
gym-hpa: Efficient Auto-Scaling via Reinforcement
Learning for Complex Microservice-based

Applications in Kubernetes
José Santos∗, Tim Wauters∗, Bruno Volckaert∗, Filip De Turck∗

∗ Ghent University - imec, IDLab, Department of Information Technology
Technologiepark-Zwijnaarde 126, 9052 Gent, Belgium

Email: josepedro.pereiradossantos@UGent.be

Abstract— Containers have revolutionized application deploy-
ment and life-cycle management in current cloud platforms.
Applications have evolved from large monoliths to complex
graphs of loosely-coupled microservices aiming to improve de-
ployment flexibility and operational efficiency. However, modern
microservice-based architectures are challenging since proper
allocation and scaling of microservices is a difficult task due
to their complex inter-dependencies. Existing works do not
consider microservice dependencies, which could lead to the
application’s performance degradation when service demand
increases. This paper studies the impact of microservice inter-
dependencies in auto-scaling mechanisms by proposing a novel
framework named gym-hpa that enables different auto-scaling
goals via Reinforcement Learning (RL). The framework has
been developed based on the OpenAI Gym library for the
popular Kubernetes (K8s) platform to bridge the gap between
RL and auto-scaling research by training RL agents on real cloud
environments. The aim is to improve resource usage and reduce
the application’s response time in future cloud platforms by
considering microservice inter-dependencies in horizontal scaling.
Experiments with microservice benchmark applications show
that RL agents trained with the gym-hpa framework can reduce
on average resource usage by 30% and reduce the application’s
response time by 25% compared to default scaling mechanisms.

Index Terms—Auto-scaling, Containers, Cloud-native, Mi-
croservices, Orchestration, Reinforcement Learning, Kubernetes

I. INTRODUCTION

Microservice architectures have gradually become the
de-facto paradigm for application deployment in modern
cloud platforms [1], [2]. The traditional single monolith
is decomposed into multiple loosely-coupled microservices,
implemented and deployed independently. This paradigm
shift improves deployment flexibility and scalability, service
portability, and operational efficiency [3]. However, modern
microservice-based architectures are challenging to properly
orchestrate in current cloud platforms due to their complex
microservice inter-dependencies. The increasing adoption of
containers calls for efficient deployment and orchestration
strategies for microservice applications in current cloud plat-
forms (e.g., Amazon ECS [4], Kubernetes (K8s) [5], Red
Hat OpenShift [6]). Also, the next generation of applications,
including Extended Reality (XR), Industrial Internet of Things
(IIoT), and autonomous vehicles (e.g., cars and Unmanned

Aerial Vehicles (UAVs)) add further complexity and put even
more pressure on current cloud infrastructures [7], [8]. The
deployment of such applications is hindered by the inability
of current infrastructures and protocols to cope with their
stringent requirements (e.g., high reliability, low latency, high
bandwidth).

Typically, containers support fast adjustments to the applica-
tion deployment through horizontal and vertical scaling. Hor-
izontal scaling represents the increase (scale-out) or decrease
(scale-in) of the number of deployed instances (i.e., contain-
ers), while vertical scaling denotes the increase (scale-up) or
decrease (scale-down) of the number of resources attributed to
each container instance. Service over-provisioning wastes re-
sources and increases costs, while under-provisioning schemes
degrade performance and violate Service Level Agreements
(SLAs). The goal is to design proper mechanisms capable
of scaling resources up and down according to the service
demand without human intervention. This procedure is known
as Auto-scaling [9], where resources are dynamically added
or removed to meet Quality of Service (QoS) requirements.
Developing and implementing efficient auto-scaling systems is
not a trivial task due to limited hardware resources, dynamic
workloads, diverse service requirements, and complex infras-
tructures. Current literature focuses on either horizontal or
vertical elasticity. Fast reactions to small workload variations
can be triggered via vertical scaling, while horizontal scaling
handles sudden workload peaks. Also, most works mainly
address resource utilization in the infrastructure (e.g., CPU
and Memory), which is insufficient to satisfy the stringent re-
quirements of microservice applications, especially concerning
latency and bandwidth. Existing works (e.g., [10]–[14]) typi-
cally scale containers for each microservice separately without
considering their microservice inter-dependencies. Most works
neglect the impact of these dependencies in large applications
on the end-to-end latency and throughput, leading to subopti-
mal resource usage.

This paper focuses on the impact of microservice inter-
dependencies on auto-scaling mechanisms. The goal is to
identify optimal states for each microservice based on the
current demand, acknowledging its performance impact in the
overall application pipeline. To this purpose, an auto-scaling
framework named gym-hpa has been developed to bridge the



gap between Reinforcement Learning (RL) and auto-scaling
research. The framework is inspired on the OpenAI Gym
library [15] to train RL agents with different auto-scaling
goals on operational cloud environments established with the
most popular container orchestration platform, K8s [16]. K8s
automates several processes throughout the application life-
cycle, including deployment and scaling. Nevertheless, its
current auto-scaling policies do not address microservice inter-
dependencies, leading to performance degradation. Also, tra-
ditional approaches are mainly focused on threshold-based or
Machine Learning (ML)-based methods focused on resource
efficiency without any considerations on the application’s re-
sponse time or latency. Our work focuses on horizontal scaling
since vertical scaling introduces potentially costly operations.
The increase or decrease of container resources could lead
to performance degradation or Out of Memory (OOM) errors
since containers may no longer fit onto their machines. The
main contributions of this paper are:

• gym-hpa framework: Implementation of an RL-based
framework for proper horizontal scaling of microservice-
based applications in K8s clusters. The proposed frame-
work has been open-sourced 1, allowing researchers to
use this framework to evaluate their auto-scaling ideas.

• RL implementation: Section V presents the RL de-
sign, including observation state, action space, and the
reward functions. The approach addresses microservice
inter-dependencies and the application’s response time,
typically overlooked in most works.

• Evaluations with microservice benchmarks: The pro-
posed framework has been validated on real-world mi-
croservice benchmark applications: a database application
named Redis Cluster (RC) [17], and a multi-tier web ap-
plication named Online Boutique (OB) [18]. Experiments
in a K8s cluster show that the presented RL approach can
reduce latency on average by 40% for RC and by 25%
for OB. (Sec. VII).

The remainder of the paper is organized as follows: the
state-of-the-art on auto-scaling is discussed in the next section.
Sec. III discusses application deployment in K8s, describing
its terminology. Sec. IV details the gym-hpa framework and
Sec. V presents the RL-based auto-scaling approach. Then,
Sec. VI describes the evaluation setup, followed by the results
in Sec. VII. Sec. VIII concludes this paper.

II. RELATED WORK

Recent surveys [9], [32] address auto-scaling features ap-
plied to cloud-based systems. Both works provide a taxonomy
of auto-scaling according to several criteria. This section
discusses literature across five dimensions: threshold-based,
queuing model-based, time series analysis, control theory-
based, and ML-based.

Threshold-based techniques [10]–[14] are easy to imple-
ment and widely adopted by the industry. Popular orches-
tration platforms (e.g., K8s, Amazon ECS) rely on best-

1https://github.com/jpedro1992/gym-hpa

effort threshold-based scaling policies based on cluster-level
metrics (e.g., CPU usage, the average number of requests).
In fact, most cloud providers offer only reactive threshold-
based scaling methods, such as Amazon EC2 [10] and Ku-
bernetes Horizontal Pod Autoscaler (KHPA). Amazon EC2
is particularly well suited for applications with a particular
pattern type (e.g., daily or weekly) since rules are specified
to handle these traffic patterns. KHPA scales the number of
pods based on a certain metric (e.g., CPU usage) by keeping
an average of the desired metric by increasing or decreasing
the number of deployed pods. The main drawback of these
methods is the need for manual tuning to determine appropri-
ate thresholds and scaling actions since, if poorly selected, it
significantly impacts the application performance [9]. Vertical
scaling techniques [12]–[14] typically resize containers during
runtime. Kubernetes Vertical Pod Autoscaler (KVPA) sets
container resource limitations by using statistics over a moving
window (e.g., for RAM, the 99th percentile over 24 hours).
The proposed approach focuses on horizontal scaling since
resizing containers may lead to OOM kill or QoS degradation
under sudden usage increases. We argue vertical scaling is
a risky procedure needing further research to prove container
resources adapted at runtime do not compromise performance.

Queuing model-based methods are popular for analyzing
Internet applications. These techniques estimate the perfor-
mance metrics and the waiting time for the requests. Recent
works have applied queuing theory to auto-scaling [19], [20].
These methods focus mainly on reducing costs while main-
taining the application’s Service Level Objectives (SLOs). All
queuing-based methods are applicable for multi-tier applica-
tions, however, they mainly rely on stationary systems where
the demand does not change over time. These models depend
on known parameters (e.g., the arrival rate of service requests),
meaning that model and metrics recalculation is needed for
dynamic workloads.

Time series analysis usually involves a two-step process:
workload forecasting is applied, and then scaling actions are
triggered based on the predicted workload. Nevertheless, most
methods [21]–[23] rely on predefined thresholds since actions
are triggered if the predicted metric goes beyond a certain
threshold. Workload prediction models are typically applied
to perform adequate scaling actions, leading to resource effi-
ciency and minimal QoS impact [21]. However, the applica-
bility of these methods to all types of workloads is difficult,
and can take a significant amount of time to predict incoming
requests [22] or the subsequent resource consumption. These
often also consider a single microservice. In contrast, the
proposed approach finds appropriate scaling actions depending
on the current status of multiple microservices.

Control theory-based methods [24]–[27] typically consist
of two phases (i.e., analysis and planning) coming from the
Monitoring, Analysis, Planning and Execution (MAPE) loop
[33]. The system behavior is modified based on the output
and reference values. The goal is to adjust the output to
the reference values based on feedback from the system. In
auto-scaling, the desired SLA is the reference value, and the



TABLE I: Comparison among different auto-scaling methods.

Existing Work Dimension Type Policy Virtualization Metrics Microservice
Dependencies

Evaluation
Method

Amazon EC2 [10] T H R VMs + C e.g., CPU, RAM ✕ A
KHPA [11] T H R C e.g., CPU, RAM ✕ K
KVPA [12] T V R C e.g., CPU, RAM ✕ K

Al-Dhuraibi, Y., et al. [13] T V R C CPU + RAM ✕ D
Rattihalli, G., et al. [14] T V R C CPU + RAM ✕ A + K

Gergin, I., et al. [19] Q H R VMs RT ✕ A
Danilo, A., et al. [20] Q H R VMs CPU + RT ✕ S + T

Calheiros, R. N., et al. [21] TS H P VMs e.g, CPU, RT ✕ S
Messias, V. R., et al. [22] TS H R + P VMs RT ✕ S

Kumar, J., et al. [23] TS H R + P VMs R ✕ S
Baresi, L., et al. [24] CT H R VMs + C e.g., CPU ✕ A
Farokhi, S., et al. [25] CT V R VMs e.g., RAM, RT ✕ T

Nouri, S. M. R.,, et al. [26] CT + ML H R VMs e.g., CPU, RT ✕ T
Toosi, A. N., et al. [27] CT H + V R VMs e.g., CPU, TL ✓ S

Rossi, F., et al. [28] ML H + V R + P C e.g., CPU, RAM ✕ S + D
Lee, D., et al. [29] ML H P VMs T + RT ✓ O

Rzadca, K., et al. [30] ML + TS H + V P C e.g., CPU, RAM ✕ T
Toka, L. , et al. [31] ML + TS H R + P C CPU + R ✕ K

Our work T + ML H R + P C e.g. RT, CPU, RAM ✓ S + K

Dimension: T = Threshold-based, Q = Queuing model-based, TS = Time Series analysis, CT = Control theory-based, ML = ML-based.
Type: H = Horizontal, V = Vertical.
Policy: R = Reactive, P = Proactive.
Virtualization: VMs = Virtual Machines, C = Containers.
Metrics: CPU = CPU usage, RAM = Memory usage, T = Throughput, RT = Response time, TL = Traffic load, R = Number of requests per second.
Microservice Dependencies: ✓= addressed, ✕= not considered.
Evaluation Method: A = Amazon AWS, K = Kubernetes, D = Docker, O = Openstack, S = Simulation, T = Testbed.

output consists of performance metrics (e.g., CPU usage).
Experiments show that these approaches significantly reduce
deployment costs by improving overall memory utilization
[25] and by mitigating SLA violations [27]. However, these
techniques are highly dependent on the controller design and
the target application. Their main drawback occurs when
dealing with dynamic and unpredictable workloads. Several
works tackle these issues by combining control-theory meth-
ods with ML-based techniques or even time series analysis
to predict future demands inside the controller and adapt
resources accordingly. Their main advantage is the reduced
execution time and high efficiency in the scaling process.

ML-based techniques [28]–[31] are popular nowadays.
These methods aim to build a model for resource estima-
tion under a specific workload. These approaches are robust
to dynamic demands since the algorithm adjusts the model
parameters if any notable event occurs (i.e., online learning).
The model also can be trained offline, but it would often
require significant human intervention, losing the main benefit
of these algorithms. Google Autopilot has been presented
in [30]. It automatically configures resources, adjusting the
number of concurrent tasks in a job (i.e., horizontal scaling)
and the CPU/RAM limits for individual tasks (i.e., vertical
scaling). Autopilot aims to reduce the difference between
resource limits and actual resource usage while minimizing
the risk of OOM errors and performance degradation due to
CPU throttling. Autopilot applies ML algorithms to historical
data to learn patterns from previous task executions. Results
show that Autopilot significantly reduces resource utilization
and minimizes OOM errors. The main drawback of ML-based

approaches is the high execution time to converge to a stable
model and thus causes auto-scaling to perform poorly during
the learning period.

Table I shows a comparison of all methods introduced in
this section. All works have been classified based on their
main characteristics. However, the quantitative assessment is
challenging since these methods are designed for a particular
system or virtualization technology. To the best of our knowl-
edge, no standard testing framework for auto-scaling features
exists. Previously, we have proposed scheduling extensions
for the K8s platform [34] [35] addressing microservice-based
chaining concepts. This paper extends our previous work
by focusing on the other important aspect of the life cycle
management of containerized applications: auto-scaling. The
paper introduces the gym-hpa framework bridging the gap
between RL and auto-scaling research. RL algorithms train
on real cloud environments based on the K8s platform. The
work differs from the current literature by addressing microser-
vice inter-dependencies and the application’s response time
as an auto-scaling objective. The proposed gym-hpa allows
researchers to validate their different auto-scaling ideas on a
real cloud environment.

III. APPLICATION DEPLOYMENT IN KUBERNETES (K8S)
With the massive adoption of microservice patterns and

containers, several orchestration platforms have been devel-
oped by the Industry and open-source communities. K8s is the
most popular today, providing several software components
for the automatic life cycle management of containerized
applications across a set of cluster nodes. K8s follows the
known master-slave model, where at least one master node



Fig. 1: Illustration of the gym-hpa framework.

manages containers across multiple worker nodes (slaves).
Master nodes typically have more computing power to operate
all software components (e.g., API server, Kubelet, Controller
Manager) responsible for handling the complete life cycle
workflow of containerized applications.

Microservices in K8s are often tightly coupled into a group
of containers named a pod, the smallest working unit in K8s.
A pod represents the collection of containers and volumes
(storage) running in the same execution environment [5]. K8s
establishes a connection of identical pods via a Deployment
[36], but it does not natively support the aggregation of
different pods into a particular application. Developers need
to set up individual KHPA components to each deployment to
handle horizontal scaling across their entire application. Thus,
KHPA currently handles horizontal scaling for each deploy-
ment without any knowledge about the microservice inter-
dependencies of those pods. The next section describes the
gym-hpa framework that considers microservice dependencies
by combining several K8s deployments into an application.

IV. THE GYM-HPA FRAMEWORK: SYSTEM ARCHITECTURE

A. System Overview

Fig. 1 shows an overview of the gym-hpa framework and
its main software components. One of the main building
blocks is the OpenAI Gym module 1⃝, where different gym
environments are available for RL training. Two evaluation
modes are supported by gym-hpa: simulation 2⃝ and cluster.
The simulation mode corresponds to a discrete-event simulator
to reenact the behavior of multiple service requests for a given
application deployed on the K8s platform. The application’s
resource usage (e.g., CPU and Memory usage) and the number
of deployed pods is updated during the simulation based on
scaling actions and the current service demand. Sec. VI-B
shows how datasets were created for the simulation mode
based on the evaluated applications to create near-real ex-
periments. In contrast, the cluster mode corresponds to RL
training on a real cluster environment through the Deployment
component 3⃝. This component interacts with a K8s cluster
4⃝ via the K8s Application Programming Interface (API) to

retrieve information about the given application and via the
Prometheus API [37], a well-known monitoring platform, to
retrieve its current usage metrics. Further explanations are

TABLE II: Deployment status in the gym-hpa framework.

Symbol Description

A
The application a. Each application consists of a set of
different deployments d ε Da.

Da The set of deployments belonging to the application a.
Na The namespace of application a.
Cd The set of container names c ε C for deployment d.
Id The set of container images i ε I for deployment d.
Pd The set of all pods belonging to the deployment d ε D.

αd,max The maximum replication allowed for deployment d.
αd,min The minimum replication allowed for deployment d.

γd,[r]

The request vector of deployment d. r denotes resources as
CPU (in m) and memory (in Mi). m stands for millicore and
Mi stands for mebibyte.

Γd,[r]
The limit vector of deployment d. r denotes resources as CPU
(in m) and memory (in Mi).

ρd,[r]
The total usage vector of deployment d. r denotes resources
as CPU (in m) and memory (in Mi).

σd,i The total traffic received (in Kbps) of deployment d.
σd,o The total traffic transmitted (in Kbps) of deployment d.
Rd The current number of deployed pods for deployment d.
T The threshold for resource usage. Default: 0.75.
Ωc The CPU weight for replica calculation. Default: 0.7.
Ωm The memory weight for replica calculation. Default: 0.3.

λ[r]
The target resource usage vector. r denotes resources as CPU
(in m) and memory (in Mi).

ωd The desired number of replicas (i.e., pods) for deployment d.
τa The latency threshold for application a (in ms).
Ψa The application latency (in ms).

given below on how the Deployment component and K8s
interact.

B. Kubernetes Integration

Table II shows the available information in the Deployment
component based on a K8s deployment. The framework allows
developers to specify the microservices (Da) belonging to an
application (a). Input information (e.g., Pd, Na) is retrieved
from the K8s API, while its current status (e.g., Rd, ρd,[r]) is
retrieved from the Prometheus API. An important concept in
K8s is resource requests (γd,[r]) and limitations (Γd,[r]) [38].
Requests represent the minimum amount of resources (e.g.,
CPU, memory) needed by all containers in the pod, and limits
correspond to the maximum amount of resources allocated for
the containers in a pod. Developers should specify resource
requests and limits (R/L) on their deployments to allow K8s
to produce adequate scheduling and auto-scaling for these
pods. Container abstraction provides less isolation than Virtual
Machines (VMs), and if several containers are running on the
same cluster node, the sharing of physical resources might lead
to a performance degradation known as resource contention
[39]. In the Deployment component, the desired number of
replicas (Rd) is calculated based on resource requests. KHPA
currently scales the number of pods in a deployment based
on the resource usage of a given metric and in minimum
and maximum replication thresholds (αmax and αmin). As
default, KHPA considers CPU usage, and the calculation of
the desired number of replicas is according to (1). We argue
that this formula must be adapted to consider several resource
types. In the gym-hpa framework, the number of desired
replicas is calculated as in (4), by considering target usages for
each resource (2) and their individual impact on the accurate



number of replicas (3). As default, 75% is the target resource
usage since optimal usage (i.e., 100% resource utilization)
might lead to performance degradation if the demand suddenly
increases or containers request further resources. Concerning
the application’s latency (Ψa), researchers can specify which
measurement or metric to consider. Section VI-A describes
the two evaluated applications and the corresponding mea-
surement considered as the application’s latency.

ωd = ⌈Rd,p ∗
(
ρd,cpu
λcpu

)
⌉ (1)

λ[r] = Rd,p ×
(
T × γd,[r]

)
(2)

ω[r] = ⌈Rd,p ×
ρd,[r]

λ[r]
⌉ (3)

ωd = ⌈ Ωc︸︷︷︸
CPU weight

× ωc︸︷︷︸
desired CPU

+ Ωm︸︷︷︸
Mem. weight

× ωm︸︷︷︸
desired Mem.

⌉ (4)

V. TOWARD EFFICIENT AUTO-SCALING FOR COMPLEX
MICROSERVICE APPLICATIONS IN KUBERNETES

A. Reinforcement Learning (RL)-based auto-scaling

Recently, RL has become an important research field [40],
often applied to solve sequential decision-making problems
where agents learn to select actions directly from experience
by interacting with an environment. At first, the agent knows
nothing about the given task and essentially learns by receiving
a reward for each action. The reward relates to the new
observation, describing the environment state after applying
the action selected by the agent. For instance, in auto-scaling,
the reward is positive if the agent’s action increases the appli-
cation performance (e.g., high resource usage, low response
time). In contrast, the agent receives a negative reward if
the performance degrades. The agent learns to perform the
given task by repeated interactions with the environment and
determining the inherent synergies between states, actions, and
subsequent rewards. The goal is to teach an agent to select
actions that maximize application performance and minimize
deployment costs. Based on our expertise, RL is well-suited
for auto-scaling problems. By continuously receiving feedback
from the environment, agents can adjust their action selection
and achieve long-term objectives in complex situations, such
as microservice auto-scaling. The following subsections de-
scribe the RL approach for solving horizontal auto-scaling of
complex microservice applications in K8s.

B. Observation Space

The observation space corresponds to the state representing
the environment at a given step. Table III shows an example
of the observation space for an application in the gym-hpa
framework. It includes 6 metrics per microservice deployment
in the application, such as the current number of deployed pods
(numPods), the desired number of replicas (desiredReplicas),
the total current resource utilization (cpuAggr and memAggr),

TABLE III: The Observation Space Structure of gym-hpa.

Metric Description
numPods The number of deployed pods.
desiredReplicas The desired number of replicas.
cpuAggr The total aggregated CPU (in m) of the pods.
memAggr The total aggregated memory (in Mi) of the pods.
avgTrafficIn The average received traffic (in Kbps).
avgTrafficOut The average transmitted traffic (in Kbps).

TABLE IV: The Action Space Structure of the gym-hpa.

Discrete set Action Name Description

Microservice D1 Action triggered on Deployment 1.
D2 Action triggered on Deployment 2.

Scaling

DoNothing The agent does nothing.
Add-1 Deploy one replicas.
Add-2 Deploy two replicas.
Add-3 Deploy three replicas.
Stop-1 Stop one instances.
Stop-2 Stop two instances.
Stop-3 Stop three instances.

among others. The calculation of the desired number of
replicas is given by (4) previously shown. This information is
retrieved from the Deployment component in case the cloud
mode is enabled or from the simulation, helping the agent to
select adequate actions at a given moment. The action space
of gym-hpa is described next.

C. Action Space

The action space corresponds to all actions that the agent
can perform in the environment. Table IV shows a potential
action space of the gym-hpa framework based on an applica-
tion with two microservices. The action space of the available
environments has been designed as MultiDiscrete [41], where
a list of possible actions per each discrete set exists, however,
only one action can be selected for each discrete set per step.
The first discrete set corresponds to microservice selection and
the second one to scaling actions. The size of the action space
depends on the total number of microservices in the applica-
tion and the correspondent maximum and minimum replication
factor (αd,max and αd,min). For example, if αd,max = 4 and
αd,min = 1, the maximum number of additions or terminations
that the agent can select for each microservice is three (i.e.,
second discrete set). Agents can decide to keep the deployment
running as is (DoNothing), perform scale-out operations by
deploying extra pods (Add), or terminate a certain number of
pods (Stop).

D. Reward Function

The purpose of the reward function is to teach the agent
how to maximize the accumulated reward by selecting ap-
propriate actions depending on the observation provided by
the environment. Two reward functions have been designed
based on different objectives: cost (5) and latency (6). The
cost function intends to lead the agent to allocate the accurate
number of replicas for each microservice deployment focused
on reducing deployment costs by increasing resource usage.



For each accurate microservice deployment, the agent receives
a positive reward of 1. Otherwise, the agent receives no
positive feedback. In addition, if the agent attempts to deploy
or terminate pod instances that would violate the maximum
and minimum replication factor, the agent receives a penalty
of -1 so that the agent learns what actions are possible based
on the current number of deployed pods.

The latency function leads the agent to find proper allocation
schemes that reduce the overall application latency. The goal
is to reach a null reward since the agent is penalized based
on the latency. A threshold (τa) teaches the agent that the
latency should be lower than the threshold since the threshold
corresponds to the penalty given to the agent in case maximum
and minimum replication factors are not respected. Both
reward functions follow a linear pattern since the agent learned
to perform more adequate actions compared to an exponential
function in the reward functions.

getCostReward(d) =

{
1.0 if Rd == ωd

0 Otherwise
(5)

getLatencyReward(a) =

{
−Ψa if Ψa ≤ τa

−τa Otherwise
(6)

E. Agents

The agents have been implemented based on the stable
baselines 3 [42] library, a set of reliable implementations of
RL algorithms written in Python. The evaluation of the gym-
hpa framework consisted of two agents that support MultiDis-
crete action spaces: Advantage Actor Critic (A2C) [43] and
Recurrent Proximal Policy Optimization (RPPO) [44]. A2C is
a synchronous, deterministic algorithm that combines policy
and value-based algorithms. Policy-based agents directly learn
a policy mapping input states to output actions (i.e., actors),
and value-based algorithms learn to select actions based on
the predicted value of the input state or action (i.e., critic).
RPPO behaves similarly to Proximal Policy Optimization
(PPO), a policy gradient method for RL vastly used today for
different scenarios (e.g., robot control and video games), but
adds support for recurrent policies, such as Long Short-Term
Memory (LSTM).

VI. EVALUATION SETUP

This section presents the applications shown in Table V and
how datasets are created for the simulation mode, followed by
the experimental setup.

A. Applications

The first scenario (Fig. 2a) relates to the deployment of
the RC application [17] consisting of two K8s deployments:
master and slave. The Redis-benchmark utility [45] has been
applied to generate database queries from emulated clients
during the training and testing of the RL agents. The number
of emulated clients dynamically changes during training and
testing so that RL agents learn to adapt the allocation scheme
according to the current demand. The Redis Exporter [46]

TABLE V: Deployment properties of the evaluated
microservice-based applications.

Application Deployment CPU R/L
(in m)

RAM R/L
(in Mi)

Min/Max
Rep. (αd)

Redis
Cluster (a1)

Master 250/500 250/500 1/8Slave

Online
Boutique

(a2)

Frontend 100/200 64/128

1/8

Cart 200/300 180/300
Product 100/200 64/128

Currency 100/200 64/128
Payment 100/200 64/128
Shipping 100/200 64/128

Email 100/200 64/128
Checkout 100/200 64/128

Recommend. 100/200 64/128
Ad 200/300 180/300

Redis-cart 70/125 200/256

(a) Redis Cluster (RC) application.

(b) Online Boutique (OB) application.

Fig. 2: Illustration of microservice dependencies [17], [18].

developed for Prometheus has been deployed in the K8s
cluster to extract metrics regarding the performance of the
RC application. The latency for RC (Ψa1

) corresponds to the
calculation of the average response time of the Redis server by
collecting the total query duration and the total query response
time during the last five minutes as shown in (7). The latency
threshold (τa1 ) is set to 250 milliseconds (ms).

Ψa1 =
redis commands duration seconds total[5m]

redis commands processed total[5m]
(7)

The second scenario (Fig. 2b) relates to the OB application
[18] consisting of 11 K8s deployments. It is a web-based
e-commerce application where users can browse items and
add them to their cart to purchase them. Recent works have
deployed OB to demonstrate novel features in the microser-
vice research domain. The Frontend service receives HTTP



(a) Number of Deployed pods. (b) CDF (CPU Usage).

Fig. 3: Analysis of the Redis Cluster (RC) master deployment.

TABLE VI: Software Versions of the Testbed.

Software Version
Python & K8s Python Client 3.10 & 23.6.0
gym & stable baselines 3 0.21.0 & 1.5.0
Kubeadm & Kubectl v1.22.4
Docker & Linux Kernel docker://20.10.10 & 5.4.0-80-generic
Operating System Ubuntu 20.04.2 LTS

TABLE VII: The gym-hpa environment configuration.

Name Deploym. Action Space Obs. Space
Redis Cluster 2 MultiDiscrete(2, 15) 20 states

Online Boutique 11 MultiDiscrete(11, 15) 110 states

requests and forwards them to several services, including
Currency and Product Catalog. In the evaluation, a load
generator based on the locust load tool [47] sends several
GET and POST requests from emulated users. The Locust
Exporter [48] developed for Prometheus has been deployed in
the K8s cluster to collect the average response time of several
requests. The latency for OB (Ψa2

) corresponds to the average
response time based on the GET /cart request as shown in (8).
The latency threshold (τa2

) is set to 3 seconds (3000 ms).

Ψa2
= locust avg response time GET cart (8)

B. Dataset creation

Datasets are collected for both applications from real de-
ployments by generating different requests to trigger several
scaling actions. These datasets are saved in Comma Separated
Value (CSV) files to help build a tailored simulation where
each observation corresponds to the actual resource usage of
these applications in a K8s cluster. Fig. 3 shows the number of
deployed pods and the corresponding Cumulative Distribution
Function (CDF) regarding CPU usage based on the master
deployment of the RC application. Based on the selected
action by the RL agent, an appropriate observation is retrieved
from the dataset, making the simulation mode a near-real
experiment.

C. Testbed implementation

The gym-hpa framework has been implemented in Python
to ease the interaction with both the OpenAI Gym and stable
baselines 3 libraries. The K8s Python Client has been used to

TABLE VIII: The execution time per episode during training.

Algorithm Application Mode Execution Time (in s)
A2C Redis Cluster Simulation 0.445 ± 0.252

RPPO 0.696 ± 0.571
A2C Redis Cluster Cluster 20.090 ± 6.833

RPPO 24.968 ± 8.865
A2C Online Boutique Simulation 1.262 ± 0.146

RPPO 1.890 ± 1.177
A2C Online Boutique Cluster 226.30 ± 58.68

RPPO 285.963 ± 91.229

(a) Cost reward function. (b) Latency reward function.

Fig. 4: Accumulated rewards during training for the Redis
Cluster (RC) application.

(a) Cost reward function. (b) Latency reward function.

Fig. 5: Accumulated rewards during training for the Online
Boutique (OB) application.

access a K8s cluster and retrieve information from the given
deployments. Table VII shows the environment configurations
based on the presented applications. In the evaluation, an
episode consists of 25 steps where the agent attempts to
maximize the reward based on the current demand. Default
parameters for both RL agents have been considered, and its
optimization is left out of the scope of this paper. The agents
have been executed on a 14-core Intel i7-12700H CPU @ 4.7
GHz processor with 16 GB of memory.

VII. RESULTS

Table VIII shows the execution time per episode (i.e.,
25 steps) during training for both RL algorithms based on
the simulation and cluster modes. The simulation mode is
significantly faster since the observations come from CSV
files rather than retrieved from the K8s API and Prometheus
API in the cluster mode. The agents are trained for 2000
episodes, showing that training RL agents in a real cluster is
a costly operation. For the RC application, each episode lasts



TABLE IX: Results obtained during the testing phase.

Redis Cluster (RC) Application
Alg. M G Reward Pods Latency (in µs)
A2C S C 24.6 ± 2.9 2.3 ± 0.4 55.3 ± 8.7
RPPO 26.3 ± 6.7 2.8 ± 0.8 107.9 ± 859.8
A2C C C 24.0 ± 3.2 2.4 ± 0.6 36.6 ± 18.2
RPPO 24.2 ± 3.0 2.2 ± 0.3 46.2 ± 12.1
A2C S L -0.4 ± 0.1 3.3 ± 0.9 15.1 ± 1.5
RPPO -0.9 ± 2.8 3.6 ± 0.7 23.5 ± 6.0
A2C C L -1.7 ± 2.9 13.3 ± 2.0 28.3 ± 15.0
RPPO -7.0 ± 36.0 8.4 ± 4.4 42.4 ± 11.2
KHPA NA CPU NA 4.1 ± 0.9 44.8 ± 34.2

Online Boutique (OB) application
Alg. M G Reward Pods Latency (in s)
A2C S C 83.2 ± 59.7 14.9 ± 3.0 1.05 ± 0.48
RPPO 124.8 ± 27.2 14.9 ± 3.1 1.09 ± 0.27
A2C C C 153.6 ± 32.2 13.1 ± 3.2 1.28 ± 0.39
RPPO 113.7 ± 41.3 24.8 ± 8.6 1.17 ± 0.42
A2C S L -25.6K ± 3.3K 43.4 ± 9.6 0.92 ± 0.16
RPPO -71.2K ± 9.9K 50.7 ± 6.8 1.08 ± 0.25
A2C C L -34.4K ± 6.2K 54.5 ± 8.6 0.98 ± 0.52
RPPO -60.3K ± 8.6K 46.3 ± 6.5 0.99 ± 0.19
KHPA NA CPU NA 16.7 ± 3.7 1.22 ± 0.21

Mode (M): S = Simulation, C= Cluster, NA = Not Applicable.
Goal (G): C = Cost, L = Latency, CPU = CPU usage of 75%.

20 to 25 seconds on average in the cluster mode and takes
0.4 to 0.6 seconds in the simulation mode, with RPPO being
slightly slower than A2C. Both algorithms execute slower for
the OB application since more microservices are typically
deployed. Fig. 4 illustrates the accumulated reward for both
reward functions during training for the RC application. The
algorithms for the cost function in the cluster mode achieve
slightly higher rewards compared to the simulation mode.
Regarding the latency function, the algorithms explore the
action space to find actions that lead to null rewards since
it means that the latency is close to zero. Fig. 5 illustrates the
accumulated reward for both reward functions during training
for the OB application. A similar pattern occurs compared to
the RC application, where the cluster mode achieves higher
accumulated rewards than the simulation mode.

In the testing phase, all algorithms have been executed for
100 episodes with the saved configuration after 2000 episodes
of training with different demand patterns. Table IX shows
the results obtained during the testing phase concerning accu-
mulated rewards, the average number of deployed pods, and
the average application latency for the different algorithms for
both applications. KHPA has also been evaluated by enabling
it for each deployment in the considered applications. Each
episode for KHPA consists of the average execution time for
each application previously shown in Table VIII, where the
number of deployed pods and the application’s latency are
collected from the K8s cluster. Both algorithms significantly
reduce the number of deployed pods or the latency depending
on the considered objective for the RC application compared
to KHPA. Costs are reduced on average by at least 32%
(e.g., 2.8 versus 4.1 deployed pods), and latency decreased
by at least 48% (e.g., 23.5 versus 44.8 microseconds). The
simulation mode achieved lower latency than the cluster mode

for latency reduction. In contrast, the cluster mode achieved
lower deployment costs than the simulation mode for the
cost function, deploying a slightly lower number of pods on
average. For the OB application in the cluster mode for the cost
objective, A2C reduces costs on average by 20% compared
to KHPA while RPPO increases costs by 30%. Also, for
the latency objective, A2C can reduce the expected response
time on average by 25%, however, at a high cost in terms
of resources since it deploys additional pod instances. A2C
outperformed RPPO for the OB application. KHPA cannot
find appropriate scaling actions since it does not consider
microservice inter-dependencies, and its stabilization window
does not allow fast reactions to sudden demands. KHPA only
triggers the deployment or termination of pod instances a few
seconds after it detects an increase or decrease of demand.

In summary, results show that microservice inter-
dependencies play a major role in the efficient auto-scaling
of microservice-based applications. Two distinct objectives
have been evaluated, demonstrating that RL algorithms can
find appropriate actions by considering microservice inter-
dependencies. In the testing phase, A2C seems more suitable
for generalization since it achieved higher rewards than RPPO
during different demand patterns. The proposed simulation
mode slightly outperformed the cluster mode, demonstrating
RL agents can be trained offline with simulations and then
validated in operational environments.

VIII. CONCLUSIONS

This paper presents the gym-hpa framework that bridges the
gap between RL and auto-scaling research. The framework is
inspired by the OpenAI Gym library and the popular K8s
platform, creating a proper environment for RL agents to
learn how to perform adequate scaling actions on real cloud
environments. The framework has been released in open-
source, allowing researchers to evaluate their auto-scaling
approaches. In addition, this paper studies microservice inter-
dependencies in auto-scaling since current applications repre-
sent complex graphs of loosely-coupled microservices, making
its proper scaling a difficult task. The proposed approach
aims to improve resource usage and reduce the application’s
response time in future clouds by applying RL for proper hori-
zontal scaling of microservice applications with complex inter-
dependencies. Experiments showed that RL agents trained
with the gym-hpa framework reduce the resource usage on
average by at least 30% and reduce the application’s latency by
25% compared to default auto-scaling mechanisms. As future
work, multi-objective RL agents will be studied to find optimal
combinations of opposing scaling strategies.

ACKNOWLEDGMENT

José Santos is funded by the Research Foundation Flanders
(FWO), grant number 1299323N.

REFERENCES

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: yesterday, today, and tomor-
row,” Present and ulterior software engineering, pp. 195–216, 2017.



[2] X. Larrucea, I. Santamaria, R. Colomo-Palacios, and C. Ebert, “Mi-
croservices,” IEEE Software, vol. 35, no. 3, pp. 96–100, 2018.

[3] T. Schneider and A. Wolfsmantel, “Achieving cloud scalability with
microservices and devops in the connected car domain.” in Software
Engineering (Workshops), 2016, pp. 138–141.

[4] Amazon, “Amazon elastic container service (amazon ecs),” accessed on
22 September 2021. [Online]. Available: https://aws.amazon.com/ecs/

[5] B. Burns, J. Beda, and K. Hightower, Kubernetes: up and running: dive
into the future of infrastructure. O’Reilly Media, 2019.

[6] R. Hat, “Red hat openshift container platform,” ac-
cessed on 22 September 2021. [Online]. Available:
https://www.redhat.com/en/technologies/cloud-computing/openshift

[7] M. Giordani, M. Polese, M. Mezzavilla, S. Rangan, and M. Zorzi, “To-
ward 6g networks: Use cases and technologies,” IEEE Communications
Magazine, vol. 58, no. 3, pp. 55–61, 2020.

[8] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards low-
latency service delivery in a continuum of virtual resources: State-of-the-
art and research directions,” IEEE Communications Surveys & Tutorials,
2021.

[9] C. Qu, R. N. Calheiros, and R. Buyya, “Auto-scaling web applications
in clouds: A taxonomy and survey,” ACM Computing Surveys (CSUR),
vol. 51, no. 4, pp. 1–33, 2018.

[10] AWS, “Service auto scaling.” accessed on 22 September 2021. [Online].
Available: https://docs.aws.amazon.com/AmazonECS/latest/
developerguide/service-auto-scaling.html

[11] Kubernetes, “Horizontal pod autoscaler.” accessed on 22 Septem-
ber 2021. [Online]. Available: https://kubernetes.io/docs/tasks/run-
application/horizontal-pod-autoscale/

[12] ——, “Vertical pod autoscaler,” accessed on 22 September
2021. [Online]. Available: https://cloud.google.com/kubernetes-
engine/docs/concepts/verticalpodautoscaler

[13] Y. Al-Dhuraibi, F. Paraiso, N. Djarallah, and P. Merle, “Autonomic
vertical elasticity of docker containers with elasticdocker,” in 2017 IEEE
10th international conference on cloud computing (CLOUD). IEEE,
2017, pp. 472–479.

[14] G. Rattihalli, M. Govindaraju, H. Lu, and D. Tiwari, “Exploring potential
for non-disruptive vertical auto scaling and resource estimation in
kubernetes,” in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE, 2019, pp. 33–40.

[15] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-
man, J. Tang, and W. Zaremba, “Openai gym,” arXiv preprint
arXiv:1606.01540, 2016.

[16] M. Luksa, Kubernetes in action. Simon and Schuster, 2017.
[17] Redis, “Redis, an open source in-memory data structure store.” accessed

on 22 September 2021. [Online]. Available: https://redis.io/
[18] O. Boutique, “Online boutique, a cloud-native microservices demo

application.” accessed on 22 September 2021. [Online]. Available:
https://github.com/GoogleCloudPlatform/microservices-demo

[19] I. Gergin, B. Simmons, and M. Litoiu, “A decentralized autonomic
architecture for performance control in the cloud,” in 2014 IEEE
International Conference on Cloud Engineering. IEEE, 2014, pp. 574–
579.

[20] A. Danilo, C. Michele, R. Lancellotti, and G. Michele, “A hierarchical
receding horizon algorithm for qos-driven control of multi-iaas applica-
tions,” 2018.

[21] R. N. Calheiros, E. Masoumi, R. Ranjan, and R. Buyya, “Workload
prediction using arima model and its impact on cloud applications’ qos,”
IEEE transactions on cloud computing, vol. 3, no. 4, pp. 449–458, 2014.

[22] V. R. Messias, J. C. Estrella, R. Ehlers, M. J. Santana, R. C. Santana,
and S. Reiff-Marganiec, “Combining time series prediction models using
genetic algorithm to autoscaling web applications hosted in the cloud
infrastructure,” Neural Computing and Applications, vol. 27, no. 8, pp.
2383–2406, 2016.

[23] J. Kumar and A. K. Singh, “Workload prediction in cloud using artificial
neural network and adaptive differential evolution,” Future Generation
Computer Systems, vol. 81, pp. 41–52, 2018.

[24] L. Baresi, S. Guinea, A. Leva, and G. Quattrocchi, “A discrete-time feed-
back controller for containerized cloud applications,” in Proceedings of
the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering, 2016, pp. 217–228.

[25] S. Farokhi, P. Jamshidi, E. B. Lakew, I. Brandic, and E. Elmroth,
“A hybrid cloud controller for vertical memory elasticity: A control-
theoretic approach,” Future Generation Computer Systems, vol. 65, pp.
57–72, 2016.

[26] S. M. R. Nouri, H. Li, S. Venugopal, W. Guo, M. He, and W. Tian,
“Autonomic decentralized elasticity based on a reinforcement learning
controller for cloud applications,” Future Generation Computer Systems,
vol. 94, pp. 765–780, 2019.

[27] A. N. Toosi, J. Son, Q. Chi, and R. Buyya, “Elasticsfc: Auto-scaling
techniques for elastic service function chaining in network functions
virtualization-based clouds,” Journal of Systems and Software, vol. 152,
pp. 108–119, 2019.

[28] F. Rossi, M. Nardelli, and V. Cardellini, “Horizontal and vertical scaling
of container-based applications using reinforcement learning,” in 2019
IEEE 12th International Conference on Cloud Computing (CLOUD).
IEEE, 2019, pp. 329–338.

[29] D. Lee, J.-H. Yoo, and J. W.-K. Hong, “Deep q-networks based
auto-scaling for service function chaining,” in 2020 16th International
Conference on Network and Service Management (CNSM). IEEE, 2020,
pp. 1–9.

[30] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych, P. Broniek, J. Kusmierek,
P. Nowak, B. Strack, P. Witusowski, S. Hand et al., “Autopilot: work-
load autoscaling at google,” in Proceedings of the Fifteenth European
Conference on Computer Systems, 2020, pp. 1–16.

[31] L. Toka, G. Dobreff, B. Fodor, and B. Sonkoly, “Machine learning-based
scaling management for kubernetes edge clusters,” IEEE Transactions
on Network and Service Management, vol. 18, no. 1, pp. 958–972, 2021.

[32] P. Singh, P. Gupta, K. Jyoti, and A. Nayyar, “Research on auto-scaling of
web applications in cloud: survey, trends and future directions,” Scalable
Computing: Practice and Experience, vol. 20, no. 2, pp. 399–432, 2019.

[33] M. Maurer, I. Breskovic, V. C. Emeakaroha, and I. Brandic, “Revealing
the mape loop for the autonomic management of cloud infrastructures,”
in 2011 IEEE symposium on computers and communications (ISCC).
IEEE, 2011, pp. 147–152.

[34] J. Santos, T. Wauters, B. Volckaert, and F. De Turck, “Towards network-
aware resource provisioning in kubernetes for fog computing applica-
tions,” in 2019 IEEE Conference on Network Softwarization (NetSoft).
IEEE, 2019, pp. 351–359.

[35] ——, “Towards delay-aware container-based service function chaining
in fog computing,” in NOMS 2020-2020 IEEE/IFIP Network Operations
and Management Symposium. IEEE, 2020, pp. 1–9.

[36] Kubernetes, “A deployment provides declarative updates for pods
and replicasets.” accessed on 28 July 2022. [Online]. Available:
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/.

[37] J. Turnbull, Monitoring with Prometheus. Turnbull Press, 2018.
[38] Kubernetes, “Resource management for pods and con-

tainers.” accessed on 28 July 2022. [Online]. Available:
https://kubernetes.io/docs/concepts/configuration/manage-resources-
containers/.

[39] V. Medel, R. Tolosana-Calasanz, J. Á. Bañares, U. Arronategui, and
O. F. Rana, “Characterising resource management performance in ku-
bernetes,” Computers & Electrical Engineering, vol. 68, pp. 286–297,
2018.

[40] M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski,
W. Dabney, D. Horgan, B. Piot, M. Azar, and D. Silver, “Rainbow:
Combining improvements in deep reinforcement learning,” in Thirty-
Second AAAI Conference on Artificial Intelligence, 2018.

[41] openAIGym, “The action spaces in openai gym.”
accessed on 26 July 2022. [Online]. Available:
https://github.com/openai/gym/tree/master/gym/spaces

[42] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, and N. Dor-
mann, “Stable baselines3,” 2019.

[43] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-
forcement learning,” in International conference on machine learning.
PMLR, 2016, pp. 1928–1937.

[44] D. S. Ratcliffe, K. Hofmann, and S. Devlin, “Win or learn fast proximal
policy optimisation,” in 2019 IEEE Conference on Games (CoG). IEEE,
2019, pp. 1–4.

[45] Redis, “How fast is redis?” accessed on 28 August 2022. [Online].
Available: https://redis.io/topics/benchmarks.

[46] P. Exporter, “Prometheus redis metrics exporter,” accessed on 28 August
2022. [Online]. Available: https://github.com/oliver006/redis exporter.

[47] Locust, “An open source load testing tool.” accessed on 2 December
2021. [Online]. Available: https://locust.io/.

[48] C. Solutions, “Locust exporter,” accessed on 28 August 2022. [Online].
Available: https://github.com/ContainerSolutions/locust exporter.


