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Abstract

We consider the problem of finding the transition rates of a continuous-time
homogeneous Markov chain under the empirical condition that the state changes at
most once during a time interval of unit length. It is proven that this conditional
embedding approach results in a unique intensity matrix for a transition matrix with
non-zero diagonal entries. Hence, the presented conditional embedding approach has
the merit to avoid the identification phase as well as regularization for the embedding
problem. The resulting intensity matrix is compared to the approximation for the
Markov generator found by Jarrow in [1].

1 Introduction

The embedding problem of Markov chains is a long standing problem where a given
stochastic matrix is examined as the 1-step transition matrix of some continuous-time
homogeneous Markov chain (CTHMC) ([2, 3]). This problem boils down to characterizing
the empirical transition matrix P̂ as the exponential of some matrix Q with all non-
negative off-diagonal entries and zero row-sums, called an intensity matrix. This matrix
Q represents the transition rates of the underlying CTHMC. If such a Q exists, P̂ is
said to be embeddable. It turns out that the embedding problem is a formidable one in
a number of respects. First, P̂ may not be embeddable. In that case, a regularization
algorithm can be used to find an intensity matrix Q for which ||P̂−exp(Q)|| is minimized
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([4, 5, 6]). Next, no embeddability criteria in terms of the matrix elements, which are
easily verifiable in practice, seem at hand when the number of states exceeds 3. Lastly,
for an embeddable P̂, there may not be a unique solution to the equation exp(Q) = P̂ in
the set of intensity matrices. The identification aspect of the embedding problem deals
with the selection of the suitable intensity matrix reflecting the nature of the system
under study ([7]).

More recently, model specific embedding problems are studied for specific subcate-
gories of transition matrices ([8, 9, 10, 1]). In modeling a specific context, the transition
matrix as well as the generator matrix are expected to reflect the characteristics of
the system under study. Hence, the transition matrix is subjected to constraints and,
therefore, belongs to a specific subset of stochastic matrices, and similar, the generator
matrix is expected to be an element of a specific subset of intensity matrices. Whereas
model specific embedding problems are characterized by setting model assumptions and
restrictions on the transition matrix, this paper presents an embedding approach that
incorporates empirical assumptions.

More specifically, we propose the conditional embedding approach where the empirical
1-step transition matrix P̂ corresponds with the conditional 1-step transition matrix of
the CTHMC given the event that at most one jump has occurred during a time interval of
unit length. For a Markov model the unit time interval can be defined in such a way that
the empirical 1-step transition matrix meets this condition. Moreover, this condition is
inherent in some applications. For example, in credit rating migration models the credit
ratings are typically based on slowly varying characteristics, such that they do not tend
to change more than once within the baseline time interval (e.g. a quarter).

We found that, regardless the number of states, exactly one intensity matrix solves
this conditional embedding problem when pii > 0 for all i. Our approach results in an
easy embeddability criterium and does not require identification neither regularization.
Moreover, the presented conditional embedding approach and its proven properties, re-
sult in an embeddability roadmap reflecting that the conditional embedding approach is
atmost useful in case either the transition matrix is not embeddable or no unique Markov
generator can be identified based on the context of the system.

2 Conditional transition probabilities

In order to state the conditional embedding problem, we first introduce the concept of
conditional transition probability.

Consider a continuous-time homogeneous Markov chain (CTHMC) (Xt)t≥0 on a prob-
ability triple (Ω,F ,P) with state space S = {1, 2, . . . , n}.

Definition 1. Let E ∈ F . We call the matrix PE with elements

pEij = P(X1 = j |X0 = i , E), i, j ∈ S,

the conditional one-step transition probability matrix given the event E of the chain
(Xt)t≥0.
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Remark. The usual (unconditional) one-step transition probabilities pij = P(X1 = j |X0 =
i) can be obtained by setting E = Ω, that is, pij = pΩij.

In the remainder of this paper, we are interested in the event E = {NJ ≤ 1}, where
NJ is the random variable counting the state changes or jumps of the CTHMC up to
time t = 1.

The relationship between the conditional transition matrix P{NJ≤1} and the transition
rate matrix Q of the CTHMC is given by the following proposition.

Proposition 1. For a CTHMC with transition rate matrix Q = (qij), it holds that

p
{NJ≤1}
ij =

p∗ij∑n
k=1 p

∗
ik

for all i and j,

where

p∗ij =

{
qij τ(qii, qjj) if i 6= j

τ(qii, qii) if i = j

and where the function τ : R2 → R is defined as

τ(x, y) =

∫ 1

0
eux+(1−u)y du =

{
ex−ey

x−y if x 6= y

ex if x = y
. (1)

Proof. Using the definition of conditional probability,

P(A |B ∩ C) =
P(A ∩B |C)

P(B |C)
, if P(B |C) > 0.

Hence,

p
{Nt≤1}
ij = P(X1 = j |X0 = i,NJ ≤ 1) =

P(X1 = j,NJ ≤ 1 |X0 = i)

P(NJ ≤ 1 |X0 = i)
. (2)

Let us denote p∗ij = P(X1 = j,NJ ≤ 1 |X0 = i). Using the sum rule for disjoint events,
we then have

p
{NJ≤1}
ij =

p∗ij∑n
k=1 p

∗
ik

.

Let us now calculate p∗ij, which is the joint probability of being in state j at t = 1
in at most one jump, starting from state i at t = 0. For k ∈ {1, . . . , n}, let fk be the
density function of the holding time Hk in state k and Fk the associated cumulative
distribution function. For i 6= j, denote by sij the transition probability from state i to
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state j conditional on transitioning out of state i. Marginalising on Hi, we find for i 6= j

p∗ij = P(Hi < 1,XHi
= j,Hj > 1−Hi |X0 = i)

=

∫ 1

0
P(Xu = j,Hj > 1− u |Hi = u,X0 = i)fi(u) du

=

∫ 1

0
P(Hj > 1− u |Xu = j,Hi = u,X0 = i)P(Xu = j |Hi = u,X0 = i)fi(u) du

=

∫ 1

0
(1− Fj(1− u)) sij fi(u) du

and

p∗ii = P(Hi > 1 |X0 = i) = 1− Fi(1).

Since Hk has an exponential distribution with rate parameter −qkk and since sij =
qij
−qii

(i 6= j), we have for i 6= j

p∗ij =

∫ 1

0
eqjj(1−u) qij

−qii
(−qii)e

qiiu du = qij

∫ 1

0
eqiiu+qjj(1−u) du = qij τ(qii, qjj)

where the function τ is defined as in (1). Finally, p∗ii = 1− Fi(1) = eqii = τ(qii, qii).

One can remark that Minin et al. [11] arrive at the same result for p∗ij using a recursive
relation for the joint probabilities P(X1 = j |X0 = i,NJ = n), i, j ∈ S.

Corollary 1. For all i, we have that p
{NJ≤1}
ii > 0.

Proof. This follows from the fact that p∗ii = τ(qii, qii) = eqii > 0.

Remark. An alternative argument for corollary 1 goes as follows. Given the event {NJ ≤
1}, the only way of going from state i at time t = 0 to state i at time t = 1, is to remain
in that state throughout the entire time interval from t = 0 to t = 1. The probability of
this event is non-zero, since the holding time in a state has an exponential distribution.

According to proposition 1, the conditional transition matrix P{NJ≤1} depends on the
transition rate matrix Q of the CTHMC involved. In what follows, and when needed,
we explicitly indicate this dependency using the notation P{NJ≤1}(Q).

3 Conditional embedding problem

When building a discrete time Markov model, the choice of the time unit and time
interval is important to end up with a valid model ([12]). In this respect, an appropriate
choice can be made by comparing for diverse values of the time unit the internal validity
of the corresponding models. The internal validity of a model is determined by the
discrepancy between the observed stock vectors and the stock vectors that are estimated
by the model. Based on goodness of fit tests a time unit can be selected that results in a
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model for which the discrepancy between observed and estimated stock vectors is limited.
([13]). For an appropriate time unit it is acceptable to assume that there is at most 1
jump in between t = 0 and t = 1. Indeed, more than 1 jump during a one-unit time
interval would result in a situation where the transitions to and from the intermediate
state are not captured by the discrete time Markov model.

A question that then naturally arises is whether, for a given stochastic matrix P,
there does exist an intensity matrix Q such that P{NJ≤1}(Q) = P. And if so, whether
such an intensity matrix Q is unique.

It will be helpful to introduce some terminology before proceeding.

Definition 2. A stochastic matrix P is called J1-embeddable iff there exist a CTHMC
with transition rate matrix Q satisfying P = PE(Q), where E is the event that the
CTHMC changes state at most once between t = 0 and t = 1. Such a transition rate
matrix is called a J1-generator of P.

For a transition matrix P that is not embeddable a J1-generator can be seen as a so-
lution to the generalization problem where the intensity matrix Q satisfies P{NJ≤1}(Q) =
P. For a transition matrix P that is embeddable, its Markov generator not necessarily
equals the J1-generator. In fact, the solution to the conditional embedding problem is
generally different from the solution to the (general) embedding problem if the latter
exists. However, if the time-scale is chosen such that no more than one transition occurs
in the system during the unit time interval, we might expect Markov generator to be
close to J1-generator in some sense.

A matrix P that is embeddable satisfies the necessary condition for embeddability
formulated by Goodman in [14]:

∏n
i=1 pii ≥ detP > 0. Hence, all diagonal entries of such

an embeddable matrix P are non-zero. Consequently, a matrix P with pii = 0, for some i,
is neither embeddable nor J1-embeddable, according to corollary 1. For this reason, and
without loss of generality, we examine in the remainder of the paper stochastic matrices
P = (pij) satisfying pii > 0 for all i.

It turns out that the off-diagonal elements of a J1-generator of P are uniquely deter-
mined by its diagonal elements and the elements of P. To formulate this relationship,
we introduce the function ρ : R2

+ → R+, defined as follows:

ρ(x, y) =
e

τ(1− lnx, 1− ln y)
=

{
xy lnx−ln y

x−y if x 6= y

x if x = y.
(3)

Proposition 2. Suppose P = (pij) is a n×n stochastic matrix satisfying pii > 0 for all
i. If Q = (qij) is a J1-generator of P, then

qij =
ρ(θi, θj)pij

θipii
, for all i 6= j,

where θi = e1−qii for all i and the function ρ : R2
+ → R+ is given by (3).
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Proof. Suppose Q is a J1-generator of P = (pij) and let i 6= j. Then, according to
proposition 1, we have

pij
pii

=
p
{NJ≤1}
ij

p
{NJ≤1}
ii

=
p∗ij
p∗ii

=
qijτ(qii, qjj)

τ(qii, qii)
.

Consequently, since τ(qii, qii) = eqii = e/θi and τ(qii, qjj) = τ(1 − ln θi, 1 − ln θj) =
e/ρ(θi, θj), we get

qij =
τ(qii, qii)pij
τ(qii, qjj)pii

=
(e/θi)pij

(e/ρ(θi, θj))pii
=

ρ(θi, θj)pij
θipii

, for all i 6= j.

The result of proposition 3 yields a condition on the diagonal elements of any J1-
generator of P.

Proposition 3. Suppose P = (pij) is a n×n stochastic matrix satisfying pii > 0 for all
i. Then, if Q = (qij) is a J1-generator of P, the n-tuple (e1−q11 , . . . , e1−qnn) is a fixed
point of the vector function T = (T1, . . . , Tn) : R

n
+ → R

n
+ defined as follows

Ti(x1, . . . , xn) = expW0

( 1

pii

n∑

j=1

pijρ(xi, xj)
)

for all i, (4)

where W0 denotes the principal branch of the Lambert W function and where the function
ρ : R2

+ → R+ is defined as in (3).

Proof. Denote θi = e1−qii for all i. Then θi > 0 and qii = 1 − ln θi for all i. Using
proposition 2 and the fact that Q is an intensity matrix, we then have

−1 + ln θi = −qii =
∑

j:j 6=i

qij =
∑

j:j 6=i

ρ(θi, θj)pij
θipii

, for all i,

which can be rewritten, using the fact that ρ(θi, θi) = θi, as

θi ln θi =
1

pii

n∑

j=1

pijρ(θi, θj) for all i. (5)

Using the principal branch W0 of the Lambert W function (which is the multi-valued
inverse of the function w 7→ wew (w ∈ C), see [15]), we find that

ln θi = W0

( 1

pii

n∑

j=1

pijρ(θi, θj)
)

for all i,

which proves the result.

Proposition 2 and proposition 3 entail that a J1-generator of P defines a fixed point of
the vector function T. The converse is also true, as is stated in the following proposition.
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Proposition 4. Let the stochastic n× n matrix P = (pij) be such that pii > 0 for all i.
Suppose θ = (θ1, . . . , θn) is a fixed point of the vector function T : Rn

+ → R
n
+, defined in

(4). Then, the matrix Q = (qij) with elements

qii = 1− ln θi, qij =
ρ(θi, θj)pij

θipii
(i 6= j)

where ρ is defined by (3), is a J1-generator of P.

Proof. Let θ = (θ1, θ2, . . . , θn) ∈ R
n
+ be a fixed point of T and let the matrix Q be

constructed as stated above. We first show that Q is an intensity matrix. By defini-
tion, all off-diagonal elements of Q are non-negative. Since Ti(θ) = θi, we have ln θi =
W0(

1
pii

∑
j pijρ(θi, θj)) yielding θi ln θi =

1
pii

∑
j pijρ(θi, θj), by definition of the Lambert

W0-function. Using qij =
ρ(θi,θj)pij

θipii
(i 6= j) and ρ(θi, θi) = θi, we can rewrite this equation

as θi(1 − qii) = θi +
1
pii

∑
j:j 6=i qijθipii. After simplification, we get qii = −

∑
j:j 6=i qij.

Thus Q has zero row-sums. Consequently, Q is an intensity matrix.

It remains to be shown that p
{NJ≤1}
ij (Q) = pij for all i and j. By proposition 1, we

have p
{NJ≤1}
ij (Q) =

p∗ij∑
k p∗

ik
, where p∗ik = qikτ(qii, qkk) if i 6= k and p∗ii = τ(qii, qii) and

where the function τ : R2 → R is defined by (1). Using the definition of Q and (3), we
then have that

p∗ik =
ρ(θi, θk)pik

θipii
τ(1− ln θi, 1− ln θk) =

e pik
θipii

, i 6= k

and

p∗ii = τ(qii, qii) = eqii = e1−ln θi =
e

θi
.

Thus, p∗ik =
e pik
θipii

for all i and k, which yields

∑

k

p∗ik =
e

θipii

∑

k

pik =
e

θipii
,

since P has all row sums equal to 1. Consequently, for all i and j, we get

p
{NJ≤1}
ij (Q) =

p∗ij∑
k p

∗
ik

=
e pij
θipii

/
e

θipii
= pij,

which concludes the proof.

The following lemma states some properties of the vector function T, which will play
a crucial role in its number of fixed points.

Lemma 1. Let P = (pij) be a n× n stochastic matrix. Let ∆ = max{p11, . . . , pnn} and
δ = min{p11, . . . , pnn}. Suppose δ > 0. Consider the vector function T : Rn

+ → R
n
+,

defined as in (4), and the set

X = {x = (x1, . . . , xn) ∈ R
n | ∀i : e1/∆ ≤ xi ≤ e1/δ}. (6)

Then,
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(1) every fixed point of T belongs to X .

(2) T maps X into X .

Proof.

(1) Let θ = (θ1, . . . , θn) ∈ R
n
+ be a fixed point of T. Let m = min{θ1, . . . , θn} and

M = max{θ1, . . . , θn}. We shall prove that m ≥ e1/∆ and that M ≤ e1/δ .

Let r be an index such that θr = m. Then, by lemma 5(4), we have ρ(θr, θj) ≥
m for all j. Since Tr(θ) = θr, we have ln θr = W0(

1
prr

∑
j prjρ(θr, θj)) yielding

θr ln θr = 1
prr

∑
j prjρ(θr, θj) by definition of the Lambert W0-function. Using the

fact that
∑n

j=1 prj = 1, we then obtain

m lnm = θr ln θr =
1

prr

n∑

j=1

prjρ(θr, θj) ≥
m

prr
≥

m

∆
,

which implies lnm ≥ 1
∆ and thus m ≥ e1/∆. To prove the second inequality, let s

be an index such that θs = M . Then, by lemma 5(4), we have ρ(θs, θj) ≤ M for
all j. Hence, by Ts(θ) = θs and the unit row-sums property of P,

M lnM = θs ln θs =
1

pss

n∑

j=1

psjρ(θs, θj) ≤
M

pss
≤

M

δ
,

which yields lnM ≤ 1
δ and thus M ≤ e1/δ .

(2) Let (x1, . . . , xn) ∈ X . By lemma 5(4),

e1/∆ ≤ min{xi, xj} ≤ ρ(xi, xj) ≤ max{xi, xj} ≤ e1/δ for all i and j.

Then, since P has unit row sums, we have for all i

e1/∆

∆
≤

e1/∆

pii
≤

1

pii

n∑

j=1

pijρ(xi, xj) ≤
e1/δ

pii
≤

e1/δ

δ
.

Now, W0 and exp are increasing functions, therefore

expW0(
1
∆e1/∆) ≤ Ti(x1, . . . , xn) ≤ expW0(

1
δ e

1/δ) for all i.

Finally, using the property W0(xe
x) = x for x > 0, we conclude the proof.

Lemma 1 entails that the diagonal elements of P bound the diagonal elements of the
J1-generators of P.

Corollary 2. Let P = (pij) be a n × n stochastic matrix. Let ∆ = max{p11, . . . , pnn}
and δ = min{p11, . . . , pnn}. Suppose δ > 0. Then, if Q = (qij) is a J1-generator of P,
we have

1−
1

δ
≤ qii ≤ 1−

1

∆
for all i.
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Proof. If Q = (qij) is a J1-generator of P, we have by proposition 3 that the vector
(θ1, . . . , θn), where θi = e1−qii for all i, is a fixed oint of T. Applying lemma 1(1), we
have e1/∆ ≤ θi ≤ e1/δ for all i, from which the result follows readily.

By combining propositions (2), (3) and (4), it turns out that there is a one-to-one
correspondence between the possible J1-generators of P and the fixed points of the vector
function T. Regarding these fixed points, we now prove the following important result.

Theorem 1. Let the stochastic n × n matrix P = (pij) be such that pii > 0 for all i.
Then, the vector function T : Rn

+ → R
n
+, defined as in (4), has a unique fixed point.

Proof. From lemma 1(2), we know that T maps the compact convex set X ⊂ R
n
+, defined

by (6), into itself. Also, T is continuous as the function ρ, defined by (3), is continuous
(lemma 5(2)) and continuity is preserved by linear combination and composition of con-
tinuous functions. Hence, by the Brouwer fixed-point theorem, T has a fixed point. By
definition of T, this fixed point must have all positive components. We now show that
the function g : Rn

+ → R
n defined as g = T − Id, where Id : Rn

+ → R
n
+ is the identity

mapping, satisfies all conditions of Theorem 3.1 in [16]. This theorem states sufficient
conditions in order for the function g to have at most one vector x ∈ R

n
+ with g(x) = o.

These conditions are (a) g is quasi-increasing and (b) g is strictly R-concave. Both (a)
and (b) are proven in this paper, see lemma 7. So, we have established that T has exactly
one fixed point.

We are now in the position to formulate and prove our main theorem.

Theorem 2. Let the stochastic n × n matrix P = (pij) be such that pii > 0 for all
i. Then, P has exactly one J1-generator. Moreover, this J1-generator Q = (qij) has
elements given by

qii = 1− ln θi, qij =
ρ(θi, θj)pij

θipii
(i 6= j) (7)

where the scalar function ρ : R2
+ → R+ is defined by (3) and (θ1, . . . , θn) is the unique

fixed point of the vector function T : Rn
+ → R

n
+ defined by (4).

Proof. We first prove that P has a J1-generator. By theorem 1, the vector function T

has a unique fixed point θ = (θ1, θ2, . . . , θn) ∈ R
n
+. Starting from θ, construct the matrix

Q = (qij) according to (7). Then, Q is a J1-generator of P, by proposition 4.
To prove the uniqueness of the J1-generator, suppose that P has J1-generators R =

(rij) and S = (sij). Then, by proposition 3, the vectors θR = (e1−r11 , . . . , e1−rnn)
and θS = (e1−s11 , . . . , e1−snn) are fixed points of the vector function T. By theorem 1,
θR = θS. Hence, by proposition 2, we must have R = S.

Finally, the fact that a J1-generator assumes the form 7 is a consequence of proposi-
tion 2 and proposition 3. The proof is now complete.

9



According to theorem 2, the unique J1-generator is completely determined by the
fixed point of the function T. Besides, under the conditions of lemma 9, the function T

is a contraction. Hence, under these conditions, an algorithm based on the fixed point
iteration approach guarantees an appropriate estimation for the fixed point (θ1, . . . , θn)
as outcome.

For a transition matrix P with identical positive diagonal elements, a closed-form
formula for its unique J1-generator can be given by virtue of corollary 2. This type of
transition matrices appear in e.g. models of DNA sequence evolution [17].

Corollary 3. Suppose P = (pij) is a n × n stochastic matrix satisfying pii = p > 0 for
all i. Then, its unique J1-generator Q is given by Q = 1

p(P − I), where I is the n × n
identity matrix.

Proof. Let Q = (qij) be a J1-generator of P. It follows from corollary 2 that qii = 1−1/p
for all i. Moreover, if i 6= j, theorem 2 and equation (3) imply that

qij =
ρ(e1−qii , e1−qii)pij

e1−qiipii
=

ρ(e1/p, e1/p)pij

e1/pp
=

pij
p

.

In summary, we have

qii = 1−
1

p
=

1

p
(pii − 1), qij =

1

p
pij (i 6= j),

concluding the proof.

4 Illustrations

The aim of this section is twofold, namely (1) to illustrate the conditional embedding
approach for some concrete transition matrices and (2) to compare the new approach
with alternative low jump frequency approaches for embedding problems. In [1] Jarrow,
Lando and Turnbull found an approximation for the Markov generator in closed form
under the model assumption that the probability of more than one jump per year is
negligible. Their Markov generator QJLT = (qJLT

ij ) is a product of the model assumption

P(Hi ≥ 1 |X0 = i) = pii , P(Hi < 1,XHi
= j |X0 = i) = pij (i 6= j), (8)

where Hi is the holding time in state i. This system of equations in the unknowns qJLT
ij

can be solved explicitly to obtain

qJLT

ii = ln pii , qJLT

ij =
pij ln pii
pii − 1

(i 6= j). (9)

In this paper we study the embedding problem under the assumption

P[X1 = j |X0 = i,NJ ≤ 1] = pij for all i and j. (10)
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In contrast to assumption (8), assumption (10) is about the data and not about the
process. In fact, this paper does not preclude the model from having multiple transitions
between t = 0 and t = 1. It does, however suppose that the data at hand are realisations
of the underlying process with no more than one transition between t = 0 and t = 1.
Hence, the estimated one step transition matrix is based solely on observations that did
not jump more than once between t = 0 and t = 1.

Both approaches have the merit to make the identification phase as well as regular-
ization redundant in the embedding problem.

To avoid confusion, let us denote for the transition matrix P, Jarrow’s generator as
QJLT and the J1-generator as QJ1 . Then, an interesting question emerges of which of
the matrices exp(QJLT) and exp(QJ1) is the best approximation to P? The following
section compares both approach for some interesting illustrations. As in [4], throughout
this paper the maximum absolute row sum is used as matrix norm, i.e. for an n × n
matrix M = (mij), ||M||∞ = max1≤i≤n

∑n
j=1mij.

4.1 Credit rating transition matrix

Consider the empirical transition matrix

P =




0.8910 0.0963 0.0078 0.0019 0.0030 0.0000 0.0000 0.0000
0.0086 0.9010 0.0747 0.0099 0.0029 0.0029 0.0000 0.0000
0.0009 0.0291 0.8896 0.0649 0.0101 0.0045 0.0000 0.0009
0.0006 0.0043 0.0656 0.8428 0.0644 0.0160 0.0018 0.0045
0.0004 0.0022 0.0079 0.0719 0.7765 0.1043 0.0127 0.0241
0.0000 0.0019 0.0031 0.0066 0.0517 0.8247 0.0435 0.0685
0.0000 0.0000 0.0116 0.0116 0.0203 0.0754 0.6492 0.2319
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000




based1 on Table 3 in Jarrow et al. [1, p. 506]. For this matrix, it can be proven that the
vector function T : R8

+ → R
8
+, defined by (4), is a contraction mapping (according to 9).

Using fixed-point iteration and (7), we find that the unique J1-generator, truncated to 4
decimal places, is:

QJ1 =




−0.1221 0.1075 0.0088 0.0022 0.0036 0.0000 0.0000 0.0000
0.0096 −0.1114 0.0836 0.0114 0.0035 0.0034 0.0000 0.0000
0.0010 0.0325 −0.1271 0.0752 0.0122 0.0053 0.0000 0.0009
0.0007 0.0049 0.0755 −0.1874 0.0798 0.0192 0.0024 0.0049
0.0005 0.0026 0.0094 0.0886 −0.2759 0.1301 0.0178 0.0270
0.0000 0.0022 0.0036 0.0079 0.0647 −0.2121 0.0592 0.0746
0.0000 0.0000 0.0152 0.0157 0.0287 0.1031 −0.4460 0.2834
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




In contrast, the rate matrix QJLT, published in Jarrow et al. [1] and defined by

1We have adjusted five entries on the main diagonal to ensure all rows sum up to one.
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equation (9), is

QJLT =




−0.1154 0.1020 0.0083 0.0020 0.0032 0.0000 0.0000 0.0000
0.0091 −0.1043 0.0787 0.0104 0.0031 0.0031 0.0000 0.0000
0.0010 0.0308 −0.1170 0.0688 0.0107 0.0048 0.0000 0.0010
0.0007 0.0047 0.0714 −0.1710 0.0701 0.0174 0.0020 0.0049
0.0005 0.0025 0.0089 0.0814 −0.2530 0.1180 0.0144 0.0273
0.0000 0.0021 0.0034 0.0073 0.0568 −0.1927 0.0478 0.0753
0.0000 0.0000 0.0143 0.0143 0.0250 0.0929 −0.4320 0.2856
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000




Notice that the elements on the main diagonal of QJLT are in absolute value smaller
than their counterparts in the J1-generator. This property remains true for all matrices
P having non-zero diagonal elements and follows from lemma 8. It can be shown that
||P− expQJ1 ||∞ < ||P − expQJLT||∞.

4.2 Transition matrices with same diagonal entries

In case the stochastic matrix P has coinciding diagonal elements equal to p > 0, according
to corollary 3 a closed-form solution to the equation P{NJ≤1} = P exists: QJ1 =

1
p(P−I),

where I is the n×n identity matrix. Besides, Jarrow’s solution (see [1, eqs. 30a & 30b]) is
QJLT = ln p

p−1(P− I). It is interesting to investigate to what extent expQJ1 and expQJLT

differ from P. Note that both matrices QJ1 and QJLT are of the form Q(k) := k(P− I)
with k constant, and equal to 1

p and ln p
p−1 respectively.

For the 2×2 case P =

[
p 1− p

1− p p

]
it is known that P is embeddable, with unique

generator Q = ln (2p−1)
2(p−1) (P − I), if and only if p > 1

2 ([7]). For transition matrices P

with p ≤ 1
2 the conditional embedding approach results in a unique J1-generator QJ1 for

which expQJ1 is a better approximation to P than expQJLT:

Lemma 2. Let P =

[
p 1− p

1− p p

]
, where 0 < p < 1 and define Q(k) = k(P−I), where

I is the 2× 2 identity matrix. Then,

||P − expQ(1p)||∞ < ||P− expQ( ln p
p−1)||∞.

Proof. It can be shown that

P− expQ(k) =

(
1

2
+

e2k(p−1)

2
− p

)[
−1 1
1 −1

]
,

so that we have

||P − expQ(k)||∞ = |1 + e2k(p−1) − 2p|.

12



Let f(k) = 1 + e2k(p−1) − 2p. Since p < 1, the function f is strictly decreasing. Also,
since lnx < x − 1 for all x > 0 and x 6= 1, we have that ln 1

p < 1
p − 1 = 1−p

p yielding
ln p
p−1 < 1

p . Hence, f( ln p
p−1) > f(1p). Furthermore, f(1p) > 0 ( lemma 10, 1.). Consequently,

||P − expQ(1p)||∞ = |f(1p)| = f(1p) < f( ln p
p−1) = |f( ln p

p−1)| = ||P− expQ( ln p
p−1)||∞.

Hence, for all (2× 2) transition matrices with same diagonal entries, it is proven that
||P− expQJ1||∞ < ||P− expQJLT||∞. For the (3× 3) case, we investigate the transition
matrices as introduced in lemma 3. Those transition matrices are not embeddable, since

p13 = 0 but p
(2)
13 = (1− p)2/2 > 0 [18, Theorem 5, p. 126]. Since no generator does exist,

it is worth to investigate the J1-generator and Jarrow’s generator. Lemma 3 proves that
expQJ1 better approximates P than expQJLT, i.e. ||P−expQJ1 ||∞ < ||P−expQJLT||∞.

Lemma 3. Let P =




p 1− p 0
1
2(1− p) p 1

2(1− p)
0 1− p p


, where 0 < p < 1 and define Q(k) =

k(P− I), where I is the 3× 3 identity matrix. Then,

||P − expQ(1p)||∞ < ||P− expQ( ln p
p−1)||∞.

Proof. It can be shown (e.g. using Sylvester’s theorem for computing functions of a
matrix) that

P− expQ(k) =




−α(k) β(k) α(k) − β(k)
1
2β(k) −β 1

2β(k)

α(k) − β(k) β(k) −α(k)




where

α(k) = 1
4 e

2k(p−1) + 1
2 e

k(p−1) + 1
4 − p and β(k) = 1

2 e
2k(p−1) + 1

2 − p.

It holds that

α(k) − β(k) = −1
4(1− ek(p−1))2 ≤ 0, (11)

whence,

||P − expQ(k)||∞ = |α(k)| + |β(k)| + |α(k) − β(k)|

= |α(k)| + |β(k)| + β(k)− α(k). (12)

Note that α and β are both strictly decreasing in k since p < 1. Also, we have

α( ln p
p−1 ) =

1
4 (1− p)2 > 0, (13)

β( ln p
p−1) =

1
2 (1− p)2 > 0, (14)

β(1p) =
1
2 (e

2−2/p + 1− 2p) > 0 by lemma 10 (1.). (15)

13



Hence, by (12), (13) and (14),

||P − expQ( ln p
p−1)||∞ = α( ln p

p−1) + β( ln p
p−1) + β( ln p

p−1 )− α( ln p
p−1 ) = 2β( ln p

p−1 ). (16)

In case α(1p) ≥ 0, then by (12) and (15),

||P − expQ(1p)||∞ = α(1p) + β(1p) + β(1p)− α(1p ) = 2β(1p ),

which yields ||P− expQ(1p)||∞ < ||P− expQ( ln p
p−1)||∞, using (16) and because ln p

p−1 < 1
p

and β is strictly decreasing.
In case α(1p) < 0, we have by (12) and (11),

||P − expQ(1p)||∞ = −α(1p) + β(1p) + β(1p)− α(1p) =
1
2(1− e1−1/p)2.

By lemma 10 (2.) and the assumption 0 < p < 1, it holds that 0 < 1− e1−1/p < 4
3(1−p).

Hence, using (14) and (16),

||P − expQ(1p)||∞ < 8
9(1− p)2 < (1 − p)2 = 2β( ln p

p−1 ) = ||P − expQ( ln p
p−1)||∞.

In either case, we have proven the result.

Appendix: Lemma’s and proofs

Lemma 4. The function f with f(t) = eW0(t), t ≥ 0, is strictly concave.

Proof. By taking second order derivatives and since W ′
0(t) = W0(t)

t(1+W0(t))
and W ′′

0 (t) =
−2W0(t)2−W0(t)3

t2(1+W0(t))3
(see e.g. [19]), we find

f ′′(t) = f(t)
(
W ′

0(t)
2 +W ′′

0 (t)
)
= f(t)

−W0(t)
2

t2(1 +W0(t))3
,

which is negative for all t > 0 since W0(t) > 0 if t > 0.

Let o = (0, . . . , 0) ∈ R
n. In what follows, we consider the partial ordering of R

n

induced by componentwise ordering. For example, if x = (x1, . . . , xn) ∈ R
n, and y =

(y1, . . . , yn) ∈ R
n, we write x � y if and only if xi ≤ yi for all i. Likewise, we write x ≻ o

if and only if xi > 0 for all i.

Lemma 5. The function ρ : R2
+ → R+, defined as in (3) , satisfies the following prop-

erties:

(1) It is linearly homogeneous, i.e. ρ(λx) = λρ(x) for all x ∈ R
2
+ and λ > 0.

(2) It is continuous on R
2
+.

(3) It is increasing, i.e. ρ(x) ≤ ρ(y) for all x,y ∈ R
2
+ with x � y.
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(4) min{x, y} ≤ ρ(x, y) ≤ max{x, y} for all (x, y) ∈ R
2
+.

Proof. Let u = (u1, u2) ∈ R
2
+. It is easy to see that ρ(u) = u2f(u1/u2) = u1f(u2/u1),

where f is the continuous function defined by

f(t) =

{
t ln t
t−1 if t > 0 and t 6= 1

1 if t = 1.

(1) Follows directly from the above.

(2) A direct consequence of the above.

(3) By standard calculus, we have

f ′(t) =

{
t−1−ln t
(t−1)2

if t > 0 and t 6= 1

1/2 if t = 1,

hence f is (strictly) increasing on the positive real half-line since ln t < t− 1 for all
t > 0 with t 6= 1. Now, take x = (x1, x2) and y = (y1, y2), so that o ≺ x � y. Then,
as f is increasing, ρ(x) = x2f(x1/x2) ≤ x2f(y1/x2) = y1f(x2/y1) ≤ y1f(y2/y1) =
ρ(y).

(4) Consider the case 0 < x ≤ y. Since f is increasing on R+, we have

x = xf(1) ≤ xf(y/x) = ρ(x, y) = yf(x/y) ≤ yf(1) = y.

The result for the case 0 < y ≤ x is proven analogously.

Lemma 6. The vector function T : Rn
+ → R

n
+ from proposition 3 is increasing, i.e.

T(x) � T(y) for all x,y ∈ R
n
+ with x � y.

Proof. Let i ∈ {1, . . . , n} and take x,y ∈ R
n
+ so that x � y. Denote, for u = (u1, . . . , un),

Fi(u) = 1
pii

(∑n
j=1 pijρ(ui, uj)

)
. By lemma 5(3), we have Fi(x) ≤ Fi(y), which yields

Ti(x) = eW0(Fi(x)) ≤ eW0(Fi(y)) = Ti(y) since the principal branch W0 of the Lambert W
function is increasing (see e.g. [15]).

Lemma 7. Let the vector function g : Rn
+ → R

n given by g(x) = T(x)−x for all x ≻ o,
where the vector function T : Rn

+ → R
n
+ is defined as in (4). Then, g = (g1, . . . , gn) is

(1) quasi-increasing, i.e. for all i holds that o ≺ x � y and xi = yi imply gi(x) ≤ gi(y),

(2) strictly R-concave, i.e. if x ≻ o and g(x) = o and 0 < λ < 1, then g(λx) ≻ o.

Proof.

(1) Take i ∈ {1, . . . , n} and suppose o ≺ x � y with xi = yi. Then, gi(x) ≤ gi(y),
since xi = yi and Ti(x) ≤ Ti(y) (lemma 6).
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(2) Let x = (x1, . . . , xn) ≻ o so that g(x) = o. Let 0 < λ < 1 and take i ∈ {1, . . . , n}.

Denote Fi(x) =
1
pii

(∑n
j=1 pijρ(xi, xj)

)
. By lemma 5(1), Fi(λx) = λFi(x). Hence,

Ti(λx) = eW0(Fi(λx)) = eW0(λFi(x)) > λeW0(Fi(x)) = λTi(x),

where the inequality follows from the fact that the function t 7→ eW0(t) is strictly
concave (lemma 4) and W0(0) = 0. Consequently, for all i,

gi(λx) = Ti(λx)− λxi > λ(Ti(x)− xi) = λgi(x) = 0,

i.e. g(λx) ≻ o.

Lemma 8. Let the stochastic n× n matrix P = (pij) be such that pii > 0 for all i. Let
Q = (qij) be the J1-generator of P. Then, qii ≤ ln pii for all i.

Proof. By theorem 2, qii = 1 − ln θi for all i, where θ = (θ1, . . . , θn) is the unique fixed
point of the vector function T = (T1, . . . , Tn), defined by (4). Take i ∈ {1, . . . , n}. Thus,

θi = Ti(θ) = expW0(
1
pii

∑

j

pijρ(θi, θj)),

which yields

θi ln θi =
1

pii

∑

j

pijρ(θi, θj).

Using the definition of the function ρ in (3), the above equation can be rewritten as

(
θi
e
− 1

)
ρ(θi, e) = θi ln θi − θi =

1

pii

∑

j:j 6=i

pijρ(θi, θj). (17)

Now, since 1− ln θj = qjj ≤ 0, we have that θj ≥ e for all j. By lemma 5(3), ρ(θi, θj) ≥
ρ(θi, e) for all j. Hence, it follows from (17) that

(
θi
e
− 1

)
ρ(θi, e) ≥

1

pii

∑

j:j 6=i

pijρ(θi, e) =
1− pii
pii

ρ(θi, e),

which simplifies to θi ≥ e/pii. Upon taking logarithms of both sides of this inequality
and using qii = 1− ln θi, we arrive at qii ≤ ln pii.

Lemma 9. Let P = (pij) be a n× n stochastic matrix. Let ∆ = max{p11, . . . , pnn} and
δ = min{p11, . . . , pnn}. Suppose δ > 0. Then, with respect to the max norm || · ||∞, the
function T : X → X , defined as in (4), is Lipschitz continuous with Lipschitz constant

K =
1+( 1

δ
−1)C(α)

1+ 1

∆

where C(α) = −1 + α+1
α−1 lnα and α = e

1
δ
− 1

∆ .

Lemma 10. For all 0 < p < 1, it holds that
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1. 1 + e2−2/p − 2p > 0,

2. 1− e1−1/p < 4
3(1− p).

Proof. To prove the first inequality, let f(t) = 1+e2−2/t− 2t, which is continuous on the
half-open interval (0, 1]. A straightforward calculation reveals that f ′(t) = 2t−2(e2−2/t −
t2) and f ′′(t) = 4t−4(1− t)e2−2/t. So, f ′′(t) > 0 for all t ∈ (0, 1). Consequently, f ′(t) < 0
for all t ∈ (0, 1) because f ′ is monotone increasing on (0, 1) and f ′(1) = 0. Hence, f is
monotone decreasing on (0, 1). The result now follows from the fact that f(1) = 0.

To prove the second inequality, consider the function f(t) = 4
3(1 − t) − 1 + e1−1/t

which is differentiable on {t ∈ R | t > 0}. Let p0 be a critical point of f , then f ′(p0) =
−4

3 + e1−1/p0p−2
0 = 0, yielding e1−1/p0 = 4

3p
2
0. Clearly, p0 6=

1
2 , hence,

f(p0) =
4
3(1− p0)− 1 + 4

3p
2
0 =

4
3(

1
4 − p0 + p20) =

4
3(

1
2 − p0)

2 > 0.

So, all critical points of f have positive function values. In addition, we have f(1) = 0
and limt→0+ f(t) = 1/3 > 0. Therefore, f(t) > 0 for all t ∈ (0, 1).
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