Tin and Indium Sulfide by Plasma-Enhanced Atomic Layer Deposition for CO₂ Electroreduction

<u>Femi Mathew</u>, ^{a*} Järi Van Den Hoek,^b Nithin Poonkottil, ^a Geert Rampelberg, ^a Nick Daems ^b, Jonas Hereijgers,^b Zeger Hens,^a Tom Breugelmans,^b Christophe Detavernier, ^a and Jolien Dendooven ^a

^a Ghent University, Krijgslaan 281, Ghent, 9000, Belgium ^b University of Antwerp, Universiteitsplein 1, Wilrijk, 2160, Belgium

The increase in concentration of CO_2 in the atmosphere continues to be an alarming environmental concern. Electrocatalytic reduction of CO_2 (CO_2RR) is a promising strategy that uses electrical energy to convert CO_2 to a range of carbon-based useful chemical products. Formate (HCOOH) is one of those products with great potential as a hydrogen carrier and as a precursor to produce industrially-relevant chemicals. In the quest to replace noble metal Pd electrocatalysts for formate production, researchers have identified In, Sn and Bi compounds as promising alternative candidates.[1] It is known that material properties such as crystallinity, surface chemical composition and surface morphology greatly impact electrocatalytic performance. Here, we explored thermal and plasma-enhanced atomic layer deposition (PE-ALD) to control these properties of SnS₂ and In₂S₃ films and evaluate their impact on CO₂RR.

Thin films of tin sulfide and indium sulfide have been deposited via thermal ALD using H₂S in combination with tetrakis(dimethylamido)tin (TDMASn) and indium acetylacetonate (In(acac)₃) respectively.[2][3] Inspired by several reports illustrating the significant influence of using plasma on the ALD growth characteristics and material properties of sulfides,[4][5] we employed H₂S plasma as the reactant in this work. The PE-ALD process for In₂S₃ using In(acac)₃ and H₂S plasma exhibits a growth per cycle of 0.36-0.14 Å/cycle in the temperature range of 145-260 °C. X-ray diffraction analysis reveals a tetragonal In₂S₃ phase in the whole temperature range. (Fig. 1) The surface morphology of the In₂S₃ films is identified to be rough with continuous crystallite structures. (Fig. 2)

The PE-ALD process for SnS₂ exhibits steady growth with a growth per cycle of 1.07-0.9 Å/cycle after a short incubation period in a temperature range of 80-180 °C. (Fig. 3) In comparison to the thermal ALD process which deposits amorphous SnS₂ thin films at 80°C and a mixture of SnS and SnS₂ phases at 180°C, the PE-ALD process deposits crystalline SnS₂ with strong c-axis oriented growth and most of the basal planes aligned parallel to the substrate in the temperature range of 80-180°C. (Fig. 4) Additionally, a transition in morphology from grain-like structures (30-50 nm) to out-of-plane oriented structures is found for SnS₂ deposited by PE-ALD at 80°C and 180°C, respectively.

To evaluate the sulfide thin films for CO₂RR, electrodes are prepared by applying thermal or PE-ALD directly on carbon gas diffusion electrodes (GDEs). Also on this substrate, the different ALD process conditions lead to differences in surface morphology, where the PE-ALD deposition of SnS₂ yields out-of-plane oriented structures at 180°C and continuous grains at 80°C whereas the thermal ALD process deposits amorphous SnS₂ films at 80°C. (Fig. 5(a-c)) The electrodes are evaluated in a flow-by reactor at 100 mA cm⁻² with 0.5 M KHCO₃ as catholyte and 2.0 M KOH as anolyte. While CO₂RR experiments with In₂S₃ are ongoing, a comparison of the SnS₂ electrodes reveals that SnS₂ with out-of-plane oriented structures outperforms the other two SnS₂ morphologies in terms of its lower overpotential (i.e. 260 mV less negative) and maintaining structural stability even though its initial faradaic efficiency towards formate is lower (i.e. 64% vs. 80%). (Fig. 6,7) This result confirms the importance of optimizing the surface morphology for CO₂RR electrocatalysts.

References

- 1. Shao. X, Zhang. X, Liu. Y, Qiao. J, Zhou. XD, Xu. N, Malcombe. JL, Yi. J, Zhang. J, Journal of Materials Chemistry A 2021,9(5),2526-59.
- Ham. G, Shin. S, Park. J, Choi. H, Kim. J, Lee. Y. A, Seo. H, Jeon. H, ACS Applied Materials & Interfaces 2013, 5 (18), 8889-8896.
- 3. Naghavi. N, Henriquez. R, Laptev. V, & Lincot. D, Applied Surface Science 2004, 222(1-4), 65-73.
- 4. Kuhs. J, Dobbelaere. T, Hens. Z, Detavernier. C, Journal of Vacuum Science & Technology A.Vacuum Surfaces and Films 2017, 35 (1), 01B111.
- 5. Mattinen. M, Gity. F, Coleman. E, Vonk. JF, Verheijen. MA, Duffy. R, Kessels. WM, Bol. AA. Chemistry of Materials 2022, 34(16),7280-7292.

* Corresponding author e-mail: femi.mathew@ugent.be

Fig. (1) XRD patterns of the In_2S_3 films grown by the PE-ALD process at 180 °C. Fig. (2) Top-view SEM image of In_2S_3 film deposited by the PE-ALD process at 180 °C. Fig. (3) Thickness against the number of ALD cycles for the PE-ALD process and the thermal ALD process at 80 °C and 180 °C. Fig. (4) XRD patterns of the SnS_x films grown by the PE-ALD and thermal ALD processes at 80 °C and 180 °C. Fig (5) Top-view SEM image of SnS₂ film deposited on gas diffusion electrode by the (a) PE-ALD process at 180 °C (b) PE-ALD process at 80°C , and (c) thermal ALD process at 80°C. CO₂RR results for SnS₂ films showing Faradaic efficiencies for formate [Fig. (6)] while measuring potentials [Fig. (7)] over six hours.