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Abstract 

Metabolic enzymes tend to evolve towards catalytic efficacy, precision and speed. This seems 

particularly true for ancient and conserved enzymes involved in fundamental cellular processes 

that are present virtually in every cell and organism and converting and producing relatively 

limited metabolite numbers. Nevertheless, sessile organisms like plants have an astonishing 

repertoire of specific (specialized) metabolites that, by numbers and chemical complexity, by 

far exceed primary metabolites. Most theories agree that early gene duplication, subsequent 

positive selection and diversifying evolution have allowed relaxed selection of duplicated 

metabolic genes, thus facilitating the accumulation of mutations that could broaden 

substrate/product specificity and lower activation barriers and kinetics. Here, we use oxylipins, 

oxygenated fatty acids of plastidial origin to which the phytohormone jasmonate belongs, and 

triterpenes, a large group of specialized metabolites whose biosynthesis is often elicited by 

jasmonates, to showcase the structural and functional diversity of chemical signals and 

products in plant metabolism. 
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Introduction 

Metabolites provide more than just structural roles. They can carry different types of 

information, not only because they may act as signaling molecules sensu stricto, but also 

because their physiochemical properties may dictate how enzymes have to evolve to interact 

with handed-down templates of biomolecular structures [1]. As a result, metabolic and genetic 

complexity (i.e. comprising both the number of coding sequences and regulatory connections) 

frequently go hand in hand, and linking structures to functions means deciphering another layer 

of communication and evolution of plants. Although new organisms may emerge or go extinct 

during evolution, membranes will typically be built the same way, hormones will frequently work 

identically and, ultimately, the showcase metabolites of this review, i.e. oxylipins and 

triterpenes, will remain present in every member of the Viridiplantae.  

Conventionally, plant metabolites are often divided into primary and specialized metabolites. 

The first are ubiquitously present in most organisms, being products of enzymes that normally 

have a high substrate and product specificity and are kinetically efficient. These are 

indispensable for plant growth and survival, and constitute the metabolic heritage of evolution 

and the results of macro-evolutionary processes. In contrast, enzymes involved in specialized 

metabolite biosynthesis, which ancestrally originated from duplication of genes involved in 

primary metabolism [2], tend to be more promiscuous and kinetically slower, and sometimes 

produce not only one but a bouquet of metabolites, only some of which will confer evolutionary 

advantages [2]. In this perspective, we speculate that once a certain metabolite confers a 

specific advantage to plant fitness, it may become a fixed part of the core metabolic toolkit, 

allowing evolution to select enzymes that will produce this product more efficiently [2]. Also, 

the more we move away from primary metabolism, the more frequently enzymes can have 

multiple substrates or products that will allow to explore metabolic possibilities and sometimes 

develop new functions. In this review, we will highlight these hypotheses by discussing the 

evolution of plant oxylipin and triterpene metabolites. 

 

Structural and functional diversity of oxylipins 

Oxylipins are molecules that originate from oxygenated fatty acids [3]. In humans, oxylipins 

are critical bioactive mediators of physiology and inflammation, and more than 500 distinct 

oxylipin entities have recently been detected in human samples [4]. In plants, oxylipins play 

essential roles in stress signaling and development. One of the best-characterized examples 

is the phytohormone jasmonate (JA), regulating responses to (a)biotic stresses, the production 

of specialized metabolites (including most triterpenes), but also several aspects of plant growth 

and development [3,5,6].  

JA biosynthesis in plants starts in the chloroplast and ends in the peroxisome. In Arabidopsis 

thaliana (Arabidopsis), ɑ-linoleic acid is the predominant unsaturated fatty acid composing the 

lipid bilayer of the thylakoid membrane and it represents the starting molecule for the 

biosynthesis of JA. In the chloroplast, ɑ-linoleic acid is oxidized by 13-lipoxygenase, forming 

13‑hydroperoxy-octadecatrienoic acid, which is cyclized and rearranged by allene oxide 

synthase and allene oxide cyclase to form 12-oxo-phytodienoic acid (OPDA). Then, OPDA is 

exported to the peroxisome where it undergoes reduction by the 12-oxophytodienoate 

reductase 3 (OPR3) enzyme and rounds of β-oxidations forming JA that is released in the 

cytosol [3]. It is worth mentioning that recent studies on OPR3 loss-of-function mutants 

revealed that parallel OPR3-independent pathways are capable of circumventing peroxisomal 

OPR3-dependent biosynthetic steps so that, in the absence of OPR3, β-oxidized derivatives 

of OPDA are released and reduced to JA in the cytosol by the action of the OPR3-related 
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enzyme OPR2 [7]. JA represents the basic structure that is metabolized into multiple bioactive 

compounds. For example, JASMONATE RESISTANT 1 (JAR1) conjugates JA with isoleucine 

to form jasmonoyl-isoleucine (JA-Ile), which binds to the coreceptor complex consisting of the 

F-box protein coronatine-insensitive 1 (COI1) [8] and a repressor jasmonate-ZIM domain (JAZ) 

protein [9,10]. JA-Ile perception unleashes key transcriptional regulators, such as MYC2, from 

inhibition by JAZ, ultimately leading to the onset of defense responses, such as biosynthesis 

of specialized metabolites [6,11,12]. Whereas JA-Ile is considered as the main and most 

efficient bioactive form of JA [13,14], several other JA conjugates, mostly with hydrophobic 

amino acids, have been identified [15,16]. Yet, the latter conjugates are less potent than JA-

Ile in triggering JA-mediated responses and are the products of enzymes that show higher 

promiscuity than the canonical JAR1 [15]. However, the bioactivity of JA derivatives may go 

beyond the binding to the COI1–JAZ coreceptor complex and structural JA variants may have 

a specific function. A suitable example is the methylated form of JA (MeJA), which is not 

considered active per se because it does not bind the coreceptor complex. Yet, this highly 

volatile JA ester may be involved in the communication between plants or in the systemic 

triggering of a prompt JA response [17-20]. Notably, whereas hydroxylation of JA to 12-OH-JA 

was initially proposed as a mechanism linked to hormone catabolism and thus inactivation [21], 

recent findings have shown that, in its conjugated form, 12-OH-JA-Ile also has bioactive 

properties promoting the formation of the COI1–JAZ coreceptor complex and thereby inducing 

defense responses [22,23]. Nevertheless, upon stimulus perception, the timing of the 

production of oxidized JA derivatives and their strength in inducing the JA response may differ 

from the canonical JA-Ile pathway, hence the formation of these derivatives may be ways to 

tune the intensity of the JA response. Furthermore, conversion of 12-OH-JA into cis-jasmone 

triggers volatile defenses against aphids in potato [24]. These examples illustrate that novel 

JA variants have been arising during evolution (Fig. 1), and plausibly the identity and function 

of many of them remain to be revealed and elucidated. 

Some recent studies on oxylipin signaling in non-vascular plant lineages revealed that JA-Ile 

was not the ancient bioactive oxylipin in plants. Earlier lineages of land plants, such as the 

bryophytes Marchantia polymorpha, Physcomitrella patens, and Calohypnum plumiforme, use 

OPDA instead of JA as the actual signaling hormone, given they miss most of the JA 

biosynthetic machinery [25-28]. Here, the OPDA derivative dinor-12-oxo-phytodienoic acid 

(dn-OPDA) exerts the function of JA-Ile in binding and activating the COI1–JAZ coreceptor 

complex, suggesting dn-OPDA to be the ancestral phytohormone. Contrary to JA derivatives, 

little is known about OPDA derivatives, except for a few reports that found C20-OPDA and iso-

12-OPDA to accumulate upon wounding in M. polymorpha and P. patens, respectively [29,30]. 

Accordingly, recent studies revealed that in contrast to most vascular plants, bryophytes such 

as Marchantia are rich in long-chain C20 and C22 polyunsaturated fatty acids. In this species, 

the exogenous application of C20-OPDA is able to activate COI1-dependent and -independent 

responses, as it is the precursor of Δ4-dn-OPDA, the direct ligand of the MpCOI1-MpJAZ 

coreceptor [30].  

As life gained complexity, so did the signals necessary to fine-tune developmental programs. 

For example, differently from liverworts, the genome of the lycophyte Selaginella moellendorffii 

already contains JA biosynthetic enzymes, similar to those of Arabidopsis [31]. Besides the 

enzymes, also the components of the COI1–JAZ coreceptor complex coevolved to 

accommodate the new ligands. In fact, a single amino-acid change in the receptor protein 

MpCOI1 (V377A) of M. polymorpha was found to be responsible for switching ligand specificity 

from dn-OPDA into JA-Ile [25]. Similarly, specific residues of the JAZ proteins in bryophytes 

and lycophytes enable the perception of dn-OPDA ligands, which does not occur in vascular 

plants in which JAZ proteins recognize only JA-Ile [32]. MpMYC from Marchantia was shown 
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to be capable of directly interacting with the Arabidopsis JAZ proteins and to upregulate 

defense responses in Marchantia by binding G-boxes of promoters of genes encoding 

biosynthetic enzymes involved in the production of specialized metabolites such as 

sesquiterpenes [33]. So, although the components and dynamics of COI–JAZ–MYC regulatory 

modules are functionally conserved, different ligands determine their (specific) behavior. 

The fact that different plant lineages use related but non-identical molecules and molecular 

complexes to address the same type of developmental and environmental challenges, raises 

intriguing questions regarding the advantage for angiosperms to evolve and produce JAs. Do 

OPDA derivatives work in the same way as JA derivatives? Has OPDA lost its function in 

flowering plants? Chances are that OPDA as well as other, non-OPDA linoleic acid derivatives 

have partially conserved stress signaling functions in angiosperms as well. For example, 

oxylipins produced from linoleic acid by 9-lipoxygenase, such as (9S,10E,12Z,15Z)-9-hydroxy-

10,12,15-octadecatrienoic acid, regulate defense responses against the nematode 

Meloidogyne spp. in tomato [34], while in the monocot Epipremnum aureum, OPDA displays 

a scavenging activity that reduces reactive oxygen species levels in the chloroplast [35]. 

Likewise, OPDA has recently been found to tune the activity of thioredoxins and peroxiredoxins 

in plant stress responses by covalently binding thiols. This type of post-translational 

modification has been termed OPDAylation [36]. It is therefore likely that OPDA in vascular 

plants is not merely a JA precursor [37], and that some of its ancient functions, such as a COI1-

independent function in thermotolerance [38], may have persisted. Considering that OPDA-Ile 

was proposed as a new alternative and independent signal from JA [39], it is clear that many 

structure–activity relationships of plant oxylipins remain to be discovered. 

 

Structural and functional diversity of triterpenes 

It has been reported that specialized metabolic enzymes are on average thirty times less active 

than those involved in central metabolism [1]. Therefore, varying levels of substrate 

permissiveness, catalytic promiscuity and reduced kinetics would explain how single enzymes 

could perform multiple reactions and synthesize multiple compounds [1]. For instance, 

squalene-derived triterpenes are among the largest group of plant specialized metabolites, 

accounting for thousands of distinct structures [40-42] with disparate functions, ranging from 

structural or defensive roles [40,43] to the modulation of root microbiota and plant growth 
[44,45]. Ultimately, these molecules result from three main biosynthetic steps: cyclization of the 

terpene precursor 2,3-oxidosqualene by oxidosqualene cyclases (OSCs) yielding apolar 

aglycones such as sterols and triterpenes, oxidation of specific positions of the carbon 

backbone by cytochrome P450s (P450s) and decoration of the resulting aglycone with, e.g. 

sugar moieties by UDP-glycosyltransferases (UGTs) (Fig. 2). This last step confers polarity 

and turns triterpenes into amphipathic saponins. Generally speaking, a genome of an 

angiosperm plant would harbor around ten OSCs and between hundred and several hundreds 

of P450s and UGTs, the latter being active on many other substrates beside triterpenes. In 

turn, this translates into hundreds of mono- to hexacyclic scaffolds deriving from OSC activities 

[46], thousands of different oxygenated aglycones produced by P450s and tens of thousands 

of glycosylated saponins resulting from UGT activities [41]. Importantly, here not only enzyme 

promiscuity, but also the combinatorial interconnection between and within the biosynthetic 

networks greatly expands the number of possible metabolic outcomes. Although intricate 

dynamics render it hard to infer metabolic from genetic complexity, genomic analysis of the 

unicellular algae Chlamydomonas reinhardtii and the moss P. patens revealed the presence 

of only one OSC resembling a cycloartenol synthase required for sterol biosynthesis [47]. 

Simplifying, we could speculate, as experimental evidences are mostly lacking, that from this 
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ancestral, yet essential monofunctional enzyme, cycles of gene duplication and fixation have 

recurrently first tested newly arisen multifunctional enzymes (and their products) and then 

embedded in the basic metabolic core only those enzymes whose products would prove 

advantageous [2].  

These evolutionary dynamics are clearly found among the P450s performing oxidations of 

pentacyclic triterpenes. P450s that oxidize the C28 position are among the most represented 

members of this family and show a relatively high degree of specificity and efficiency [48,49] 

as compared with others that target less common positions of the carbon skeleton. C28 

oxidation is indeed the first and most common decoration found in saponins and a prerequisite 

for further oxidizing or glycosylating steps. Therefore, C28 oxidases of the CYP716A subgroup 

are considered the earliest members of triterpene-modifying enzymes in land plants [48], 

whose products became part of the plant’s default metabolic repertoire. Accordingly, evolution 

had enough time to select more efficient C28 oxidases. In contrast, P450s active on other 

positions are sometimes slower and more promiscuous [50], because their products may still 

be developing peculiar functions, conquering a functional niche. The promiscuity of some 

triterpene-modifying enzymes becomes evident, especially when enzymes are tested for 

functional characterization in heterologous systems or in vitro. Here, we frequently see that in 

addition to a main substrate or product, enzymes are active on several substrates and/or 

accumulate by-products or intermediates [51] that in endogenous systems would be scarcely 

produced or promptly catabolized through conversion by competing pathways. 

It should be noted though that chemical diversity does not just arise when duplicated enzymes 

gain new functions towards completely new substrates or residues. Sometimes redundant 

enzymes can perform the same reaction but with different kinetics/affinity, thus accumulating 

different products. For example, some P450s catalyze a three-step sequential oxidation going 

from the hydroxyl to the carboxyl moiety via an aldehyde intermediate [48,51]. Redundant 

enzymes catalyzing the same reaction may have less proclivity to finalize the three oxidative 

steps, thus resulting in the preferential accumulation of specific intermediates.  

For years, Medicago truncatula has been the benchmark for triterpene studies. This model 

legume accumulates among others triterpenes with β-amyrin derived oleanane (OA) aglycone 

backbones such as hederagenin (C23-OH OA), gypsogenic acid (C23-COOH OA) or 

medicagenic acid (C23-COOH, C2-OH OA). Aglycones carrying the aldehyde moiety at C23, 

such as gypsogenin (C23-COH OA) or quillaic acid (C23-COH, C16-OH QA), are barely 

detectable as intermediates or absent in M. truncatula extracts, meaning that the carbon on 

this position is fully oxidized to the carboxyl moiety [51]. In contrast, plants belonging to the 

Caryophyllaceae family tend to predominantly accumulate gypsogenin and quillaic acid 

characterized by the aldehyde moiety on C23 [52]. Together, this suggests that plants evolved 

multiple versions of C23 oxidases, some of which will complete the oxidation to the carboxyl 

group, while others, having reduced affinity for the third oxidative step, accumulate aldehyde-

bearing compounds. Although little is known about the functions of these different but related 

molecules in plants, studies on structure–activity relationships revealed that subtle changes 

can have a big impact on bioactivity [53]. For instance, hederagenin monoglucoside, bearing 

a hydroxyl on C23 and a glucose on C3, is more toxic to herbivorous caterpillars as compared 

with gypsogenic acid or oleanolic acid monoglucoside carrying a carboxyl or hydrogen on 

position 23 [54]. 3D modeling predicted that the C23 hydroxyl group may cause a 90° rotation 

of the sugar residue at C3 with respect to the aglycone plane, thus increasing its lytic properties 

towards insect membranes [40].  

The ability of plants to synthesize saponins that can disrupt the integrity of biological 

membranes while avoiding self-toxicity through compartmentalization, relies on a different 

affinity of these compounds towards plant (e.g. β-sitosterol, campesterol, stigmasterol) or 
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animal (e.g. cholesterol) sterols. Studies with different plant saponins revealed that plasma 

membrane cholesterol is essential for its permeabilization activity [55-57]. Accordingly, it was 

shown that by replacing cholesterol with other sterols, such as Δ7 and Δ9 sterol, the cell 

membranes of sea cucumbers, which represent some of the few animal clades capable of 

synthesizing triterpene saponins, can tolerate their own cytotoxic triterpenes [58]. Cholesterol 

and phospholipid composition, therefore, seems to dictate the toxicity of these types of 

saponins. Considering that Golgi and endoplasmic reticulum membranes contain a lower 

amount of cholesterol than the plasma membrane [59], this would also explain why the lytic 

activity of saponins is particularly effective towards the plasmalemma [60,61]. Although sugar 

residues are essential to confer lytic properties to saponins [40,56,62,63], functional moieties 

on aglycones also play a role [53]. For example, carboxyl and hydroxyl groups on aglycones 

are likely priming cholesterol-independent electrostatic binding to positively charged choline 

heads of phospholipids [57,62], while the backbone types seem to drive the depth and 

orientation of their insertion within the bilayer [57]. Hence, the great structural diversity in 

aglycones may result in different affinities for membranes (i.e. bacterial, fungal or animal) 

based on their lipid composition. Yet, the permeabilizing activity of saponins seems to be 

related mainly to their extent and type of glycosylation. Comparison between α- and δ-hederin, 

having respectively two or one sugar residue(s) on the C3, indicated that the first is much more 

effective for pore formation, likely because the two sugars confer a bigger hydrophilic surface 

and upon insertion cause curvature until disruption of the lipid bilayer [62]. Also, bidesmosidic 

saponins, in which the carbohydrate chains are linked to the C3 and C28 via glycosidic and 

ester bonds, respectively, display a lower toxicity than their monodesmosidic counterparts, 

having sugars only on C3 [53,57,61]. Accordingly, chemical or enzymatic hydrolysis of glycosyl 

residues on C28, which restores the carboxyl moiety, greatly enhances saponin toxicity, for 

instance against fungal pathogens [64,65]. Although saponins are mainly known as defensive 

compounds that are mostly toxic in their monodesmosidic form, plants still synthesize highly 

glycosylated bidesmosidic saponins [66,67]. One may therefore wonder what the function of 

such complex compounds could be. Can they have a dual purpose: being synthesized when 

resources are not limiting as energetic investment by storing sugars on defensive compounds 

to be promptly hydrolyzed upon cell damage, releasing toxic monodesmosidic saponins 

together with sugars to sustain energy metabolism? This question is still far from being 

answered as the structural and biosynthetic complexity of highly glycosylated saponins 

represents major hurdles for functional studies. 

Outlook 

Although technical advances considerably increased the throughput of metabolomics 

compared with proteomics, transcriptomics and genomics, the unambiguous identification of 

metabolites remains scarce and labor intensive because it largely relies on purification followed 

by structure elucidation via nuclear magnetic resonance [41]. 

Platforms like Global Natural Product Social Molecular Networking (GNPS) [68] are innovative 

open-source repositories for interconnecting mass spectrometry datasets of natural 

compounds with streamline functional annotation. However, especially for plant metabolites, 

the efficiency falls a long way short for the hundreds of thousands of estimated compounds 

[69]. Likewise, with regard to both structural and functional characterization, large-scale 

screenings for metabolic phenotypes are hampered by the lack of development of efficient 

read-out methods or by the limited availability of collections of pests, such as microbial 

pathogens or insects, both in numbers and species [70]. Nonetheless, new techniques keep 

on emerging that will help us to tackle this huge challenge. Particularly noteworthy are the 

many emerging protein–metabolite interactomics platforms, such as limited proteolysis-

coupled mass spectrometry or protein–metabolite interactions using size separation [71-73], 
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which will help reveal how the interactome of diverse metabolites evolves, thus shedding new 

light on how structures and functions are connected to create new variability and increase in 

the complexity of the plant’s developmental programs. 
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Figures and figure legends 

 

 

Figure 1. Evolution model of oxylipins. Concept of how plant metabolites may evolve new structures 

and (signaling) functions. Once a molecule gains new functions, it becomes (i) part of the core elements 

of the system and (ii) the chemical skeleton that can be further modified to produce a variety of new 

molecules. In the given example, out of many oxylipins, 12-oxo-phytodienoic acid (OPDA) (i) gained 

essential functions and became part of the core oxylipin signaling module for non-vascular plants, and 

(ii) constituted the starting point for a multitude of OPDA derivatives. Afterwards, among all OPDA 

derivatives, jasmonic acid (JA) became the core signaling molecule in vascular plants and continued to 

diversify into new derivatives that will “explore” new evolutionary possibilities and functions. During 

evolution, cycles of expansions and fixations have likely produced well-established signaling molecules 

as well as numerous derivatives that may have partially redundant or complementary functions, or are 

still gaining new ones. Colored dots represent metabolites and their derivatives that cyclically arose 

and got embedded into developmental programs along evolution. 
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Figure 2 Snapshot of the diversity of 2,3-oxidosqualene-derived metabolites. The figure reports an 

exemplifying portion of the virtually infinite array of triterpenes that can derive from 2,3-

oxidosqualene (central circle) by the consecutive action of cyclases (OSCs), cytochrome P450s (P450s) 

and UDP-glycosyltransferases (UGTs). Both the diversity of the structures and the catalytic promiscuity 

of the enzymes involved in their biosynthesis increase while moving from the center to the periphery. 

This figure should be considered as a general concept, and we would like to point out that there may 

be cases where P450s have more promiscuity, and conversely, that UGTs are more specific. Yet, with 

regard to those involved in triterpenes, in most cases P450s are more specific than UGTs, with the 

notable exception of those involved in ‘check-points’, such as for instance the UGTs that initiate the 

glycosylation path, being the first enzymes to grant higher solubility to the hydrophobic oxidized 

aglycone. 

 

 


