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Abstract 

Green seaweeds exhibit a wide range of morphologies and occupy various ecological niches, 

spanning from freshwater to marine and terrestrial habitats (Del Cortona and Leliaert 2018, 

Škaloud et al. 2018). These organisms, which predominantly belong to the class Ulvophyceae, 

showcase a remarkable instance of parallel evolution toward complex multicellularity and 

macroscopic thalli in the Viridiplantae lineage (Del Cortona et al. 2020, Hou et al. 2022). 

Within the green seaweeds, several Ulva species (“sea lettuce”) are used to study carbon 

assimilation, interactions with Bacteria, life cycle progression and morphogenesis (reviewed 

in (Wichard et al. 2015, Mantri et al. 2020, Beer 2022, Wichard 2023). Ulva species are also 

notorious for their fast growth and capacity to dominate nutrient-rich, anthropogenically 

disturbed coastal ecosystems during “green tide” blooms. From an economic perspective, 

Ulva has garnered increasing attention as a promising feedstock for the production of food, 

feed and biobased products, as well as a means of removing excess nutrients from the 

environment. We think that Ulva is poised to further develop as a model in green seaweed 
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research. In this review, we focus explicitly on Ulva mutabilis/compressa as a model species 

and highlight the molecular data and tools that are currently available or in development. We 

discuss several areas that will benefit from future research or where exciting new 

developments have been reported in other Ulva species. 

 

A model species 

Ulva mutabilis was originally sampled along the coasts of Olhão and Faro in South Portugal by 

Bjørn Føyn in 1952 (Fig. 1). The wild-type form is a foliose thallus composed of three cell types: 

blade, stem and rhizoid cells. The species was coined U. mutabilis since some original strains 

gave rise to multiple developmental mutants in the subsequent five years (Føyn 1958). Later 

observations suggested that the high rate of mutability probably resided in only one of the 

three original isolates. Whereas the original strain was lost in culture, the “mutabilis trait” 

survived in specific developmental mutants (Fjeld and Børresen 1975). One of the earliest 

described spontaneous mutants is the tubular slender, which only develops blade and primary 

rhizoid cells (Fjeld 1971, Spoerner et al. 2012). Slender is currently the most popular strain for 

developing genetic tools due to its fast growth and ease of inducing gametogenesis (Føyn 

1959, Oertel et al. 2015, Blomme et al. 2021). While wild-type has a life cycle of 2-3 months, 

slender can reproduce twice as fast under optimal conditions (Føyn 1959, Løvlie 1964). 

Strains of U. mutabilis can be maintained as haploid gametophytes via parthenogenetic 

development of gametes. Individuals grow well in synthetic growth medium (Stratmann et al. 

1996), even with a minimal microbiome of the mutualistic bacteria Roseovarius sp. MS2 and 

Maribacter sp. MS6 forming a tripartite community (Spoerner et al. 2012, Ghaderiardakani et 

al. 2017). Crossing strains with different mating types is well-described (Føyn 1959, 1960, 

Hoxmark 1976). Such crossing experiments demonstrated that U. mutabilis and U. compressa 

are fully interfertile (Steinhagen et al. 2018). The latter being a morphologically variable 

species with a global distribution and involved in green tide formation (Steinhagen et al. 2018, 

2019). To remain consistent with the existing literature and avoid confusion with older 

literature where natural isolates were solely identified based on morphological 

characteristics, we will keep the distinction between U. mutabilis (lab strains) and U. 

compressa (natural populations) throughout this review. 

 

Genomic resources 
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The availability of a reference genome sequence is an important feature of any model species. 

The wild-type genome (mt(-); strain 1-41) was the first whole-genome sequence of a green 

seaweed (De Clerck et al. 2018). More recently, the genome of a Chilean U. compressa isolate 

was reported (Osorio et al. 2022). Whereas the genomes have not been completed at a 

chromosomal level, comparison of both genomes reveal a substantial difference in genome 

size (98,5 Mb versus 80,8 Mb), protein-coding genes (12,924 versus 19,207) and repetitive 

elements (35% versus 19%) (Osorio et al. 2022). Flow cytometry-based genome size estimates 

from French (120 Mb) and Japanese (135 Mb) U. compressa strains further suggest significant 

genome size variation (Le Gall et al. 1993, Kagami et al. 2005). Seven chloroplast and five 

mitochondrial genomes are currently available. Similar to the nuclear genome, intraspecific 

differences in organelle genome size due to gain or loss of group I/II introns, integration of 

foreign DNA fragments and non-coding intergenic spacer regions have been observed, which 

is remarkable because most sequenced strains originate from the same geographic area 

(Yellow Sea) (Cai et al. 2018, 2021, Liu et al. 2020, J. Xia et al. 2021, Liu and Melton 2021, L. 

Xia et al. 2021). 

 

The existing resources would benefit greatly from high-quality assemblies of different strains 

such as U. mutabilis (slender). Ulva compressa is a cosmopolitan species that has a remarkable 

intraspecific variation in morphology. Individuals can form blades, tubes or branched thalli 

(Fig. 2A). Populations thrive in broad irradiance, temperature or salinity gradients (Taylor et 

al. 2001, Steinhagen et al. 2019), and show high resistance to heavy metal contamination 

(Ratkevicius et al. 2003) and organic micro-pollutants (Hardegen et al. 2023). The power of 

population genomics should therefore be harnessed to explore genomic diversity using a pan-

genome to identify genotype-specific genomic regions. In addition, GWAS approaches can 

identify associations between measured phenotypes and genotypes (Savolainen et al. 2013, 

Bayer et al. 2020). Up till now, mapping populations as available for brown and red seaweed 

(e.g. (Avia et al. 2017, Wang et al. 2018, Huang and Yan 2019) to statistically link genetic and 

phenotypic variation have not been generated in Ulva yet.  

Several Ulva mutabilis/compressa transcriptomes have been reported to complement the 

genomic resources. The transcriptional response of copper exposure, hyposalinity and the 

interaction of temperature and light intensity on gene expression was measured (Laporte et 

al. 2016, 2020, Rodríguez et al. 2018, Xing et al. 2021, Dong et al. 2022), but also sex-
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dependent expression (PRJDB3466) and differential gene expression during gametogenesis 

(Liu et al. 2022). Furthermore, the transcriptome under standard conditions was compared 

to that of other Ulva species to understand the mechanisms of green tide formation (Wang 

et al. 2019). These transcriptomes remain correlative to date and rely heavily on gene 

functions experimentally verified in e.g. land plants, but can provide a good basis for future 

gene characterisation studies. Summarising data on differential gene expression using a user-

friendly portal can assist in predicting the role of a gene in a certain life stage or environment. 

Preliminary investigations of epigenetic variations in protoplast-derived germlings of U. 

reticulata (Gupta et al. 2012) have been reported, but more investigations into the epigenetic 

control of gene expression are needed.  

To complete normal morphogenesis, Ulva mutabilis/compressa requires associated bacteria 

in a mutualistic relationship exchanging infochemicals (Spoerner et al. 2012, Kessler et al. 

2018). The diverse Ulva microbiome changes in natural populations in relation to 

environmental parameters or bloom formation (Ghaderiardakani et al. 2017, 2020, van der 

Loos et al. 2022). Currently, few published genome sequences of Ulva-associated bacteria are 

available but these resources are expected to add an extra layer of complexity and shed light 

on the molecular functions shared by these microbiome partners (Alsufyani et al. 2020, 

Morales-Reyes et al. 2022). 

 

Genetic transformation  

The first reported transient transgene expression in Ulva demonstrated the pyrenoid 

localization of the N-terminal region of the Rubisco small subunit fused to GFP (Suzuki et al. 

2014). Discharged Ulva gametes do not contain a cell wall and can be transformed like land 

plant protoplasts using the chemical polyethylene glycol (PEG). Since every vegetative cell can 

theoretically differentiate into 16 gametes during gametogenesis (Stratmann et al. 1996), it 

is straightforward to obtain a sufficient amount of transformable cells despite the relatively 

low transformation efficiency (1/5000 gametes; (Oertel et al. 2015, Boesger et al. 2018)). 

Stable transformation of U. mutabilis was established by selecting transformants using a 

Bleomycin resistance cassette (Oertel et al. 2015). Inclusion of the Ulva small subunit Rubisco 

promoter, intron and terminator sequences to control the codon-optimised ble resistance 

marker corroborated earlier observations in Chlamydomonas that endogenous regulatory 

sequences positively affect transgene expression (Oertel et al. 2015).  
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Crucially, efficient stable transgene expression is reported in about 75% of transformed 

individuals (Blomme et al. 2021). To facilitate the generation of transgene constructs a flexible 

and modular Golden Gate-based cloning toolkit was designed, including 125 entry vectors, 26 

destination vectors, and 107 functionally validated expression vectors, a size that exceeds 

similar efforts for the green algae Chlamydomonas (Crozet et al. 2018, Blomme et al. 2021).  

 

Functional genomics 

U. mutabilis is currently the only seaweed where both gain- and loss-of-function lines can be 

generated. Expressing (tagged) transgenes is instrumental in functional genomics. The 

molecular toolkit allows the efficient generation of transgenic lines but is still limited to 

constitutive expression (Fig. 2B; (Blomme et al. 2021)). No conditional promoters have been 

described, although there are some candidates in U. prolifera (Guo et al. 2017, Wu et al. 

2019). Transformant selection solely relies on the bleomycin resistance cassette. Ulva is 

resistant to various antibiotics (Spoerner et al. 2012), including hygromycin which is used in 

Chlamydomonas (Berthold et al. 2002), and the symbiotic bacteria must be resistant to the 

selection agent (Oertel et al. 2015), complicating the use of additional selectable markers. 

Furthermore, the expression of large non-endogenous transgenes needs to be explored and 

might require the insertion of endogenous introns or codon optimisation to allow 

recombinant gene expression (Baier et al. 2018). Given the relatively low transformation and 

mutation frequencies, Ulva-specific optimisations might be required to allow future large-

scale genetic screens. The maintenance of many (transgenic) strains cannot be 

underestimated and could represent a future challenge. Current long-term storage solutions 

supplemented with cryopreservation (Lee and Nam 2016, Gao et al. 2017) are expected to 

prevent the loss of biological material.  

A unique feature of U. mutabilis is the rich history of developmental mutant research. The 

“mutabilis” trait resulted in strains with a tubular “slender” or “long”, a hollow spherical 

“bubble”, a disorganized “lumpy” or a globular “globose” thallus phenotype that triggered 

studies on cell division and vegetative development (Føyn 1959, 1961, Bryhni 1974). More 

recently, similar and new developmental mutants (e.g. callus, filamentous branched, forked 

and serrated) were generated by insertional mutagenesis and genes are being functionally 

characterized (Oertel et al. 2015, Kwantes and Wichard 2022, Wichard 2023). Such forward-

genetics methods have been employed to generate large mutant libraries in Chlamydomonas, 
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but reaching a stage whereby every single gene is mutated is difficult (Li et al. 2016). The 

development of CRISPR/Cas-mediated genome engineering that allows targeted mutation of 

one or more genes simultaneously would be a valuable asset. Once established, CRISPR/Cas 

can be scaled up to target gene families, molecular pathways or whole genomes (Doench 

2017) and adapted to enable specific base changes (base or prime editing; (Komor et al. 2016, 

Gaudelli et al. 2017, Anzalone et al. 2019)). Alternatively, CRISPR/Cas can mediate the 

insertion of exogenous DNA sequences at a target site using homology-directed repair, as 

demonstrated in Chlamydomonas (Greiner et al. 2017, Picariello et al. 2020, Akella et al. 

2021). While CRISPR/Cas was recently described in Ulva prolifera, mutation efficiency is 

currently low (approx. 1/1000) and no target beyond the selectable marker gene ADENOSINE 

PHOSPHORIBOSYL TRANSFERASE (APT) has been reported (Ichihara et al. 2021). 

 

Proteomics, metabolomics and phenomics toolkit for survey in systems biology 

Integration of omics approaches such as metabolomics and proteomics accompanied with the 

careful description of phenotypes have proven to be especially successful in elucidating algal-

bacterial cross talk mechanisms, the effect of abiotic and biotic stimuli and life cycle 

transitions (Alsufyani et al. 2017, Fort et al. 2019, Fan et al. 2022, Ghaderiardakani et al. 2022, 

Gu et al. 2022, Kessler et al. 2017, He et al. 2019, Liu et al. 2022).  

Most famously, efforts have been made to determine algal growth and morphogenesis-

promoting factors like thallusin released by bacteria into the culture medium (reviewed in 

(Wichard 2023)). (‒)-thallusin and its derivatives are available through an advanced organic 

stereoselective synthesis for bioactivity profiling (Dhiman et al. 2022). Thallusin receptors and 

downstream players in the presumed signaling pathway leading to proper rhizoid and cell wall 

formation however remain to be identified still. Large-scale mutant screens the like of the 

Chlamydomonas Library Project (CLiP) in combination with high-throughput phenotyping 

tools will be necessary to identify the respective genes. 

In the short term, high-throughput tools need to be developed to screen and analyse (growth) 

phenotypes in a (semi-)automated way. Ulva is often phenotyped by cutting a tissue disc from 

an individual and measuring the expansion over time (Fort et al. 2019). This proxy is useful for 

large blade-forming species but does not consider early vegetative development of 

individuals. Moving forward, the effect of different (a)biotic conditions and mutations on 

growth should be measured for the complete life cycle in a quantitative way (Fig. 2C), 
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supported by microscopic imaging techniques for screens at the cellular level (Dhondt et al. 

2013). 

 

Integration - Outlook 

Following a rich history of developmental biology and physiology (Fig. 1), Ulva 

mutabilis/compressa holds promise to bloom into a systems biology model (Fig. 2). To achieve 

this status, more data, molecular tools and biological material need to be generated and at 

one point a centralized repository will be necessary. Large-scale algae-focused projects like 

Chlamydomonas Resource Center (https://www.chlamycollection.org), DiatOmicBse 

(https://www.diatomicsbase.bio.ens.psl.eu) and NanDeSyn (Gong et al. 2020) provide 

excellent models. Although several challenges lie ahead, we hope this review highlights the 

steps that are needed to further develop Ulva as a seaweed model organism in the genomics 

era. 
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FIGURES 

 

Figure 1. Timeline of sixty years of Ulva mutabilis research summarised in 30 major 

contributions to the development as a model organism. Image depicts the morphology of a 

slender individual. Numbers relate to the following references: 1: (Føyn 1958), 2: (Føyn 1959), 

3: (Føyn 1960), 4: (Føyn 1961), 5: (Løvlie 1964), 6: (Bråten and Løvlie 1966), 7: (Løvlie and 

Bråten 1968), 8: (Løvlie 1969), 9: (Fjeld 1970), 10: (Fjeld 1971), 11: (Nordby and Hoxmark 

1972), 12: (Bryhni 1974), 13: (Nordby 1974), 14: (Fjeld and Børresen 1975), 15: (Bråten 1975), 

16: (Nilsen and Nordby 1975), 17: (Løvlie 1978), 18: (Stratmann et al. 1996), 19: (Wichard and 

Oertel 2010), 20: (Spoerner et al. 2012), 21: (Oertel et al. 2015), 22: (Alsufyani et al. 2017, 

Kessler et al. 2017), 23: (Kessler et al. 2018), 24: (De Clerck et al. 2018), 25: (Steinhagen et al. 

2018), 26: (Alsufyani et al. 2020), 27: (Blomme et al. 2021), 28: (Kwantes and Wichard 2022), 

29: (Liu et al. 2022) and 30: (Dhiman et al. 2022). 
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Figure 2. Overview of selected Ulva mutabilis/compressa characteristics of a model seaweed. 

(A) Illustration of intraspecific variability in morphology (from left to right): tubular slender, 

blade-forming wild-type and tubular branched Ulva compressa isolate. Scale: 1cm. (B) 

Availability of genetic tools, illustrated by four transgenic marker lines expressing endogenous 

Ulva genes tagged with YFP targeted to different intracellular locations (from left to right): 

chloroplast (UM120_0017), mitochondria (UM013_0128), nucleus (UM001_0379) and 

secretory pathway (UM080_0043). Green indicates the YFP signal and magenta represents 

chlorophyll autofluorescence. Scale: 20µM. (C) Control of life cycle and development, 

illustrated by time-course growth of wild-type and slender on artificial medium containing 

agar. 

 


