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1. Introduction

The articles collected in this volume form a snapshot of 
the state of Proof Theory at the beginning of the year 
2023.

Proof Theory is a branch of mathematical logic 
originated by Hilbert in the early 1900s. His goal was 
to devise a theory of mathematical proofs, itself making 
use of tools from Mathematics. Such a theory would 
identify abstract properties of proofs and tracé the limits 
of provability. A particular question of interest was 'is 
there a proof of a contradiction from a given set of axioms 
T?' or otherwise stated: 'is T inconsistent?' Hilbert's 
goal with Proof Theory was to show, via combinatorial 
methods, that no mathematical proof could have a 
contradiction as its conclusion.

GödeTs [1] incompleteness theorems showed that 
Hilbert's goal could not be attained in a strict 
sense: for sufficiently strong, consistent theories T, any 
mathematical proof of the fact that T can only be 
carried out in a mathematical theory T' stronger than 
T. In particular, Gödel's theorems applied to theories 
such as first-order and second-order arithmetic, i.e. PA 
and Z2.

Ever since, the Proof Theory has focused, in one way 
or another, on attempting to avoid the limitations of 
Gödel's incompleteness theorems. These attempts have 
led to rich theories of proofs, metamathematics and 
unprovability results of various kinds. We mention two 
of them.
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2(a) Reverse Mathematics
Reverse Mathematics addresses the question 'which mathematical axioms are necessary in order 
to prove a given theorem cpl' Thus, while we might not be able to give a completely satisfactory 
proof that the axioms needed to prove (p are infallible, we might reach a better understanding 
of them, their relationship with other axioms and the logical content of <p. This may lead to 
generalizations, optimal proofs and independence results. The programme was explicitly initiated 
by Friedman [2] and has had high momentum ever since.

Technically, Reverse Mathematics is carried out as follows: one begins by fixing a base theory 
T over which to carry out the analysis. This theory must be weak enough so that the target 
theorem (p is not provable in T; often one considers T = RCAq (Recursive Comprehension), the 
theory whose characteristic axioms are the induction schema restricted to S® formulas with 
second-order parameters, as well as the axiom asserting that all recursive sets exist. One then 
must (i) derive the theorem cp from some strenger set of axioms A and (ii) derive the axioms 
A from the theorem ip, establishing the logical equivalence of A and (p, i.e. the sufficiency and 
necessity of the axioms for a proof of <p.

An early observation was that most theorems of 'everyday Mathematics' line up in strength 
with one of five subsystems of Z2, called the 'Big Five'. These are RCAq, WKL0 (the result of extending 
RCAq by weak König's Lemma, the assertion that every infinite binary tree has a branch), ACAq 
(Arithmetical Comprehension, the second-order counterpart of PA asserting that all arithmetical 
sets relative to a second-order parameter exist), ATRo (Arithmetical Transfinite Recursion, asserting 
that every arithmetical operator can be transfinitely iterated along any well-order) and n\ —CAo 
(77j -Comprehension, asserting that every n\ set exists). Aside from work in actual Reverse 
Mathematics, research within the field often concerns the abstract theory of Reverse Mathematics 
itself, the study of the axiomatic systems for its own saké, the study of models of the theory and 
the relation between subsystems of Z2 and other systems of first- or higher-order arithmetic or of 
set theory. A general reference for the subject is Simpson [3]. We also refer the reader to Dean and 
Walsh [4] for an overview of the historical context of the development of Reverse Mathematics 
going back to Poincaré.

(b) Ordinal Analysis
Gentzen [5] gave the first proof (two, in fact) of the consistency of number theory (more precisely, 
PA). By GödeTs theorem, such a proof must necessarily go beyond the means of arithmetic itself, 
and the way this happens in Gentzen's proof is interesting. The proof follows a direct, explicit, 
inductive construction which reduces a putative proof tt of a contradiction to a simpler such 
proof, eventually producing a proof so simple that it can be verified directly tt could not exist. 
Each step of the induction is simple enough that it can be verified in very weak theories, such as 
Primitive Recursive Arithmetic. However, the ordering over which the induction has been carried 
out is very long, namely, of order-type

eo = sup{<ü, ca", ofw,...},

where ca denotes the order-type of the natural numbers. The explanation behind the possibility 
of Gentzen's proof is that PA does not prove that the ordering eo is well-founded, and thus, that 
induction along it is possible.

A longstanding goal of Proof Theory has since been to prove analogues of Gentzen's theorem 
for stronger and stronger theories. This gives rise to the concept of the /Ij1-norm of a theory,

|T|yyi = sup{a : TI- WO(A) for some A isomorphic to or).

By Spector's ^ -boundedness theorem, lTlni < co^ whenever T is -sound.
In the decades following Gentzen's work, several such analogues have indeed been proved, 

most notably by Takeuti [6], who obtained a consistency proof for the system uj —CAo, and Rathjen
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3[7], who obtained a consistency proof for the system —CAq. Arai [8] has recently announced an 
ordinal analysis of KP augmented with the schema of /Ti-collection. We refer the reader to Rathjen 
[9] for a more detailed overview.

The recent work in the field aims at extending the scope of Ordinal Analysis in various ways. 
Arai [10] presents a form of un-effectivized ordinal analysis which studies the countable ordinals 
whose existence is provable in ZFC. Aguilera and Pakhomov [11] study extensions of the notion of 
\T\ni to higher complexity classes.

2. Tropes in this volume

Various ideals of present-day Proof Theory occur repeatedly in the articles presented in this issue, 
among which we have identified the following:

(i) Higher-type analogues of well-orders, such as dilators and ptykes, and their use for 
(i) abstract analyses of theories taking into account their consequences of complexity 
greater than nf, and (ii) strengthening combinatorial independence results into reverse- 
mathematical equivalences.

(ii) Reverse Mathematics beyond the 'Big Five' subsystems, targeting instead theories 
strenger than the Big Five, weaker than them (possibly constructive theories), or in 
between them.

(iii) Connections between constructibility, intuitionism and 'concrete' proofs on the one hand 
and classical systems (or classical Mathematics) on the other hand.

These three themes challenge classical attitudes held by proof theorists in the past, and we 
expect them to gather even more momentum in the future. The content of this issue should serve 
as a good starting point for future work, particularly for future young researchers in the field. 
Because of this, the articles have mostly been written with an open-ended attitude and indicate 
various open problems.

Before moving on, let us mention some promising Modern Perspectives in Proof Theory, which 
in an ideal world would have also been covered in this issue.

(a) Provabilitylogic and its models
Provability logic studies the abstract properties of the provability relation. A good source for the 
subject is Boolos [12], By using the tools of modal logic, one can state simple facts about it, such 
as GödeTs incompleteness theorem:

OT^Oü-L,

an instance of the more general Löb axiom, □(□^ —> (p) —> D(p. Solovay [13] proved that the 
provability logic of Peano Arithmetic can be axiomatized by Kripke's axiom K, Löb's axiom and 
the rules modus ponens and necessitation. The resulting modal system is called GL. Segerberg [14] 
proved the relational completeness of GL Solovay's proof is general and works for other systems 
such as ZFC, but it notably fails for systems which are much weaker than PA and/or constructive. A 
solution to the problem of characterizing the provability logic of Heyting Arithmetic has recently 
been announced by Mojtahedi.

Question 2.1. What is the provability logic of S^?

A related family of problems concerns the topological interpretations of provability logic and 
of graded provability logies. In particular, the following well-known question is open:

Question 2.2. Suppose that V = L and that for every « € N, there is a ZT,] indescribable Cardinal 
k„. Is Gl complete for the canonical GLP-spaces ([1, Kn], r,1+i)?
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We refer the reader to Bagaria-Magidor-Sakai [15] or to Bagaria [16] for background on the 
question, and in particular for the definition of r,!+i, and to Beklemishev and Gabelaia [17] for 
more background on the subject.

(b) Reverse Mathematics beyond Ii
Recent work has focused on attempts at carrying out reverse-mathematical analyses of statements 
beyond the reach of Z2. Such work not only escapes the paradigm of the Big Five subsystems but 
also the language of Second-Order Arithmetic altogether, perhaps reaching into the wild zoo of 
subsystems of Third-Order Arithmetic, or even beyond.

Not many natural examples are known of theorems which can be easily stated in the language 
of Second-Order Arithmetic but not proved in Z2. One such example is Borel Determinacy 
which—by the work of Martin [18]—is provable in ZFC, but—by the work of Friedman [19]—not in 
ZC. Friedman's work also shows that ^-determinacy is not provable in Z2. Reverse-mathematical 
characterizations of -determinacy have been carried out by Hachtman [20] and Aguilera [21]. 
The work of Schweber [22] and Hachtman [23] studies natural determinacy assertions which can 
be stated in the language of Third-Order Arithmetic and identify the subsystems necessary for the 
proof, illustrating some of the differences which arise in Higher Reverse Mathematics. Aguilera 
[24] and Aguilera and Welch [25] similarly study determinacy principles which can be stated in 
the language of Third-Order Arithmetic, but whose proofs require the use of large cardinals.

Question 2.3. Are there other examples of theorems from the mathematica! literature which 
can be stated in the language of Second-Order Arithmetic but not proved in Z2?

Notable and promising work on Reverse Mathematics beyond the language of Second-Order 
Arithmetic has also been carried out by Normann and Sanders. We mention the articles [26-28],

(c) Structural ProofTheory
Even in 2023, a great deal of research on Structural Proof Theory is being carried out, some of 
it following foundational inclinations similar to those of this issue. A topic of high momentum 
currently is infinitary and cyclic proofs.

We mention an old problem in this area, which has been open for more than 50 years and has 
come to be known as Kreisel's conjecture.

Question 2.4 (Kreisel). Let PA be Peano Arithmetic axiomatized with the successor induction 
schema and identity axioms. Suppose that 4>{y) is a formula such that, for some keN, 0(n) has a 
Gentzen-style proof of length < k for each n e N. Must it be the case that PA I- V* </>(*)?

Many partial results have been achieved towards this conjecture. We mention Baaz and 
Wojtylak [30] and Hrubes [31], the latter of which has shown the conjecture to be true if PA is 
axiomatized with the least-number principle instead of successor induction.

3. Individual papers

Let us now give a brief overview of the issue, together with some of our thoughts and comments 
on future directions of research and open questions. The reader might notice the recurrence of the 
three themes mentioned in §2 and how they interact with one another.

(a) Weak set theories in foundational debates [32]
In what is without a doubt the best possible starting point for our issue, Mathias's article 
presents a wonderful discussion on the history of attitudes, thoughts and approaches to logic and 
foundations which slowly morphs into an exposition of provident sets and gentle functions, their 
properties and the system PROV1. This is a weak subsystem of set theory embodying the existence
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5of ftj-jumps. Indeed, in the unpublished work, Dorais has shown that ACAq+ is bi-interpretable with 
PROVI + V = HC. Moreover, if one adds the principle of Mostowski collapse, then one obtains a 
System bi-interpretable with ATRo-

Mathias's article surveys work from Bowler and Mathias [33], Mathias [34] and others, on 
this subject, and presents it in a way which encourages the reader to tackle some of the many 
remaining open questions and research projects. A topic of particular importance is that of 
forcing over provident sets and extensions of PROVI, as well as the notion of a privileged theory. 
A theory is privileged if it is preserved by set forcing of models M via (generic) filters G which 
meet every dense set in M. Clearly, ZFC is privileged, as is PROVI, by Mathias [34], Friedman's 
[35] Power Kripke-Platek theory is shown to be privileged here. On the other hand, Zermelo 
set theory is known not to be privileged (see Mathias [36]), though attempts at fixing this 
issue give rise to the notion of a lune, which is also discussed in this article. A question which 
appears to remain open and which was stated in Mathias [34] is whether it is possible to force 
over a model of KP and have a set-generic extension satisfy more separation than the ground 
model.

Mathias's article ends with a discussion on stratification and New Foundations, and with an 
anecdote.

(b) Metric fixed point theory and partial impredicativity [37]
In this article, Femandez-Duque, Shafer, Towsner and Yokoyama study the Reverse Mathematics 
of the well-known fixpoint theorems of Caristi [38] and of Preifi-Crampe and Ribenboim [39]. 
These are interesting theorems to study in Reverse Mathematics because they refer to arbitrary 
functions on complete (ultra-)metric spaces and thus cannot be immediately formalized in the 
language of Second-Order Arithmetic. The (reasonable) solution taken by the authors is to restrict 
to classes of formulas and spaces which can be coded by countable objects in a reasonable way. In 
particular, the authors study the Caristi fixpoint theorem for Borel or Baire functions and prove an 
equivalence with Towsner's leftmost path principle, which lies strictly between AIRq and CAo 
in strength.

According to the folklore parlance of mathematicians, Caristi's fixpoint theorem is equivalent 
to Ekeland's variational principle, the latter of which has been analysed in a similar way by three 
of the authors in [40] and shown to be equivalent to TJ^ —CAo. It is thus interesting that the natural 
formalization of Caristi's fixpoint theorem in [37] is strictly weaker. Perhaps an analysis of the 
full Caristi theorem over a suitable subsystem of Third-Order Arithmetic along the lines of the 
work mentioned in §2b would shed light into its logical relationship with Ekeland's principle. 
The results of [40] and [37] do show, however, that the two theorems are logically equivalent 
when restricted to compact spaces and continuous potential. The authors also raise the question 
of the reverse-mathematical status of Caristi's fixpoint theorem restricted to Baire-1 functions, and 
in particular:

Question 3.1 ([37]). Is the Caristi fixpoint theorem for Baire-1 functions provable in AIRq?

(c) Proof Theory and Non-smooth Analysis [41]
Proof mining as pioneered over the years by Kohlenbach and his collaborators concerns proof- 
theoretic applications to mainstream mathematics. It aims at extracting concrete Information (like 
effective bounds or rates of convergence) from non-constructive proofs in analysis.

This programme has been very successful so far, and a plethora of results has been obtained. 
Kohlenbach and collaborators on the one hand devised general logical meta-theorems which 
allow for bound extraction in general contexts, and on the other hand, they successfully applied 
proof mining to given proofs from the literature.

The current article addresses both issues. In a first step, it covers general results about the 
proof-theoretic content of monotone and m-accredetive set valued operators. In a second step, this 
material is used to study the Brezis-Haraux theorem. Two quantitative versions of this theorem
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are obtained, depending on whether the proof uses the so-called uniform regularity (leading to 
simpler bounds) or so-called weakly uniform regularity (still allowing for effective bounds) in a 
critical way.

(d) On the decomposition of WKU! [42]
This article properly belongs to the field of Constructive Reverse Mathematics. As in usual Reverse 
Mathematics, the goal of the program is to identify the collection of axioms necessary to prove 
a given theorem, the difference being that in this case the base theory has been replaced by a 
constructive system, potentially allowing for a finer analysis.

Fujiwara and Nemoto study a form of the well-known weak König lemma (WKL) over 
an 'effectivization' ELq of Toelstra's Elementary Analysis whose induction schema has been 
restricted to JCj formulas. In this context, Ishihara [43] has previously shown that the weak 
König's lemma can be decomposed (over EL0) as a logical principle (namely, a fragment of De 
Morgan's law JCj'-DML) and a choice principle denoted 77j — ACV.

The authors study a version of weak König's lemma with a uniqueness hypothesis introduced 
by Moschovakis [44] and ask whether a similar decomposition is possible. They prove that the 
system WLKÜ can be decomposed (over ELq) as the union of two logical principles (namely, 
/7|,-DML and a version of the double-negation shift denoted {17^ v n]1)—DNS°), plus hvo choice 
principles (namely, /7°—ACV together with an additional choice principle denoted dn-/7j — ACV). 
While they mention various underivability results between the principles, it is left open whether 
the reduction is stated in a redundant way, i.e.:

Question 3.2 ([42]). Does nj’-DML imply (11® v /7^)-DNS° over ELq?

Question 3.3 ([42]). Does dn-/7^—ACV imply /7|)—ACV over ELq?

A natural direction of future research is to identify similar decompositions of stronger 
classical axioms in terms of logical principles plus set-existence, induction or choice axioms, over 
constructive systems.

6

(e) Classical consequences of constructive systems [45]
Intuitionistic logic is a subsystem of classical logic. However, reasonable attempts at doing 
actual mathematics over intuitionistic logic require selecting an axiomatic system from which 
one can begin reasoning. Some of these—and, notably, Brouwer's intuitionistic analysis—are 
actually incompatible with classical logic. It is natural then to attempt to reconcile constructive 
mathematics with classical logic as much as possible and, in particular, to ask which consequences 
of constructive systems are admissible from a classical point of view. While most readers will 
have encountered examples of theorems from classical mathematics which have to be modified 
to become intuitionistically provable, perhaps not that many have been in the opposite situation.

In this article, Moschovakis presents a collection of earlier results, as well as some new ones. 
Topics covered include theorems of analysis in constructive systems which (perhaps after the 
addition of a new hypothesis) are also provable classically; choice principles which become 
provable over a system of intuitionistic mathematics; and the minimum classical extensions of 
intuitionistic systems (perhaps relative to a given classical model of the system).

Theorem 5.2, which asserts the validity in intuitionistic predicate logic of various identities 
related to unique quantification, has very interestingly found an application as a step in the 
proof in Moschovakis and Moschovakis [46] of the natural extension of the Strong Spector-Gandy 
theorem to the higher analytical pointclasses under Projective Determinacy.

(f) Logies and admissible mies of constructive set theories [47]
By a classical result of de Jongh [48], the propositional principles valid in Heyting arithmetic 
are precisely the tautlogies of intuitionistic propositional logic. Later Leivant proved that the
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quantifier logic of Heyting arithmetic coincides with first-order intuitionistic logic [49]. A different 
generalization of de Jongh's Theorem is a result of Visser [50] that the admissible propositional 
rules of Heyting arithmetic are predsely the same as the admissible rules of intuitionistic 
propositional calculus. In this article, lemhoff and Passman prove some new results about the 
logies and admissible rules of constructive set theories as well as providing a survey of the 
previous results in this area.

The central recent achievements are that both quantified logic (as shown by Passman [51]) as 
well as the admissible propositional rules (a result presented in this article) of many Standard 
constructive set theories simply coincide with quantified intuitionistic logic and admissible rules 
of intuitionistic propositional calculus, respectively. The set theories covered by these results are 
IKP, BCST, ECST, CZFer, CZF and CZF + AC. An important technical construction presented in this article that 
allowed the classification of the admissible propositional rules for many of the mentioned theories 
in fact showed a general phenomenon: almost any intuitionistic set theory built from certain 
Standard axioms will have the same admissible propositional rules as intuitionistic propositional 
logic.

This article lists a large number of open questions. One of the open problems in the area is to 
find first-order logic and admissible propositional rules for IZF. Note that the fact that first-order 
logic of IZF is larger than just intuitionistic first-order logic is a classical result of Friedman and 
Scedrov [52].

(g) Ordinal Analysis and the set-existence property for intuitionistic set theories [53]
The Standard fact about Heyting arithmetic HA is that it has the number existence property: 
whenever HA F- 3x(p{x), for some n, HA h (p(n), where n is the numeral of n, i.e. the term

1 + ... + 1.
n times

In the case of set theories, of course, there is no analogue of numerals for sets. A theory T is said 
to have the existence property if whenever Th3x(p{x), then there exists formula \Jf{x) such that 
T\-3\x{\/f{x) A <p{x)). In this article, Rathjen proves that two natural weakenings CZF-p and CZFg of 
CZF have the existence property. It was previously known that the existence property fails for CZF.

The key feature that makes it hard to prove existence property for these theories is the schemata 
of coUection. By a classical result of Myhill, even IZFr has the existence property, note that IZFr is a 
variant of intuitonistic Zermelo-Fraenkel set theory based on replacement instead of collection.

Rathjen used methods of ordinal analysis to establish the existence property for the mentioned 
theories. Namely, due to a previous result of the study by Rathjen [54], the existence property 
for CZF-p and CZF^ is implied by Sp and Ee existence properties for the theories IKP-p and IKP^, 
respectively. Rathjen then applied the methods of infinitary proof theory for the Kripke-Platek set 
theory to give an ordinal based characterization of provably total Ep and E£ functions of IKP-p 
and IKPf, respectively, which allows him to obtain the desired existence properties.

(h) Some independente results related to trees [55]
A highlight of proof theory is concrete independence results for formal systems for 
reasoning about mathematics. GödeTs original incompleteness theorem concemed a rather 
metamathematical statement. Gentzen's result on the unprovability of the transfinite induction 
up to sq could be regarded as a first example of concrete incompleteness. Later, Paris and 
Harrington [56] and Kirby and Paris [57] supplied even more concrete independence results 
via Ramsey theory and combinatorial principles that are equivalent to the primitive recursive 
well-orderedness of êq-

Friedman pioneered independence results are related to well-quasi orderings, and this article 
provides a collection of complementary results about finite trees.
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8In §§2-4, finite trees are related to monotonicity properties of arithmetical terms and terms 
for functions from the extended Grzegorczyk hierarchy. A new facet in the discussion is the use 
of numerical values as complexity measures instead of the more technical notion of number of 
symbols in a given term. The authors provide proofs for folklore results in the new formulations, 
and they also give proofs for new variants of well-quasi-orderedness principles which have not 
been considered before.

In §5, results for one to one tree-order-preserving embeddings of finite trees are discussed. It 
tums out that in this context, finite trees are basically equivalent to binary trees. Moreover, for 
binary trees, embeddings and inf-preserving embeddings are the same thing.

Resulting independence results therefore have the strength of the primitive recursive well- 
orderedness of eq. In the last section, they discuss finite labelled trees with respect to the 
Montalban embedding.

The resulting Kruskal theorem is shown to be equivalent to ATRq using a well-ordering 
principle which goes back to Friedman.

(i) The uniform Kruskal theorem: between finite combinatorics and strong set existence 
[58]

In their recent article, Freund, Rathjen and Weiermann [59] formulated a uniform Kruskal theorem 
that is a natural generalization of Kruskal tree theorem. One of the variants of Kruskal theorem 
could be equivalently stated as the principle that certain natural term orders generaled by 
a well-quasi-order set of functional symbols are well-quasi-orders. Uniform Kruskal theorem 
from [59] extends this to a broader class of term orders, where the functional symbols instead 
are denotations from some well-quasi-ordering principle F, i.e. an operator mapping each 
well-partial-order F to a well-partial-order consisting of denotations with parameters from P. 
Equivalently this term order for a well-quasi-ordering principle F could be defined as the tw-th 
iteration F"(0) of F. The result of [59] was that the generalized Kruskal theorem is equivalent to 
/7/-CA0.

In this article, Freund and Uftring investigate what base theory is required to prove this 
equivalence. Namely, they proved that RCAq + ADS is sufficiënt to prove the equivalence between 
nj -CAq and uniform Kruskal theorem (ADS is the principle asserting that any infinite linear order 
either contains an infinite ascending chain or an infinite descending chain). And at the same time, 
they establish that over RCAq the uniform Kruskal theorem does not imply FZ^-CAq.

The proof of the fact that uniform Kruskal theorem implies /tJ-CAq is quite involved and 
indirect: it relies on a result of Freund that 77^-CAq is implied by Bachmann-Howard well-ordering 
principle, which in tum had been obtained by a rather advanced proof-theoretic techniques.

Question 3.4. Is there a simple direct proof of 17^ -CAq in RCA0 + ADS+ uniform Kruskal theorem?

Also it would be interesting to find some other natural well-quasi-ordering principles 
equivalent to stronger theories, such as TT^-CAq.

(j) The spectrum of 7731-soundness [60]
This article studies an invariant-like object associated to a theory T which the authors denote 
0^{T). Rather than focusing on particular 'natural' theories, as is commonplace in the field, 
the work takes a more abstract approach and attempts to derive general results about T and 
in particular quantify its degree of soundness. Aguilera and Pakhomov's goal is to extend the 
classification theorems of their earlier work [11] to the realm of /pj. There, the authors defined the 
ordinal o^T) as the least ordinal a such that D{a) is illfounded for some pre-dilator D such that 
TI-DIL(D).

Accordingly, O^T) is defined as the collection of all dilators D such that F(D) is well-founded 
for every T-ptyx F, i.e. every recursive (2-)pre-ptyx F such that T h PTVX2(F). Thus, O^T) serves
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9as a measure of how close T is to being -sound: the larger 0^{T) is, the harder one needs to 
search to find a counterexample to the /ij-soundness of T.

The authors begin by recalling various concepts and results from the theory of ptykes. While 
these facts were already explicitly or implicitly covered in the work of Girard [61] and Girard- 
Ressayre [62], proofs are included for convenience. Seven classification theorems are proved, all 
recasting various soundness properties of T in terms of whether certain dilators D belong to OgfT). 
As mentioned in the article, these results all extend to the other classes X7,| without much trouble.

The last section of the article has a more exploratory nature and raises the question of 
characterizing the sets of dilators of the form 0^(7) for some recursively enumerable extension 
T of ACAq. Partial progress is made by characterizing the sets of the form 0^(T) D for some 
recursively enumerable extension T of ACAo, but the problem is open otherwise. Unlike the results 
of the earlier sections, this argument relies on the work of the authors [63] on TJ^ proof-theoretic 
analysis, and thus, the corresponding questions for Oj1+4(T) and OjI+4(T) n are open. The 
n^-Spectrum Conjecture from [11] asserts that the following question has a positive answer:

Question 3.5. Let a be an ordinal. Are the following equivalent?

(i) a = o\{T) for some recursively enumerable extension T of ACAq, and
(ii) a — cüa and a is Uj-definable.

Even phrasing the corresponding question for Ö^(T) appears nontrivial at this point.
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