s+ s∗)γ , s→ −s∗,

the asymptotics for the corresponding density function are given by

f(t) ∼ Ae−s
∗t

tγ+1Γ(−γ)
, t→∞

with Γ(x) the Gamma function, according to the Heaviside Operational Principle ( [1], p. 188).6

We focus, in particular, on the influence of the essential model parameter γb. This parameter

summarizes the (inverse) priority level of class-1 customers (γb = 0 yields full priority while

γb = 1 is the system without priority, cf. supra) and, in accordance with this, the rightmost

singularities of the different LSTs demonstrate some monotonic behavior in γb. We will therefore

add γb, where appropriate, as a variable to the different functions and constants in the remaining

sections.

We start with the asymptotic inversion of the Γ̃(i)(s) functions which have a stochastic interpre-

tation as the LSTs of busy periods in an M/G/1 queue and which are key to the asymptotics of

the waiting times. Then we look at the class-2 waiting times first as the expression of the LST

is simplest for this class, leading to easier derivations as well. Last, we investigate the class-1

waiting time distribution asymptotics. Throughout, we illustrate the properties by numerical

examples.

3 Accreditation Periods Class 1

The function Γ̃(1)(s) as in (4) for i = 1 is the LST of an accreditation period started by a class-1

service time. The LST is in fact equal to the LST of a busy period in the M/G/1 queue with

arrival rate λ1(1− γb) and service times with LST B̃(1)(s), cf. [16], p. 20, formula (2.4).

We first identify the rightmost singularity of Γ̃(1)(s) in the case γb < 1 and investigate how this

singularity behaves as function of γb. Then we write down the asymptotics of the corresponding

density. We end by proving some further properties for future reference and by briefly looking

into the special case γb = 1.

3.1 Rightmost Singularity

For γb < 1, we can refer to Abate and Whitt [1]7. The rightmost singularity −sγ1 of Γ̃(1)(s)

is that s for which Γ̃(1)′(s) becomes infinite. This is in essence a consequence of the implicit

function theorem, that says that an implicitly defined function (Γ̃(1)(s)) is regular as long as its

first derivative exists. We have

sγ1 = ζ1 + λ1(1− γb)(1− B̃(1)(−ζ1)),
6f(t) ∼ g(t), t→ t0 ⇔ limt→t0 f(t)/g(t) = 1.
7Note that our formulas are not entirely identical as in Abate and Whitt [1], since they assumed µ1 = 1.
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with −ζ1 the negative real root of the busy-period asymptotics equation

−B̃(1)′(s) =
1

λ1(1− γb)
, (6)

cf., respectively, formulas (7.4) and (7.1) in Abate and Whitt [1]. Note that Γ̃(1)(−sγ1) =

B̃(1)(−ζ1).

3.2 Behavior of the Rightmost Singularity

The rightmost singularity −sγ1(γb) of Γ̃1(s; γb) decreases monotonously with γb since

s′γ1(γb) = ζ ′1(γb)
[
1 + λ1(1− γb)B̃(1)′(−ζ1(γb))

]
− λ1

[
1− B̃(1)(−ζ1(γb))

]
= − λ1

[
1− B̃(1)(−ζ1(γb))

]
> 0,

where we used that −ζ1 is a solution of (6) in the second equality. This monotonous decrease

is also intuitively clear as increasing γb means less accredited class-1 customers (less priority for

class-1 customers).

Note that limγb→1 s
′
γ1(γb) = +∞, since for γb → 1−, −sγ1 and −ζ1 converge to the rightmost

singularity −sB(1) of B̃(1)(s). The latter is consistent with the fact that the busy period in a

system with zero arrival rate equals a single service time.

3.3 Asymptotics

We can write [1]

Γ̃(1)(s) ∼ B̃(1)(−ζ1)−
√

2

λ31(1− γb)3B̃(1)′′(−ζ1)
(s+ sγ1)1/2, s→ −sγ1 .

The Heaviside Operational Principle then leads to the following asymptotics for the density

function γ(1)(t) of the accreditation periods of class 1:

γ(1)(t) ∼
[
2λ31(1− γb)3B̃(1)′′(−ζ1)

]−1/2 (
πt3
)−1/2

e−sγ1 t,

cf. [1], formula (7.3).

3.4 Some Further Properties

Just like sγ1(γb), ζ1(γb) is an increasing function. From the busy periods asymptotics equation

and the implicit function theorem we find

ζ ′1(γb) =
1

B(1)′′(−ζ1(γb))λ1(1− γb)2
> 0,

7



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

γb

ζ1
sγ1

Figure 1: ζ1 and sγ1 as functions of γb for λ1 = 0.5 and exponential service times of class-1 with
rate µ1 = 1.

with the inequality following from the fact that all factors in the denominator of the RHS are

positive.

From the relation between sγ1(γb) and ζ1(γb), it follows that ζ1(γb) ≥ sγ1(γb) with the equality

only valid for γb = 1.

In Figure 1, we demonstrate the monotonic behavior of sγ1(γb) and ζ1(γb), that sγ1(γb) ≥ ζ1(γb),
and that limγb→1 s

′
γ1(γb) = +∞ for λ1 = 0.5 and exponential service times of class-1 with rate

µ1 = 1.

For future reference, we prove that Γ̃(1)(s; γb) decreases with γb for −sγ1 < s < 0. First, we take

the partial derivative of Γ̃(1)(s; γb) in γb:

∂Γ̃(1)(s; γb)

∂γb
=
−λ1(1− Γ̃(1)(s; γb))B̃

(1)′(s+ λ1(1− γb)(1− Γ̃(1)(s; γb)))

1 + λ1(1− γb)B̃(1)′(s+ λ1(1− γb)(1− Γ̃(1)(s; γb)))
< 0.

The inequality follows from the fact that all three factors in the numerator are negative, while

the denominator is positive for −sγ1 < s < 0. Therefore, Γ̃(1)(s; γb) decreases with γb when

−sγ1 < s < 0.

3.5 The Special Case γb = 1

For γb = 1, the asymptotics of the probability density function corresponding to Γ̃1(s) are

different, since they are in this case given by the asymptotics of the distribution of the class-1

service times.

The other formulas for γb < 1 are also correct for γb = 1.
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4 Accreditation Periods Class 2

The function Γ̃(2)(s) as in (4) for i = 2 is the LST of an accreditation period started by a class-2

service time. The LST is in fact equal to the LST of a busy period in the M/G/1 queue with

arrival rate λ1(1 − γb), service times with LST B̃(1)(s) and exceptional first service time with

LST B̃(2)(s), cf. [16], p. 24, formula (2.19b).

We first identify the potential rightmost singularities of Γ̃(2)(s) and study their behavior as a

function of γb. We then investigate how γb affects which singularity is dominant. Afterwards,

we write down the asymptotics of the density function and prove a further property for future

reference. Since the case γb = 1 is again somewhat specific, we assume γb < 1 throughout the

most part of this section and treat γb = 1 at the end.

4.1 Potential Rightmost Singularities

If γb < 1, the rightmost singularity of Γ̃(2)(s) is either the rightmost singularity −sγ1 of Γ̃1(s; γb)

or the singularity −η2 that makes the argument of the function B̃(2) in (4) equal to the rightmost

singularity −sB(2) of B̃(2)(s). For the latter, we have

η2 = sB(2) + λ1(1− γb)(1− B̃(1)(−sB(2))).

Note that we used that Γ̃(1)(−η2) = B̃(1)(−sB(2)).

4.2 Behavior of the Singularities

We already proved that −sγ1(γb) decreases with γb. We now prove that −η2(γb) does as well.

We have

η′2(γb) = − λ1(1− B̃(1)(−sB(2))) > 0.

Note that limγb→1 η2(γb) = sB(2) .

Since both singularities decrease with γb, the rightmost singularity −sγ2(γb) of Γ̃(2)(s; γb) de-

creases with γb as well. It can switch from one singularity to the other (from −sγ1(γb) to −η2(γb)
or vice versa) when both singularities become equal only.

4.3 Which is the Rightmost Singularity?

We now study which of both singularities −sγ1(γb) and −η2(γb) is the rightmost singularity and

how γb affects this.

When −η2(γb) exists, it is the rightmost singularity. However, it only exists if sB(2) < ζ1(γb),

i.e., if the argument s+λ1(1−γb)(1− Γ̃(1)(s; γb)) in (4) reaches −sB(2) before it reaches −ζ1(γb)
if we decrease s starting from 0. As ζ1(γb) is an increasing function we have following division:
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Figure 2: ζ1, sγ1 , and η2 as functions of γb for λ1 = 0.5, exponential service times with rate
µ1 = 1 for class 1 and different rates µ2 for class 2. The singularity η2 exists for all γb when
µ2 = 0.1 and µ2 = 0.25, since ζ1(0) > 0.25 (first case) while it only exists for larger values of γb
for µ2 = 0.5 and µ2 = 0.75 (third case). For µ2 > ζ1(1) = 1, η2 does not exist for any γb (second
case).

• If sB(2) ≤ ζ1(0), −η2(γb) exists for all γb. By definition, ζ1(0) is the rightmost solution of

−B̃(1)′(s) = 1/λ1, cf. (6).

• On the other side of the spectrum, ζ1(1) = sB(1) . Therefore, if sB(2) > sB(1) , −η2(γb)
does not exist for any γb < 1 and −sγ1(γb) is the rightmost singularity of Γ̃(2)(s; γb) for all

γb < 1.

• If ζ1(0) < sB(2) ≤ ζ1(1), there is a γ∗b ∈ [0, 1] such that −η2(γb) exists for γb ≥ γ∗b and does

not exist for γb < γ∗b . In the former case, −η2(γb) is the rightmost-singularity, in the latter

−sγ1(γb) is. The threshold γ∗b is the solution of ζ1(γb) = sB(2) and is given by

γ∗b = 1 +
1

λ1B̃(1)′(−sB(2))
.

This threshold increases monotonously with sB(2) from 0 for sB(2) = ζ1(0) to 1 for sB(2) =

ζ1(1).

In Figure 2, we demonstrate the monotonic behavior of sγ1(γb) and η1(γb) for λ1 = 0.5, expo-

nential service times of class 1 with rate µ1 = 1, and exponential service times of class 2 with

rates µ2 = 0.1, µ2 = 0.25, µ2 = 0.5 and µ2 = 0.75 .

4.4 Asymptotics

We establish the asymptotic behavior of Γ̃(2)(s) in the neighborhood of −sγ1 (when it is different

from −η2):

Γ̃(2)(s) ∼ B̃(2)(−ζ1) + B̃(2)′(−ζ1)
√

2

λ1(1− γb)B̃(1)′′(−ζ1)
(s+ sγ1)1/2, s→ −sγ1 .
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This leads to the following asymptotics for the density function γ(2)(t) of the accreditation

periods of class 2:

γ(2)(t) ∼ −B̃(2)′(−ζ1)
[
2λ1(1− γb)B̃(1)′′(−ζ1)

]−1/2 (
πt3
)−1/2

e−sγ1 t.

If −η2 is the (joint) rightmost singularity, the behavior of Γ̃(2)(s) in the neighborhood of that

singularity depends directly on the behavior of B̃(2)(s) in the neighborhood of −sB(2) . As an

example, we show the asymptotics in case −sB(2) is a pole of B̃(2)(s) with multiplicity nB(2) ,

i.e., when

B̃(2)(s) ∼ cB(2)

(s+ sB(2))
n
B(2)

, s→ −sB(2) , (7)

with cB(2) some constant. By combining this expansion of B̃(2)(s) with the regular expansion of

Γ̃(1)(s), cf. [5], p. 411 (the ‘supercritical case’ of functional composition), we can write

Γ̃(2)(s) ∼ cB(2) [1 + λ1(1− γb)B̃(1)′(−sB(2))]
n
B(2)

(s+ η2)
n
B(2)

, s→ −η2,

where we have also used that

Γ̃(1)′(−η2) =
B̃(1)′(−sB(2))

1 + λ1(1− γb)B̃(1)′(−sB(2))
.

4.5 Further Properties

For future reference, we prove that Γ̃(2)(s; γb) decreases with γb for s < 0. We can write

∂Γ̃(2)(s; γb)

∂γb
=
B̃(2)′(s+ λ1(1− γb)(1− Γ̃(1)(s; γb)))

B̃(1)′(s+ λ1(1− γb)(1− Γ̃(1)(s; γb)))

∂Γ̃(1)(s; γb)

∂γb
< 0.

The inequality follows from the fact that all factors in the RHS are negative.

4.6 The Special Case γb = 1

When γb = 1, Γ̃(1)(s) disappears from the equation and Γ̃(2)(s; 1) = B̃(2)(s), with rightmost

singularity −sB(2) . Since this is the limit of the singularity −η2(γb) for γb → 1−, we have

continuous behavior in cases where −η2(γb) exists for γb → 1−. If −η2(γb) does not exist for

γb → 1−, there is a discontinuity of the rightmost singularity and the asymptotic distribution

for γb = 1.

5 Waiting Times Class 2

The LST W̃ (2)(s) shows a remarkable resemblance with that of the low-priority waiting time in

the priority queue. We can therefore follow a similar reasoning as Abate and Whitt [1].
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We first identify the potential rightmost singularities of W̃ (2)(s) and study the behavior of

these singularities as functions of γb. This helps us in investigating the impact of γb on which

singularity is dominant. We end with writing down the asymptotics.

5.1 Potential Rightmost Singularities

The rightmost singularity −sw2 of W̃ (2)(s) is one of two possibilities: either the branchpoint

−sγ1 of Γ̃(1)(s) (and potentially Γ̃(2)(s)) or the rightmost zero −η (different from 0) of the

denominator s− λ1γb
[
1− Γ̃(1)(s)

]
− λ2

[
1− Γ̃(2)(s)

]
of W̃ (2)(s), cf. (3). Note that when −η2 is

the rightmost singularity of Γ̃(2)(s), η < η2 since Γ̃(2)(s)→∞ for s→ −η2.

5.2 Behavior of the Singularities

We already proved that the branchpoint −sγ1(γb) decreases with γb. We now prove that the

pole −η(γb) does as well (when it exists). From its definition and the implicit function theorem

we find

η′(γb) =

λ1(1− Γ̃(1)(−η(γb); γb))− λ1γb
∂Γ̃(1)(−η(γb); γb)

∂γb
− λ2

∂Γ̃(2)(−η(γb); γb)

∂γb

−

(
1 + λ1γb

∂Γ̃(1)(−η(γb); γb)

∂s
+ λ2

∂Γ̃(2)(−η(γb); γb)

∂s

)
= − λ1(1− Γ̃(1)(−η(γb); γb)) > 0.

The second equality follows from calculating and substituting the partial derivatives of Γ̃(i)(s; γb).

Since both singularities that are potentially the rightmost singularity −sW (2)(γb) of W̃ (2)(s; γb)

decrease with γb, so will −sW (2)(γb). Note that this is also intuitive as increasing γb means less

priority for class 1, hence a more rapidly decaying class-2 waiting time distribution.

5.3 Which is the Rightmost Singularity?

When −η(γb) exists, it is the rightmost singularity. Note that −η(γb) exists for sure if −η2(γb)
exists, since η < η2 ≤ sγ1 in that case.

Since both singularities decrease with γb it is (again) not instantly clear how γb influences which

singularity is the rightmost one. We distinguish the same cases as for the class-2 accreditation

periods:

• If sB(2) ≤ ζ1(0), −η2 exists for all γb. Therefore, −η exists as well and is the rightmost

singularity.

• On the other side of the spectrum, if ζ1(1) = sB(1) < sB(2) , −η2 does not exist for any γb
and the rightmost singularity of the Γ̃(i)(s) is −sγ1 . We then find that if λ2 is larger than

some threshold, say λ∗2, −η exists and is larger than −sγ1 . If λ2 < λ∗2, −η does not exist

and −sγ1 is the rightmost singularity. For λ2 = λ∗2, −η = −sγ1 .

12



The threshold value λ∗2 is given by

λ∗2 =
ζ1 − λ1(B̃(1)(−ζ1)− 1)

B̃(2)(−ζ1)− 1
.

This is found as follows: if −η exists, the denominator s−λ1γb(1−Γ̃(1)(s))−λ2(1−Γ̃(2)(s))

of W̃ (2)(s) is negative for s ∈] − η, 0[ and non-negative for s ∈] − sγ1 ,−η]. Therefore, if

plugging −sγ1 in this denominator results in a non-negative number, −η exists, and vice

versa. This condition leads to λ2 ≥ λ∗2.

Note that λ∗2 is not necessarily positive. In the remainder, we prove the following state-

ments: (i) the numerator of λ∗2(γb) has one zero γ̂b ∈ [0, 1], (ii) if γb ≥ γ̂b, λ
∗
2 ≤ 0; (iii)

for γb ∈ [0, γ̂b[, λ
∗
2(γb) is a positive decreasing function. All this means that −η is the

rightmost singularity if γb ≥ γ̂b or, if γb < γ̂b and λ2 ≥ λ∗2.

We prove this statement by studying the behavior of λ∗2(γb) and its numerator for all γb.

We start with the numerator

f(γb) = ζ1(γb)− λ1(B̃(1)(−ζ1(γb))− 1).

Its first derivative is negative for γb > 0:

f ′(γb) = ζ ′1(γb)[1 + λ1B̃
(1)′(−ζ1(γb))]

= ζ ′1(γb)
−γb

1− γb
< 0,

where we used the definition of ζ1 in the second step. From the fact that B̃(1)(s) and

−B̃(1)′(s) are decreasing functions for s < 0, and from the definition of −ζ1, it follows that

f(0) > 0 and limγb→1 f(γb) = −∞. Therefore, f(γb) has a unique zero γ̂b in [0, 1] which

proves the first part. Note that this zero is independent of sB(2) .

Next, we calculate the derivative of λ∗2(γb):

λ∗′2 (γb) = ζ ′1(γb)

− γb
1− γb

+ λ∗2(γb)B̃
(2)′(−ζ1(γb))

B̃(2)(−ζ1(γb))− 1
.

Since the first factor and the denominator of the second factor are positive and the nu-

merator of the second factor is negative as long as λ∗2(γb) is positive, λ∗2(γb) decreases with

γb at least until it hits 0. This zero is γ̂b since this is also the only zero: the denominator

stays finite (ζ1(γb) < sB(2) for all γb in this case). This proves the third part. As a side

result, λ∗2(γb) < 0 for γb ∈]γ̃b, 1[, which is the second part of the statement.

We demonstrate these findings in Figure 3(a) where we show λ∗2 as function of γb for

λ1 = 0.5, exponential service times of class 1 with rate 1 and for several rates µ2 ≥ 1 of

class 2.

• If ζ1(0) < sB(2) ≤ ζ1(1) = sB(1) , we distinguish two subcases:

– If γb ≥ γ∗b , −η2 exists. Therefore, −η exists as well and is the rightmost singularity.

– If γb < γ∗b , −η2 does not exist. As in the previous case, it then depends on λ2
and λ∗2, whether −η exists. In this case, we find (see further) that (i) λ∗2(γb) is a
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Figure 3: λ∗2 as function of γb for λ1 = 0.5, exponential service times of class 1 with rate 1 and
for several rates µ2 of class 2.

positive decreasing function for γb ∈ [0,min(γ̂b, γ
∗
b )[, and (ii) if γ̂b ≤ γ∗b , λ∗2(γb) ≤ 0

for γb ∈ [γ̂b, γ
∗
b ].

The proof follows the same lines as in the previous case. The difference is that λ∗2(γb)

has two zeroes in the current case, namely the zero γ̂b of the numerator and the pole

γ∗b of the denominator (ζ1(0) < sB(2) < ζ1(1) = sB(1) in this case). As before, λ∗2(γb)

decreases with γb at least until it hits 0 for the first time. This proves the first part

of the statement. It then stays negative before hitting the second zero, which is only

of interest when the first zero is γ̂b (we are only interested in γb < γ∗b here). This

proves the second statement.

We again demonstrate these findings in Figure 3(b) where we show λ∗2 as function of γb
for λ1 = 0.5, exponential service times of class 1 with rate 1 and for several rates µ2 < 1

of class 2.

In summary, if the rightmost singularity −sB(2) of B̃(2)(s) is smaller than a certain threshold,

if subsequently γb is smaller than a threshold (which depends on sB(2)) and if λ2 is smaller

than a threshold (which depends on sB(2) and γb), the rightmost singularity of W̃ (2)(s) is the

branchpoint −sγ1 of the LST of the accreditation periods of class 1. In all other cases, the

rightmost singularity is the pole −η.

We demonstrate these conclusions in Figure 4 where we show sγ1 , η2 and η as functions of γb for

λ1 = 0.5, exponential service times with rate µ1 = 1 for class 1 and different arrival and service

rates λ2 and µ2 for class 2.

5.4 Asymptotics

We can distinguish two different cases and one border case for the rightmost singularity of

W̃ (2)(s) and corresponding asymptotics of the class-2 waiting time density function w2(t):
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Figure 4: sγ1 , η2 and η as functions of γb for λ1 = 0.5, exponential service times with rate µ1 = 1
for class 1 and different arrival and service rates λ2 and µ2 for class 2. The singularity η exists
for all γb when µ2 = 0.25 (first case). For µ2 = 0.75 and µ2 = 1.5, it exists for all γb for λ2
small enough. For higher λ2 values, it only exists for large enough values of γb (second and third
cases).

• −η exists and is larger than −sγ1 . We then have that −sw2 = −η and we can write

W̃ (2)(s) ∼
(1− ρ)

−η + λ1(1− γb)(1− Γ̃(1)(−η))

1 + λ1γbΓ̃(1)′(−η) + λ2Γ̃(2)′(−η)

s+ η
as s→ −η.

Asymptotic inversion leads to

w(2)(t) ∼(1− ρ)
−η + λ1(1− γb)(1− Γ̃(1)(−η))

1 + λ1γbΓ̃(1)′(−η) + λ2Γ̃(2)′(−η)
e−ηt,

in this case.

• −η does not exist. We have −sw2 = −sγ1 , and

W̃ (2)(s) ∼ W̃2(−sγ1)− (1− ρ)

ζ1
1− γb

+
∑2

i=1 λi(1− B̃(i)(−ζ1))− λ2ζ1B̃(2)′(−ζ1)[
ζ1 +

∑2
i=1 λi(1− B̃(i)(−ζ1))

]2
·
√

2

λ1(1− γb)B̃(1)′′(−ζ1)
(s+ sγ1)1/2, s→ −sγ1 .

Asymptotic inversion leads to

w(2)(t) ∼ (1− ρ)

ζ1
1− γb

+
∑2

i=1 λi(1− B̃(i)(−ζ1))− λ2ζ1B̃(2)′(−ζ1)[
ζ1 +

∑2
i=1 λi(1− B̃(i)(−ζ1))

]2
√

1

2λ1(1− γb)B̃(1)′′(−ζ1)

·
(
πt3
)−1/2

e−sγ1 t.

15



• −η exists and is equal to −sγ1 . We have −sw2 = −η = −sγ1 , and

W̃ (2)(s) ∼ (1− ρ)
ζ1[

γb
1− γb

− λ2B̃(2)′(−ζ1)
]√

2

λ1(1− γb)B̃(1)′′(−ζ1)
(s+ sγ1)1/2

, s→ −sγ1 .

Asymptotic inversion leads to

w(2)(t) ∼ (1− ρ)
ζ1[

γb
1− γb

− λ2B̃(2)′(−ζ1)
]√

2

λ1(1− γb)B̃(1)′′(−ζ1)

(πt)−1/2e−sγ1 t.

6 Waiting Times Class 1

The expression (2) of W̃ (1)(s) is more complex than that of W̃ (2)(s) leading to more involved

singularity and asymptotic analysis. We first identify the potential rightmost singularities and

study their behavior as functions of γb. We then characterize which is the rightmost singularity

and how this changes with γb. Finally, we write down the asymptotics of the density function

w(1)(t) of the class-1 waiting time for all cases.

6.1 Potential Rightmost Singularities

The candidate rightmost singularities are:

• the branchpoint −sγ1/γb of Γ̃1(γbs),

• the rightmost zero (< 0) −η/γb of the denominator γbs − λ1γb(1 − Γ̃(1)(γbs)) − λ2(1 −
Γ̃(2)(γbs)) of W̃2(γbs),

• the rightmost zero (< 0) −η1 of the factor s − λ1(1 − B̃(1)(s)) in the denominator of

W̃ (1)(s),

• and/or the rightmost singularity −sB(2) of B̃(2)(s).

6.2 Behavior of the Singularities

Two of the singularities do not depend on γb: −η1 and −sB(2) . Note that −η1 is also the

dominant singularity of the LST of the waiting time in the regular (class-1) M/G/1 queue, cf.

also (5). The other two candidate rightmost singularities −sγ1(γb)/γb and −η(γb)/γb do depend

on γb.

We start research of the behavior of −sγ1(γb)/γb by calculating its first derivative

d

dγb

(
sγ1(γb)

γb

)
=
s′γ1(γb)γb − sγ1(γb)

γ2b
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= − ζ1(γb) + λ1(1− B̃(1)(−ζ1(γb)))
γ2b

.

The numerator is equal to f(γb) defined earlier and we proved it is a strictly decreasing function.

We further have

ζ1(0) + λ1(1− B̃(1)(−ζ1(0))) = sγ1(0) > 0,

ζ1(1) + λ1(1− B̃(1)(−ζ1(1))) = −∞,

which means that sγ1(γb)/γb first decreases and then increases again. Note that the γb for which

the minimum is reached is γ̂b, the previously defined unique zero of f(γb). From the definitions

of sγ1 and η1, it follows that

ζ1(γ̂b) = η1 =
sγ1(γ̂b)

γ̂b
.

Note that this means that (i) sγ1(γb)/γb ≥ η1 for all γb with the equality valid for γb = γ̂b only,

and (ii) ζ1(0) < η1 < ζ1(1).

Next we research the behavior of −η(γb)/γb by calculating the first derivative

d

dγb

(
η(γb)

γb

)
=
η′(γb)γb − η(γb)

γ2b

=
λ2(1− Γ̃(2)(−η(γb); γb))

γ2b
< 0.

Thus, the singularity −η(γb)/γb increases monotonously for γb ∈ [0, 1].

6.3 Which is the Rightmost Singularity?

We first have that −sγ1(γb)/γb ≤ −η1 with the equality for γb = γ̂b. Furthermore, we have that

−η(γ̂b) exists always and η(γ̂b) < sγ1(γ̂b). This means that −sγ1/γb can never be the rightmost

singularity of W̃ (1)(s) and sW (1) < sγ1/γb.

For γb = 0, −η/γb does not play a role either (or, equivalently, is equal to −∞). The rightmost

singularity in that case is therefore either −η1 or −sB(2) . The locations of these two singularities

depend on different parameters (or input distributions), so either might be the rightmost.

For increasing γb, −η/γb comes into play. We distinguish following cases:

• If sB(2) ≤ ζ1(0), −η2(γb) exists. Therefore, −η(γb) exists as well. In this case it turns

out that there is a γ̃b such that −sB(2) is the rightmost singularity for γb < γ̃b, −sB(2) =

−η(γ̃b)/γ̃b is the rightmost singularity for γb = γ̃b, and −η(γb)/γb is the rightmost singu-

larity for γb > γ̃b. We prove this claim in the remainder.

First, ζ1(0) < η1. This follows from the definitions of ζ1 and η1 and from the fact that

B̃(1)(s) is a decreasing and B̃(1)′(s) an increasing function for −sB(1) < s < 0. As a result,

sB(2) < η1 and η1 is never the rightmost singularity in this case.
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Second, since η(γb) < η2(γb), since η(γb)/γb decreases with γb and since η2(1) = sB(2) , there

is a unique point γ̃b ∈]0, 1[ such that η(γ̃b)/γ̃b = sB(2) . For γb ∈ [0, γ̃b[, sB(2) < η(γb)/γb;

for γb ∈]γ̃b, 1], η(γb)/γb < sB(2) .

• If ζ1(0) < sB(2) < η1, we again prove that a γ̃b exists such that −sB(2) is the rightmost

singularity for γb < γ̃b, −sB(2) = −η(γ̃b)/γ̃b is the rightmost singularity for γb = γ̃b, and

−η(γb)/γb is the rightmost singularity for γb > γ̃b.

We first have that −η(1) exists since we proved before that −η(γb) definitely exists for

γb ∈ [γ̂b, 1] for a γ̂b < 1. Furthermore, just like in the previous case, η(1) < s
(2)
B .

If we decrease γb starting from γb = 1, −η(γb)/γb decreases until either (i) −η(γb) ceases to

exist for a certain γb or (ii) until γb = 0. In the latter case, we can repeat the same reasoning

as before. In the former case, −η(γb)/γb hits −sB(2) before −η(γb) ceases to exist, since

−η(γb) = −sγ1(γb) for that γb where −η(γb) ceases to exist and since sγ1/γb ≥ η1 > sB(2) .

• If η1 < sB(2) , we prove that a γ̄b exists such that −η1 is the rightmost singularity for

γb < γ̂b, −η1 = −η(γ̄b)/γ̄b is the rightmost singularity for γb = γ̄b, and −η(γb)/γb is the

rightmost singularity for γb > γ̄b.

It is clear that, since in this case η1 < sB(2) , −sB(2) cannot be the rightmost singularity.

We know −η(1) exists. We also have that η(1) < η1 and, as a result, −η is the rightmost

singularity for γb = 1. The inequality follows from the fact that if we plug −η1 in the

denominator with zero −η(1), we have a positive result:

−η1 − λ1
[
1− Γ̃(1)(−η1)

]
−λ2

[
1− Γ̃(2)(−η1)

]
> − η1 − λ1

[
1− B̃(1)(−η1)

]
− λ2

[
1− Γ̃(2)(−η1)

]
= − λ2

[
1− Γ̃(2)(−η1)

]
> 0.

The first inequality follows from the definition of Γ̃1(s) and the equality from the definition

of −η1.

When we decrease γb starting from 1, −η(γb)/γb decreases, as before, until either (i) −η(γb)

ceases to exist for a certain γb or (ii) until γb = 0. In the latter case, we can repeat the same

reasoning as before. In the former case, −η(γb)/γb hits −η1 before −η(γb) ceases to exist,

since −η(γb) = −sγ1(γb) for that γb where −η(γb) ceases to exist and since sγb/γb ≥ η1 for

all γb.

We conclude that the rightmost singularity of W̃ (1)(s) for small γb is −sB(2) or −η1, whichever

is largest. The values of these singularities do not change with γb. When γb increases, this

singularity remains the rightmost one until a certain γb is reached. From this γb onwards, the

rightmost singularity is −η/γb which increases with γb.

We demonstrate these conclusions in Figure 5 where we show sγ1/γb, η1, s
(2)
B , and η/γb as

functions of γb for λ1 = 0.5, exponential service times with rate µ1 = 1 for class 1 and different

arrival and service rates λ2 and µ2 for class 2.
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Figure 5: sγ1/γb, η1, sB(2) , and η/γb as functions of γb for λ1 = 0.5, exponential service times
with rate µ1 = 1 for class 1 and different arrival and service rates λ2 and µ2 for class 2. For
µ2 = 0.25 and µ2 = 0.4, sB(2) < η1 and therefore sB(2) is the rightmost singularity for small γb.
For µ2 = 0.75 and µ2 = 1.5, η1 is the rightmost singularity for small γb. In all cases, η/γb is the
rightmost singularity for γb sufficiently large.
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6.4 Asymptotics

We can distinguish the following cases:

• If −sB(2) is the rightmost singularity, the asymptotics depend on the class-2 service times

distribution asymptotics. If we again take the example of a dominant pole for B̃(2)(s), i.e.,

if we assume (7) for B̃(2)(s), we have

W (1)(s) ∼ c

(s+ sB(2))
n
B(2)

, s→ −sB(2) ,

with

c =
(1− ρ)λ2cB(2)

(
γbsB(2) − (1− γb)λ1

[
1− Γ̃(1)(−γbsB(2))

])
{
sB(2) + λ1

[
1− B̃(1)(−sB(2))

]}{
γbsB(2) + λ1γb

[
1− Γ̃(1)(−γbsB(2))

]
+ λ2

[
1− Γ̃(2)(−γbsB(2))

]} .
Asymptotic inversion leads to

w(1)(t) ∼ ctnB(2)−1

(nB(2) − 1)!
e−sB(2) t.

• If −η1 is the rightmost singularity, we can write

W (1)(s) ∼ c

s+ η1
, s→ −η1,

with

c =
1− ρ[

1 + λ1B̃(1)′(−η1)
]{
−γbη1 − λ1γb

[
1− Γ̃(1)(−γbη1)

]
− λ2

[
1− Γ̃(2)(−γbη1)

]}
·
({
η1 + λ1

[
1− Γ̃(1)(−γbη1)

]}{
γbη1 + λ2(1− γb)

[
1− B̃(2)(−η1)

]}
+λ2η1

[
B̃(2)(−η1)− Γ̃(2)(−γbη1)

])
.

Asymptotic inversion leads to

w(1)(t) ∼ ce−η1t.

• If −η/γb is the rightmost singularity, we can write

W (1)(s) ∼ c

s+ η/γb
, s→ −η/γb,

with

c =
(1− ρ)λ2

γb

{
η + γbλ1

[
1− B̃(1)(−η2)

]} [
1 + λ1γbΓ̃(1)′(−η) + λ2Γ̃(2)′(−η)

]
·
([

1− Γ̃(2)(−η)
]{

η + λ2(1− γb)
[
1− B̃(2)(η/γb)

]}
− η

[
B̃(2)(−η/γb)− Γ̃(2)(−η)

])
.
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Asymptotic inversion leads to

w(1)(t) ∼ ce−ηt/γb .

• The above singularities can also be (co)-dominant. If for instance −η1 = −η/γb is the

rightmost singularity, we can write

W (1)(s) ∼ c

(s+ η1)2
, s→ −η1,

with

c =
1− ρ

γb

[
1 + λ1B̃(1)′(−η1)

] [
1 + λ1γbΓ̃(1)′(−γbη1) + λ2Γ̃(2)′(−γbη1)

]
·
({
η1 + λ1

[
1− Γ̃(1)(−γbη1)

]}{
γbη1 + λ2(1− γb)

[
1− B̃(2)(−η1)

]}
+λ2η1

[
B̃(2)(−η1)− Γ̃(2)(−γbη1)

])
.

Asymptotic inversion leads to

w(1)(t) ∼ cte−η1t.

7 Conclusions and Future Work

We have found that the class-2 waiting time distribution asymptotics in the accumulating priority

queue resemble very much those of the low-priority waiting time distribution asymptotics of the

low-priority class in the regular priority queue. For high class-2 service rates and low class-2

arrival rates, these asymptotics behave like those of the busy period distribution, and otherwise

they are purely exponentially decaying. The higher γb, (i) the faster the class-2 waiting time

distribution asymptotics decay, and (ii) the more the purely exponential asymptotics establish

themselves (from a certain γb onwards, the other type never occurs).

The class-1 waiting time distribution asymptotics are more intriguing. It always has purely

exponentially decaying asymptotics (except for some border case). In other words, the busy pe-

riod distribution-type of asymptotics is not observed, although the LST of such busy periods (or

accreditation periods) does appear in the expression of the LST of the class-1 waiting time dis-

tribution. The (mathematical) reason is that the singularity of that LST is never the rightmost

singularity of the LST of the class-1 waiting time distribution. Furthermore, also the impact of

γb is interesting. For γb = 1, we have a pure FIFO scheduling and the class-1 customers do not

observe any form of priority. When γb decreases, the decay of the class-1 waiting time distri-

bution increases at first, as expected (the class-1 customers accumulate relatively more priority

when γb decreases). However, this increase stops from a certain γb onwards. In other words, if

we decrease γb even more, the decay of the class-1 waiting time distribution asymptotics stays

constant. One might be inclined to propose that this γb might be a good choice for the relative

priority accumulation between both classes, since you obtain the minimum decay for the class-1

waiting time asymptotics while giving even more priority to class-1 customers would only punish

the class-2 customers more.
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As future work, we discuss two potential research directions. The first continues on our discussion

in the previous paragraph about the optimal γb. Much research has been devoted on finding

optimal scheduling disciplines (and parameters in these disciplines) to minimize weighted delay

costs in multi-class systems. Our asymptotic results could be used to (approximately) minimize

such functions [8], especially when high delays are heavily punished. In previous research, the

generalized cµ-rule has been proved to be heavy-traffic optimal for convex cost functions [18],

which would be a reference point for such a study. This is also related to [15], where the authors

used large deviations to find the asymptotic exponential decay rates of the waiting times and

some asymptotic optimality of the accumulating priority queue.

The second direction of future research we wish to touch upon is the generalization to more

than two customer classes. Next to the two-class system, Stanford et al. [14] also established

an algorithm to obtain the LSTs of the waiting times in an accumulating priority queue with

a general number of classes, recursively, starting from that of the lowest priority class (the one

with lowest accumulating rate). The LST of the waiting time of the lowest class is very similar

to that of class-2 in the two-class system, and thus we expect similar results as in this paper for

the asymptotics of the density function of that waiting time. Among others, the similarity with

the low-priority class in a static priority queue is still present. The other LSTs are not explicitly

calculated in Stanford et al. [14], so there would be two options here to proceed: (i) calculate

the LSTs explicitly and then invert them asymptotically like we have done in this paper, or (ii)

recursively calculate the asymptotics from the recursive equations for the LSTs. Concerning

the results, we expect the highest priority class (the one with the highest accumulating rate) to

behave like the asymptotics of the class-1 waiting times in the two-class system, i.e., (usually)

purely exponentially decaying. The intermediate classes are more interesting. Here, we expect

that the asymptotics will not be purely exponentially decaying (like class 2 in the two-class

system), since these classes still have lower priority than other classes, but we also expect that

some candidate dominant singularities will never be dominant (like for class 1 in the two-class

system).
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