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Abstract 

Apart from mechanical actions, structural components in the construction industry may be subjected to a thermal 

gradient, causing (internally) restrained thermal expansion. These thermal loads can alter the mechanical response 

of components in a structural topology optimization procedure. Therefore, the influence of thermal loading should 

be considered in the sensitivity analysis to efficiently update the structural layout of material. In this paper, a 

density-based topology optimization procedure is developed for compliance minimization of structural 

components subjected to thermo-mechanical loads considering steady-state heat conduction and weak thermo-

mechanical coupling. The adjoint method is employed to obtain the analytical sensitivities, taking into account the 

influence of the design-dependent temperature field and thermal properties. The proposed topology optimization 

procedure is demonstrated on the MBB problem, extended with thermal loading, to investigate the influence of 

the proposed sensitivities on the optimized results. Furthermore, the thermo-mechanical load ratio is quantitatively 

defined and its effect on the resulting topologies is studied. The results show that the thermo-mechanical load ratio 

significantly changes the topology of the optimized results. Finally, the topology optimization procedure is 

presented in an efficient 138-line MATLAB code and provided as supplementary material, serving as a basis for 

further research. 
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1 Introduction 

In the construction industry, the production of cement for concrete structures plays a significant part in the global 

CO2 emissions (Andrew, 2018; Stoiber & Kromoser, 2021). This problem can be addressed by either decreasing 

the amount of cement in concrete mixtures on a material level or reducing the amount of material in construction 

elements on a structural level, e.g. through structural optimization (Stoiber & Kromoser, 2021). The most general 

approach to structural optimization is topology optimization (TO). This mathematical technique allows for the 

optimization of the material layout within a certain design space, given a set of boundary conditions, loads and 

constraints, and without the requirement of an a priori arbitrary guess for the final design. Therefore, topology 

optimization can offer inspiration for more efficient design solutions for building components or structures. 

Many topology optimization examples from literature strictly use externally applied, constant mechanical loads 

with regard to structural optimization problems (Bourdin & Chambolle, 2003). Even though a structural 

component in the construction industry is typically designed with three mechanical requirements in mind (i.e. 

stiffness, strength and stability), these are not solely challenged by mechanical actions on the structure. A common 
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example of such a non-mechanical action is thermal loading caused by environmental temperature changes or 

exposure to fire. In essence, thermal loading may cause thermo-mechanical stress in a structure. As a result of a 

changing temperature field in the structure that is determined by a heat transfer analysis, (internally) restrained 

thermal expansion causes internal forces and stresses. When the material distribution changes during the 

optimization process, the temperature field needs to be recalculated and the corresponding thermo-mechanical 

loads will change accordingly. Hence, thermal loading is an example of so-called design-dependent loads, i.e. 

loads of which the magnitude, direction and location are dependent on the material layout itself and which are 

subject to change in each iteration in the optimization process (Bourdin & Chambolle, 2003; Chen & Kikuchi, 

2001). Other common examples of design-dependent loads are self-weight (Bruyneel & Duysinx, 2005; Huang & 

Xie, 2011) and pressure loads (Hammer & Olhoff, 2000; Lee & Martins, 2012; Picelli et al., 2015, 2019; Zheng et 

al., 2009) among others. A clear overview of different types of design-dependent loads, in particular thermal 

loading, is given by Gao and Zhang (2010).  

Thermo-mechanical loading in topology optimization, also often called thermo-elastic topology optimization, has 

already been studied since the seminal paper from Rodrigues and Fernandes (1995), in which they used the 

homogenization method for compliance-based problems. Later, Li et al. (2001) studied the effects of varying 

temperature fields and Diaz and Benard (2003) investigated the optimization of heat-resistant structures. Gao and 

Zhang (2010) discussed the design-dependency of thermal loads and proposed the use of a thermal stress 

coefficient (TSC) for the penalization related to the thermal expansion. Li et al. (2010) applied the evolutionary 

structural optimization (ESO) method with displacement minimization to the design of thermo-elastic structures 

in and Zhu et al. (Zhu et al., 2019) proposed a procedure for temperature-constrained TO with thermo-mechanical 

loads, considering steady-state heat conduction (SHC) and thermally induced stresses due to thermal expansion. 

Other sources studied either compliance-based (Gao & Zhang, 2010) or stress-based (Deaton & Grandhi, 2013; 

Hou et al., 2016) approaches for thermo-mechanical loading. Further, multi-material TO with thermo-mechanical 

loading has been explored (Chen et al., 2022; Chen et al., 2021; Gao et al., 2016; Giraldo-Londoño et al., 2020) 

and simultaneous optimization of stiffness and thermal properties has been investigated (Diaz & Benard, 2003; 

Ganobjak & Carstensen, 2019; Vantyghem et al., 2019) as well, although the latter should not necessarily be 

considered design-dependent thermal loading. An extensive overview of thermal loading in TO is provided by 

Deaton and Grandhi (Deaton & Grandhi, 2014) with a more recent update by Leader (Leader, 2021). 

Several studies have confirmed that the results of a TO procedure considering thermo-mechanical loading are 

significantly influenced by the thermal loads (Cho & Choi, 2005; Diaz & Benard, 2003). Hence, the thermal 

contribution and its design-dependency needs to be taken into account in the sensitivity analysis when gradient-

based TO is used. Nevertheless, the influence of the design variables on the design-dependent temperature field is 

often neglected in the calculation of the sensitivities (Gao & Zhang, 2010; Gonçalves et al., 2022; Xia & Wang, 

2008). This simplification is generally justified by the computational efficiency and the marginal influence on the 

optimized results. However, for thermally dominant problems, where the contribution of the thermal loading to 

the objective is far greater than its mechanical counterpart, this simplification could lead to inaccurate results and 

lack of convergence (Ooms et al., 2022), which is also addressed in this study. In a recent investigation, Zhu et al. 

(Zhu et al., 2019) have included the influence of the design variables on the temperature field and thermal stiffness 

matrix by means of the direct method for the sensitivity analysis. However, this leads to a computationally 

expensive calculation of the sensitivities. Hence, a more efficient approach is proposed by taking advantage of the 

adjoint method. 

In this paper, the authors present a compliance-based topology optimization procedure for structures subjected to 

thermo-mechanical loading considering steady-state heat conduction. The sensitivity analysis is performed using 

the adjoint (variable) method, which allows for an efficient implementation of the TO procedure and solving large-

scale thermo-mechanical optimization problems on a desktop computer with a reasonable computation time. A 

compact and easy to understand 138-line MATLAB code for 2D compliance minimization problems is provided 

as supplementary material, serving as a basis for further research. The remainder of this paper is organized as 
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follows. The theoretical background of the thermo-mechanical model and the topology optimization formulation 

(including sensitivity analysis) are provided in Section 2. Subsequently, the implementation of the thermo-

mechanical model and the sensitivity analysis is described in Section 3, with references to the provided code. 

Finally, in Section 4 a numerical example of the MBB beam, extended with thermal loading, is solved using the 

developed TO procedure, followed by a parameter study and a discussion of the results thereof.  

2 Thermo-elastic topology optimization 

2.1 Governing equations 

In this section, the governing state equations are derived for the thermal and mechanical analysis. In addition, the 

thermo-mechanical coupling is described. 

2.1.1 Thermal analysis 

In this study, the thermal response of the structure is governed by heat conduction, as described by Fourier’s law. 

The governing equation for steady-state heat conduction is then expressed in Eq. (1), based on the energy equation 

for a solid medium without fluid motion and under the assumption of steady-state heat transfer (Welty et al., 2014).  

where 𝜅 is the thermal conductivity for isotropic materials, 𝛁 is the nabla operator and 𝑸 is the internal volumetric 

heat generation and 𝑻 the temperature field, which is spatially varying and temporally constant. 

As the governing equation for SHC in Eq. (1) is a second-order partial differential equation in the spatial domain, 

this requires two boundary conditions (BCs) in order to solve for the unknown temperatures in 𝑻. Generally, there 

are two common types of BCs for heat conduction problems (expressed in Eq. (2)): an essential or Dirichlet 

condition, where a temperature 𝑇𝑎 is specified on the boundary Γ𝐷, and a natural or Neumann condition, where a 

(normal) heat flux 𝑞 is imposed on the boundary Γ𝑁, illustrated in Figure 1. In this study, Dirichlet conditions are 

considered for the thermal loading and Neumann conditions for adiabatic boundaries. 

 

Figure 1: Boundary conditions 

The governing equation for the thermal problem is first transformed into finite element equations. Different 

approaches exist to derive these equations, the reader is referred to (Lewis et al., 2004; Logan, 2016; Reddy & 

 𝜅𝛁2𝑻 + 𝑸 = 0 (1) 

 

𝑻 = 𝑻𝑎  on  Γ𝐷 ∈ Γ 

𝑞 = −𝜅
𝜕𝑻

𝜕𝑛
  on  Γ𝑁 ∈ Γ 

(2) 
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Gartling, 2010). The finite element model (FEM) in matrix formulation for a thermal problem considering SHC is 

given by Eq. (3). 

where 𝑲𝑡ℎ is the thermal stiffness matrix (named after its mechanical equivalent, see further), 𝑻 is the temperature 

field and 𝑸 is the heat load vector. As Eq. (3) represents the global system of all finite elements, 𝑲𝑡ℎ is assembled 

from the element thermal stiffness matrices as 𝑲𝑡ℎ = ∑ 𝑲𝑡ℎ
𝑒𝑁𝑒

𝑒
, wherein ∑ ∙

𝑁𝑒
𝑒  is the assembly operator rather than 

a summation symbol and 𝑁𝑒 is the number of elements. 

The element thermal stiffness matrix 𝑲𝑡ℎ
𝑒  is defined in Eq. (4) for 2D problems considering square elements, as it 

directly follows from the derivation of the FEM equation. 

where Ωe is the element domain, 𝑡 is the out-of-plane thickness, 𝑩𝑡ℎ is the thermal gradient-temperature matrix 

and 𝑫𝑡ℎ is the thermal conductivity matrix. 

The thermal conductivity matrix 𝑫𝑡ℎ is also known as the heat flux-thermal gradient relationship 𝜅 from Fourier’s 

law, which contains the thermal conductive properties of the material in different dimensions. In Eq. (5) the thermal 

conductivity matrix is given for 2D heat conduction considering an isotropic material. 

where 𝑫𝑡ℎ
0  is the constant thermal conductivity matrix and 𝑰2 is the identity matrix of size 2. 

2.1.2 Mechanical analysis 

The static, mechanical response of a structure is governed by Eq. (6), defining the equilibrium in a structure with 

a set of Dirichlet conditions (fixed displacements 𝒖0) on Γ𝐷 and Neumann conditions (known surface loads 𝒕0) on 

Γ𝑁 (see Figure 1). 

where 𝝈 is the stress tensor, 𝒃 is the body force vector, 𝒖 is the displacement vector, 𝒕 the traction stress tensor. In 

this study, body forces such as self-weight are disregarded. 

The linear strain-displacement relationship, assuming small deformations, is governed by Eq. (7). 

where 𝜺 is the (infinitesimal) strain tensor and superscript 𝑇 denotes the transpose of a matrix. 

Furthermore, the constitutive stress-strain relationship for linear-elastic and isotropic materials (Hooke’s law) is 

formulated in Eq. (8). 

 𝑲𝑡ℎ𝑻 = 𝑸 (3) 

 𝑲𝑡ℎ
𝑒 = ∫ 𝑩𝑡ℎ

𝑇 𝑫𝑡ℎ𝑩𝑡ℎ𝑑Ω
Ω𝑒

=∬ 𝑩𝑡ℎ
𝑇 𝑫𝑡ℎ𝑩𝑡ℎ𝑡𝑑𝑥𝑑𝑦

Ω𝑒

 (4) 

 𝑫𝑡ℎ = 𝜅𝑫𝑡ℎ
0 = 𝜅𝑰2 (5) 

 

𝛁T𝝈 + 𝒃 = 0 

𝒖 = 𝒖0    on   Γ𝐷 ∈ Γ 

𝒕 = 𝒕0    on   Γ𝑁 ∈ Γ 

(6) 

 𝜺 =
1

2
(𝛁𝒖 + (𝛁𝒖)𝑇) (7) 

 𝝈 = 𝑫(𝜺 − 𝜺𝑡ℎ) (8) 
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where 𝑫 is the elasticity matrix for an isotropic material and 𝜺𝑡ℎ is the initial or thermal strain tensor in case of 

(weak) thermo-mechanical coupling (see further). Assuming 2D plane stress, matrix 𝑫 can be expressed in Eq. (9) 

in terms of the Young’s modulus 𝐸 and Poisson’s ratio 𝜈 as the elastic constants. 

where 𝑫0 is the constant elasticity matrix. 

Similar to the thermal analysis, the governing equations from Eqs. (6), (7) and (8) can be further derived to the 

finite element equations according to (Zienkiewicz et al., 2013) until the global matrix notation for a static 

mechanical analysis is obtained in Eq. (10). 

where 𝑲 is the stiffness matrix, 𝑼 is the displacement field and 𝑭 is the mechanical load vector. As Eq. (10) 

represents the global system of all finite elements, 𝑲 is assembled from the element stiffness matrices as 𝑲 =

∑ 𝑲𝑒𝑁𝑒
𝑒  . 

The element stiffness matrix 𝑲𝑒, as expressed in Eq. (11) for 2D problems considering square elements, directly 

follows from the derivation of the FEM equation. 

where 𝑩 is the strain-displacement matrix. 

2.1.3 Thermo-mechanical load vector 

The thermal and mechanical responses of the structure are weakly coupled and this thermo-mechanical coupling 

is governed by thermal expansion. Apart from the mechanical contribution 𝑭𝑚, the global load vector 𝑭 is updated 

with thermally induced nodal forces in Eq. (12), which are assembled in the thermo-mechanical load vector 𝑭𝑡ℎ. 

The definition of the thermo-mechanical load vector is derived from the FEM equation (Zienkiewicz et al., 2013) 

and the element thermo-mechanical load vector 𝑭𝑡ℎ
𝑒  is given by Eq. (13) (Logan, 2016). 

where 𝜺𝑡ℎ is the thermal strain tensor given by Eq. (14) in Voight notation considering 2D plane stress and an 

isotropic material. 

 𝑫 = 𝐸𝑫0 =
𝐸

1 − 𝜈2

[
 
 
 
1 𝜈 0

𝜈 1 0

0 0
1 − 𝜈

2 ]
 
 
 

 (9) 

 𝑲𝑼 = 𝑭 (10) 

 𝑲𝑒 = ∫ 𝑩𝑇𝑫 𝑩 𝑑Ω
Ω𝑒

=∬ 𝑩𝑇𝑫 𝑩 𝑡𝑑𝑥𝑑𝑦
Ω𝑒

 (11) 

 𝑭 = 𝑭𝑚 + 𝑭𝑡ℎ (12) 

 𝑭𝑡ℎ
𝑒 = ∫ 𝑩𝑇𝑫𝜺𝑡ℎ𝑑Ω

Ω𝑒

=∬ 𝑩𝑇𝑫𝜺𝑡ℎ𝑡𝑑𝑥𝑑𝑦
Ω𝑒

 (13) 

 𝜺𝑡ℎ = [

𝛼∆𝑇

𝛼∆𝑇

0

] (14) 
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where 𝛼 represents the coefficient of thermal expansion. The temperature difference ∆𝑇 is calculated in Eq. (15) 

as the difference between the computed element temperature 𝑇𝑒 and the reference temperature 𝑇𝑟𝑒𝑓.  

where the element temperature 𝑇𝑒 is calculated as the arithmetic average of the nodal temperatures in the corners 

of the element 𝑇𝑖  for 𝑖 = 1, . . ,4 (cf. Figure 2). 

In case multiple elements are connected by the same nodes, the equivalent nodal forces associated with each 

mechanical degree of freedom (DoF) need to be assembled (or cumulated) into the global thermo-mechanical load 

vector 𝑭𝑡ℎ in Eq. (16) (see Section 2.2.2 and 3.2). 

2.2 Topology optimization formulation 

2.2.1 Optimization problem 

The optimization problem considered in this paper is expressed in Eq. (17). The problem involves the minimization 

of structural compliance 𝑐 subjected to a volume constraint 𝑉 and governed by a weakly coupled thermo-

mechanical analysis considering SHC as described in Section 2.1. The design variables 𝒙 are the relative element 

densities for the optimization of a two-phase material layout with a value between 0 (void) and 1 (solid) (Bendsøe 

& Sigmund, 2003). 

where 𝑉(𝒙) is the volume for a design 𝒙, 𝜑 is the prescribed volume fraction and 𝑉0 = 𝑁𝑒𝑉𝑒 is the total volume of 

a solid design where 𝑉𝑒 = 𝑧2𝑡 is the solid element volume and 𝑧 is the element edge length. 

The volume 𝑉(𝒙) is expressed in Eq. (18) as the sum of the element densities multiplied with the solid element 

volume. 

The expression for the elastic compliance 𝑐 can be reformulated in terms of the displacement field 𝑼 and stiffness 

matrix 𝑲 by substituting the mechanical state equation. Since 𝑲 is symmetric, and thus 𝑭𝑇 = 𝑼𝑇𝑲, then the 

expression for the compliance is elaborated in Eq. (19). 

 ∆𝑇 = 𝑇𝑒 − 𝑇𝑟𝑒𝑓 =
1

4
∑𝑇𝑖

4

𝑖=1

− 𝑇𝑟𝑒𝑓 (15) 

 𝑭𝑡ℎ =∑ 𝑭𝑡ℎ
𝑒

𝑁𝑒

𝑒
 (16) 

 

Find 

min
𝒙

 

s. t. 

𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑁𝑒) 

𝑐 = 𝑭𝑇𝑼  

𝑉 = 𝑉(𝒙) − 𝜑𝑉0 ≤ 0  

𝑲𝑡ℎ𝑻 = 𝑸  

𝑲𝑼 = 𝑭𝑚 + 𝑭𝑡ℎ  

0 ≤ 𝑥𝑒 ≤ 1   with   𝑥𝑒 ∈ 𝒙 

(17) 

 𝑉(𝒙) =∑𝑥𝑖𝑉𝑒

𝑁𝑒

𝑖=1

 (18) 
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where 𝑼𝑒 is the element displacement vector and 𝐸(𝑥𝑒) is the density function for the stiffness as discussed in the 

next section.  

In the developed TO procedure, a density filter is used in order to avoid the issue of checkerboarding (Bendsøe & 

Sigmund, 2003). The implementation and the modification of the sensitivities (see Section 2.2.3) are directly 

adopted from (Andreassen et al., 2011). Furthermore, the method of moving asymptotes (MMA) (Svanberg, 1987) 

is used as the gradient-based optimizer for updating the design variables, as it allows for more flexibility for further 

extensions of the implementation using multiple constraints. 

2.2.2 Material interpolation 

With regard to the density-based TO approach, the material properties are expressed in function of the relative 

element densities, i.e. the design variables 𝒙 in the optimization problem. A modification of the SIMP method 

based on (Sigmund, 2007) is employed for the interpolation of the material properties, for which a lower bound 

value is added in order to avoid singularities in the coefficient matrices of the governing state equations. The 

constant material properties from Section 2.1 are replaced by their corresponding density functions from now on. 

The density function for the Young’s modulus 𝐸(𝒙) and its first derivative with respect to the design variables 𝒙 

are given by Eq. (20). 

where 𝑝𝐸  is the penalization factor (with typically 𝑝𝐸 ≥ 1 (Stolpe & Svanberg, 2001)), 𝒙 the vector of design 

variables and Δ𝐸 = 𝐸0 − 𝐸𝑚𝑖𝑛 in which 𝐸0 is the Young’s modulus for a solid element (𝑥𝑒 = 1) and 𝐸𝑚𝑖𝑛  is the 

lower bound value (usually taken as 10−9𝐸0) for the void material phase. Note that 𝜕𝐸(𝑥𝑗) 𝜕𝑥𝑖⁄ = 0 when 𝑖 ≠ 𝑗, 

∀𝑖, 𝑗 = 1, . . , 𝑁𝑒. 

The thermal conductivity 𝜅(𝒙) is penalized in a similar manner as the modulus of elasticity. The corresponding 

density function and its first derivative are provided in Eq. (21). 

where 𝑝𝜅 is the penalization factor and Δ𝜅 = 𝜅0 − 𝜅𝑚𝑖𝑛  in which 𝜅0 is the thermal conductivity for a solid element 

and 𝜅𝑚𝑖𝑛 is the lower bound value. Note that 𝜕𝜅(𝑥𝑗) 𝜕𝑥𝑖⁄ = 0 when 𝑖 ≠ 𝑗, ∀𝑖, 𝑗 = 1, . . , 𝑁𝑒. 

Furthermore, the coefficient matrices 𝑲𝑡ℎ and 𝑲 for the thermal and mechanical state equations can be 

reformulated in Eq. (22) by substituting the constant material properties by their respective density functions from 

Eq. (20) and Eq. (21). 

 𝑐 = 𝑼𝑇𝑲𝑼 =∑𝑼𝑒
𝑇𝑲𝑒𝑼𝑒

𝑁𝑒

𝑒

=∑𝐸(𝑥𝑒)𝑼𝑒
𝑇𝑲0𝑼𝑒

𝑁𝑒

𝑒

 (19) 

 

𝐸(𝒙) = 𝐸𝑚𝑖𝑛 + 𝒙
𝑝𝐸Δ𝐸 

𝜕𝐸(𝒙)

𝜕𝒙
= 𝑝𝐸𝒙

𝑝𝐸−1Δ𝐸 
(20) 

 

𝜅(𝒙) = 𝜅𝑚𝑖𝑛 + 𝒙
𝑝𝜅Δ𝜅 

𝜕𝜅(𝒙)

𝜕𝒙
= 𝑝𝜅𝒙

𝑝𝜅−1Δ𝜅 
(21) 

 

𝑲𝑡ℎ =∑ 𝜅(𝑥𝑒)𝑲𝑡ℎ
0

𝑁𝑒

𝑒
 

𝑲 =∑ 𝐸(𝑥𝑒)𝑲
0

𝑁𝑒

𝑒
 

(22) 



 

8 

where 𝑲𝑡ℎ
0  and 𝑲0 are the constant element (thermal) stiffness matrices, independent of the design variables 𝒙. 

Apart from the coefficient matrices, the material properties 𝐸(𝒙) and 𝛼(𝒙) also appear in the definition of the 

thermo-mechanical load vector in Eq. (13). As both properties can be considered density-dependent, they are 

combined into a single thermal stress coefficient (TSC), denoted 𝛽(𝒙) in Eq. (23). This parameter was introduced 

by Gao and Zhang (2010), assuming the same Poisson ratio for each material phase (Gao et al., 2016). 

where 𝑓𝛽(𝒙) is the coefficient that is dependent on the design variables 𝒙.  

The TSC is penalized similar to 𝐸 and 𝜅, using a separate penalization factor 𝑝𝛽. For example, the coefficient 

𝑓𝛽(𝒙) is expressed for the SIMP method in Eq. (24).  

As a result, the element thermo-mechanical load vector 𝑭𝑡ℎ
𝑒  is rewritten to include the TSC in Eq. (25) as a 1 × 8 

vector, as it will be used further in the sensitivity analysis (see Section 2.2.3). 

where 𝑓𝑡ℎ,𝑖 represents the nodal forces for each mechanical DoF (with 𝑖 = 1,… ,8) in element 𝑒 according to Figure 

2 and 𝑰𝑡𝑚
𝑒 = [−1 −1 1 −1 1 1 −1 1]. 

 

Figure 2: Node order, thermal and mechanical DoFs 

The temperature difference ∆𝑇 in Eq. (25) is implicitly dependent on the relative element density 𝑥𝑒 in case the 

thermal finite element analysis (FEA) is required to calculate a non-uniform temperature field 𝑻(𝒙), as 𝑇𝑒 ≡

𝑇𝑒(𝑻(𝒙)). This is straightforward, as the temperature field 𝑻 is dependent on the material distribution and the 

associated thermal properties of the elements. 

By further analyzing Eq. (25), the equivalent nodal forces due to thermal expansion (corresponding to the node 

numbering in Figure 2) are dependent on the dimensions of the elements, apart from the (thermo-)mechanical 

properties. As a result, depending on the sign of the temperature difference ∆𝑇, an element would either contract 

or expand, assuming 𝛼 > 0 for typical construction materials (see Figure 3). 

 𝛽(𝒙) = 𝐸(𝒙)𝛼(𝒙) = 𝐸0𝛼𝑓𝛽(𝒙) (23) 

 𝑓𝛽(𝒙) =
𝐸𝑚𝑖𝑛
𝐸0

+ 𝒙𝑝𝛽 (1 −
𝐸𝑚𝑖𝑛
𝐸0

) (24) 

 𝑭𝑡ℎ
𝑒 = [𝑓𝑡ℎ,1 ⋯ 𝑓𝑡ℎ,8] =

𝛽(𝑥𝑒)∆𝑇𝑧𝑡

2(1 − 𝜈)
𝑰𝑡𝑚
𝑒  (25) 
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Figure 3: Equivalent nodal forces for thermal expansion: a) contraction and b) expansion 

2.2.3 Sensitivity analysis 

In order to use a gradient optimizer such as the MMA algorithm employed in this paper, the sensitivities for the 

compliance objective and volume constraint with respect to the design variables need to be determined.  

The sensitivity analysis for the volume constraint 𝑉 is straightforward. The derivative with respect to the 𝒙 is 

calculated in Eq. (26) based on Eqs. (17) and (18). 

The sensitivity analysis for the compliance objective is more complicated due to the design-dependency and 

temperature-dependency of the thermo-mechanical load vector. Hence, the nested formulation of the objective 

function 𝑐 is given by Eq. (27). 

where the compliance 𝑐 is dependent on the design variables 𝒙 and the state variables 𝑼(𝒙) and 𝑻(𝒙) from the 

mechanical and thermal state equations in Eq. (17) respectively. 

In this paper, the analytical adjoint method is employed to carry out the sensitivity analysis (Allaire, 2015; 

Tortorelli & Michaleris, 1994; Zheng et al., 2009). In order to obtain the corresponding sensitivities in a 

computationally efficient manner, an adjoint system is solved instead of calculating the implicit derivatives of the 

state variables 𝑻 and 𝑼 directly with respect to the design variables. Therefore, an augmented objective function 𝑐̂ 

is first constructed in Eq. (28). 

where 𝝀 and 𝝁 are Lagrange multipliers or adjoint variables and 𝑹𝑡ℎ and 𝑹𝑚 are the residuals for the thermal and 

mechanical state equations respectively, as expressed in Eq. (29). Note that under the equality constraints in Eq. 

(17), governed by the thermal and mechanical state equations, the residuals are both equal to zero, henceforth 𝑐̂ ≡

𝑐. 

 
𝑑𝑉

𝑑𝒙
=
𝑑𝑉(𝒙)

𝑑𝒙
=
𝑑

𝑑𝒙
(∑𝑥𝑖𝑉𝑒

𝑁𝑒

𝑖=1

) = 𝑉𝑒  (26) 

 𝑐(𝒙, 𝑻(𝒙), 𝑼(𝒙)) = 𝑭𝑇(𝒙, 𝑻(𝒙))𝑼(𝒙) (27) 

 𝑐̂ = 𝑐 + 𝝀𝑇(𝑹𝑚) + 𝝁
𝑇(𝑹𝑡ℎ) (28) 

 
𝑹𝑡ℎ ≡ 𝑲𝑡ℎ(𝒙)𝑻(𝒙) − 𝑸(𝒙) = 0 

𝑹𝑚 ≡ 𝑲(𝒙)𝑼(𝒙) − 𝑭(𝒙, 𝑻(𝒙)) = 0 
(29) 
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According to Eq. (12), 𝑭 is comprised of the mechanical and thermo-mechanical load vector, 𝑭𝑚 and 𝑭𝑡ℎ 

respectively, of which the former is not dependent on the design or state variables. The nested formulation for 𝑭 

is expressed in Eq. (30). 

The vectors and matrices will further be written in an implicit form without explicitly mentioning the dependencies 

of the design and state variables. 

The total derivative of augmented objective function 𝑐̂ with respect to 𝒙 is determined in Eq. (31). 

where the terms containing the residuals are eliminated due to Eq. (29). 

The total derivatives of the three terms in Eq. (31) are determined in Eq. (32) by applying the chain rule for 

multivariable differentiation with respect to the design and state variables 𝒙, 𝑼 and 𝑻. 

The derivatives determined in Eq. (32) are substituted into Eq. (31) and further rearranged and expressed in terms 

of explicit derivatives (in square brackets) and the implicit derivatives of the state variables 𝑑𝑼/𝑑𝒙 and 𝑑𝑻/𝑑𝒙 in 

Eq. (33). 

In order to avoid the computationally expensive calculation of the implicit derivatives, the corresponding terms 

can be eliminated in case the adjoint variables are solutions to the adjoint systems defined in Eq. (34).  

The solutions to the adjoint systems are provided in Eq. (35). Note that the first adjoint system of equations is self-

adjoint as 𝝀 = −𝑼, which is already obtained by the mechanical FEA. 

where 𝑸𝑎𝑑𝑗  represents a fictitious heat load vector for the adjoint problem. 

 𝑭(𝒙, 𝑻(𝒙)) = 𝑭𝑚 + 𝑭𝑡ℎ(𝒙, 𝑻(𝒙)) (30) 

 
𝑑𝑐̂

𝑑𝒙
=
𝑑𝑐

𝑑𝒙
+
𝑑𝝀𝑇

𝑑𝒙
𝑹𝑚 + 𝝀

𝑇
𝑑𝑹𝑚
𝑑𝒙

+
𝑑𝝁𝑇

𝑑𝒙
𝑹𝑡ℎ + 𝝁

𝑇
𝑑𝑹𝑡ℎ
𝑑𝒙

=
𝑑𝑐

𝑑𝒙
+ 𝝀𝑇

𝑑𝑹𝑚
𝑑𝒙

+ 𝝁𝑇
𝑑𝑹𝑡ℎ
𝑑𝒙

 (31) 

 

{
  
 

  
 

𝑑𝑐

𝑑𝒙
=
𝜕𝑐

𝜕𝒙
+
𝜕𝑐

𝜕𝑼

𝑑𝑼

𝑑𝒙
+
𝜕𝑐

𝜕𝑻

𝑑𝑻

𝑑𝒙
= (

𝜕𝑭𝑇

𝜕𝒙
𝑼) + 𝑭𝑇

𝑑𝑼

𝑑𝒙
+
𝜕𝑭𝑇

𝜕𝑻
𝑼
𝑑𝑻

𝑑𝒙

𝑑𝑹𝑚
𝑑𝒙

=
𝜕𝑹𝑚
𝜕𝒙

+
𝜕𝑹𝑚
𝜕𝑼

𝑑𝑼

𝑑𝒙
+
𝜕𝑹𝑚
𝜕𝑻

𝑑𝑻

𝑑𝒙
= (

𝜕𝑲

𝜕𝒙
𝑼 −

𝜕𝑭

𝜕𝒙
) + 𝑲

𝑑𝑼

𝑑𝒙
−
𝜕𝑭

𝜕𝑻

𝑑𝑻

𝑑𝒙
𝑑𝑹𝑡ℎ
𝑑𝒙

=
𝜕𝑹𝑡ℎ
𝜕𝒙

+
𝜕𝑹𝑡ℎ
𝜕𝑻

𝑑𝑻

𝑑𝒙
= (

𝜕𝑲𝑡ℎ

𝜕𝒙
𝑻 −

𝜕𝑸

𝜕𝒙
) + 𝑲𝑡ℎ

𝑑𝑻

𝑑𝒙

 (32) 

 

𝑑𝑐̂

𝑑𝒙
= [

𝜕𝑭𝑇

𝜕𝒙
𝑼 + 𝝀𝑇

𝜕𝑲

𝜕𝒙
𝑼 − 𝝀𝑇

𝜕𝑭

𝜕𝒙
+ 𝝁𝑇

𝜕𝑲𝑡ℎ

𝜕𝒙
𝑻 − 𝝁

𝜕𝑸

𝜕𝒙
] + (𝑭𝑇 + 𝝀𝑇𝑲)

𝑑𝑼

𝑑𝒙

+ (
𝜕𝑭𝑇

𝜕𝑻
𝑼 − 𝝀𝑇

𝜕𝑭

𝜕𝑻
+ 𝝁𝑇𝑲𝑡ℎ)

𝑑𝑻

𝑑𝒙
 

(33) 

 {
𝑭𝑇 + 𝝀𝑇𝑲 = 0

𝜕𝑭𝑇

𝜕𝑻
𝑼 − 𝝀𝑇

𝜕𝑭

𝜕𝑻
+ 𝝁𝑇𝑲𝑡ℎ = 0

  (34) 

 {
𝝀 = −𝑲−1𝑭 = −𝑼

𝝁 = 𝑲𝑡ℎ
−1 (−2𝑼𝑇

𝜕𝑭

𝜕𝑻
) = 𝑲𝑡ℎ

−1𝑸𝑎𝑑𝑗
  (35) 
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By eliminating the implicit terms in Eq. (33), the final expression for the sensitivities is obtained in Eq. (36). 

Further derivation with respect to the filtered densities (due to the density filtering) is adapted from (Andreassen 

et al., 2011). 

This is further simplified to Eq. (37) (independently reported by Van Den Hende & Van Paepegem (2021)) by 

substituting the adjoint variable 𝝀 from Eq. (35). Herein, it assumed that 𝜕𝑸 𝜕𝒙⁄ = 0 since the heat loads are 

considered to be independent of 𝒙. 

where adjoint variable 𝝁 is calculated separately according to Eq. (35).  

As such one additional FEA needs to be carried out to calculate the sensitivities. This results in a total of three 

linear systems to be solved per iteration for a TO procedure considering thermo-mechanical loading due to SHC. 

The first term in Eq. (37) contains the derivative of the stiffness matrix 𝑲, which is calculated in Eq. (38), as only 

the Young’s modulus is a function of 𝑥𝑒. 

where 𝜕𝐸(𝑥𝑒) 𝜕𝑥𝑒⁄  is calculated according to Eq. (20). 

Similarly, the derivative of the thermal stiffness matrix 𝑲𝑡ℎ is provided in Eq. (39) for the third term in Eq. (37). 

where 𝜕𝜅(𝑥𝑒) 𝜕𝑥𝑒⁄  is calculated according to Eq. (21). 

Furthermore, the derivative of the global load vector 𝑭 with respect to 𝒙 is expressed in Eq. (40), as it appears in 

the second term of Eq. (37). 

The mechanical load vector 𝑭𝑚 containing the externally applied forces is fixed and not dependent on the design 

variables, such that its derivative with respect to 𝒙 is zero. However, the thermo-mechanical load vector 𝑭𝑡ℎ is 

design-dependent, both explicitly and implicitly in terms of 𝛽(𝒙) and 𝑇(𝒙) respectively. Moreover, if the element 

densities change during the optimization, the corresponding temperature field will be influenced accordingly. As 

a result, the derivative of the thermo-mechanical load vector is assumed to be nonzero. 

Subsequently, the derivation of the thermo-mechanical load vector 𝑭𝑡ℎ with respect to 𝒙 is carried out in Eq. (41), 

taking into account Eq. (25). 

 
𝑑𝑐

𝑑𝒙
≡
𝑑𝑐̂

𝑑𝒙
=
𝜕𝑭𝑇

𝜕𝒙
𝑼 + 𝝀𝑇 (

𝜕𝑲

𝜕𝒙
𝑼 −

𝜕𝑭

𝜕𝒙
) + 𝝁𝑇 (

𝜕𝑲𝑡ℎ

𝜕𝒙
𝑻 −

𝜕𝑸

𝜕𝒙
) (36) 

 
𝑑𝑐

𝑑𝒙
= −𝑼𝑇

𝜕𝑲

𝜕𝒙
𝑼 + 2𝑼𝑇

𝜕𝑭

𝜕𝒙
+ 𝝁𝑇

𝜕𝑲𝑡ℎ

𝜕𝒙
𝑻 (37) 

 
𝜕𝑲

𝜕𝒙
=∑

𝜕𝑲𝑒

𝜕𝑥𝑒

𝑁𝑒

𝑒

=∑(
𝜕𝐸(𝑥𝑒)

𝜕𝑥𝑒
𝑲0)

𝑁𝑒

𝑒

 (38) 

 
𝜕𝑲𝑡ℎ

𝜕𝒙
=∑

𝜕𝑲𝑡ℎ
𝑒

𝜕𝑥𝑒

𝑁𝑒

𝑒

=∑(
𝜕𝜅(𝑥𝑒)

𝜕𝑥𝑒
𝑲𝑡ℎ
0 )

𝑁𝑒

𝑒

 (39) 

 𝜕𝑭

𝜕𝒙
=
𝜕 (𝑭𝑚 + 𝑭𝑡ℎ(𝒙, 𝑻(𝒙)))

𝜕𝒙
=
𝜕𝑭𝑡ℎ
𝜕𝒙

≠ 0 (40) 
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The derivative of the TSC, i.e. 𝜕𝛽(𝒙) 𝜕𝒙⁄ , is easily determined from its definition in Eq. (23). Note that Eq. (41) 

determines the partial derivative with respect to 𝒙 and only 𝛽(𝒙) is an explicit function of 𝒙.  

Finally, in order to calculate the adjoint variable 𝝁, the derivative of 𝑭 with respect to the temperature field 𝑻 needs 

to be determined. In essence, the matrix 𝜕𝑭/𝜕𝑻 contains the derivatives of each nodal force (i.e. for each 

mechanical DoF) with respect to each nodal temperature in 𝑻, as expressed in Eq. (42), assuming only the thermo-

mechanical contribution 𝑭𝑡ℎ is dependent on the nodal temperatures. In order to efficiently determine 𝜕𝑭/𝜕𝑻, the 

thermo-mechanical load vector 𝑭𝑡ℎ is reformulated in terms of the nodal temperatures (see Section 3.3). 

where 𝑁 and 2𝑁 are the numbers of DoFs for the thermal and mechanical governing problems, e.g. 12 and 24 in 

Figure 2, respectively. 

3 MATLAB implementation 

The proposed TO procedure involving thermo-mechanical loading is developed in MATLAB. In this section some 

insights are provided regarding its implementation based on the popular, educational 88-line MATLAB code by 

Andreassen et al. (2011). Many of the programming aspects are specifically tailored to the format of this code. 

However, the way the matrices are transformed into proper code is useful for any platform or programming 

language. The focus of this section is mainly on the additional lines of code required to extend the existing 88-line 

code to include thermo-mechanical loading. The developed MATLAB code is written concisely into 138 lines, 

and it is made available in Appendix 2 with references to specific line numbers in the following subsections. 

Note that the code is developed with a notion of dimensionality in view of modelling full-scale structures subjected 

to realistic (thermal) loads. The input values for the material properties and the dimensions implicitly assume the 

use of SI(mm) units. In addition, the thickness parameter 𝑡 is included in the coefficient matrices and the thermo-

mechanical load vector as it influences the optimization in case of thermo-mechanical loading (see Section 4.3.3). 

3.1 Thermal analysis 

The implementation of the thermal FEA is an adaptation on the code provided by Vantyghem et al. (2019), where 

the thermal FEA was employed without thermo-mechanical coupling. An extra set of material parameters is 

introduced for the thermal conductivity in line 10. In lines 14-22 the preparation of the thermal FEA is carried out, 

providing the necessary arrays of indices and pre-allocation of vectors and matrices for the assembly of the thermal 

stiffness matrix. In this study, bilinear square heat transfer elements with 4 nodes and 1 DoF per node (i.e. nodal 

temperature) are used. In lines 24-32 the boundary conditions and node sets are initialized, and the heat load vector 

is pre-allocated. Furthermore, in lines 86-87 the thermal conductivity and its derivative are expressed as density 

functions and in lines 91-92 the thermal stiffness matrix is assembled. 

The implementation of the thermal FEA is analogous to that of the static mechanical analysis in the original 88-

line MATLAB code (Andreassen et al., 2011). However, depending on the type of boundary conditions, the linear 

system is solved differently. In the presented case study (see Section 4) Dirichlet conditions are used for the thermal 

loading. Therefore, the expression for the thermal FEA from Eq. (3) is explicitly written (and rearranged) in terms 

of the known (constrained) and unknown (free) DoFs, given by Eq. (43). 

 
𝜕𝑭𝑡ℎ
𝜕𝒙

=
𝜕

𝜕𝒙
(∑ 𝑭𝑡ℎ

𝑒
𝑁𝑒

𝑒
) =∑ (

𝜕𝛽(𝒙)

𝜕𝒙

∆𝑇(𝑻)𝑧𝑡

2(1 − 𝜈)
𝑰𝑡𝑚
𝑒 )

𝑁𝑒

𝑒
 (41) 

 
𝜕𝑭

𝜕𝑻
=
𝜕𝑭𝑡ℎ
𝜕𝑻

=
𝜕(𝐹𝑡ℎ

1 , … , 𝐹𝑡ℎ
2𝑁)

𝜕(𝑇1, … , 𝑇𝑁)
 (42) 
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where superscripts 𝑐 and 𝑓 represent the indices of the constrained and free DoFs respectively. Double superscripts 

refer to the corresponding rows and columns respectively. 

From Eq. (43), the expression for the unknown temperatures 𝑻𝑓 is expressed in Eq. (44). 

which is expressed in line 93 using the \−operator for efficient use of Cholesky decomposition when considering 

symmetric matrices. 

3.2 Thermo-mechanical load vector 

In order to efficiently calculate the global thermo-mechanical load vector 𝑭𝑡ℎ, two new variables 𝑻𝑇 and 𝑻𝑇𝑀 are 

introduced, which represent the element-temperature matrix and thermo-mechanical transformation matrix 

respectively. The global thermo-mechanical load vector can then be expressed as a matrix multiplication in Eq. 

(45) (line 96).  

where 𝑭̂𝑡ℎ
𝑒  is expressed in Eq. (46), ⊙ is the element-wise multiplication operator and ∆𝑻 is the elemental 

temperature difference vector expressed in Eq. (47) (line 95). 

The 𝑁𝑒 × 𝑁 matrix 𝑻𝑇 (line 51) transforms the global (nodal) temperature difference vector (𝑻 − 𝑻𝑟𝑒𝑓) into the 

elemental temperature vector by left multiplication, which results in the arithmetic average temperature per 

element. Each row of 𝑻𝑇 contains the nodal temperature contributions to the corresponding element temperature, 

or in other words, each rows consists of zeros except for the 4 thermal DoFs associated with the element nodes, 

which have a value of 1/4. 

Similarly, the 𝑁𝑒 × 2𝑁 thermo-mechanical transformation matrix 𝑻𝑇𝑀 (line 52) transforms the elemental 

contributions to the thermo-mechanical loading due to thermal expansion into an equivalent nodal force vector. 

Each row of 𝑻𝑇𝑀 contains the elemental contribution to the corresponding nodal forces, or in other words, each 

rows consists of zeros except for the 8 mechanical DoFs associated with the element nodes, which have a value of 

(-)1, depending on the relative position of the DoF to the element centroid (see Figure 3). The sign of the nodal 

forces is already captured by the vector 𝑰𝑡𝑚
𝑒  (line 50), as discussed in Section 2.2.2. As a result, 𝑭𝑡ℎ contains the 

corresponding (nodal) force for each mechanical DoF, in which all contributions of neighboring elements are 

included in the magnitude and direction of the forces. 

 [
𝑲𝑡ℎ
𝑐𝑐 𝑲𝑡ℎ

𝑐𝑓

𝑲𝑡ℎ
𝑓𝑐

𝑲𝑡ℎ
𝑓𝑓
] [
𝑻𝑐

𝑻𝑓
] = [

𝑸𝑐

𝑸𝑓
] (43) 

 𝑻𝑓 = 𝑲𝑡ℎ
𝑓𝑓−1

(𝑸𝑓 − 𝑲𝑡ℎ
𝑓𝑐
𝑻𝑐) (44) 

 𝑭𝑡ℎ = 𝑻𝑇𝑀
𝑇 (𝑭̂𝑡ℎ

𝑒 ⊙∆𝑻) (45) 

 𝑭̂𝑡ℎ
𝑒 =

𝛽(𝒙)𝑡𝑧

2(1 − 𝜈)
 (46) 

 ∆𝑻 = 𝑻𝑇(𝑻 − 𝑻𝑟𝑒𝑓) (47) 
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3.3 Sensitivity analysis 

Although the volume 𝑉(𝒙) and its derivative are expressed in Eq. (18) and Eq. (26) considering the element edge 

length 𝑧 and thickness 𝑡, the implementation in MATLAB is based on a unit element and thickness. This 

simplification is allowed as the volume constraint can be scaled by 𝑉0 without altering the result, which is preferred 

in combination with MMA. Therefore, the volume and its derivative are reformulated in Eq. (48) and likewise 

implemented in lines 103-104. 

In Section 2.2.3, the analytical expression for the sensitivity of the compliance objective with respect to the design 

variables is derived. The first term of Eq. (37) is identical to the sensitivity of the compliance in case only 

mechanical loading is considered and its implementation in MATLAB (lines 105-107) is similar to (Andreassen 

et al., 2011).  

For the second term of Eq. (37), the displacement field 𝑼 is rearranged, such that each row contains the DoFs 

corresponding with each element, and subsequently right multiplied with the vector 𝑰𝑡𝑚
𝑒 . Then the matrices are 

multiplied element-wise to obtain the second contribution to the sensitivities for each design variable (line 108). 

An abstraction of the expression is provided in Eq. (49). 

The third term of Eq. (37) contains the adjoint variable 𝝁 for which the calculation of 𝜕𝑭/𝜕𝑻 is required. This 

2𝑁 × 𝑁 matrix is easily expressed by employing the transformation matrices 𝑻𝑇 and 𝑻𝑇𝑀 in Eq. (50). Note that 

the order of operations depends on the dimensions of the resulting matrices and in turn influences the efficiency 

of the calculation. 

where implicitly substituted 𝜕(∆𝑻) 𝜕𝑻⁄ = 𝑻𝑇 based on Eq. (47), as only the temperature difference vector is 

dependent on 𝑻 in Eq. (25). 

The fictitious heat load vector 𝑸𝑎𝑑𝑗  from Eq. (35) is calculated in line 109 and the adjoint variable 𝝁 is determined 

in line 110. Subsequently, the third term in the sensitivities (line 111) is determined in a similar manner as the first 

term.  

In line 112 all three contributions are cumulated to obtain the compliance sensitivities. The compliance objective 

and the corresponding sensitivities are rescaled in lines 114-115 for the use of MMA (lines 120-129) as discussed 

in the next section. 

 

𝑉(𝒙) =
1

𝑁𝑒
∑𝑥𝑖

𝑁𝑒

𝑖=1

 

𝑑𝑉

𝑑𝒙
=
1

𝑁𝑒
 

(48) 

 2𝑼𝑇
𝜕𝑭

𝜕𝒙
=∑ 2𝑼𝑒

𝑇
𝜕𝑭𝑒

𝜕𝒙

𝑁𝑒

𝑒
=∑ 2

𝐸0𝛼𝑡𝑧

2(1 − 𝜈)
(𝑼𝑒

𝑇𝑰𝑡𝑚
𝑒 𝑇

) ⊙
𝜕𝑓𝛽(𝑥𝑒)

𝜕𝑥𝑒
⊙∆𝑇

𝑁𝑒

𝑒
 (49) 

 
𝜕𝑭

𝜕𝑻
= (𝑻𝑇𝑀

𝑇 ⊙ 𝑭̂𝑡ℎ
𝑒 𝑇
) 𝑻𝑇 (50) 
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4 Numerical example 

In this section a numerical example is provided in order to demonstrate the proposed procedure for thermo-elastic 

TO considering steady-state heat conduction. Subsequently, the effect of the sensitivity analysis, thermo-

mechanical load ratio, the volume constraint and material interpolation on the optimized solution are investigated. 

4.1 Problem formulation 

A simply supported Messerschmitt-Bölkow-Blohm (MBB) beam is subjected to a downwards point load 𝐹𝑚 in the 

middle of the top edge and a set of fixed thermal Dirichlet conditions, as illustrated in Figure 4. The top edge is 

fixed at an ambient temperature 𝑇𝑎 = 0℃ and the bottom edge is exposed to an elevated temperature 𝑇𝑓 = 800℃ 

by default, imposing a large thermal gradient. The fixed temperatures are imposed on the corresponding thermal 

DoFs that coincide with both edges. The total mechanical load 𝐹𝑚 is equal to 10 𝑘𝑁. Here, the MBB beam is 

modelled symmetrically to save on computation time, so only half of the total mechanical load is applied. The half 

beam structure has a length 𝐿 = 1200 𝑚𝑚, a height ℎ = 400 𝑚𝑚, a thickness 𝑡 = 10 𝑚𝑚 and the design domain 

is discretized into a mesh of 120 × 40 square elements with an edge length of 𝑧 = 10 𝑚𝑚 by default. The 

dimensions, loads and BCs are fixed to the default values in all optimizations unless specified otherwise. 

 

Figure 4: MBB beam model 

The two-phase material resembles concrete in the solid phase (𝑥𝑒 = 1) and a fictitious, mechanically weak, 

thermally insulating material (e.g. mineral wool) in the void phase (𝑥𝑒 = 0). The material properties for both 

phases are listed in Table 1, where the Poisson’s ratio and coefficient of thermal expansion are assumed constant. 

Table 1: Material properties concrete – insulation 

𝐸 − 𝐸𝑚𝑖𝑛  [𝑀𝑃𝑎] 𝜈 [-] 𝛼 [1/𝐾] 𝜅 − 𝜅𝑚𝑖𝑛  [𝑊/𝑚𝐾] 

30e3 − 30e-6 0.3 12e-6 1 − 0.03 

As stated previously in Section 2.2.1, the developed TO procedure is employed to minimize structural compliance 

with a volume constraint. A prescribed volume fraction 𝜑 = 40% is selected for the default volume constraint 

value, and each optimization is started with an initial uniform distribution 𝒙0 = 0.4. Further, stopping criteria are 

used to terminate the optimization process and these are defined in Eq. (51). The optimized result is considered to 

be converged when the maximum change of every design variable is below 0.01 (Andreassen et al., 2011). In 

addition, a fixed maximum of 1000 iterations (𝑁𝑖𝑡𝑒𝑟) is added to limit the runtime for slow or not converging 

solutions. 

 Stopping criteria ≔ {
max (abs(𝑥𝑒

𝑖−1 − 𝑥𝑒
𝑖 )) < 0.01    ∀ 𝑥𝑒 ∈ 𝒙 converged

𝑁𝑖𝑡𝑒𝑟 = 1000 not converged
 (51) 



 

16 

The SIMP interpolation scheme is used with a penalization factor 𝑝 = 3 for all material properties (𝐸, 𝜅, 𝛽). 

Furthermore, density filtering is used with a filter radius 𝑟𝑚𝑖𝑛 = 3. The sensitivities obtained in Section 2.2.3 are 

modified in order to take into account the filtering (Andreassen et al., 2011). 

In order to avoid convergence issues, the objective and corresponding sensitivities are divided by a scale factor 

𝛾𝑐 = 𝑐0/𝑐
∗, to limit the range of values to the acceptable bounds of [1,100] as stated by Svanberg (2007). The 

scale factor is determined based on the compliance value in the first iteration (denoted 𝑐0) and a scaled objective 

value 𝑐∗ = 10, which is arbitrarily chosen within the aforementioned range. Throughout the optimization process, 

the scale factor remains constant. This ensures that the values for the objective and sensitivities are properly scaled 

regardless of the load level. 

The optimization procedure with the default parameter values converged after 299 iterations and the optimized 

result is illustrated in Figure 5 with indication of both material phases. At the bottom, a large zone of insulation 

material appears, limiting the propagation of thermal energy into the structure on the top, which resembles a 

cellular beam. At the location of the support a thin strut from intermediate material appears, which is merely a 

result of the localized support conditions. The connection between the upper structure and the support at the right 

side of the domain remains thin due to the assumption of linear elasticity and the thermal loading at the location 

of the support. 

 

Figure 5: Optimized result for default parameter values: 𝑇𝑓 = 800℃, 𝐹𝑚 = 10𝑘𝑁, 𝑡 = 10𝑚𝑚 

4.2 Influence of sensitivity analysis 

In comparison with other approaches for the sensitivity analysis considering thermo-mechanical loading (Gao & 

Zhang, 2010; Gonçalves et al., 2022; Xia & Wang, 2008), in this paper the influence of the design variables on the 

thermal stiffness matrix and the temperature field is taken into account in the third term of Eq. (37). Since it is 

computationally expensive to compute the implicit derivative 𝑑𝑻/𝑑𝒙 (Zhu et al., 2019), often this term is 

neglected, i.e. 𝝁 = 𝟎 in Eq. (35). This results in only partial assessment of the sensitivities compared to the 

proposed sensitivities. Moreover, the sensitivity analysis in this study allows for a more efficient implementation, 

as the adjoint system 𝝁 (of size 𝑁) needs to be solved only once each iteration. The efficiency is increased by 

defining the transformation matrices 𝑻𝑇 and 𝑻𝑇𝑀 to speed up the calculation of the explicit derivative 𝜕𝑭/𝜕𝑻 in 

Eq. (50). A comparison of the optimized results for both approaches is made in Figure 6 for default parameter 

values and the corresponding compliance-volume plots are provided in Figure 7. 

 

(a) Proposed sensitivities (𝝁 ≠ 𝟎) 
 

(b) Partial sensitivities (𝝁 = 𝟎) 

Figure 6: Optimized results for different sensitivities 
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(a)  

 

(b)  

Figure 7: Normalized compliance and volume for (a) proposed sensitivity analysis, (b) partial sensitivity analysis 

The final compliance in case of the proposed sensitivity analysis is 122252.51 𝑁𝑚𝑚 after 299 iterations, whereas 

the optimized result using the partial sensitivities at iteration 1000, i.e. the solution did not converge, leads to a 

significantly larger compliance of 231320.81 𝑁𝑚𝑚. Moreover, the solution oscillates during the entire 

optimization process and the final volume is 0.3975, slightly below the imposed volume constraint. This 

observation is further confirmed by verification of the analytical partial sensitivities, as described in Appendix 1. 

The relative difference plots for different thermal gradients are provided in Figure 8. 

 
(a) 𝑇𝑓 = 10℃ 

 
(b) 𝑇𝑓 = 100℃ 

 
(c) 𝑇𝑓 = 800℃ 

Figure 8: Relative differences for the partial sensitivities and different thermal gradients 

For small thermal gradients, the contribution of the thermal load is negligible compared to the mechanical 

equivalent (see Section 4.3). Therefore, the sensitivity information in the third term in Eq. (37) is insignificant. 

However, in case of large thermal gradients, it is clear that the simplified approach with partial sensitivities does 
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not capture the sensitivity of the compliance properly, and leads to convergence issues and suboptimal results. 

Therefore it is advised to use the proposed sensitivity analysis when large thermal gradients are considered. 

4.3 Influence of thermo-mechanical load ratio 

Several studies have observed that the results of a TO procedure involving thermo-mechanical loads or thermo-

elastic structures are dependent on the ratio between the thermal and mechanical loading (Cho & Choi, 2005; 

Deaton & Grandhi, 2013). In this paper, the thermo-mechanical load ratio (TMLR) is defined as a measure that 

accounts for how much of the structural compliance is caused by either mechanical or thermal actions on the 

structure. The latter is mechanically imposed on the structure due to (internally) restrained thermal expansion 

through the thermo-mechanical load vector, as discussed in Section 2.1.3. In Eq. (52), the TMLR, denoted 

symbolically as 𝜂, is expressed as the ratio between the thermal contribution to the compliance objective 𝑐𝑡ℎ and 

the total thermo-mechanical compliance 𝑐𝑡𝑜𝑡 for a solid design (𝒙 = 1). 

where 𝑐𝑡ℎ = 𝑭𝑡ℎ
𝑇 𝑼 and 𝑐𝑡𝑜𝑡 = 𝑭

𝑇𝑼 with 𝑼 the global displacement vector resulting from the combined thermo-

mechanical action. Note that 𝑐𝑡𝑜𝑡 = 𝑐𝑚 + 𝑐𝑡ℎ is valid based on Eq. (12) and therefore, the TMLR can be expressed 

in terms of the mechanical contribution 𝑐𝑚 = 𝑭𝑚
𝑇 𝑼 as well.  

As a result, the TMLR quantitatively represents the relative contribution of the thermal loading to the total 

compliance objective with 0 ≤ 𝜂 ≤ 1. When 𝜂 = 0 the total compliance value is entirely caused by the mechanical 

loading, in case 𝜂 = 1 the thermal loading is dominant instead, and for intermediate values both the thermal and 

mechanical actions are responsible for a part of the global deformation. 

Note that the TMLR differs significantly depending on the material distribution, as indicated in Table 2 considering 

the default problem from Section 4.1, i.e. 𝐹𝑚 = 10𝑘𝑁 and 𝑇𝑓 = 800℃. In addition, the evolution of the TMLR 

and the volume during the optimization process is illustrated in Figure 9. The TMLR is calculated with Eq. (52) 

where 𝑐𝑡𝑜𝑡 is recalculated for each iteration based on the current material distribution to show the difference. The 

first value in the series is the TMLR for a solid design (𝒙 = 1) as a reference. 

Table 2: Comparison for compliance and TMLR for solid, initial and optimized material layout 

Material distribution 𝑐𝑡𝑜𝑡  [𝑁𝑚𝑚] 𝑐𝑡ℎ  [𝑁𝑚𝑚] 𝑐𝑚  [𝑁𝑚𝑚] 𝜂 [-] 

Solid (𝒙 = 1) 12800211.38 12712800.91 87410.47 0.9932 

Initial (𝒙 = 0.4) 1129267.35 885423.52 243843.83 0.7841 

Optimized (𝒙 = 𝒙𝑜𝑝𝑡) 122252.51 28016.71 94235.80 0.2292 

For a solid design (𝒙 = 1) the problem seems to be thermally dominant, as the thermal loading contributes for 

more than 99% to the structural compliance and the mechanical load is responsible for less than 1%. However, the 

TMLR changes drastically during the optimization, such that the mechanical load contributes for approximately 

77% of the total compliance of the optimized structure (𝒙 = 𝒙𝑜𝑝𝑡), suggesting a mechanically dominant loading. 

Moreover, for an initial design equal to the prescribed volume fraction, e.g. 𝒙 = 0.4, the thermo-mechanical 

response of the structure is already influenced by the design-dependent thermal conductivity (see Table 2). Since 

the optimization is used to reduce the amount of material in an otherwise solid structure, the TMLR is calculated 

for a solid design in the next sections. 

 𝜂 =
𝑐𝑡ℎ
𝑐𝑡𝑜𝑡

= 1 −
𝑐𝑚
𝑐𝑡𝑜𝑡

 (52) 
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Figure 9: Evolution of the TMLR during optimization with a detailed plot showing the first 20 iterations 

Generally, there are two strategies for investigating the effect of the TMLR: by changing either the variable thermal 

BCs/loading or the variable mechanical load. In the first strategy, the value of 𝑇𝑓 is changed in order to impose a 

different thermal gradient on the structure to be optimized for, while in the second strategy the mechanical load 

𝐹𝑚 is varied to change the TMLR. By increasing either type of loading, the TMLR changes from being 

mechanically dominant (𝜂 < 0.5) to thermally dominant (𝜂 > 0.5) and vice versa, with a balanced ratio at 𝜂 =

0.5. Even though the second strategy might cause an unrealistic response of the structure in case of high mechanical 

loads, i.e. excessive deformation beyond elastic or plastic limits, the effect of changing this parameter still provides 

valuable insight with regard to the TMLR. 

In addition to the above mentioned strategies, another way of indirectly influencing the TMLR is by changing the 

out-of-plane thickness 𝑡. This parameter appears in the definitions of the coefficient matrices 𝑲 and 𝑲𝑡ℎ and in 

the thermo-mechanical load vector 𝑭𝑡ℎ as well. The mechanical response of a structure is not influenced by a 

varying thickness in case of a constant thermal gradient; the deformation remains constant regardless of the out-

of-plane thickness. However, this is not the case when a mechanical load is considered as well. If the thickness 

increases, the stiffness increases as well and the structure will deform less when subjected to the same mechanical 

load. Therefore, considering a constant thermo-mechanical load, a thinner structure will be more mechanically 

dominant than a thicker structure. 

The results for a varying TMLR are generated for different sets of parameters in the previously mentioned 

strategies in the following sections. The definition of 𝜂 allows for the comparison of results for different load 

scenarios with similar TMLR values (see Section 4.3.4). The TMLR is calculated for each load case for a solid 

design (𝒙 = 1) for a proper evaluation of the thermal and mechanical contribution in a pre-optimized design. 

4.3.1 Thermal gradient 

In the first case, the thermal gradient is varied by changing the bottom surface temperature 𝑇𝑓, ranging from 0℃ 

to 800℃, with a constant mechanical load of 10𝑘𝑁. The results for different thermal load cases are presented in 

Figure 10, accompanied by their corresponding TMLR. 
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(a) 𝑇𝑓 = 0℃ , 𝜂 = 0.00 

 
(b) 𝑇𝑓 = 10℃ , 𝜂 = 0.20 

 
(c) 𝑇𝑓 = 25℃ , 𝜂 = 0.53 

 
(d) 𝑇𝑓 = 50℃ , 𝜂 = 0.78 

 
(e) 𝑇𝑓 = 100℃ , 𝜂 = 0.91 

 
(f) 𝑇𝑓 = 200℃ , 𝜂 = 0.96 

 
(g) 𝑇𝑓 = 400℃ , 𝜂 = 0.98 

 
(h) 𝑇𝑓 = 800℃ , 𝜂 = 0.99 

Figure 10: Optimized results for different thermal gradients 

In Figure 10, cases (a) and (b) show similarities with the optimized solution for the mechanically only loaded MBB 

beam, as the TMLR is quite low with 0 and 0.2 respectively. Further increasing the bottom surface temperature 

also increases the TMLR and the associated contribution of the thermal loads to the compliance. The truss-like 

structure gradually transforms into a cellular beam with a large insulation zone underneath.  

The compliance history is plotted in Figure 11. Herein, a more detailed plot indicates the fast convergence rate, as 

the final compliance value is practically attained after 100 iterations for most load cases. 

 

Figure 11: Normalized compliance evolution for different thermal gradients 
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4.3.2 Mechanical load 

In this section the thermal gradient remains constant with 𝑇𝑓 = 800℃ and the mechanical load 𝐹𝑚 is varied, 

ranging from 0𝑘𝑁 to 1000𝑘𝑁. The results for different mechanical load cases are presented in Figure 12, 

accompanied by their corresponding TMLR and final volume 𝑉𝑓. 

 

(a) 𝐹𝑚 = 0𝑘𝑁, 𝜂 = 1.0000, 𝑉𝑓 = 0.0814 

 

(b) 𝐹𝑚 = 1𝑘𝑁, 𝜂 = 0.9994, 𝑉𝑓 = 0.3744 

 

(c) 𝐹𝑚 = 2𝑘𝑁, 𝜂 = 0.9988, 𝑉𝑓 = 0.4 

 

(d) 𝐹𝑚 = 5𝑘𝑁, 𝜂 = 0.9968, 𝑉𝑓 = 0.4 

 

(e) 𝐹𝑚 = 10𝑘𝑁, 𝜂 = 0.9932, 𝑉𝑓 = 0.4 

 

(f) 𝐹𝑚 = 50𝑘𝑁, 𝜂 = 0.95, 𝑉𝑓 = 0.4 

 

(g) 𝐹𝑚 = 100𝑘𝑁, 𝜂 = 0.88, 𝑉𝑓 = 0.4 

 

(h) 𝐹𝑚 = 200𝑘𝑁, 𝜂 = 0.71, 𝑉𝑓 = 0.4 

 

(i) 𝐹𝑚 = 500𝑘𝑁, 𝜂 = 0.35, 𝑉𝑓 = 0.4 

 

(j) 𝐹𝑚 = 1000𝑘𝑁, 𝜂 = 0.15, 𝑉𝑓 = 0.4 

Figure 12: Optimized results for different mechanical loads 

Similar to the results of the varying thermal gradient, the optimized topology is significantly different for various 

mechanical loads and TMLR values. In absence of mechanical loads in case (a) or for very low values of 𝐹𝑚 in 

case (b), the final volume 𝑉𝑓 is lower than the prescribed volume fraction. Further increasing the mechanical load 

to case (c) and onwards, the volume constraint is active again (see Section 4.4). Between case (h) and case (i) the 

problem changes from thermally to mechanically dominant and resembles the solution for a purely mechanically 

loaded MBB beam. 

The compliance history is plotted in Figure 13. Herein, a more detailed plot indicates the fast convergence rate, as 

the final compliance value is again practically attained after 100 iterations for most mechanical load cases. 
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Figure 13: Normalized compliance evolution for different mechanical loads 

4.3.3 Out-of-plane thickness 

The third influential parameter for the TMLR is the out-of-plane thickness 𝑡, which is varied to 1 𝑚𝑚 and 

100 𝑚𝑚. The results are provided in Figure 14. 

 

(a) 𝑡 = 1 mm, 𝜂 = 0.9988 

 

(b) 𝑡 = 100mm, 𝜂 = 0.9994 

Figure 14: Optimized results for different out-of-plane thicknesses 

As a result, changing the thickness is inversely proportional to changing the total mechanical load. Moreover, the 

result in case (a) for one tenth of the default thickness (1 𝑚𝑚) is exactly the same as the result for a tenfold 

mechanical load (100 𝑘𝑁), considering a constant thermal load. 

A second indirect conclusion is the fact that the results considering a realistic thickness (for concrete structures) 

and realistic thermo-mechanical loading are prominently thermally dominant, assuming steady-state heat 

conduction. 

4.3.4 Comparison of the thermo-mechanical load ratio 

As mentioned previously, the quantitative definition of the TMLR in Eq. (52) allows for a comparison of 2 different 

thermo-mechanical load cases that share the same TMLR. As such, two load cases are compared in Figure 15. 
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(a) 𝑇𝑓 = 100℃, 𝐹𝑚 = 10𝑘𝑁, 𝑡 = 10𝑚𝑚, 𝜂 = 0.91 

 

(b) 𝑇𝑓 = 800℃, 𝐹𝑚 = 80𝑘𝑁, 𝑡 = 10𝑚𝑚, 𝜂 = 0.91 

Figure 15: Comparison optimized results for equal TMLR 

Unsurprisingly, as the TMLR is equal in both load cases, the optimized topology is exactly the same, despite the 

obvious difference in compliance value. Scaling the thermal and mechanical load equally, the TMLR remains 

constant. Similar results can obtained by changing the thickness according to Section 4.3.3. Evidently, this result 

is only true in case the material properties are independent of the temperature. 

4.4 Influence of volume constraint 

The results for the varying mechanical load already revealed that the volume constraint becomes inactive when 

the problem is thermally dominant. A similar observation was made by Gao and Zhang (2010). Therefore, in this 

section the effect of the volume constraint on the optimized results is briefly investigated. The volume fraction 𝜑 

is changed, ranging from 0.1 to 1, for the set of thermal gradients discussed in Section 4.3.1. The corresponding 

final volume fractions 𝑉𝑓 are reported in Figure 16 in function of the imposed volume constraint. 

 

(a) 

 

(b) 

Figure 16: Final volume in function of volume constraint for (a) different thermal gradients and (b) low mechanical loads 

The results in Figure 16a show that the inactivity of the volume constraint is dependent on the thermal gradient, 

and more specifically on the TMLR. For an increasing thermal gradient, the problem becomes thermally more 

dominant and the final volume of the optimized structure is restricted to a smaller fraction of the initial design 

domain than prescribed. 

Similarly, the volume constraint becomes inactive for very low mechanical load levels, as illustrated in Figure 

16b. Intuitively, in absence of a mechanical load (𝐹𝑚 = 0𝑘𝑁) a void structure would be expected in order to 

minimize the thermally induced loads and consequently reduce compliance to a global minimum. The remaining 

solid and intermediate density elements on top of the design domain (e.g. in Figure 12a) can be attributed to the 

use of the MMA solver and the fact that the design space is nonconvex, which unavoidably may lead to local (and 

potentially suboptimal) solutions. 
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Figure 17: Normalized compliance evolution for different volume constraints 

Apart from the difference in TMLR, the volume constraint itself affects the optimization, as illustrated in Figure 

17. For low volume constraints (below 0.4 in this case), the optimization process is more often faced with a slower 

convergence rate. Nevertheless, even for cases with slow convergence (e.g. 𝑉 = 0.2), the compliance appears to 

monotonously decrease without oscillations as the optimization process continues.  

Potential remedies to overcome convergence issues and local suboptimal solutions are the use of more advanced 

solvers such as GCMMA or GBMMA and modified interpolation schemes, as discussed by Bruyneel & Duysinx 

(2005). Additionally, other stopping or convergence criteria can be considered as well.  

4.5 Influence of material interpolation 

In this section the influence of the material interpolation is investigated, where the penalization factors for the 

thermal conductivity are varied. Although several studies have used the RAMP interpolation scheme (Deaton & 

Grandhi, 2013; Gao & Zhang, 2010; Zhu et al., 2019) before to improve convergence, in this study the SIMP 

method is employed as it did not lead to the reported numerical issues. The aim is to provide a preliminary insight 

into how the material interpolation scheme influences the results; it is not an extensive parameter study on the 

penalization factors. The different penalization schemes are listed in Table 3 and illustrated in Figure 18. 

Table 3: Different material penalization schemes 

Identifier 𝐸(𝑥𝑒) 𝜅(𝑥𝑒) 𝛽(𝑥𝑒) 

SIMP 3-3-3 𝑝𝐸 = 3 𝑝𝜅 = 3 𝑝𝛽 = 3 

SIMP 3-1-3 𝑝𝐸 = 3 𝑝𝜅 = 1 𝑝𝛽 = 3 

SIMP 3-0.5-3 𝑝𝐸 = 3 𝑝𝜅 = 0.5 𝑝𝛽 = 3 

As indicated in Figure 18, for a larger penalization factor, the elements with the corresponding penalized values 

will appear to be a much better thermal insulator compared to a less penalized value. The penalization of the 

thermal conductivity is changed to 1 and 0.5 to deliberately influence result. For example, with a penalization 

factor below 1, the intermediate elements will be more conductive relative to their density and seem less efficient 

from a thermal perspective. 



 

25 

 

Figure 18: Thermal conductivity penalization schemes 

The optimized results for the different penalization schemes are provided in Figure 19. By changing the 

penalization of the thermal conductivity, the overall shape of the optimized result is similar to the default 

penalization scheme. However, more intermediate material remains in the optimized result, which contradicts the 

thermal inefficiency of the intermediate material as stated above. 

 

(a) 𝑇𝑓 = 800℃, 𝐹𝑚 = 10𝑘𝑁, SIMP 3-3-3, 𝑐 = 122252.51 𝑁𝑚𝑚 

 

(b) 𝑇𝑓 = 800℃, 𝐹𝑚 = 10𝑘𝑁, SIMP 3-1-3, 𝑐 = 115711.74 𝑁𝑚𝑚 

 

(c) 𝑇𝑓 = 800℃, 𝐹𝑚 = 10𝑘𝑁, SIMP 3-0.5-3, 𝑐 = 112348.65 𝑁𝑚𝑚 

Figure 19: Optimized results for different penalization schemes 

4.6 Performance  

One of the objectives of this study is the development of a compact and efficient MATLAB code for topology 

optimization with thermo-mechanical loads, inspired by the popular 88-line code by Andreassen et al. (2011). 

Therefore, a brief section is dedicated to the performance. 

In order to quantitatively describe the efficiency of the code, 3 different meshes are applied to the numerical 

problem with default parameters, as discussed in Section 4.1. The results were generated on a Dell Precision 3530 

laptop with an Intel® Core™ i7-8850H processor with 16GB memory running MATLAB R2021b on Windows 

10 Enterprise. 
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The optimization is carried out for a mesh of 120 × 40, 300 × 100 and 600 × 200 elements, i.e. with an edge 

length of 10, 4 and 2 𝑚𝑚, with adjusted filter radius 𝑟𝑚𝑖𝑛 equal to 3, 7.5 and 15 respectively. The average iteration 

times for these cases are listed in Table 4. 

Table 4: Iteration time in seconds for different mesh sizes 

Mesh 120 × 40 300 × 100 600 × 200 

Iteration time [s] 0.11 0.81 3.83 

The results clearly show the fast iteration time for each of the mesh sizes, especially considering the solution of 

three linear systems per iteration, i.e. two for the thermo-mechanical analysis and one additional system for the 

sensitivity analysis. Additionally, the developed code is able to run optimizations with +1M elements and an 

iteration time under a minute, however, this is in part limited by the applied filter, as the band width of the filter 

matrix (and associated memory) increases for a larger filter radius. Alternative filters, such as the Heaviside 

projection filter, are discussed by Andreassen et al. (2011). 

Discussion 

In this study, an efficient compliance-based topology optimization procedure is developed for structures subjected 

to thermo-mechanical loads considering steady-state heat conduction and weak thermo-mechanical coupling. 

Herein, a number of assumptions were made, both in the thermo-mechanical model and the optimization 

procedures. In the following, some remarks with regard to these assumptions are briefly discussed, as well as the 

identified research needs. 

The numerical modelling of the structural behavior of components in the construction industry is dependent on the 

material properties. In this work, the assumption is made that the material behaves linearly elastic. This is a crude 

simplification for common construction materials, such as concrete, where more realistically an elastoplastic 

model involving damage evolution is used. Furthermore, the material properties are not temperature-dependent, 

even though large thermal gradients cause a significant change in these properties. In addition, no physical 

degradation of the insulation material is considered. Nevertheless, the influence of the TMLR on the results, as 

reported in this study, will still be relevant when more advanced material models are considered. 

The Dirichlet conditions in the thermal analysis remain constant during the optimization. This directly influences 

the results and leads to a layer of insulation material at the location of the applied boundary condition in case of 

thermally dominant problems. This issue can be resolved by iteratively updating the thermal boundary during the 

optimization, similar to the design optimization with pressure loads (Hammer & Olhoff, 2000). Furthermore, only 

heat conduction is considered and extending this to include (internal) convection and (cavity) radiation seems the 

logical next step to avoid the use of a solid insulation material in the voids. 

As mentioned previously, the design of structural components involves checking various requirements. In this 

work only stiffness is considered, despite other studies disproving of this objective for structural design with 

thermo-mechanical loads (Deaton & Grandhi, 2013; Pedersen & Pedersen, 2012), based on the volume constraint 

not being active and lack of optimization of the structural strength. However, stiffness is an important aspect of 

structural components in the construction industry, hence it makes sense to takes this into account and study how 

the optimization is influenced. The other structural requirements can be added in future extensions, although the 

design of concrete structures entails additional challenging aspects as mentioned above. 
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Conclusions 

In this paper, an efficient topology optimization procedure with thermo-mechanical loads considering steady-state 

heat conduction is presented. The adjoint method is employed to determine the analytical sensitivities, which 

contain the complete influence of the design variables on the compliance objective. A compact and easy to 

understand 138-line MATLAB code is developed and specific parts of the code are discussed in more detail. The 

code is made available in the supplementary material as a starting point for further research. 

The numerical example of an MBB beam, extended with thermal loading, is used to show the influence of several 

parameters related to the thermo-mechanical loading. The proposed sensitivities are verified and compared to 

partial sensitivities in which the influence on the thermal stiffness matrix and temperature is neglected. As a result, 

in case of large thermal gradients, the partial sensitivities as not able to capture the complete influence of the 

thermal loading, and therefore it is advised to consider the proposed sensitivities for further research. Subsequently, 

an expression for the thermo-mechanical load ratio (TMLR) is presented as a quantitative measure to compare 

optimized results with equivalent TMLRs. The influence of the TMLR is investigated based on various load 

scenarios involving different thermal gradients and mechanical loads and by changing the out-of-plane thickness. 

Overall, it can be concluded that the optimized results are highly dependent on the TMLR. Furthermore, it is shown 

that the imposed volume constraint becomes inactive depending on the TMLR and that the penalization of the 

thermal conductivity influences the occurrence of intermediate densities in the final solution. 

Further research will look into applying the same approach in case of transient heat conduction and considering 

temperature-dependent material properties. 

Appendices 

Appendix 1: Verification sensitivity analysis 

The verification of the analytical sensitivities obtained with the adjoint sensitivity analysis (Section 2.2.3) is 

performed based on the example of the MBB beam in Section 4. The analytical sensitivities of several arbitrary 

elements are compared with their corresponding numerical equivalent values, which are calculated with a central 

finite difference scheme (Cho & Choi, 2005), as expressed in Eq. (53). 

with 𝑐 the structural compliance, ∆𝑥𝑖  a small perturbation of the element density of 𝒪(10−8) and 𝑥𝑖 the relative 

density of element 𝑖. 

The relative (mean) difference between the analytical 𝑑𝑐 𝑑𝑥𝑖⁄  and numerical sensitivities ∆𝑐 2∆𝑥𝑖⁄ , denoted 𝛿𝑐̅̅ ̅ 

here, is determined with Eq. (54), adapted from Tang et al. (2019). 

with |𝑑𝑐 𝑑𝒙⁄ |̅̅ ̅̅ ̅̅ ̅̅ ̅̅  the mean value of the analytical sensitivities of all elements.  

A comparison of the sensitivities is made on a coarser mesh of 10 × 30 elements for the sake of clarity. The 

sensitivities and corresponding differences of an arbitrary selection of 6 elements (indicated in Figure 20) is 

 
∆𝑐

2∆𝑥𝑖
=
𝑐(𝑥𝑖 + ∆𝑥𝑖) − 𝑐(𝑥𝑖 − ∆𝑥𝑖)

2∆𝑥𝑖
 (53) 

 𝛿𝑐̅̅ ̅  =
|
∆𝑐
2∆𝑥𝑖

−
𝑑𝑐
𝑑𝑥𝑖

|

|
𝑑𝑐
𝑑𝒙
|

̅̅ ̅̅ ̅̅
× 100% (54) 
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provided in Table 5. The average iteration time considering the numerical sensitivities is 1.465 s, which is more 

than 200 times slower compared to 0.0064 s in case of the analytical sensitivities and clearly shows the advantage 

of the adjoint method for a high element count.  

 

Figure 20: Mesh and element set for verification 

The results in Table 5 show insignificant differences between the analytical and numerical sensitivities, which 

confirms the accuracy of the sensitivities and justifies the use of the adjoint method in the proposed TO 

procedure. In addition, the verification results are visually presented in Figure 21. 

Table 5: Sensitivity analysis verification results 

 First iteration Last iteration 

Element 𝒊 
𝑑𝑐

𝑑𝑥𝑖
 

∆𝑐

∆2𝑥𝑖
 𝛿𝑐̅̅ ̅ [%] 

𝑑𝑐

𝑑𝑥𝑖
 

∆𝑐

∆2𝑥𝑖
 𝛿𝑐̅̅ ̅ [%] 

8 35060.256878 35060.255779 4.22e-6 128.093491 128.073299 7.16e-4 

75 3953.339069 3953.338095 3.74e-6 -6612.915554 -6612.925220 3.43e-4 

131 -18723.527135 -18723.527861 2.79e-6 -6759.678493 -6759.676742 6.21e-5 

168 41235.798354 41235.799892 5.90e-6 -0.000004 0.004647 1.65e-4 

240 77244.383298 77244.384300 3.85e-6 -1.748712 -1.747126 5.62e-5 

281 -12524.496129 -12524.495334 3.05e-6 -2885.642171 -2885.639044 1.11e-4 

Note that using the mean value |𝑑𝑐 𝑑𝒙⁄ |̅̅ ̅̅ ̅̅ ̅̅ ̅̅  ensures a valid comparison for the large range of values, as in other 

formulations (Tang et al., 2019), the relative errors would become much larger in case of very small (but relatively 

very different) sensitivity values, e.g. elements 8, 168, 240 in Table 5. 
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Figure 21: Sensitivity analysis verification 
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Appendix 2: A 138-line MATLAB code for topology optimization 

with steady thermo-mechanical loads

%% A 138-line MATLAB code for topology optimization with steady thermo-mechanical loads %%  1 
function top_tml_shc(L,h,t,z,Vf,rmin,pE,pk,pb) 2 
addpath('C:\Users\...\MMA scripts\'); tic; 3 
%% PARAMETERS 4 
nelx = round(L/z); nely = round(h/z); nele = nelx*nely; 5 
ini  = Vf; 6 
%% MATERIAL PROPERTIES 7 
E0 = 30e3; Emin = 30e-6; 8 
nu = 0.3; 9 
k0 = 1; kmin = 0.03; 10 
alpha = 12e-6; 11 
Fth0 = E0*alpha*t*z/2/(1-nu); 12 
%% PREPARE THERMAL FEA 13 
TA1 = [ 8 -2; -2  8]; 14 
TA2 = [-4 -2; -2 -4]; 15 
KEth = t/12*[TA1 TA2; TA2 TA1]; 16 
Tnodenrs = reshape(1:(nely+1)*(nelx+1),nely+1,nelx+1); 17 
TedofVec = reshape(Tnodenrs(1:end-1,1:end-1)+1,nele,1); 18 
TedofMat = repmat(TedofVec,1,4)+repmat([0 nely+[1 0] -1],nele,1); 19 
TiK      = reshape(kron(TedofMat,ones(4,1))',16*nele,1); 20 
TjK      = reshape(kron(TedofMat,ones(1,4))',16*nele,1); 21 
Tmaxdof  = (nely+1)*(nelx+1); 22 
% DEFINE LOADS AND SUPPORTS (HEATED BOTTOM EDGE) 23 
T0  = 0; T1 = 800;                         24 
TT0 = T0*ones(Tmaxdof,1); 25 
Q = sparse([],[],0,Tmaxdof,1);          26 
T = ones(Tmaxdof,1)*T0;             27 
TBC1 = 1:nely+1:Tmaxdof; 28 
TBC2 = nely+1:nely+1:Tmaxdof; 29 
T(TBC2) = T1; 30 
Tcdofs = [TBC1 TBC2]; 31 
Tfdofs  = setdiff(1:Tmaxdof,Tcdofs); 32 
%% PREPARE MECHANICAL FEA 33 
MA11 = [12  3 -6 -3;  3 12  3  0; -6  3 12 -3; -3  0 -3 12]; 34 
MA12 = [-6 -3  0  3; -3 -6 -3 -6;  0 -3 -6  3;  3 -6  3 -6]; 35 
MB11 = [-4  3 -2  9;  3 -4 -9  4; -2 -9 -4 -3;  9  4 -3 -4]; 36 
MB12 = [ 2 -3  4 -9; -3  2  9 -2;  4  9  2  3; -9 -2  3  2]; 37 
KE  = t/(1-nu^2)/24*([MA11 MA12;MA12' MA11]+nu*[MB11 MB12;MB12' MB11]); 38 
MedofVec = reshape(2*Tnodenrs(1:end-1,1:end-1)+1,nele,1); 39 
MedofMat = repmat(MedofVec,1,8)+repmat([0 1 2*nely+[2 3 0 1] -2 -1],nele,1); 40 
MiK      = reshape(kron(MedofMat,ones(8,1))',64*nele,1); 41 
MjK      = reshape(kron(MedofMat,ones(1,8))',64*nele,1); 42 
Mmaxdof  = 2*(nely+1)*(nelx+1); 43 
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM) 44 
Fm = sparse(2,1,-10000/2,Mmaxdof,1); 45 
U = zeros(Mmaxdof,1); 46 
Mcdofs = [Mmaxdof 1:2:nely*2+1]; 47 
Mfdofs  = setdiff(1:Mmaxdof,Mcdofs); 48 
%% PREPARE THERMO-MECHANICAL LOAD VECTOR AND ADJOINT VARIABLE 49 
Itm = [-1 -1 1 -1 1 1 -1 1];  50 
TT = sparse(repmat((1:nele)',1,4),TedofMat,1/4,nele,Tmaxdof); 51 
TTM = sparse(repmat((1:nele)',1,8),MedofMat,repmat(Itm,nele,1),nele,Mmaxdof); 52 
mu_adj = zeros(Tmaxdof,1); 53 
%% PREPARE FILTER 54 
iH = ones(nele*(2*(ceil(rmin)-1)+1)^2,1); 55 
jH = ones(size(iH)); 56 
sH = zeros(size(iH)); 57 
i = 0; 58 
for i1 = 1:nelx 59 
  for j1 = 1:nely 60 
    e1 = (i1-1)*nely+j1; 61 
    for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx) 62 
      for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely) 63 
        e2 = (i2-1)*nely+j2; 64 
        i = i+1; 65 
        iH(i) = e1; 66 
        jH(i) = e2; 67 
        sH(i) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2)); 68 
      end 69 
    end 70 
  end 71 
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end 72 
H = sparse(iH,jH,sH); 73 
Hs = sum(H,2); 74 
%% INITIALIZE ITERATION 75 
xnew  = ones(nely,nelx)*ini; 76 
xold2 = xnew(:); xold1 = xnew(:); xval  = xnew(:); 77 
xmax = ones(nele,1); upp = xmax; xmin = zeros(nele,1); low = xmin; 78 
iter = 0; change = 1; 79 
%% START ITERATION 80 
while change > 0.01 && iter < 1000 81 
    iter = iter + 1; time0 = toc; 82 
    % MATERIAL INTERPOLATION 83 
    Ex = Emin+xnew(:)'.^pE*(E0-Emin);  84 
    dEdx = pE*xnew(:)'.^(pE-1)*(E0-Emin); 85 
    kx = kmin+xnew(:)'.^pk*(k0-kmin);      86 
    dkdx = pk*xnew(:)'.^(pk-1)*(k0-kmin); 87 
    fx = Emin/E0+xnew(:)'.^pb*(1-Emin/E0); 88 
    dfdx = pb*xnew(:)'.^(pb-1)*(1-Emin/E0); 89 
    % THERMAL FEA 90 
    TsK = reshape(KEth(:)*kx,16*nele,1); 91 
    Kth = sparse(TiK,TjK,TsK); Kth = (Kth+Kth')/2; 92 
    T(Tfdofs) = Kth(Tfdofs,Tfdofs)\(Q(Tfdofs)-Kth(Tfdofs,Tcdofs)*T(Tcdofs)); 93 
    % THERMO-MECHANICAL LOAD VECTOR 94 
    DT = TT*(T-TT0); 95 
    Fth = TTM'*(Fth0*fx'.*DT); 96 
    % MECHANICAL FEA 97 
    F = Fm + Fth;  98 
    MsK = reshape(KE(:)*Ex,64*nele,1);  99 
    K = sparse(MiK,MjK,MsK); K = (K+K')/2;  100 
    U(Mfdofs) = K(Mfdofs,Mfdofs)\F(Mfdofs); 101 
    % OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS 102 
    v  = mean(xnew(:)); 103 
    dv  = ones(nele,1)/nele; 104 
    ce = sum((U(MedofMat)*KE).*U(MedofMat),2); 105 
    c  = sum(Ex'.*ce); 106 
    dc1 = -dEdx'.*ce; 107 
    dc2 = 2*Fth0*(U(MedofMat)*Itm').*dfdx'.*DT; 108 
    Q_adj = (-2*U'*(TTM'.*(Fth0*fx))*TT)'; 109 
    mu_adj(Tfdofs) = Kth(Tfdofs,Tfdofs)\Q_adj(Tfdofs); 110 
    dc3 = dkdx'.*(sum((mu_adj(TedofMat)*KEth).*T(TedofMat),2)); 111 
    dc = reshape(dc1+dc2+dc3,nely,nelx); 112 
    if iter == 1; c_scale = c/10; end 113 
    c = c/c_scale; 114 
    dc = dc/c_scale; 115 
    % FILTERING/MODIFICATION OF SENSITIVITIES 116 
    dc(:) = H*(dc(:)./Hs);  117 
    dv(:) = H*(dv(:)./Hs); 118 
    % MMA UPDATE OF DESIGN VARIABLES 119 
    m = 1; n = nele; 120 
    f0val = c; df0dx = dc(:);  121 
    fval = v/Vf-1; dfdx = dv(:)'/Vf; 122 
    a0 = 1; a1 = zeros(m,1); c1 = 1000*ones(m,1); d1 = ones(m,1); 123 
    [xmma,~,~,~,~,~,~,~,~,low,upp] = ... 124 
        mmasub(m,n,iter,xval,xmin,xmax,xold1,xold2,f0val,df0dx,fval,dfdx,low,upp,a0,a1,c1,d1); 125 
    xold2 = xold1; xold1 = xval; xval = xmma; 126 
    change = max(abs(xval(:)-xold1(:))); 127 
    xnew = reshape(xmma,nely,nelx); 128 
    xnew(:) = (H*xnew(:))./Hs; 129 
    % PRINT RESULTS 130 
    fprintf([' I: %5i  Obj: %12.2f    Volume: %6.4f    Change: %6.3f    '... 131 
        'IterTime: %7.2f    TotalTime: %9.2f\n'],iter,(c*c_scale),v,change,toc-time0,toc); 132 
    % PLOT DESIGN VARIABLES 133 
    figure(1); 134 
    set(gcf,'position',[150 450 1200 400]); 135 
    imagesc(1-xnew); 136 
    colormap(gray); caxis([0 1]); axis equal; axis tight; axis off; drawnow; 137 
end 138 
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