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Partial least squares regression to calculate population balance
model parameters from material properties in continuous twin-
screw wet granulation
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meiren, Michiel Peeters, Fanny Stauffer, Eduardo dos Santos Schultz, Ashish
Kumar, Thomas De Beer, Ingmar Nopens

• Material properties were linked with population balance model param-
eters.

• Partial least square regression models were used to simulate model
parameters.

• Experimental data from 10 formulations and different process settings
were used.

• The models identified key material properties in twin-screw wet gran-
ulation.

• The models lead to a generic population balance model applicable to
new drugs.
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Abstract
In the pharmaceutical industry, twin-screw wet granulation has become a
realistic option for the continuous manufacturing of solid drug products. To-
ward the efficient design, population balance models (PBMs) have been rec-
ognized as a tool to compute granule size distribution and understand phys-
ical phenomena. However, the missing link between material properties and
the model parameters limits the swift applicability and generalization of new
active pharmaceutical ingredients (APIs). This paper proposes partial least
squares (PLS) regression models to assess the impact of material properties
on PBM parameters. The parameters of the compartmental one-dimensional
PBMs were derived for ten formulations with varying liquid-to-solid ratios
and connected with material properties and liquid-to-solid ratios by PLS
models. As a result, key material properties were identified in order to cal-
culate it with the necessary accuracy. Size- and moisture-related properties
were influential in the wetting zone whereas density-related properties were
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more dominant in the kneading zones.

Keywords: Continuous manufacturing, solid drug products, granule size
distribution, hybrid model, mechanistic model, data-driven model.

1. Introduction1

In pharmaceutical applications, twin-screw wet granulation (TSWG) has2

shown advantages to address the transition from batch to continuous man-3

ufacturing of solid dosage forms, due to its design flexibility, short residence4

time, stability, and controlled throughput range [1, 2] to name but a few.5

A good understanding of the mechanisms that govern the wet granulation6

process is very important to be able to incorporate control strategies, as well7

as the Quality by Design (QbD) paradigm, into a new drug development8

process. In that sense, various types of experimental research have been con-9

ducted to understand the process itself, the influence of process parameters10

(PPs), formulation, and equipment design on the properties of the final gran-11

ules [1, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Numerous mechanistic modeling approaches12

have aimed to reproduce the observed experimental behavior of the TSWG13

process, including the physical phenomena that have been identified as part14

of the process such as wetting, nucleation, consolidation, growth, breakage,15

and attrition [12, 13].16

Among the applicable mechanistic modeling strategies for wet granula-17

tion, the Population Balance Model (PBM) framework has emerged as a18

powerful prediction tool for granule properties [14]. PBM can be combined19

with other modeling techniques, e.g., Discrete Element Modeling (DEM) and20

Computational Fluid Dynamics (CFD), that provide complementary infor-21

mation of the system to improve the solution of Population Balance Equa-22

tions (PBEs) [2, 13, 15]. Recently, PBM has been coupled with data-driven23

models, e.g., partial least square (PLS), to link outputs of the PBM model24

to critical quality attributes (CQAs) of the granules, obtaining more infor-25

mation from the system in addition to the particle size distribution (PSD)26

that it is attained directly from the PBM simulation. For instance, Liu et al.27

[16] proposed a PLS regression to model the relationship between the kernel28

parameters of a PBM and the manipulated operating variables of the TSWG29

process. As an application to other unit operations, Metta et al. [17] used30

a PBM to track particle mass change in a comill unit. They then utilized31
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the resulting PSD and granule moisture content to develop a PLS model for32

predicting milled product CQAs such as bulk density, tapped density and33

friability.34

Despite all these mechanistic modeling contributions [13, 18, 19, 20, 21,35

22, 23, 24, 25] to simulate the TSWG process, some links among material36

properties, PPs, and screw configurations remain unestablished within those37

models for them to be more generic and applicable for new drug develop-38

ments. PBMs need to be calibrated for each formulation, which requires39

extensive experimental efforts. Furthermore, it is challenging to understand40

phenomena without the identification of key material properties. Pure data-41

driven modeling approaches have been performed to assess the impacts of42

material properties and process parameters on product quality attributes43

[26, 27, 28, 29, 10]. However, data-driven models do not help to understand44

the detailed phenomena of the process, e.g., physical meanings of key param-45

eters, as well as do extrapolation. In addition, data-driven models to predict46

full granule size distributions are limited to derived quantities, e.g., d10, d50,47

and d90 [30, 31] due to the difficulties in reproducing the distributions. The48

research question exists in the missing link between material properties and49

the model parameters, which limits the swift applicability and generalization50

to different formulations.51

This work presents data-driven models to link material properties and52

process parameters with a PBM as a key step to develop a generic PBM,53

which predicts specific CQAs of granules produced by the TSWG process.54

Barrera Jiménez et al. [32] presented a one-dimensional compartment PBM,55

which can be performed with a less number of the model parameters. In56

this paper, PLS models were developed to generalize the PBM described in57

Barrera Jiménez et al. [32] and identify key material properties for each58

phenomenon and compartment. Using material properties and process pa-59

rameters, the developed PLS models can compute PBM parameters, which60

can subsequently be used for the simulation of granule size distribution. Both61

experimental design and pre-processing of PLS development were crucial to62

compute PBM parameters for new formulations. In the next section, details63

about the experimental setup are given such as equipment type, process set-64

tings, and the formulation and active ingredients under study. Subsequently,65

the mathematical frameworks of PBMs and PLS models are described, which66

will be used to address the research question in this paper.67
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2. Materials and Methods68

2.1. Design of the experiments69

The workflow of the interaction between the formulation selection and70

both, the experimental and modeling work, is illustrated in Figure 1. A71

five-level central composite Design of Experiments (DoE) with two or three72

factors for the majority of formulations was conducted to investigate the re-73

lationship between formulation properties (% contain active pharmaceutical74

ingredient), PPs (liquid-to-solid (L/S) ratio, screw speed (SS), and mass feed75

rate (MFR)) and granule characteristics such as PSD, and granule friability.76

The factors (PPs) that were varied for each formulation are indicated in Ta-77

ble 1. Then, each DoE resulted in 8 and 14 experiments when using two and78

three factors respectively. Three center-point experiments were performed79

in each DoE. This work is a continuation of the work of Barrera Jiménez et80

al. [32, 33]. For more details on the process and characterization techniques,81

the reader is referred to the aforementioned work.82

The formulations contained the same excipient base and differed solely83

in the Active Pharmaceutical Ingredient (API). The excipient base consists84

of lactose (30 or 75% w/w depending on API content; Pharmatose 200M,85

DEF Pharma, Veghel, The Netherlands), microcrystalline cellulose (15%86

w/w; Avicel PH101, FMC BioPolymer, Cork, Ireland), and hydroxypropyl87

methylcellulose (5% w/w; Methocel E15, Dow Chemical Company, Midland,88

USA). The API differed in terms of its nature, e.g., both hydrophilic and89

hydrophobic, and concentration, both low and high concentrations. Then,90

in this work, ten formulations were included in the calibration process of91

the PBM. Formulations that were possible to process with the same screw92

configuration and maintain process stability were considered.93

The granules collected and characterized in this study were produced94

in the high shear twin-screw wet granulator module of the ConsiGma-2595

(GEA Pharma Systems, ColletteTM, Wommelgem, Belgium), continuous96

line. First, the blended materials flowed through the wetting zone of the97

granulator (denominated as C1 in Figure 2), where demineralized water was98

added by a twin-peristaltic pump. The wet materials were further processed99

to the two kneading zones (C3 and C5 in Figure 2), and size control ele-100

ments (C6 in Figure 2). Process parameters such as screw speed, material101

throughput, and L/S ratio were chosen to operate the twin-screw granulator102

according to the processability of each formulation to obtain similar granules103

in all the formulations studied (see Table 1). From the experimental work,104
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Figure 1: Workflow from material characterization to critical CQAs (particle size) using
PLS models to predict PBM parameters.
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it was concluded that the L/S ratio has the highest impact on the CQAs105

of the granules for any formulations in this study, which is in accordance106

with previously reported experimental research [7, 34]. Thus, in this work107

towards a generic PBM model as a tool to define the manufacturable ranges108

of a given new formulation, the L/S ratio was focused on and linked to the109

PBM parameters as a representative of PPs.110

Figure 2: Compartments along the twin-screw.

Table 1 indicates the total number of experiments required according to111

the DoE plan. However, Figure 3 shows that after testing the first two APIs,112

it was possible to identify five critical experimental points that were sufficient113

to establish correlations. These points consist of the lowest, low, center point114

(in triplicate), high, and highest L/S ratio. Remarkably, a consistent trend115

was observed in the correlations between the calibrated model’s parameters116

and the L/S ratio across all formulations. Therefore, these five points were117

deemed to be adequate to build the correlations. In order to reduce the118

experimental workload, fewer experiments were conducted for the rest of the119

APIs. From API 4 onwards, the five points were collected and characterized,120

that is: at the lowest, lowest (in triplicate), highest and highest central121

point, the L/S ratio granules. The number of experiments included in the122

calibration, and therefore, in the construction of the models are also reported123

in Table 1. API content, SS, and MFR were fixed as 50%, 675 rpm, and124

20 kg/h, respectively, whereas L/S ratios, were varied from the lowest to125

the highest for each formulation. The wet granules were oven-dried, and126

their PSDs were measured using a QICPIC particle size analyzer (Sympatec,127

Etten-Leur, The Netherlands).128

2.2. Population Balance Model description129

The experimental data from section 2.1 was used to calibrate the one-130

dimensional compartmental PBM described in Barrera Jiménez et al. [32],131

which employs as internal coordinate the particle size. The model considers132
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Table 1: Process conditions of all formulations used in the experiments.

API Formulation
number

Number of
experiments

Experiments
included

Screw Speed
(rpm)

Throughput
(kg/h)

L/S
(%)

API 1 (5 %) 1 11 11 675 15 - 25 8.9 - 20.2
API 1 (50 %) 2 11 11 675 15 - 25 13.6 - 23.7
API 2 (5 %) 3 17 16 450 - 675 15 - 25 8 - 18
API 2 (50 %) 4 17 17 450 - 675 15 - 25 5.2 - 16
API 3 (5 %) 5 17 5 750 - 900 15 - 25 15.2 - 18.5
API 3 (50 %) 6 17 5 450 - 675 15 - 25 5.2 - 13.4
API 4 (50 %) 7 17 6 450 - 675 15 - 25 18 - 28
API 5 (50 %) 8 17 7 450 - 900 15 - 25 21 - 26.4
API 6 (50 %) 9 17 7 450 - 900 15 - 25 21.6 - 28
API 7 (50 %) 10 7 7 675 20 15 - 20

four compartments, consisting of one wetting zone and three kneading zones133

(Figure 2). In the wetting zone, the binder liquid is added to the granulator,134

and pure aggregation is assumed to be the dominant physical phenomenon135

due to the low-shear environment [7]. In the three subsequent kneading zones,136

the model represents the change in PSD by a combination of aggregation and137

breakage kernels.138

The population balance equation expressed as the temporal change of the139

particle numbers in a spatially homogeneous system is described as [35]:140

∂n

∂t
=

1

2

∫ x

0

B(x− ε, ε, t)n(x− ε, t)n(ε, t)dε− n(x, t)

∫ ∞

0

B(x, ε, t)n(ε, t)dε

+

∫ ∞

0

b(x, ε)S(ε)n(ε, t)dε− S(x)n(x, t). (1)

In Equation (1), n(x, t) represents the density of particle numbers as a141

function of time (t) and its internal coordinate (i.e., granule size (x) expressed142

as particle volume). Time is interpreted as the residence time within the143

TSWG, considering that the process is modeled in steady state. Therefore,144

each simulation tracks the number of entities from to (initial) to te (final).145

The first term on the right-hand side of Equation (1) means the birth of par-146

ticles because of aggregation whereas the second term refers to the death of147

particles caused by aggregation dynamics. The birth term can be interpreted148

as the formation of particles of size x, after the aggregation of a particle with149

size ε and a particle with size x − ε. As a consequence, the death of the150

initial particles that were aggregated results in their loss. In Equation (1), B151

means the aggregation kernel, which is used to describe the aggregation rate152

of two particles ε and x − ε. The aggregation kernel B(t, x, ε) is expressed153
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as β0(t)β(x, ε), where β0(t) and β(x, ε) mean the aggregation efficiency and154

the collision frequency. The last two terms of Equation (1) express the par-155

ticle birth and death caused by breakage. The parameter b is the probability156

density function for the formation of a particle x from a particle ε, whereas157

S is the selection function that establishes the ratio of breakage of particle158

x.159

The collision frequency is presented in Equation (2) [32]:160

β(x, ε) =

{ (
x2/5 · ε2/5

)
, x ∧ ε < R

step ·
(
x2/5 · ε2/5

)
, x ∨ ε > R.

(2)

In Equation (2), R represents the critical particle size, and step is the scaling161

parameter related to the amount of non-granulated material in the wetting162

zone.163

To model the kneading zones, a linear selection function was chosen:164

S(m) = S0m
1/3. S0 is the breakage rate constant at a mother particle with165

the initial size of m (expressed as volume) before breakage. Moreover, the166

breakage function b(m, d) in the expression (Equation (3)) represents the167

probability of obtaining granules of a daughter particle with the size d after168

the breakage of a granule of size m. The breakage function considers binary169

breakage as well as attrition [36, 32], as shown in Equation (3).170

b(m, d) = fprim
1√
2πσ

e−

(
d
1
3 −µ

)2

2σ2
m

µ3

1

3d
2
3

+ (1− fprim )
2

m
. (3)

In Equation (3), fprim represents the ratio of granules selected to break171

into smaller fragments, while σ and µ denote the standard deviation and172

mean of the Gaussian normal distribution. µ can also be interpreted as the173

size of primary particles generated by attrition. Therefore, the location of174

the smaller particles in the resultant PSD can determine µ parameter, that175

is, it can be estimated from the experimental data. m and d are the volumes176

of the mother and daughter particles, respectively.177

The cell average technique (CAT) is used to discretize and solve the178

integrals in Equation (1) numerically. This method assumed that each cell179

(or bin) in the defined domain has its representative value where all the180

particles of this cell are assumed to be concentrated. First, in this method, it181

is necessary to calculate averages of the properties of the newborn particles182

in a cell. Subsequently, the newborn particles are assigned according to183
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four possible situations (there are two possible options for the particles to184

be reallocated within the same cell, and there are two options for the new185

particles to be reallocated in the neighboring cells) to preserve the selected186

properties of the distribution [37, 38].187

As a global stochastic optimization method, the Particle Swarm Opti-188

mization (PSO) method [39] was applied to the model calibration. Cali-189

bration was performed by compartments, experiments, and formulations in190

Table 1 individually. The best combination of each parameter set was cho-191

sen as the calibration results based on the minimum value of the objective192

function Equation (4) [40, 41].193

D(u, v) = (2E|X − Y | − E |X −X ′| − E |Y − Y ′|)1/2 . (4)

In Equation (4), D represents the distance between probability distributions194

of the experimental data u and the computed data v. The parameters X195

and Y are independent random variables from the distributions of u and v,196

respectively. This equation is named as the energy distance in the Python197

package Scipy [42] and can transcribe the maximum mean discrepancy [43].198

The presented PBM was tested with identifiability analysis [32], hence model199

calibration was performed for multiple PBM parameters simultaneously.200

Two rounds of calibration were performed based on the experimental201

campaigns, where the number of experiments was adjusted based on the202

observation in the first round. Initially, calibration for APIs 1 to 4 was per-203

formed where it was calculated the parameters β0 and step for the wetting204

zone and β0, S0 and fprim for each of the kneading zones. The remaining un-205

known parameters were fixed as suggested in the authors’ previous work [32].206

Figure 3 and Figure 4 display the correlations of the calibrated model param-207

eters in the wetting zone with the L/S ratio for those 50% API formulations.208

No clear trend emerged for the other process parameters that were varied209

in each DoE, therefore the L/S ratio was confirmed and remained the main210

process condition on which further developments are based. All the formu-211

lations exhibited the same trend. When the L/S ratio increases, the model212

parameter β0 also increases. On the contrary, the step parameter showed a213

negative relationship with the L/S ratio. Increasing the L/S ratio reduces214

the amount of fine material remaining, therefore, a lower step is obtained. In215

other words, more successful collisions (represented by β0) between particles216

occur due to the increase in interacting wet material after the formation of217

the initial nucleus, immediately, new larger granules can be formed and, as218
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a consequence, fewer non-granulated material is obtained, which is captured219

by the step parameter.220

(a) API1 50% (b) API2 50%

(c) API1 50% (d) API2 50%

Figure 3: Resulting correlations for β0 and step parameters in the wetting zone (C1)
for 50% API formulations. The dots indicate each calibrated experiment. The blue line
represents the exponential regression fit.

Figure 5 shows a comparison among the compartments in the kneading221

zones of the obtained correlations for each formulation for each calibrated222

model parameter. What is interesting about the results in this figure is that223

each parameter presents the same trend for all the formulations and in a224

similar way in each compartment. However, it can be observed that different225

slopes prevail from one compartment to another for each formulation. That226

could be attributed to the different mechanisms of formation of the nuclei227

and therefore the liquid distribution within the granule due to the nature228

of the formulation that in turn, could induce further aggregation or not229

in the kneading zones [7]. For the same reason, each formulation presents230

different scales on the y-axis of the plots (Figure 5). The results reflect the231

individual findings of each experiment during the calibration process for each232

formulation at each compartment.233

The second round of the calibration stage was performed with the data234
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(a) API3 50% (b) API4 50%

(c) API3 50% (d) API4 50%

Figure 4: Resulting correlations for β0 and step parameters in the wetting zone (C1)
for 50% API formulations. The dots indicate each calibrated experiment. The blue line
represents the exponential regression fit.
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(a) API1 50% (b) API1 50% (c) API1 50%

(d) API2 50% (e) API2 50% (f) API2 50%

(g) API3 50% (h) API3 50% (i) API3 50%

(j) API4 50% (k) API4 50% (l) API4 50%

Figure 5: Comparison of the correlations for model parameters in the kneading zones (C3,
C5, C6) for all 50% API formulations.
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from API5, API6, and API7. Similar trends were obtained for these formu-235

lations (See Figure ??).236

2.3. PLS development237

PLS models were developed to link the L/S ratio and material proper-238

ties of APIs with PBM parameters. PLS regressions find latent variables239

(LVs) which maximize the covariance between the projections of input and240

output parameters. A PLS model was created for each compartment. The241

initial model configuration has the L/S ratio and 34 material properties as242

input parameters. The list of material properties is summarized in Table 2;243

eight parameters are material properties of a formulation while the other244

26 are API material properties. The characterization techniques and equip-245

ment used for measuring material properties are listed in Table 3. Material246

properties can be divided into four categories, i.e., size, density, flowability,247

and moisture. For the parameter R, the L/S ratio was excluded from input248

parameters because the values of R are fixed for the same formulation re-249

gardless of the L/S ratio. By definition, R is the critical size, from which250

the aggregation of particles larger than this size will be favored over those251

smaller than that size. Thus, this parameter is directly affected and related252

to the initial particle size of the formulation and its nature. The PLS model253

of R is developed separately with other PBM parameters in the wetting zone254

to exclude L/S ratio from the input parameters. The outputs of each PLS255

model are summarized in Table 4.256

The calibrated PBM parameters were transformed using the natural log-257

arithm because some parameters have values spanning multiple orders of258

magnitude. Original PLS models without logarithm transformation are lin-259

ear regressions, which could potentially lead to predicting negative aggre-260

gation or breakage depending on input values. In addition, the exponen-261

tial relationship between L/S ratio and most of PBM parameters was con-262

firmed in the calibration steps. This relationship is the equivalent to the263

log-transformation of PBM parameters. Each PLS model can be presented264

as shown in Equation (5):265

ln yj =
nmat∑
i=1

cixi + cLSxLS, (5)

where the parameters yj, xi, and xLS represent a PBM parameter j, e.g., β0,266

material property i, e.g., d0, 5wF, and L/S ratio, respectively. The param-267

eters nmat, ci, and cLS are the amount of material properties considered in268
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Table 2: List of material properties used as the initial input parameters of PLS models.

Category Input parameters Abbreviations

Size 50 and 90% cumulative undersize fraction of
volumetric PSD of a blend (wet dispersion) d0, 5wF, d0, 9wF

Volume and surface-weighted mean particle
size of a blend (wet dispersion) D(3, 2)wF, D(4, 3)wF

Span of volumetric PSD of a blend SpanwF
50 and 90% cumulative undersize fraction of
volumetric PSD of an API (wet dispersion) d0, 5wAPI, d0, 9wAPI

Volume and surface-weighted mean particle
size of an API (wet dispersion) D(3, 2)wAPI, D(4, 3)wAPI

Span of volumetric PSD of an API SpanwAPI
Density Bulk and tapped density of an API ρbulk, ρtap

Hausner ratio of an API HR
Compressibility index of an API CI
Conditioned bulk density of an API CBD

Flowability Flow function coefficient of an API ffc
Basic flow energy of an API BFE
Stability index of an API SI
Flow rate index of an API FRI
Specific energy of an API SE
Compressibility of an API at 15 kPa Cmpr

Moisture Water binding capacity of an API WBC
Residual moisture content of an API via loss on drying LoD
Maximum solubility of an API in water Smax
Fraction API powder dissolved after 1, 3, 5,
10, 20, 30, and 60 mins in a dissolution test

DR1, DR3, DR5, DR10,
DR20, DR30, DR60

The lowest and the highest applicable
L/S ratio for a formulation L/SLow, L/SHigh

Other API content of a formulation CAPI
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Table 3: Characterization techniques used for measuring material properties.

Technique Equipment Material properties
Laser diffraction Mastersizer® S

(Malvern Instruments, Worcestershire,
UK)

d0, 5wF, d0, 9wF,
D(3, 2)wF, D(4, 3)wF,
SpanwF, d0, 5wAPI,
d0, 9wAPI, D(3, 2)wAPI,
D(4, 3)wAPI, SpanwAPI

Density Tapping device
(J. Engelsman, Ludwigshafen, Germany)

ρbulk, ρtap, HR, CI

Powder rheology FT4 powder rheometer
(Freeman Technology, Tewkesbury, UK)

CBD, BFE, SI,
FRI,SE, Cmpr

Ring shear test Ring shear tester, RST-XS
(Dietmar Schulze Schüttgutmesstechnik,
Wolfenbüttel, Germany)

ffc

Water binding capacity Heraeus Multifuge 3 S-R
(Thermo Scientific, USA)

WBC

Loss on drying HC103 Halogen Moisture Analyzer
(Mettler-Toledo, Zaventem, Belgium).

LoD

Solubility Cellulose-based filter
(Grade 2, Whatman, USA)
UV-1650 PC
(Shimadzu, Suzhou New District, China)

Smax

Dissolution rate USP4 Flow-Through Dissolution Systems
(Sotax, Allschwil, Switzerland)
UV-1650 PC
(Shimadzu, Suzhou New District, China)

DR1, DR3, DR5,
DR10, DR20, DR30,
DR60

L/S ratio ConsiGma-25
(GEA Pharma Systems, ColletteTM,
Wommelgem, Belgium)

L/SLow, L/SHigh

Table 4: List of output parameters per each PLS model.

Model number Compartment Parameters Dependency of
L/S ratio

1 Wetting R Independent
2 Wetting β0,1, step Dependent
3 C3 β0,3, S0,3, fprim, 3 Dependent
4 C5 β0,5, S0,5, fprim, 5 Dependent
5 C6 β0,6, S0,6, fprim, 6 Dependent
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the model, PLS regression coefficients of material property i and L/S ratio,269

respectively. Since material properties are fixed for the same formulation,270

Equation (6) can be described for each formulation:271

ln yj = ah + cLSxLS, (6)

where ah represents the intercept of a PLS regression for formulation h and272

is equal to
∑

cixi in Equation (5). These equations can reflect on the expo-273

nential effect of L/S ratio as shown in Figures 3 and 5. Prior to PLS model274

development, all input and output data were normalized by mean-centering275

and scaling to unit standard deviation.276

During the PLS development step, the number of input parameters was277

reduced to avoid overfitting and increase the applicability of the models in278

the pharmaceutical industry. The industry focuses only on identifying rel-279

evant characteristics, so less critical properties for an envisioned prediction280

accuracy should be excluded from the models based on analysis. This could281

lead to accurate predictions with reduced training data. By changing input282

parameter combinations, we aimed to find the best combination that max-283

imizes R2 values in cross-validation (CV) for each model. The number of284

possible combinations for each model is more than 17 billion (234), which is285

computationally expensive. To address this, we reduced input parameters286

using the procedure in Figure 6. Among all material properties used as in-287

puts for the model (initially 34), the least relevant property was excluded288

for the next round to avoid excluding critical properties. This step was re-289

peated until all input properties were judged as relevant. Leave-One-Out290

Cross-Validation (LOOCV) was used as the CV method for R. For other291

PBM parameters, all data using the same formulation were excluded as test292

data instead of one dataset, whereas the framework of CV was the same as293

LOOCV. This enabled R2 values to show predictability for new formulations.294

The number of LVs varied from one to five and was chosen based on R2 CV.295

The two steps of this pre-processing approach, i.e., log-transformation296

and reduction of the number of input parameters, were critical to enable the297

models to predict PBM parameters appropriately. For clarity, the results of298

PLS models without pre-processing as well as with different pre-processing299

approaches are presented in the supplementary material. In addition to CV,300

validation of R was made by using the model for four new APIs. The primary301

focus of this work is to identify key material properties on PBM parameters302

by developing PLS models. A comprehensive account of the validation phase303

16



Figure 6: Flowchart of extracting material properties used for the PLS models.

for the hybrid model, consisting of the PBM component and the proposed304

PLS models, can be found in Barrera Jiménez et al. 2023 [33]. All works of305

PLS development were performed using the Python package scikit-learn.306

To quantify the uncertainties of the developed PLS models, confidence307

intervals (CInt) were also calculated based on Hotelling T-squared values308

(T 2), as shown in Equation (7) [44]:309

CInt = tninp−1,α ·RMSE
√
1 + T 2, (7)

where tninp−1,α represents the percent point function of Student’s T distribu-310

tions with ninp−1 degrees of freedom at significance level α. The parameters311

ninp and RMSE represent the number of data used for training of PLS mod-312

els and root mean square errors of PLS models in training data, respectively.313

In addition to R2 values, model validation was performed by checking if314

experimental data were within the ranges of confidence intervals.315

3. Results and Discussion316

3.1. PLS model construction317

The input parameters as well as the number of LV of each PLS model318

were determined after CV, as summarized in Table 5. The indices R2X and319
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R2Y represent the sum of the percentages of variation of the X (input) and320

Y (output) explained by each LV, respectively. The number of material prop-321

erties used for the models was reduced from 34 to between six and ten based322

on the flowchart shown in Figure 6. Overall, 25 material properties were323

necessary to develop the five PLS models. Since some material properties324

are measured by the same characterization method, nine out of eleven mate-325

rial characterization methods were needed to predict all model parameters.326

Model 1 (R) had the smallest R2X value due to the smaller number of LVs327

used and the complex underlying relationship among the material properties328

incorporated into the model. The values of R2Y are related to the impacts of329

PBM parameters on the granule size distribution. The model parameters in330

the wetting zone (Model 2) have a high impact on the whole simulation, due331

to the influence of the bimodality in that compartment. On the other hand,332

the parameters in C3 (Model 3) change granule size distribution towards333

intermediate sizes slightly.334

Table 5: Summary of the developed PLS models.

Model Number
of LV Selected material properties R2X R2Y

1 2 d0, 5wF, D(4, 3)wF, SpanwAPI, ρbulk, SI,
Cmpr, DR10, L/SHigh

0.555 0.901

2 4 SpanwF, SpanwAPI, ρtap, HR, ffc,
Smax, DR1, DR5

0.916 0.887

3 3 D(4, 3)wF, d0, 5wAPI, d0, 9wAPI, D(3, 2)wAPI,
D(4, 3)wAPI, ρtap, SI, FRI, L/SHigh

0.879 0.273

4 5 d0, 9wF, ρtap, HR, CI, SE,
L/SHigh

0.955 0.633

5 3 D(3, 2)wAPI, ρbulk, HR, CI, CBD,
BFE, SI, FRI, SE, L/SHigh

0.626 0.431

3.2. PLS model validation335

Based on the selected LV numbers and material properties, the PLS mod-336

els were validated. The developed PLS models were used to compute the337

PBM parameters of the experimental data. The accuracy of all of the devel-338

oped PLS models is summarized in Table 6, where R2 and root mean square339

error (RMSE) were used. The results of fitting and prediction of R with340

90% confidence intervals are presented in Figure 7; where predicted values341
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were calculated based on LOOCV. Figure 7 shows that the prediction as342

well as the fitting could capture the general trends of R. Observed values343

of R were within the ranges of 90% confidence intervals for all formulations344

except for Formulation 6. Particle sizes, which should be important for R,345

of Formulation 6 were much smaller than the other formulations. While346

smaller particles of Formulation 6 resulted in the lowest R, the PLS model347

over-predicted because of limited data of formulations consisting of smaller348

particles.349

The prediction results of the other PBM parameters with 90% confidence350

intervals are presented in Figure 8. For the comparison, the fitting results of351

the PBM parameters are presented in Figure S3 in the supplementary mate-352

rial. For the wetting zone, R2-values were quite high for fitting and remained353

high for CV as well, which fulfilled the model requirement sufficiently. This354

fact is crucial because PBM parameters in the wetting zone have the high-355

est impacts on the final granule size distributions according to the results356

presented in [32].357

While the computation accuracy in the kneading zones is lower, all PLS358

models capture the general trends of the PBM parameters. The CV results359

in Table 6 were not sufficient for accurate estimations of PBM parameters360

for new formulations. The values of R2 in the CV were negative for most361

of the PBM parameters in the kneading zone whereas they were the highest362

among possible combinations of material properties as inputs. Negative R2
363

values indicate the insufficiency of the models for computing the values of364

PBM parameters for new formulations. This is due to either missing critical365

material properties in the measurement or the necessity of nonlinear model-366

ing. On the other hand, fitting results as well as the fact that the models367

captured the general trends suggest that the models are sufficient for inter-368

preting data. Two experimental data points in C6 had high prediction errors,369

as they originated from API 5 (Formulation 8) where seven out of ten in-370

put material properties had either the highest or the lowest values among371

the ten formulations. The predicted fprim for these data points was signifi-372

cantly higher. Since CV always excluded data to be validated from training373

data, the simulation of PBM parameters in C6 for Formulation 8 required374

extrapolation of the trained PLS. When all input data was used, the fitting375

results of Formulation 8 were much better, as shown in the supplementary376

material. A similar tendency can be observed for C3 and S0 in C5. Except377

for them, no data points were showing inverse trends between predicted and378

observed values. The potential causes of the lower prediction are calibration379
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of PBM parameters in the kneading zone, which in turn can be affected by380

experimental uncertainty and linear regression of the models.381

These causes also explain wide ranges of confidence intervals especially in382

the kneading zones and for specific formulations (e.g., Formulation 8). The383

calibrated values of the PBM parameters in the wetting zone were within the384

ranges of confidence intervals, which confirmed the accuracy and appropri-385

ateness of the developed PLS model. On the other hand, in the CV results386

of the PBM parameters in the kneading zones, some calibrated values were387

outside of confidence intervals, and other confidence intervals were too broad.388

The impact of experimental uncertainty could be large for fprim, 6 since it is389

not sensitive to granule size distribution compared to other PBM parameters.390

The validation of PLS models was also tried without pre-processing methods391

(i.e., log transformation and the reduction of material properties), as shown392

in the supplementary material. The prediction accuracy was found to be393

much lower, and sometimes the models even predicted physically unrealistic394

negative values for PBM parameters. These results proved the validity of395

applying both pre-processing methods.396

Table 6: The overview of the PLS model performances.

Fitting CV
Model PBM parameter R2 RMSE R2 RMSE
1 R 0.906 0.109 0.740 0.181
2 β0 0.876 0.339 0.724 0.505

step 0.899 0.408 0.707 0.695
3 β0 0.376 0.881 -2.265 2.017

S0 0.254 0.481 -4.565 1.314
fprim 0.188 1.478 -2.651 3.135

4 β0 0.726 0.667 0.434 0.959
S0 0.463 0.750 -0.146 1.096
fprim 0.709 0.653 -0.004 1.213

5 β0 0.422 1.274 -5.888 4.399
S0 0.590 0.831 -3.744 2.827
fprim 0.281 1.423 -12.07 6.070

The obtained PLS model was used to predict the R parameter of new for-397

mulations, which were not included in the training data (Table 7). Figure 9398

shows a comparison between the predicted R parameter and experimental399
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(a) Fitting (b) CV

Figure 7: Fitted, predicted, and observed values of R with 90% confidence interval.

observations. The vertical lines in the figure represent the µ parameter de-400

fined in Equation 3. In this work, we followed a strategy presented in [32] to401

reduce the number of parameters that need calibration. Specifically, we set402

µ to be the same as R defined in the wetting zone. By identifying µ in the403

kneading zones, we can obtain the R value for the wetting zone. Therefore,404

it is not necessary to collect data from the wetting zone (C1) to validate the405

model. This approach significantly reduces the experimental work and main-406

tains a focus on the model’s industrial applicability. The predicted R values407

were close to the experimentally observed µ values, and the prediction errors408

in the proposed PLS model were lower than those in the PLS models without409

pre-processing (see the supplementary material). In the conventional PBM,410

the identification of R values requires multiple experiments with different411

process settings. The proposed PLS enabled designers to calculate R values412

without experiments.413

Table 7: Process conditions of validation formulations.

API Number of
experiments

Screw Speed
(rpm)

Throughput
(kg/h)

L/S
(%)

API 8 (50 %) 5 675 20 20.127.3
API 9 (50 %) 5 675 20 14.827.2
API 10 (50 %) 5 675 20 17.023.0
API 11 (50 %) 3 675 20 5.97.0

Figure 10 presents a comparison of the experimental and predicted R/µ-414

values for each validation formulation. The simulated PSDs were obtained415
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(a) Wetting zone

(b) C3

(c) C5

(d) C6

Figure 8: Predicted PBM parameters from material properties vs calibrated PBM param-
eters in the wetting (C1) and the kneading (C3, C5, and C6) zones with 90% confidence
interval.
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(a) API 8 (b) API 9

(c) API 10 (d) API 11

Figure 9: Predicted R for four new APIs and its comparison with the experimental R-
value. Here, µ represents R-values. For each formulation, multiple size distributions are
presented from the lowest to the highest L/S ratio.
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using the values predicted by the PLS models to calculate the PBM parame-416

ters. In our previous publication [33], it was also validated that the computed417

PBM parameters can be used for the simulation of granule size distributions418

for new formulations.419

(a) API 8 (b) API 9

(c) API 10 (d) API 11

Figure 10: Predicted and experimental R/µ for the four validation formulations against
the simulated and experimental Particle size distribution at the intermediate L/S ratio for
each formulation.

As described above, some improvement opportunities in the model de-420

velopment were found from the validation results. Model calibration and421

linearity assumption resulted in lower prediction and wide confidence inter-422

vals of PBM parameters in the kneading zones. Advanced analyses of un-423

certainty and relationships among model parameters, e.g, application of the424

Monte Carlo method for uncertainty analysis [45], could improve the model425

performance and uncertainty quantification.426

3.3. PLS model interpretation427

Key material properties were further interpreted by Variable Importance428

for the Projection (VIP) plotting. VIP represents the impact of each in-429

24



put parameter on the PLS models, where critical input parameters have430

large values of VIP. To analyze the accuracy and reliability of the VIP re-431

sults, the standard deviations of the VIP scores were calculated based on432

the VIP results in the CV procedure. The VIP plots of the PLS models are433

shown in Figure 11, where error bars show the standard deviations of VIP434

scores. The standard deviations were not so large for most of the param-435

eters that the results of key material properties and process settings were436

stable. Several material properties have similar variable importance with the437

L/S ratio in the wetting zone while the L/S ratio is the highest influential438

factor in the kneading zone. By comparing the VIP plots of different PLS439

models, the differences in key material properties can be interpreted. For440

example, size-related properties (e.g., d0, 5wF, D(3, 2)wAPI, and SpanwAPI)441

affected R and the model parameters in the upstream zones more than the442

model parameters in the downstream zones. In addition, moisture-related443

parameters (e.g., Smax) were important in the wetting zone, whereas density-444

related parameters (CI and HR) proved to be more important in C5 and445

C6. Density-related parameters (CI and HR) were critical in C5, which is in446

agreement with experimental observations. According to the experimental447

observations, a shift in the distribution after the second kneading zone is448

related to the compaction of large granules [46, 47]. Therefore, it is reason-449

able that density-related parameters prevailed as key parameters in the later450

kneading zones.451

Figure S5 in the supplementary material shows the PLS regression coef-452

ficients of all PBM parameters. The data show that β0 and S0 have positive453

correlations, while β0 and step or fprim have negative correlations. By com-454

paring the same PBM parameters in the different zones, several interesting455

findings were observed. For β0, moisture-related properties had a similar ten-456

dency of the impacts, i.e., lower L/SHigh increased β0 regardless of the zones.457

This corroborates the differences obtained for each formulation in terms of458

the L/S ratio range, to obtain similar granules and allow a fair comparison459

between the formulations studied [34, 48]. In addition, this shows that the460

PBM model parameters can be linked to the nature of the material.461

The proposed approach enabled the computation of PBM parameters for462

new drugs based on identified key material properties. The information is463

useful to reduce experiments in development and understand the phenomena464

of wet granulation deeply. Moreover, the proposed PLS models visualized465

different impacts of material properties and L/S ratio on aggregation and466

breakage in different compartments. The results help to understand the role467
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(a) R (b) Wetting zone

(c) C3 (d) C5

(e) C6

Figure 11: VIP plots of the developed PLS models with standard deviations obtained in
CV.
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of each compartment deeply and improve the design of screws and equipment.468

The proposed approach can be extended to other fields, where the links be-469

tween available mechanistic models and material properties are missing. On470

the other hand, the prediction accuracy can be improved especially for the471

PBM parameters in the kneading zones. Possible causes of lower prediction472

accuracy are lack of non-linearity due to the PLS method and low accuracy of473

calibrated PBM parameters. One solution is using other data-driven models474

which can reflect non-linear relationships between input and output param-475

eters. Improvement of the 1D-PBM model as well as the expansion of data476

sets could also lead to high prediction accuracy.477

4. Conclusions478

The presented PLS models could assess the impact of material properties479

on PBM parameters in the context of continuous TSWG. Five PLS models480

were developed (one for each compartment) after the log-transformation of481

PBM parameters and the reduction of the number of input parameters. The482

developed models showed sufficient fitting accuracy for interpretation and483

had predictive power for the PBM parameters in the wetting zone. Success-484

ful PLS development was not possible without comprehensive experimental485

design, the PBM having fewer model parameters through identifiability anal-486

ysis, and pre-processing of model parameters. This study is the first attempt487

to determine the values of the PBM parameters based on material properties488

and process parameters.489

Through VIP plots and PLS regression coefficients, the key material490

properties were observed by compartments and PBM parameters. Size- and491

moisture-related properties were influential on the upstream zones, whereas492

density-related properties showed a significant impact on the downstream493

zones. These insights can reduce experiments and material characterization494

significantly for the process design of new drugs.495

In the future, the prediction accuracy of the proposed approach can be496

further improved by using other data-driven models such as non-linear re-497

gression models. A hybrid model of data-driven models and the PBM [32]498

can be used for the simulation of granule size distributions for new drugs.499

The model has a generic nature under development with the same excipi-500

ent base and produced with the same screw configuration [33]. The model501

applicability can be extended by adding other factors, e.g., different excip-502

ient bases and screw configurations, as inputs of PLS models. A deeper503

27



analysis of the impacts of material properties is valuable for the industry,504

e.g., the application of sensitivity analysis. Furthermore, an advanced un-505

certainty analysis through stochastic approaches is expected to narrow down506

confidence intervals and clarify the causes of model uncertainty.507
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