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Summary

Over the past decade, artificial neural networks have ushered in a revolution in science and soci-
ety. Nowadays, neural networks are applied to various problems such as speech recognition on
smartphones, self-driving cars, malware detection and even assisting doctors in making medical
diagnoses. Often, neural networks achieve accuracy scores that rival or even surpass human
domain experts. It is all the more surprising, then, that these same networks can be misled by
minor manipulations that are invisible to the human eye. A neural network trained to identify
lung cancer from MRI images, for example, can come to an incorrect diagnosis when a single
pixel in the image is deliberately manipulated in a very specific way. Despite the fact that these
perturbations are of no consequence to the underlying task and often would go unnoticed by
human experts, neural networks tend to be incredibly sensitive to them. Developing defense
methods which make our models resilient to such attacks therefore becomes paramount. In this
work, I propose four methods that can be employed under different circumstances to protect
systems based on artificial intelligence against adversarial attacks.

Three out of four methods proposed in this work are based on conformal prediction, a family
of statistical methods for developing calibrated machine learning algorithms. The core idea un-
derlying these defenses is the observation that modern deep neural networks tend to be highly
over-confident in their predictions, leading to much higher class probabilities than what is justi-
fied based on the data. By making use of existing conformal prediction algorithms, we are able
to better calibrate the predictions of the models and detect when adversarial manipulation may
have taken place. Our first defense, the binary IVAP defense, accomplishes this by applying
the inductive Venn-ABERS predictor (IVAP) to existing neural networks for binary classifica-
tion and thresholding the uncertainty of the IVAP. If the uncertainty is too high, we label the
sample as suspicious. The binary IVAP defense is easy to tune, having only one scalar hyper-
parameter (the uncertainty threshold), and very efficient. Our experiments show that it is also
highly effective at detecting adversarial manipulation. Subjecting the binary IVAP defense to an
adaptive attack shows that, in order to fool it reliably, we must generate perturbations that are
much larger and much more visible than prior methods. These results illustrate the enormous
potential for conformal prediction methods in the field of adversarial machine learning.
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Our second defense, the MultIVAP, extends the binary IVAP to the multiclass setting. The
algorithm is constructed in such a way that the favorable statistical guarantees of the original
IVAP are preserved. The MultIVAP can take any existing classifier and transforms it into a
multi-probabilistic predictor, i.e., the algorithm uses the underlying classifier to determine a set
of possible labels at some user-specified significance level. Like the binary IVAP, there is only
one hyperparameter to tune, namely the significance level which determines an upper bound on
the long-term error rate. We find that the method is reasonably efficient, incurring an overhead
that is roughly linear in the number of classes. It also exhibits high robustness against oblivious
as well as adaptive attacks. As an additional feature, the MultIVAP can return empty prediction
sets, indicating that the model is too unreliable on the given data to output any label at all.

Our third defense, the CANN detector, is based on the general conformal prediction algorithm
instead of the specialized IVAP method. It makes use of the PICE algorithm to estimate the
principal inertia components of the data set, which can be used to compute a non-conformity
measure to instantiate the conformal prediction algorithm. The CANN detector exhibits high
robustness against oblivious and adaptive attacks and compares favorably to prior methods both
in terms of computational efficiency and detection rates of the adversarial examples. Like the
MultIVAP, it can be used to detect adversarial manipulation for arbitrary classifiers. It is more
difficult to implement, however, as it requires the user to specify an additional neural network
architecture to estimate the principal inertia components. This additional complexity does allow
more freedom to optimize the defense, and it only needs to happen once for each data set since
the principal inertia components depend only on the data itself.

Finally, our fourth defense, the adversarial density filter (AdvDF), is not based on conformal
prediction but rather on the continuity properties of auto-encoders. By pre-processing the data
using a neural network structured like a variational auto-encoder, where the latent representa-
tions are subjected to Gaussian noise before reconstruction, we can obtain bounds on the robust
error of the resulting classifier that increase only sub-linearly in the perturbation budget. This
is in contrast to most prior work, where such bounds often increase at least linearly or quadrat-
ically with the budget. The error bounds depend on the continuity properties of the encoder
module, which must be uniformly continuous with small modulus of continuity. This is also
more favorable than prior work, where often the entire auto-encoder or even the entire model
had to be constrained to be Lipschitz continuous. Uniform continuity is much less restrictive
than Lipschitz continuity, and we only need to constrain the encoder, not the entire architec-
ture. The AdvDF exhibits high robustness against oblivious as well as several adaptive attacks.
It also compares very favorably to randomized smoothing, the current state of the art in certified
robust defense. The AdvDF often matches or outperforms randomized smoothing in terms of
robust accuracy, and it is orders of magnitude faster as it does not require the computationally
burdensome sampling step that randomized smoothing needs.



Samenvatting

Artificiële neurale netwerken hebben het afgelopen decennium een revolutie ontketend in de
wetenschap en demaatschappij. Tegenwoordig vinden zij toepassingen in uiteenlopende domeinen
zoals stemherkenning op een smartphone, zelfrijdende auto’s, malwaredetectie en zelfs het bi-
jstaan van artsen in medische diagnoses. Vaak bereiken neurale netwerken accuraatheden die
menselijke experts evenaren of overstijgen. Dit maakt het dan ook des te verrassender dat deze
zelfde netwerken misleid kunnen worden door kleine manipulaties die meestal onzichtbaar zijn
voor het menselijk oog. Een neuraal netwerk dat bijvoorbeeld getraind is om longkanker te
identificeren op basis van MRI-beelden, kan een verkeerde diagnose stellen wanneer één enkele
pixel in het beeld doelbewust gemanipuleerd wordt. Ondanks het feit dat dergelijke manipu-
laties van geen enkel belang zijn voor de onderliggende taak en vaak helemaal niet opgemerkt
zouden worden door menselijke experts, blijken neurale netwerken hiervoor bijzonder gevoelig.
Het ontwikkelen van verdedigingsmethodes die onze modellen resistent maken tegen dergelijke
aanvallen dringt zich dan ook op. In dit werk stel ik vier methodes voor die onder verschillende
omstandigheden gebruikt kunnen worden om systemen gebaseerd op artificiële intelligentie te
beschermen tegen malafide manipulaties.

Drie van de vier methods die ik voorstel in dit werk, zijn gebaseerd op conformal prediction.
Dit is een familie van statistische methodes waarmee men gecalibreerde machine learning algo-
ritmen kan construeren. Het kernidee dat aan de basis ligt van deze methodes, is de observatie
dat moderne neurale netwerken slecht gecalibreerd zijn en vaak probabiliteiten overschatten.
Door gebruik te maken van conformal prediction, kunnen we deze modellen beter calibreren en
detecteren wanneer de data gemanipuleerd is geweest. Onze eerste methode, de binaire IVAP,
verwezenlijkt dit door het inductive Venn-ABERS predictor (IVAP) algoritme toe te passen op
binaire classificatiemodellen en de onzekerheid te begrenzen. Indien de uitvoer te onzeker is,
markeren we de invoer als verdacht. De binaire IVAP is zeer makkelijk af te stellen, aangezien
het slechts een enkele scalaire hyperparameter heeft (de onzekerheidsgrens), en is zeer efficiënt.
Onze experimenten tonen aan dat het ook heel effectief is in het detecteren van manipulatie.
Als we de IVAP onderwerpen aan een adaptieve aanval, zien we tevens dat de methode enkel
omzeild kan worden door perturbaties toe te voegen aan de data die veel groter zijn dan wat
men typisch beschouwt in de literatuur. Deze resultaten tonen aan dat conformal prediction een
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groot potentieel heeft in adversarial machine learning.

Onze tweede methode, de MultIVAP, breidt de binaire IVAP uit naar de multiclass setting.
Het algoritme wordt zodanig geconstrueerd dat de gunstige statistische garanties van de IVAP
bewaard blijven. De MultIVAP kan eender welke bestaande classifier nemen en transformeren
naar een multi-probabilistische predictor, zodat het algoritme een verzameling van labels geeft
die allemaal mogelijk zijn op een bepaald significantieniveau. Zoals de binaire IVAP is er slechts
één hyperparameter die wemoeten afstellen, namelijk het significantieniveau dat een bovengrens
vormt op de foutmarge op lange termijn. We ondervinden dat de methode redelijk efficiënt is,
met een overhead die ongeveer lineair is in het aantal klassen. De robuustheid tegen bestaande en
adaptieve aanvallen is ook hoog. Als bijkomstig feature kan de MultIVAP tevens voorspellingen
weigeren door een lege verzameling terug te geven, in welk geval het model te onbetrouwbaar
is op het gegeven sample om eender welke voorspelling te doen.

Onze derde methode, de CANN detector, is gebaseerd op het algemene conformal prediction
algoritme in plaats van de gespecialiseerde IVAP-methode. Het maakt gebruik van het PICE-
algoritme om de principal inertia components van de dataset te schatten, die gebruikt kunnen
worden om een maat van non-conformiteit te berekenen waarmee we het conformal prediction
algoritme kunnen instantiëren. De CANN detector heeft een hoge robuustheid tegen bestaande
en adaptieve aanvallen en is competitief met bestaande methodes in termen van computationele
efficiëntie en detectie van perturbaties. Net zoals de MultIVAP kan de CANN detector gebruikt
worden voor eender welke classifier. Het is echter moeilijker om te implementeren, omdat men
een bijkomstig neuraal netwerk moet ontwikkelen om de principal inertia components te schat-
ten. Deze bijkomende complexiteit laat wel meer vrijheid toe om de methode te optimaliseren,
en hoeft slechts eenmalig te gebeuren voor elke dataset aangezien de principal inertia compo-
nents enkel afhankelijk zijn van de gebruikte data.

Tenslotte is onze vierde methode, de adversarial density filter (AdvDF), niet gebaseerd op
conformal prediction maar op de continuïteitseigenschappen van auto-encoders. Door de data
op voorhand te verwerken met een neuraal netwerk dat een gelijkaardige structuur heeft als
een variational auto-encoder, waar de latente representaties onderworpen worden aan Gaussi-
aanse ruis alvorens gereconstrueerd te worden, kunnen we bovengrenzen bewijzen op de fout
die het model zal maken onder de invloed van adversarial perturbaties die slechts sub-lineair
toenemen in het perturbatiebudget. Dit is in tegenstelling tot de meeste bestaande methodes,
waar de bovengrenzen vaak lineair of kwadratisch toenemen met het budget. De bovengrenzen
zijn afhankelijk van de continuïteitseigenschappen van de encodermodule, die uniform continu
moet zijn met kleine modulus van continuïteit. Dit is ook gunstiger dan bestaand werk, waar
vaak de gehele auto-encoder of zelfs het volledige model Lipschitz-continu moest zijn. Uni-
forme continuïteit is veel minder beperkend dan Lipschitz-continuïteit, en wij hoeven enkel
de encodermodule te beperken, niet het volledige netwerk. De AdvDF vertoont hoge robu-
ustheid tegen bestaande en adaptieve aanvallen. We zijn ook in staat om de accuraatheid van
randomized smoothing te behalen of vaak zelfs te overtreffen, terwijl onze methode verschil-
lende grootteordes sneller is omdat het niet de computationeel intensieve samplingstap nodig
heeft die randomized smoothing vereist.
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Chapter 1

Introduction

“You are wise,” he said. “If it is so,” I said, “it is
only because I have been fool enough for a hundred
lifetimes.”

Circe
Madelıne Mıller

This thesis focuses on the fragility of modern artificial intelligence (AI) systems, in particular
deep neural networks (DNNs). Despite the astounding progress that has been made in AI over
the past decade, we find that even our most sophisticated AI systems are actually very brittle: the
tiniest, most inconsequential change to the environment might cause the system to go haywire.
Consider a few concrete examples:

• We can design AI systems to be very adept at simple computer games, such as Atari
Breakout (see figure 1.1). However, regardless of how well these AI models perform on
the original game, as soon as we make certain inconsequential changes (such as altering
the background color or moving certain UI elements around a little), the AI breaks down
completely [Behzadan and Munir, 2017].

• We can develop image recognition systems that can identify objects in real-life images
with high accuracy, such as vision systems for autonomous vehicles. However, these
systems are easily tricked into misidentifying objects that have been slightly manipulated.
For instance, an autonomous driving AI can be fooled into misreading traffic signs due to
graffiti or specially crafted roadside advertisements that no human would have any issues
with [Eykholt et al., 2018, Kong et al., 2020]. An example is shown in figure 1.2.

• State of the art AI systems for language translation can be highly accurate and realistic,
unless specific typographical errors are introduced into some of the words. In that case,
the translation can become nonsensical or wrong despite the fact that human translators
might not even notice the spelling errors [Ebrahimi et al., 2018]. Some examples are
shown in table 1.1.

The general problem here is that we can achieve very high performance on specific tasks using
deep neural networks, but as soon as the task specification changes ever so slightly, the networks

1
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Figure 1.1: Atari Breakout. The goal of the game is to use the paddle (the red rectangle at the
bottom center of the screen) to guide a projectile (the red pixel left of the center of the screen)
towards the rainbow-colored blocks at the top of the screen. The game is won when all blocks
have been destroyed by the projectile. The player loses if the paddle does not catch the projectile
before it hits the bottom of the screen. Modern reinforcement learning algorithms have become
very adept at playing such simple games, but they are very brittle: if any of the colors change
(e.g., the background, the color of the projectile or that of the paddle), these algorithms tend to
break down completely.

can break down completely. What is especially troubling about this state of affairs is that the
changes necessary to sabotage state of the art AI systems do not even have to be relevant to the
task at hand: changing the background color of an Atari game, altering a handful of pixels in a
high-definition picture, introducing a few typos, etc. None of these changes affect the essence
of the task the AI is asked to carry out: the exact same rules apply both in the original setting as
well as the manipulated one. We would therefore expect that an AI that has learned to properly
solve the given task should not have any difficulty in the face of these so-called adversarial
perturbations, but this turns out not to be the case at all. It begs the question: what have our AI
models actually learned?

This is not merely an academic exercise; as our society increasingly relies on DNNs to make
important decisions, from approving bank loans to hiring job candidates and even the deploy-
ment of police forces [O’Neil, 2016], their trustworthiness becomes crucial. It is important,
however, to realize exactly why adversarial perturbations are, in fact, a real problem. From the
moment adversarial examples gained widespread notoriety thanks to the work of Goodfellow
et al. [2014], researchers have consistently framed the problem as one of cybersecurity: almost
every paper in adversarial ML will begin by stressing how dangerous it would be if, for example,
a street sign were vandalized so that an autonomous vehicle could no longer recognize it. As
Gilmer et al. [2018] correctly point out, this is not a serious threat: one could much more easily
knock the stop sign over and be done with it instead of relying on sophisticated optimization
algorithms to develop highly specific graffiti. No, the main reason why, in my opinion, adver-
sarial examples are a problem is because they call into question the generalization ability of our
models. Indeed, the problem with adversarial examples is much more subtle. The real danger is
not when the ML system is under attack, as such attacks should be countered by many layers of
security and additional fail-safe mechanisms. Rather, the danger is that we will be tempted to
trust an ML model under “normal” circumstances, when it is not under attack, despite the fact
that it appears to be making the correct decisions for entirely wrong reasons. Can we trust an
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Figure 1.2: State of the art computer vision systems for self-driving cars think this stop sign is
actually a 45 km/h speed limit sign. This confusion is caused by the black and white stickers
applied to the sign. Without them, the stop sign is correctly identified. Image taken fromEykholt
et al. [2018].

German input sentence English machine translation

Source Das ist Dr. Bob Childs -
er ist Geigenbauer und
Psychotherapeut.

This is Dr. Bob Childs -
he's a wizard maker and a
therapist's therapist.

Adversarial Das ist Dr. Bob Childs -
er ist Geigenbauer und
Psy6hothearpeiut.

This is Dr. Bob Childs -
he's a brick maker and a
psychopath.

Source In den letzten Jahren
hat sie sich zu einer
sichtbaren Feministin
entwickelt.

In the last few years,
they've evolved to a safe
feminist.

Adversarial In den letzten Jahren
hat sie sich zu einer
sichtbaren FbeminisMin
entwickelt.

In the last few years,
they've evolved to a safe
ruin.

Table 1.1: By introducing specific typographical errors, neural machine translation systems can
be tricked into producing erroneous translations. These examples were taken from Ebrahimi
et al. [2018].
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AI to decide whether someone should be approved for a loan, knowing that this decision may
be influenced by the presence or absence of certain letters in their first name? Can we trust AI
models to recommend good job candidates if the decision ultimately hinges on the color of a
very particular pixel in their resume photo? Can we trust medical diagnoses made by AI sys-
tems when the prediction is largely based on the specific make of the imaging device that took
the pictures? Clearly, nobody in their right mind would allow any human who operates in this
manner to approve loan applications, hire job candidates or make medical diagnoses. Yet this is
precisely the state of affairs in modern ML: we routinely develop and deploy all sorts of models
to perform these highly sensitive and important tasks that greatly affect human life despite the
knowledge that these models are so brittle. Although this brittleness can of course have security
implications in specific cases, one in general has much bigger problems that go well beyond the
scope of machine learning if one relies on a mission-critical system that can be dangerously
undermined because of the malfunctioning of a single component (in this case, a DNN). It is
similar to the difference between hiring a competent person who can sometimes be tricked into
making wrong decisions by a malicious adversary (e.g., a social engineer) and hiring someone
who is not competent at all and who only got the job because they faked their resume details
and bluffed their way through the interview.

Any well-designed system that utilizes machine learning as part of its architecture should not
crucially rely on the ML component alone. The work of Sculley et al. [2015] is particularly
relevant in this regard. Figure 1.3b illustrates their main idea: ML code is almost always just
a tiny fraction of the overall system, and there are many other components that require much
more attention and which should provide necessary redundancies in case one of the components
fails (such as the ML part). If a failure of just the ML vision system alone causes a self-driving
car to become unsafe, then that car is badly designed and it should never be allowed on the
road. There should always be redundancies and fail-safes for any mission-critical system so
that the failure of a single component does not cause a total breakdown. In that sense, the
ML community has developed an inflated sense of self-importance as illustrated in figure 1.3a:
underlying many of the adversarial ML papers that cast adversarial examples as a security risk is
the tacit assumption that the entire system stands or falls with the integrity of theML component.
This is tantamount to the belief that the ML code is the most important part of the system, and
that other components either do not matter or can be safely ignored.

To summarize, contrary to the dominant view within the field, my idea of the adversarial robust-
ness problem is not rooted in cybersecurity at all. Indeed, it is my view that ML should be kept
as far away as possible from anything relating to security, as I believe ML to be fundamentally
unsafe. Its security should therefore be guaranteed not by using more ML, but less of it: by en-
capsulating the ML component in many layers of checks and fail-safes that do not require ML
themselves. I instead conceive of the robustness problem as a more general issue of reliability:
at its core, the fragility of DNNs calls into question the extent to which our ML models have
actually learned anything. It suggests that these models may well be inappropriate to use even
in the so-called “benign” setting, where the data are not deliberately manipulated. It therefore
forms a fundamental obstacle to the adoption of deep learning in many fields where high-stakes
decisions must be made. It is one of the major problems we as a field must move beyond if we
are to make further progress.

In this introductory chapter, I will first give a brief overview of what deep neural networks
actually are, why they have become so popular, and what problems we have with them today. I
will then zoom in on the specific problem with DNNs tackled in this work, namely their lack of
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(a) Expectation: theML component of the system is the only one that really matters. The other components
do not concern us and can be safely brushed aside.

(b) Reality: ML code is usually only a small fraction of the overall system. Engineering an ML system in
the real world requires the expertise of many qualified individuals working together. Figure due to Sculley
et al. [2015].

Figure 1.3: Expectations of ML practitioners vs the reality of designing ML systems in the real
world.
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Figure 1.4: Basic schematic of a feed-forward neural network.

robustness. I conclude the chapter with an outline of the thesis structure and a formulation of
the concrete research objectives.

1.1 Deep neural networks
Deep neural networks are, at the time of this writing, arguably the single most successful tool
ever developed in the field of artificial intelligence (AI). Popularized by the work of Krizhevsky
et al. [2012], DNNs have ushered in breakthroughs in a wide range of domains where progress
had been relatively stagnant for years. As such, thanks to the development of DNNs, research
interest in the field of AI was rekindled after the long “AI winter” of the 1990s, and its popu-
larity has only grown since then. In 2017, Google Brain co-founder Andrew Ng compared the
revolutionary potential of AI to that of electricity:1

Just as electricity transformed almost everything 100 years ago, today I actually have
a hard time thinking of an industry that I don’t think AI will transform in the next
several years.

The contributions of deep learning to the wider scientific and industrial enterprise have also
been recognized by leading academic institutions. In 2018, for example, the Association for
Computing Machinery (ACM) presented Yoshua Bengio, Geoffrey Hinton and Yann LeCun
with the prestigious A.M. Turing Award, “[f]or conceptual and engineering breakthroughs that
have made deep neural networks a critical component of computing.”2

Despite their undeniable importance, however, the details of how deep neural networks are
constructed and trained often remain shrouded in mystery, at least to the general public. As
they are also the primary object of study for my research, I devote the next few subsections to
the explanation of the basic structure and operation of DNNs.

1.1.1 Basic structure
A simple example of a neural network is shown in figure 1.4. It illustrates the basic structure of
any neural network (deep or shallow), namely an input layer followed by one or more “hidden”

1https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity. Accessed
2021-12-02.

2https://amturing.acm.org/award_winners/bengio_3406375.cfm. Accessed 2021-12-02.

https://www.gsb.stanford.edu/insights/andrew-ng-why-ai-new-electricity
https://amturing.acm.org/award_winners/bengio_3406375.cfm
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layers, which finally yield the output. This terminology is suggestive: the “hidden” layers are
so named because they are the only layers of which the output cannot be directly observed in
reality. In a typical (supervised) machine learning problem, we can at least observe pairs of
inputs and outputs directly in the data set on which the model is to be trained. However, we do
not directly observe what happens in between, i.e., how the input is transformed into the output.
For instance, given a picture of a cat, we humans can immediately recognize that it is a picture
of a cat and hence cat is the appropriate output of this classification problem. However, we
cannot directly observe what precise function is computed by our brains in order to turn these
visual stimuli into the concept of a cat. The hidden layers of a neural network are meant to
capture such transformations. Thus, the actual “magic” happens in the hidden layers, and they
constitute the most important part of any neural network. Mathematically, a DNN is typically
specified as follows for an input vector x ∈ Rn:

h0(x) = x,

h1(x) = g1(W1h0(x)+b1),

...
hL(x) = gL(WLhL−1(x)+bL).

(1.1)

The input vector x is successively transformed according to linear functions determined by the
matrices W1, . . . ,WL and biases b1, . . . ,bL. The result of each linear transformation is then fed
through the appropriate activation function g1, . . . ,gL. These functions are meant to add non-
linear behavior to the network; otherwise, the entire thing would simply reduce to one big linear
transformation.

1.1.2 Activation functions
Much research has gone into developing good activation functions, since they must balance
competing objectives: on the one hand, the activation function must be easy to compute and
must have a well-behaved derivative, in order to make gradient-based learning possible; on the
other hand, it must be non-linear and complex enough to allow the neural network to learn highly
complicated functions.

Indeed, for a long time, a poor choice of activation function was one of the reasons DNNs were
hard to train: researchers tended to use the sigmoid function,

σ(x) =
1

1+ e−x ,

as the activation function for every layer. However, this function leads to a vanishing gradient
problem when the networks become very deep: when many sigmoid functions are composed
together, the gradient of the resulting function can become very unstable [Hochreiter et al.,
2001]. In particular, for very large and very small inputs, the sigmoid function saturates and the
gradient vanishes. This leads to a stalling of any gradient-based optimization algorithm, since
there is no signal with which to update the parameters. A highly desirable property of good
activation functions is therefore to maintain useful gradient information regardless of the input
and the number of layers. Ideally, the gradient must not be consistently very small (so that the
gradient does not vanish after a few layers) nor very large (so that the gradient does not explode).
Finding functions which satisfy these desiderata yet also lead to useful DNNs is still an active
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area of research, with alternatives to the old sigmoid function being proposed regularly. Some
examples of such functions that are used today include:

• The rectified linear unit or ReLU [Glorot et al., 2011] and its variants, such as the leaky
ReLU [Maas et al., 2013] and parametric ReLU [He et al., 2015]. These are given by

ReLU(x) =

{
x if x > 0
0 otherwise.

LeakyReLU(x) =

{
x if x > 0
αx otherwise.

Here, α is a non-negative real number. The parametric ReLU has the same functional
form as the leaky ReLU, but it includes α as a trainable parameter of the neural network.
By contrast, in the case of the leaky ReLU, α is a fixed constant. These rectifier units
were key innovations that allowed DNNs to be trained much more successfully, especially
when combined with appropriate initialization strategies.

• The softplus function, which can be seen as a smooth approximation of the ReLU:

softplus(x) = log(ex +1).

• The exponential linear unit or ELU [Clevert et al., 2015]:

ELU(x) =

{
x if x≥ 0,
α(ex−1) otherwise.

Here, α > 0 is a fixed constant.

• The scaled exponential linear unit or SELU [Klambauer et al., 2017]:

SELU(x) =

{
sx if x≥ 0,
sα(ex−1) otherwise.

Here, α and s are constants that are typically set to the following exact values:

α = 1.67326324, s = 1.05070098.

This activation functionwas proposed byKlambauer et al. in order to create self-normalizing
neural networks (SNNs). SNNs have the property that their intermediate layers self-
normalize, in the sense that the mean activation tends to zero and the variance tends to
unity. This eliminates the need for special layers such as batch normalization [Ioffe and
Szegedy, 2015] — with their associated pathologies; see Wu and He [2018] — in order
to maintain a good gradient signal throughout training.

• The sigmoid linear unit (SiLU), also known as the Swish activation function [Elfwing
et al., 2018, Hendrycks and Gimpel, 2016, Ramachandran et al., 2017]:

SiLU(x) = x · sigmoid(x).

Interestingly, this activation function appears to significantly increase the robustness of
DNNs when used appropriately [Gowal et al., 2020, Rebuffi et al., 2021].
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Figure 1.5: Illustration of the LeNet convolutional neural network from LeCun et al. [1989].

• The softmax function, which converts a vector of arbitrary real numbers x∈Rn to a vector
of probabilities:

softmax(x) =
exp(x)

∑
n
i=1 exp(xi)

.

Here, exp(x) is computed component-wise:

exp(x) =
[
ex1 . . . exn

]
.

Hence, every component of softmax(x) lies in the interval [0,1] and all the components
together sum to unity. Because of these properties, the softmax activation function is
typically only used in the final hidden layer in order to produce a categorical random
variable.

1.1.3 Convolutional neural networks
Aside from the choice of activation function, it is also possible to impose specific constraints
on the weight matrices W1, . . . ,WL, which lead to specialized classes of neural networks. The
most famous example of this are the convolutional neural networks (CNNs), such as AlexNet
and Microsoft’s residual networks [He et al., 2016, Krizhevsky et al., 2012]. In essence, a CNN
is a DNN where one or more of the layers (or even all of them; see Springenberg et al. [2014])
perform discrete convolutions instead of general matrix operations. The discrete convolution
itself is actually a matrix multiplication, where the weight matrix has the special structure of a
Toeplitz matrix [Goodfellow et al., 2016]. This is a special type of matrix where each descending
diagonal from left to right is constant. That is, A is an n×n Toeplitz matrix if

Ai, j = Ai+1, j+1 = ai− j

for constants a−(n−1), . . . ,a0, . . . ,an−1. Such matrices have only 2n−1 degrees of freedom, as
opposed to n2 for general n× n matrices. This allows for extremely efficient computation of
discrete convolutions on GPUs, which is one of the reasons CNNs became very popular.

Figure 1.5 shows the general structure of a typical CNN. The input, which is often an image
encoded as a 2Dmatrix or 3D tensor, is first processed by a series of convolutional layers. There
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(a) Layer 2
(b) Layer 3

(c) Layer 4 (d) Layer 5

Figure 1.6: Visualization of the features learned by a CNNmodel, provided by the deconvolution
method of Zeiler and Fergus [2014].

can also be pooling layers, which perform a sort of dimensionality reduction by computing cer-
tain summary statistics of groups of pixels. CNNs then typically end in a handful of dense layers,
which perform general matrix multiplications. It would not be much of an exaggeration to claim
that CNNs are almost single-handedly responsible for the current dominance of deep learning
methods in machine learning: the performance gains achieved by early CNNs such as AlexNet
were so impressive compared to classical methods they essentially caused a sort of paradigm
shift in the field. As of 2022, however, CNNs are but one of many possible architectures from
which successful deep networks can be created, but they are still very popular, particularly in
computer vision.

Despite their remarkable performance, the inner workings of CNNs remained highly mysterious
for many years. In an influential early work, Zeiler and Fergus [2014] employed deconvolutional
networks – an architecture they originally proposed in Zeiler et al. [2011] – to study how the
individual layers of a CNN affect the distribution of features. Deconvolutional networks can
be trained to essentially perform the inverse operation of any given CNN, i.e., they can map
feature representations of a CNN back into the input pixel space. By maximizing the activation
of selectively chosen layer outputs, this inverse projection reveals the structures in the input
images that are most relevant to a specific layer and feature. Their main result is illustrated
in figure 1.6. It suggests that CNNs learn filters which become sensitive to progressively more
detailed structures in the input image: the first few layers emphasize certain simple shapes such
as lines and circles, whereas deeper layers respond to complex features such as the structure of
a dog’s face.

Later, Mallat [2016] and more recently Ye [2022] would develop a rigorous mathematical foun-
dation to explain the empirical findings of Zeiler and Fergus in terms of wavelet scattering trans-
forms. It can be proven that such transforms are invariant to translations and diffeomorphisms,
which explains their effectiveness in image classification.
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1.1.4 Transformer networks
CNNs were very popular for several years in the area of image recognition. In the field of nat-
ural language processing (NLP), however, the transformer was the dominant class of networks.
Originally introduced by Vaswani et al. [2017], transformers quickly established themselves as
the new state of the art in NLP and became widely used after 2017. Several landmark results in
this vein include the Bidirectional Encoder Representations from Transformers or BERT [Devlin
et al., 2018] and the Generative Pre-trained Transformer (GPT) series of models [Brown et al.,
2020, Radford et al., 2018, 2019].

Owing to their massive success in NLP, researchers also tried to apply transformers to image
recognition. In a widely celebrated result, Dosovitskiy et al. [2020] showed that transformers can
match or even outperform CNNs using fewer computational resources. Although the long-term
implications of these findings are not yet clear at the time of this writing, it seems plausible that
the field of deep learning will move away from CNNs in the near future in favor of transformer
architectures.

1.1.5 Training algorithms
The workhorse of modern ML is the gradient descent algorithm [Boyd and Vandenberghe,
2004]. At its core, gradient descent is a very simple and efficient algorithm for optimizing com-
plicated objective functions. Formally, given an objective function f : Rn→R to be minimized
over a set of parameters x, gradient descent iteratively computes the following updates:

xt+1← xt −λt∇ f (xt). (1.2)

Starting from an initial candidate solution x0, gradient descent produces successive iterates
x1,x2, . . . based on the gradient of the objective function f with respect to the parameters as
well as non-negative real numbers λ1,λ2, . . . . These are known as the learning rates, and must
be chosen by the practitioner. How exactly to choose the learning rate at each iteration (also
known as the learning rate schedule) is a very active area of research, as this choice can be very
delicate: gradient descent may not converge at all if the learning rate is chosen poorly.

Themotivation behind this algorithm is as follows. Under certain conditions, a function f admits
a Taylor decomposition [Spivak, 2018]

f (x+ηηη) = f (x)+ηηη
ᵀ
∇ f (x)+O(‖ηηη‖2).

Assuming ηηη is small in magnitude, we can discard the higher-order terms and obtain the ap-
proximation

f (x+ηηη)≈ f (x)+ηηη
ᵀ
∇ f (x).

If we let ηηη =−λ∇ f (x) for some λ > 0, then

f (x+ηηη)≈ f (x)−λ‖∇ f (x)‖2.

If this linearization is accurate and the gradient of f at x is non-zero, it holds that f (x+ηηη) <
f (x). By iterating this procedure, we obtain a series of inequalities

f (x0)> f (x1)> f (x2)> .. .
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In effect, we are reducing the value of f at each iteration and hence we must reach some (local)
minimum of f at some point in time.

Of course, this algorithm depends on a number of assumptions which may not hold in prac-
tice, and there are many failure cases where gradient descent does not converge to any useful
result at all [Sun, 2019]. As such, many variants of the basic gradient descent algorithm have
been proposed for use in DNNs. The most well-known of these are Adam [Kingma and Ba,
2014], Adagrad [Duchi et al., 2011], RMSprop [Hinton et al., 2012], Adadelta [Zeiler, 2012],
Adamax [Kingma and Ba, 2014] and Nadam [Dozat, 2016].

To apply these algorithms to a DNN, researchers typically follow the paradigm of maximum a
posteriori estimation or MAP estimation [Goodfellow et al., 2016, Murphy, 2012]. Specifically,
we first collect a data set of samples S = {(xi,yi) | i = 1, . . . ,m} from an unknown data dis-
tribution D. For instance, if we want to train a DNN to recognize cats and dogs in an image,
we collect a large number of pictures of cats and dogs labeled with their corresponding cate-
gories (i.e., cat or dog). Following Bayes’ theorem, the probability that a model θ explains the
observed data is given by

Pr[θ | S] = Pr[θ ]Pr[S | θ ]
Pr[S]

.

We aim to find the optimal set of parameters θ MAP that maximizes this probability. Hence, we
wish to solve the following optimization problem:

θ
MAP = max

θ

Pr[θ ]Pr[S | θ ]
Pr[S]

.

Since the objective function is independent of the evidence Pr[S], we can ignore this term:

θ
MAP = max

θ

Pr[θ ]Pr[S | θ ].

Assuming S is a set of independent and identically distributed samples from the data distribution
D, we can further decompose the objective as

θ
MAP = max

θ

Pr[θ ]
m

∏
i=1

Pr[yi | xi,θ ].

To aid numerical stability, we can take logarithms to obtain

θ
MAP = max

θ

logPr[θ ]+
m

∑
i=1

logPr[yi | xi,θ ]. (1.3)

This way, we avoid multiplying together many (potentially small) numbers, which would lead to
numerical underflow [Heath, 2018, Trefethen and Bau III, 1997]. Often, it is considered more
natural to formulate (1.3) as a minimization problem instead:

θ
MAP = min

θ
− logPr[θ ]︸ ︷︷ ︸
regularization term

−
m

∑
i=1

logPr[yi | xi,θ ]︸ ︷︷ ︸
log-likelihood loss

. (1.4)

We can decompose this objective function into two distinct components:
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1. The regularization term logPr[θ ]. This term derives from the prior probability distribu-
tion on the parameters of the network, Pr[θ ]. It expresses our prior beliefs about which
parameters might be “plausible” or “preferable” and which are to be avoided. Typical
priors will focus on keeping the magnitude of the weights under control, such as `p reg-
ularization [Murphy, 2012] or orthogonal weight regularization [Brock et al., 2016]. It
is also possible to have no regularization at all, which is equivalent to choosing a uni-
form prior on θ . In that case, the resulting technique is known as maximum likelihood
estimation or MLE. However, especially for DNNs, this method is prone to overfitting,
a phenomenon where the DNN memorizes the training data and does not generalize to
novel inputs. That said, regularization by itself is not sufficient to keep DNNs from over-
fitting. In fact, understanding the precise conditions under which DNNs overfit is one of
the major open problems of the field [Zhang et al., 2021a].

2. The log-likelihood loss ∑
m
i=1 logPr[yi | xi,θ ]. In practice, Pr[yi | xi,θ ] is computed by

evaluating the neural network on the input xi using the given parameters θ and then tak-
ing its predicted probability for the target class yi. Minimizing the negative log of this
probability amounts to pushing the predicted probability towards 100%, i.e., encouraging
the network to associate high probabilities with the correct labels. The hope is that, if
we minimize this loss on a finite data set S of sufficiently high quality, then the result-
ing model will generalize to unseen inputs as well. Understanding the conditions under
which ML models generalize from their finite training data sets to unseen inputs is the
topic of learning theory [Kearns et al., 1994, Shalev-Shwartz and Ben-David, 2014, Vap-
nik, 1999].

The optimization problem (1.4) can then be solved using any of the aforementioned algorithms
by simply plugging in this objective function. That is, we perform gradient descent on the full
loss function

L(θ) =− logPr[θ ]−
m

∑
i=1

logPr[yi | xi,θ ]

with respect to the parameters θ . Almost always, θ will be a set of real-valued vectors and
matrices, so the update equation (1.2) is straightforward to apply.

1.1.6 Initialization strategies
An important aspect of neural network training that we have not discussed so far, is the ques-
tion of how to initialize the weights. Perhaps unsurprisingly, as it turns out, this is a delicate
operation that requires some care in order for DNNs to properly converge: a bad initialization
can prevent the network from learning anything useful at all, even with the most sophisticated
optimizers. Intuitively, one would probably expect that a simple random uniform or random
normal initialization of the parameters would suffice, but in general this is not the case [Glorot
and Bengio, 2010]. The following are some of the most common strategies for initializing the
weights that do tend to work well:

• Truncated normal. This strategy samples the weights from a normal distribution, typ-
ically with zero mean and a standard deviation of 1/20. However, the distribution is
“truncated:” values that lie more than two standard deviations from the mean (i.e., out-
side of the interval [−0.10,0.10]) are discarded and re-sampled. I have not been able to
find any academic publications that motivate this strategy theoretically or even empiri-
cally in any sort of systematic study. Instead, the effectiveness of the truncated normal
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distribution appears to be a piece of academic folklore wisdom: many practitioners have
observed that trained DNNs tend to have small weights and that small weights avoid sat-
uration of activation functions. The regular normal distribution technically has infinite
support and so may result in arbitrarily large values. Truncation is a simple method to
prevent this potential issue.

• Glorot normal, also known as Xavier normal [Glorot and Bengio, 2010]. This method
draws the initial parameter values from a normal distribution with zero mean and standard
deviation

σ =

√
2

Nin +Nout
,

where Nin and Nout refer to the number of inputs and outputs of the neuron.

• Glorot uniform, also known as Xavier uniform [Glorot and Bengio, 2010]. Here, the
weights are drawn from a uniform distribution supported on the symmetric interval [−`,`]
where

`=

√
6

Nin +Nout
.

• He normal [He et al., 2015]. This method samples the weights from a normal distribution
with zero mean and standard deviation

σ =

√
2

Nin
.

• He uniform [He et al., 2015]. This method samples the weights from a uniform distribu-
tion supported on the symmetric interval [−`,`] where

`=

√
6

Nin
.

• Orthogonal [Saxe et al., 2013]. Here, the weights are initialized to random orthogonal
vectors. If the weights form a matrix (as in a standard dense layer), the initialization is
done by sampling a random matrix from a normal distribution and then performing a QR
decomposition. The parameters are then set to the values of the Q matrix.

The objective of good initialization strategies is to control the magnitude of the values propa-
gated through the network. In most cases, this amounts to controlling the variance of the layer
activations. For instance, following the argument by He et al. [2015], we model forward prop-
agation through a neural network with L layers using the representation (1.1) and assume each
activation function gl is a rectifier unit. Then, assuming the weights and inputs are i.i.d. from
zero-mean distributions, we have

Var[hl+1(x)] = Nl Var[Wlhl(x)] = Nl Var[Wl ]Var[hl(x)].

With a few additional assumptions, this reduces to

Var[hl+1(x)] =
1
2

Nl Var[Wl ]Var[hl(x)].
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The final layer then satisfies

Var[hL(x)] = Var[h1(x)]
L

∏
l=2

1
2

Nl Var[Wl ].

The variance of the final layer (and, in fact, all intermediate layers) can then be controlled by
guaranteeing

∀l :
1
2

Nl Var[Wl ] = 1,

which implies the condition

Var[Wl ] =
2
Nl

.

This motivates the He strategy, which samples the weights from a distribution with standard
deviation √

2
Nin

.

It is important to realize that, similar to the Glorot strategy, one can in principle use any distri-
bution with this standard deviation to initialize the weights according to this line of reasoning.
However, practical implementations limit themselves to the uniform and normal distributions,
since these are easy to sample from.

1.1.7 Further reading
The particular type of DNN I have discussed here is known as the feed-forward neural network,
since it consists of a series of successive layers that process the output of the previous layer one
after the other. There is another class, known as recurrent neural networks, that allow for “loops”
in this construction: in a recurrent network, the output of a layer may be fed back into that same
layer an arbitrary number of times. Of course, since computation time must be finite on any
realistic computer, the number of recursions will be limited to a finite number as well. Therefore,
recurrent networks can in principle always be “unrolled” into a standard feed-forward network.
I will not be going into detail about recurrent networks here; I refer the interested reader to the
excellent introductory textbook of Goodfellow et al. [2016] or the more recent work of Murphy
[2022]. These books also cover many other aspects of ML which I cannot discuss here, such as
unsupervised learning, auto-encoders, etc.

An interesting and more intuitive perspective of how neural networks work at a high level can
be found in Montufar et al. [2014]. The basic ideas are illustrated in figure 1.7. Essentially,
the successive layers of a neural network can be interpreted as folding operators on their input
spaces, identifying separate neighborhoods in the input with common partitions of the output.
This is especially true for ReLU networks, for instance, where each layer identifies a subset of its
input with zero (i.e., all inputs which are mapped to negative values by the affine transformation,
before the ReLU activation is applied, are clamped to zero). Formally, a map F : U→V is said
to identify two neighborhoods S,T ⊆U if it maps them to a common subset of the output space,
i.e., F(S)=F(T )⊆W ⊆V . Such amap can be considered as an operator that “folds” its domain
such that S and T coincide. Neural networks essentially compose many such folding operators,
resulting in a recursive folding of the input space. This means that any function computed on the
folded output space of a given layer will apply to all of the collapsed subsets identified by the the
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Figure 1.7: Example of the identification of input regions across the layers of a deep model,
taken from Montufar et al. [2014]. Depicted are three layers, and data is processed from left
to right. The first layer takes five neighborhoods in its input space (shown in red) and identifies
them with two neighborhoods in its output space. The next layer, in turn, identifies these two red
neighborhoods with a single common subset of its output space. In this way, functions computed
on the red neighborhood in the final output space are replicated across a total of five different
subsets of the input space. In general, the number of replications is exponential in the depth of
the network.
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previous layers. As shown by Montufar et al. [2014], neural networks are expressive enough to
create an exponential number of folded regions as a function of depth, which can explain their
representational power. It can also explain their sensitivity to adversarial perturbations, however:
if the dimensionality of the input space remains fixed, then as the depth of the network increases,
functions computed on the outputs of layers are replicated across increasingly small regions of
the input space. Tiny perturbations may then cause inputs to shift to entirely different regions
of the output space, potentially making the network vulnerable to adversarial examples. This
is the spirit of the work by Croce et al. [2019], who attempt to defend DNNs from adversarial
perturbations by explicitly maximizing the size of such regions.

1.1.8 The importance of depth and width
Long before the rise of DNNs, it was already known that neural networks could approximate
essentially any function using only a single hidden layer, as long as that layer had sufficiently
many parameters [Hornik et al., 1989]. The number of parameters in a given layer is usually
referred to as the width of the layer, as opposed to the depth of the network which is simply
the total number of layers. With the advent of AlexNet and the subsequent deep learning “re-
naissance” in the early 2010s, it became clear that classical universal approximation results for
neural networks were, in a sense, incomplete as they tended to neglect depth. Empirically, deep
networks could apparently afford to be less wide in individual layers, resulting in large overall
reductions in the number of parameters and computational resources required to fit complicated
data sets.

Early theoretical works such as Montufar et al. [2014] hinted at an exponential relationship
between model capacity and depth, a finding that was reasonably well-supported by empirical
advances in neural network architectures. Safran and Shamir [2017] proved an interesting the-
oretical result in this vein: they exhibited several simple and natural functions where deeper
networks require exponentially fewer parameters than shallow networks. That is, there exist
deep neural networks that cannot be realized by shallower networks without an exponential in-
crease in width. Lu et al. [2017] strengthened these results by asking the dual question: do there
exist wide networks that cannot be realized by narrower ones without significantly increased
depth? In this case, it turns out that narrow networks incur only a polynomial penalty to their
depth in order to match wider networks, so the trade-off is much less severe. It would therefore
seem that depth is more important than width for improving the performance of DNNs.

However, depth alone is not the whole story, and later works showed that the width of individual
layers was important as well despite the results of Lu et al. [2017]. For example, Nguyen et al.
[2018] showed that neural networks must have at least one layer that is wider than the input
dimension in order to produce disconnected decision regions. That is, if the network has a
pyramidal structure where all layers have width less than or equal to the input dimension, then
the resulting decision regions will be connected. This can be considered problematic for several
reasons:

• It is generally a very strong assumption to require connectedness of the decision regions
for any particular classification problem. Indeed, for most problems the different classes
will be fragmented throughout the input space and hence the decision regions will not be
connected.

• Connected decision regions can imply vulnerability of the classifier to adversarial pertur-
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bations, since the classifier will make incorrect interpolations between samples to connect
disparate decision regions.

Although the condition that at least one layer should be wider than the input is relatively weak,
the results of Nguyen et al. [2018] demonstrate that width cannot be neglected, even if it can be
considered less important than depth.

1.2 Rise to power
The core ideas underpinning modern DNNs are actually quite old: the architectural principles
were already known in the 1980s in works such as the Neocognitron by Fukushima and Miyake
[1982] and knowledge of the backpropagation algorithm used to train neural networks goes at
least as far back as the 1960s [Kelley, 1960]. Despite this long history, two important factors
impeded the widespread adoption of DNN techniques:

1. DNNs generally require a lot of data to train. Before the early 2000s, most data sets
simply weren’t big enough for DNNs to work well.

2. DNNs were not computationally efficient. A DNN consists of many layers of computa-
tional units stacked on top of each other, relying heavily on matrix algebra to calculate
their outputs. It was only with the rise of parallel computation on GPUs that efficient
algorithms could be developed to train and deploy DNNs.

These factors combined to make DNNs unattractive to ML practitioners compared to other,
more traditional algorithms such as the support-vector machine [Cortes and Vapnik, 1995] or
random forest [Ho, 1995].

Nevertheless, interest in DNNs never died out completely. Researchers at the Canadian Insti-
tute For Advanced Research (CIFAR) in particular remained active in this area of ML. They
eventually published the AlexNet paper in 2012 [Krizhevsky et al., 2012], demonstrating that
DNNs had now become a viable alternative to existing ML algorithms (at least in the area of
computer vision). The performance improvement was shocking: AlexNet had suddenly bested
the accuracy of the state of the art by over 10 percentage points on a problem the ML com-
munity had already been working on for years. After the publication of AlexNet, things moved
very quickly: DNNs became “the next big thing” in ML and by 2015 it seemed the community
had almost entirely abandoned all other approaches in favor of DNNs. What had started as a
way to improve computer vision algorithms had now grown into an entirely new branch of ML
with applications ranging from medical diagnosis to speech recognition and autonomous driv-
ing. This growth is nicely illustrated in figure 1.8 which depicts the number of deep learning
papers uploaded to arXiv3. The graph suggests that, in the past five years alone (2015 - 2020),
the number of scientific publications in the field of AI grew sixfold.

1.3 Reaching the limits
Especially in the early years, DNNs proved to be a rather cheap way to dramatically improve
over the state of the art (SOTA). The basic procedure is as follows:

3https://www.arxiv.org/

https://www.arxiv.org/
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Figure 1.8: The number of deep learning papers uploaded to arXiv from 2010 to 2020. Figure
due to Zhang et al. [2021b].

1. Amass lots of data.

2. Create a really big neural network.

3. Train the network on the largest computing cluster you can afford.

4. Publish a paper reporting your improvements on the SOTA.

In general, most publications nowadays tend to improve on the SOTA by either collecting more
data, creating a bigger neural network, training the network on a larger cluster, or some com-
bination of these. Although there are certainly exceptions to this — DeepMind’s AlphaFold
model for protein structure prediction being a notable example where the innovations are of a
much more fundamental nature [Jumper et al., 2021] — the vast majority of published work
seems to follow this trend. For instance, in 2016, AlexNet was beaten by a residual network
architecture developed by Microsoft [He et al., 2016]. AlexNet had 8 layers; Microsoft’s net-
work has over 100. Of course, I should add that the increased depth was not the only innovation
made by the Microsoft team: at the time, training neural networks with that many layers was a
major open problem, because the networks tended to become progressively more unstable and
harder to train as their depth increased. The idea of residual layers, i.e., layers that compute
a residual with respect to the input (see figure 1.9), was the prime innovation that allowed the
networks to become that deep in the first place. Nevertheless, the general trend in ML today
appears to be to keep making neural networks deeper; most other innovations, from training
algorithms to architectural design principles, merely seem to be in service of this one goal. This
philosophy was perhaps most famously articulated by Szegedy et al. [2015], who introduced a
number of architectural innovations in their GoogLeNet model precisely to accommodate many
more layers. Other popular and very well-known techniques such as batch normalization [Ioffe
and Szegedy, 2015], weight normalization [Salimans and Kingma, 2016] and group normaliza-
tion [Wu and He, 2018] aim to achieve the same thing: stabilize and accelerate training of ever
deeper networks. The question of whether or not it is useful to keep increasing this depth is
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Figure 1.9: Illustration of a residual layer as introduced by He et al. [2016].

rarely considered; the tacit assumption is that bigger always means better.

Figure 1.10 gives a more detailed comparison of model complexity versus accuracy. While we
see that the raw number of trainable parameters does not necessarily correlate with accuracy
(a finding in line with the OpenAI report by Hernandez and Brown [2020]), the diminishing
returns are clear: accuracy appears to be an approximately logarithmic function of model com-
plexity. A nice illustration of this phenomenon was given recently by the Vision Transformer
(ViT) model [Dosovitskiy et al., 2020], where the authors show that if they pre-train a huge
model on an equally huge data set, they can surpass the SOTA by approximately one percentage
point. A systematic investigation into the scaling laws of these sorts of Transformer models was
undertaken recently by Kaplan et al. [2020]. They empirically verified that the loss of large neu-
ral language models scales according to a power law with model size, data set size and amount of
computational resources used for training. Surprisingly, they find that architectural details such
as network depth and width have little effect; rather, the raw number of parameters appears to
be the decisive factor. This contradicts several previous studies into the generalization behavior
of DNNs, where it is commonly claimed that depth and width need to be appropriately bal-
anced [Lu et al., 2017, Nguyen et al., 2018, Safran and Shamir, 2017].4 Furthermore, Kaplan
et al. also make the puzzling observation that larger models appear to be more sample-efficient,
i.e., they require fewer samples to train than smaller models to reach the same performance. This
also contradicts conventional wisdom from statistical learning theory that more data is required
to fit models with more parameters [Shalev-Shwartz and Ben-David, 2014, Vapnik, 1999].

These results are intriguing, to say the least, as they demonstrate that our theoretical understand-
ing of DNNs is still fundamentally lacking. It also lends credibility to the idea that DL, in its
current form, may have reached its peak. Kaplan et al. observed that the loss of DNNs scales
according to the following power law:

L(N,D) =

((
Nc

N

) αN
αD

+
Dc

D

)αD

,

where N is the number of parameters of the model, D is the data set size and the constants Nc,
4The caveat with these prior works is that they tend to only consider feed-forward, densely connected networks with

ReLU activations. Transformers are more complicated than this, so these theoretical results may not apply to them.
Nevertheless, it would still be quite peculiar if Transformers managed to escape the theoretical limitations proven for
ReLU networks purely by virtue of their special architecture. After all, as universal function approximators, ReLU
networks should be able to simulate Transformer models.
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Figure 1.10: Comparison of many DNN models in terms of their accuracy and complexity.
Source: https://github.com/CeLuigi/models-comparison.pytorch. Accessed
2021-08-19.

https://github.com/CeLuigi/models-comparison.pytorch
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Dc, αN , αD are given by

Nc = 8.8×1013, αN = 0.076,

Dc = 5.4×1013, αD = 0.095.

If this empirical approximation is accurate, then there are clear diminishing returns to increasing
the model size and data set size: increasing the number of parameters from 1million to 2 million
will have amuch larger impact than going from 1 billion to 2 billion, and similarly for the number
of samples. This state of affairs may lead one to wonder whether we have reached the peak
of what DL has to offer, as some scholars have suggested [Marcus, 2018]. In order to make
progress, can we continue to rely indefinitely on this tactic of creating ever larger models and
data sets trained on increasingly powerful supercomputing clusters?

I believe the field of DL has come to a point where it absolutely needs to reckon with this
question. Otherwise, we run the risk of stagnating and becoming irrelevant. We will stagnate,
because the diminishing returns in performance imply that wewill eventually hit a ceiling beyond
which we cannot meaningfully improve anymore by simply scaling up our models, data sets and
computing clusters. Moreover, the disastrous consequences of anthropogenic climate change are
being taken increasingly seriously by the public as well as governments, and the ML industry
is no small contributor to this problem [Bender et al., 2021]. We can no doubt expect the cost
of scaling DL models to rise prohibitively as society cracks down on the companies responsible
for large CO2 emissions. We also risk becoming irrelevant, because industry and the rest of the
scientific community alike do not share our unbridled enthusiasm for large neural networks. In
order to be useful, MLmodels must in many cases be able to cope with limited available memory
and computational resources. Often, they must be able to respond to queries within fractions of
milliseconds. It is also highly likely that, in order to fit a specific practical use case, the model
will need to be retrained or fine-tuned on proprietary data. The vast majority of practitioners
therefore have absolutely no use for models so large and so cumbersome that only the biggest
technology companies have the resources to deploy them.

There is a clear problematic trend in the field of ML where we appear to become progressively
more isolated from the rest of the world as time goes on (both within and without academia).
We are increasingly focused on optimizing performance on artificial benchmarks rather than
achieving real-world goals. To illustrate this isolation, let us turn for a moment to Noam Chom-
sky, one of the leading linguists of our time. Chomsky famously does not believe that neural
networks are capable of accurately modeling human language and cognition,5 yet his concerns
seem to fall on deaf ears within the natural language processing (NLP) community, which just
keeps carrying on as usual. This is the ML equivalent of physicists not taking criticisms of their
work by Stephen Hawking seriously. In medicine, as well, we find an overabundance of studies
claiming to have developed ML systems that are highly accurate for diagnosing certain diseases,
but which end up not having any clinical utility at all due to severe methodological flaws [Roberts
et al., 2021]. One would think that ML experts would follow the recommendations of actual
clinicians when designing DL systems for medical applications, but as with NLP, it seems the
ML community simply does not listen to experts outside of their own field. To move forward,
we must take seriously the criticisms and recommendations of other experts, especially those
outside of ML, because ML is rarely pursued for its own sake: often, a machine learning system
is developed in service of a particular practical need for automation in some other domain. It is

5https://chomsky.info/1967____/. Accessed 2021-08-23.

https://chomsky.info/1967____/
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therefore absolutely crucial that ML practitioners communicate with the relevant experts in the
domains where their ML systems will be deployed.

The fundamental promise of AI is to “solve” intelligence, i.e., to create artificial systems which
exhibit intelligent behavior in the sense that they can learn from experience and adapt to novel
situations and problems. However, as long as the field remains opaque to outsiders, this promise
can never be fulfilled. It cannot be disputed that “solving” intelligence will require an interdis-
ciplinary approach that combines insights from the full range of sciences, including psychology
and sociology, as well as fields that are not generally characterized as “scientific,” such as vari-
ous branches of philosophy. This interdisciplinary character is sorely lacking in contemporary
AI. Prime examples of this are the naive and over-stated claims about artificial general intelli-
gence (AGI) that are regularly made by high-profile organizations and research groups, such as
DeepMind who reduce the entire concept of intelligence to merely one of optimizing the cor-
rect mathematical functions [Silver et al., 2021]. This position appears to be extremely popular
within contemporary ML yet is roundly rejected by almost every knowledgeable person out-
side of the field [Lent, 2021, Marcus and Davis, 2019, Roitblat, 2020]. It is an old-fashioned
ideology that can be traced back to 17th century philosophers such as René Descartes, who
believed in a thoroughly mechanistic worldview where living beings were nothing but elaborate
machines [Descartes, 1989]. One can see why this idea is so tempting to ML researchers, be-
cause it implies that they will indeed solve intelligence by simply carrying on as they always
have; no need for any new ideas or paradigm shifts. We merely have to keep adding layers to
our neural networks, like rungs on a ladder, and be confident that we will one day climb all the
way to the moon.

1.4 Social (ir)responsibility
There are other considerations as well which theML community has largely neglected. Although
it has become fashionable to boast about how much fewer computational resources are required
to train SOTAmodels, the fact remains that DL has a terrible carbon footprint: training a single
DL model can emit as much carbon as five cars would in their entire lifetime [Bender et al.,
2021, Hao, 2019]. Given the climate catastrophe currently unfolding worldwide, mainly due
to the emission of CO2, we must ask ourselves whether this cost is worth it. In my opinion,
it is certainly not: the ML community cannot keep avoiding all of its societal responsibilities
and must find ways of making DL more sustainable. Preferably, there should be a regulatory
framework imposed that demands accountability of ML practitioners for the carbon emissions
they cause. This is already the case in many other industries; I see no reason why ML should be
treated differently.

Similarly, theML community needs to reckonwith the societal impact of its data collection prac-
tices and the surveillance apparatus it has helped to build [Amnesty International, 2019]. One
of the most popular applications of ML is facial recognition, where a DL system is constructed
to identify human faces (and sometimes even complete identities) from live video footage. This
obsession the ML community has with facial recognition is in itself sinister and borderline
voyeuristic,6 but it is compounded by the fact that facial recognition systems require an enor-
mous number of images of real human faces in order to be trained successfully. This has led

6Are there notmany other problems that are vastly more interesting and useful than this? One struggles to imagine
ethical reasons why facial recognition could be such a hot topic for ML researchers.
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to the creation of famous data sets such as ImageNet [Fei-Fei et al., 2009], WebFace [Yi et al.,
2014] and Labeled Faces in the Wild [Huang et al., 2008], all of which contain images scraped
off the internet using automated scripts with absolutely no regard for individual privacy or con-
sent of the subjects whose actual faces are included in the data. In the case of ImageNet, public
backlash about the unauthorized use of individuals’ photos has forced its creators to censor or
outright delete significant portions of the data set [Knight, 2021]. While certainly a step in the
right direction, unaltered archived copies of the data set no doubt exist and are in active cir-
culation among researchers reluctant to update. Moreover, although it is the most popular, the
ImageNet data set is still only one data set among many.

The recent work by Birhane and Prabhu [2021] provides sobering and shocking revelations
about the extent of this problem. They look at several highly popular large-scale image data
sets and find that many of the samples contained in these collections fall into verifiably porno-
graphic categories: shot in non-consensual settings, beach voyeurism and exposed private parts.
Non-consensual pictures of children are sometimes also included,7 meaning that the ML com-
munity has built much of its recent breakthroughs and successes (unwittingly, of course) on the
exploitation of child pornography.

Recent legislation such as the European General Data Protection Regulation (GDPR),8 the Cal-
ifornia Consumer Privacy Act (CCPA)9 and Japan’s Act on the Protection of Personal Informa-
tion10 provides the people with much more control over their personal data and more stringent
protections of their privacy. These legal developments are certainly steps in the right direction,
but it is clear that effective enforcement of these laws is still lacking. If anything, companies
keep collecting ever more personal data, not less, seemingly unhindered by regulation such as
the GDPR [Amnesty International, 2019]. Countermeasures against indiscriminate surveillance
must therefore bemulti-faceted. Wemust rely not only on strong laws to curtail the unauthorized
exploitation of personal data; we must provide people with tools they can use to defend them-
selves as well and to render such exploitation impractical in the first place. The data leverage
framework of Vincent et al. [2021] as well as the idea of unlearnable samples introduced by
Huang et al. [2021] work toward such tools, but we will need more than that.

It is clear that the field will not hold itself accountable and will not adequately self-regulate:
recent events such as the wrongful firing and subsequent organized harassment of renowned
researchers Timnit Gebru11 and Margaret Mitchell12 are dire indications. Google essentially
fired two of its best AI ethics researchers for writing a paper [Bender et al., 2021] that critiqued
the large language models developed by Google. They then became targets of an organized
harassment campaign spurred on by high-profile Google insiders and well-known researchers
within ML, such as Jeff Dean and Pedro Domingos.13 The message is clear: these companies
will tolerate no dissent within their own ranks and they will spurn those critical of their methods.

7https://bit.ly/2y1sC7i. Accessed 2021-09-09.
8http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf.

Accessed 2021-05-22.
9https://www.oag.ca.gov/privacy/ccpa. Accessed 2021-05-22.
10https://www.ifrc.org/docs/idrl/928EN.pdf. Accessed 2021-05-22.
11https://www.wired.com/story/google-timnit-gebru-ai-what-really-happened/. Accessed

2021-08-23.
12https://www.theguardian.com/technology/2021/feb/19/google-fires-margaret-mitchell-a

i-ethics-team. Accessed 2021-08-23.
13https://www.theverge.com/22309962/timnit-gebru-google-harassment-campaign-jeff-dea

n. Accessed 2021-08-23.

https://bit.ly/2y1sC7i
http://ec.europa.eu/justice/data-protection/reform/files/regulation_oj_en.pdf
https://www.oag.ca.gov/privacy/ccpa
https://www.ifrc.org/docs/idrl/928EN.pdf
https://www.wired.com/story/google-timnit-gebru-ai-what-really-happened/
https://www.theguardian.com/technology/2021/feb/19/google-fires-margaret-mitchell-ai-ethics-team
https://www.theguardian.com/technology/2021/feb/19/google-fires-margaret-mitchell-ai-ethics-team
https://www.theverge.com/22309962/timnit-gebru-google-harassment-campaign-jeff-dean
https://www.theverge.com/22309962/timnit-gebru-google-harassment-campaign-jeff-dean
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The only conclusion we can draw is that pressure to regulate the industry must therefore come
from without.

1.5 A Potemkin village
According to legends [David-Fox, 2013], when the Russian empress Catherine II traveled to
Novorossiya14 along with eminent European diplomats and dignitaries, Grigory Potemkin, then
governor of the region, erected a series of hollow façades of villages in order to impress them.
These villages were dismantled as soon as the visitors departed, only to be re-built further along
their route of travel. The population consisted entirely of actors hired by Potemkin and disguised
as peasants, to give the impression that the fake villages were actually inhabited. The goal of this
deception was to demonstrate the success of Russian civilization in colonizing the new imperial
lands.

Although historians dispute the credibility of these stories, the concept of a Potemkin village has
endured. It refers to any construction, literal or figurative, meant to serve as a façade to keep up
an appearance of prosperity when one is in fact not faring very well at all. The analogy between
DNNs and Potemkin villages was first suggested by Goodfellow et al. [2014] in one of the early
papers on adversarial examples for DNNs:

These results suggest that classifiers based on modern machine learning techniques,
even those that obtain excellent performance on the test set, are not learning the true
underlying concepts that determine the correct output label. Instead, these algorithms
have built a Potemkin village that works well on naturally occurring data, but is
exposed as a fake when one visits points in space that do not have high probability
in the data distribution.

Figure 1.11 shows several examples of such adversarial perturbations in various settings. The
most common domain of application is computer vision, where we can generate perturbations
to fool object detectors into recognizing items that are not present in the image at all, or trick
segmentation algorithms into drawing pictures of cartoon characters instead of properly seg-
menting the input. Aside from computer vision, however, there has also been some research
into textual adversarial examples that can deceive language models. The errors introduced by
these perturbations can cause, e.g., incorrect translations or erroneous sentiment recognition.

At this point, it is worth mentioning that the idea of adversarial examples is much older than the
works of Goodfellow et al. [2014], Szegedy et al. [2013]. The vast majority of works published
in the adversarial ML literature tend to start with the claim that adversarial examples were first
discovered by Szegedy et al. [2013]. Indeed, Goodfellow himself has gone so far as to publicly
assert that he himself coined the term “adversarial examples.”15 Although it is entirely possible

14“New Russia,” now part of Ukraine.
15He specifically makes this assertion in his keynote speech at the 2018 IEEE Symposium on Security & Privacy,

titled Defense Against the Dark Arts: An Overview of Adversarial Example Research and Future Research Directions.
Apparently, Christian Szegedy was going to name them “hard examples,” despite the fact that a brief literature study
would have revealed that this phenomenon already had a name and had been well-studied in classical ML. The tendency
of contemporary ML researchers to neglect their literature studies and subsequently re-invent concepts that already
exist is another problem one could write about at length. A more recent example of this trend is the mixup technique
by Zhang et al. [2017], which is essentially identical to SMOTE [Chawla et al., 2002] published 15 years earlier. The
pattern appears to be this: if a technique was not previously introduced explicitly in the context of deep learning, then
the community will ignore it and believe they have discovered something entirely novel merely because they applied it



26 CHAPTER 1. INTRODUCTION

(a) An adversarial example in the image recognition setting. Here, a ResNet-50 architecture correctly
recognizes a sample from the ImageNet validation set as being a picture of an ice cream. When the pertur-
bation in the middle is added pixel-wise to this image (brighter pixels correspond to larger perturbations),
we obtain the image on the right. Although visually identical to the original, this image is erroneously
classified as a burrito instead.

(b) The Houdini algorithm developed by Facebook AI can be used to manipulate automatic image seg-
mentation models [Cisse et al., 2017b]. The original sample on the left is correctly segmented into three
parts: the road (highlighted in purple), the cars (highlighted in blue) and the scenery (highlighted in green).
When Houdini adds a special perturbation to this sample, however, the segmentation model draws a picture
of a minion instead.

(c) Adversarial examples in natural language processing. Sato et al. [2018] show that ML models for
sentiment analysis can be easily fooled by replacing certain words in the text, even though these changes
should be inconsequential.

Figure 1.11: Examples of the vulnerability of machine learning models to various types of
adversarial attack.
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for researchers to re-discover the same phenomenon independently, adversarial examples were
already known under this and various other names at least as early as 2004 [Dalvi et al., 2004].
For a nice historical overview of this field, I refer the reader to Biggio and Roli [2018].

1.6 Objectives of this thesis
The majority of the work in this thesis will be dedicated to defenses against adversarial pertur-
bations, i.e., attempts to make deep neural networks more robust to adversarial manipulation.

I begin with a contemporary overview of the field of adversarial machine learning in chapter 2.
There, I formally describe the problem of adversarial robustness and present some related work.
This related work encompasses both theoretical as well as empirical contributions. I must note,
however, that adversarial machine learning has become an incredibly popular field of study
within AI, with several hundred new papers appearing on the subject every month. As such, the
related work I discuss in this manuscript is by no means exhaustive, and I will no doubt have
either omitted or entirely missed some other important works. For this I apologize in advance.

Chapter 3 introduces the field of conformal prediction (CP), which underpins the majority of
contributions in this thesis. Despite being a relatively niche subject, CP seems to me ideally
situated for adversarial defense. It is a sub-discipline of frequentist statistics16 focused on de-
veloping learning algorithms that can explicitly take into account “anomalous” data, i.e., data
that deviates significantly from what the algorithm has seen in the past. This chapter explains
the basic principles of the field and details an early adversarial defense based on CP, a specializa-
tion of the so-called inductive Venn-ABERS predictor (IVAP) to defend binary classifiers against
adversarial perturbations, with an application to a real-world cybersecurity problem. The subse-
quent chapters 4 and 5 further build on these ideas to produce two more sophisticated defenses.
Chapter 4 extends the analysis of chapter 3 to multi-class classification problems and develops a
generalization which I call theMultIVAP. This algorithm can improve the adversarial robustness
of any classifier, including but not limited to DNNs. Finally, in chapter 5, I go another step fur-
ther and construct an adversarial defense based on the general conformal prediction algorithm
(of which the IVAP is a special case) and a custom non-conformity measure derived from the
theory of correspondence analysis (CA). These three algorithms all fall into the category of de-
tector methods, where the primary goal is to detect whether a given input is adversarial or benign
and “reject” or “flag” it when we suspect the former. Detectors can therefore offer protection
against misclassification resulting from adversarial manipulation, but as of yet they cannot (ef-
ficiently) be used to construct classifiers that are intrinsically robust and which need no “reject”
option.

In chapter 6, I present a method of defense that aims tomake classifiers intrinsically robust rather
than “merely” able to detect adversarial manipulation. It is a so-called purification method, as
the defense essentially consists of a “purifier” or “filter” which removes any harmful distortions
that may have been added to the input. The resulting algorithm, which I have called the ad-
versarial density filter (AdvDF), is very computationally efficient at inference time, as it only
requires a pre-processing step which can be handled by another (relatively small) neural net-
work. The AdvDF also has the additional advantage of being certified, i.e., there are explicit

to deep networks for the first time.
16Making it all the more niche for the modern ML community, which seems to be exclusively interested in Bayesian

statistics.
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theoretical bounds on the maximum error that can be introduced by any adversary restricted
to a certain perturbation budget. These bounds are asymptotically more favorable than other
bounds previously proposed in the literature, and they apply to a much more general class of
models, allowing great flexibility in the design of the AdvDF module. Furthermore, the tech-
niques used to prove these bounds can no doubt be refined in future work to derive even better
methods.

Finally, chapter 7 concludes the work. I reflect on the work that has been done in the field of
adversarial ML (both my own contributions as well as those by other researchers) and the field
of ML more broadly. I also offer my view of how AI could make progress on the major issues
it is facing today.

1.6.1 Guidelines for practitioners
To facilitate the practical application of the methods developed in this work, I end this chapter
with a brief overview of the different algorithms and their salient properties.

The binary IVAP defense. This method, detailed in algorithm 3.3, is a lightweight defense
that can be used for binary classification problems. It acts as a wrapper around an existing
classifier and can help to determine whether the predictions of this model are unreliable. Aside
from the pre-trained model and some training data, there is only a single hyperparameter to be
tuned: the rejection threshold β . This is a real number in the interval [0,1] which can either be
set manually or easily tuned automatically according to various metrics of interest. The binary
IVAP defense can be readily applied to any binary classifier without the need for re-training; the
underlying model can be treated as a total black-box. We proposed this defense in Peck et al.
[2020] and subsequently applied it to the detection of malicious domain names with positive
results [Grumer et al., 2019, Peck et al., 2019b].

TheMultIVAPdefense. TheMultIVAP defense algorithm 4.1 is amulti-class generalization of
the binary IVAP defense algorithm 3.3 that aims to maintain the favorable statistical guarantees
enjoyed by the IVAP. As such, it is similar to the IVAP defense in that it is a detector method
that wraps around an existing classifier. It can then calibrate the predictions of the underlying
model using some additional training data and hyperparameter tuning. Despite being based on
a one-vs-all extension of the IVAP, the MultIVAP retains the simplicity of the IVAP defense
when it comes to hyperparameter tuning, as it has only a single hyperparameter: a confidence
threshold ε ∈ [0,1] that determines how conservative or liberal the MultIVAP will be in its
calibration. However, contrary to most commonly used supervised classification algorithms, the
MultIVAP is an inherently multi-label predictor: for every input sample, the MultIVAP outputs
a set of labels that can range from the empty set to the full set of all possible classes. In case
the MultIVAP returns the empty set or a set containing too many labels, the prediction can be
interpreted as a rejection, indicating that the underlying model is unreliable on the given sample.
TheMultIVAP always guarantees that every label in its predicted set can be assigned to the input
sample with probability at least 1− ε , so the tunable hyperparameter ε has an immediate and
intuitive interpretation. Moreover, similarly to the IVAP defense, the MultIVAP can be applied
to any classifier without needing to re-train it; the underlying model is essentially a black-box.
We proposed this defense in Peck et al. [2019a] and demonstrated its effectiveness on common
benchmarks compared to existing methods.

The conformal CANN detector. The IVAP-based defenses algorithms 3.3 and 4.1 are effi-
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cient, lightweight and provide favorable statistical guarantees, but they crucially rely on a useful
underlying model. In our own experiments [Grumer et al., 2019] we have found that the IVAP
can struggle to properly calibrate underperforming models, leading to overconfidence. For this
reason, the CANN detector sacrifices the simplicity of the IVAP in favor of more fine-grained
control over the defense itself. More specifically, the CANN detector is a direct instantiation of
the general conformal prediction algorithm 3.1, where the non-conformity measure is supplied
by a variant of the Principal Inertia Component Estimator (PICE) proposed by Hsu et al. [2019].
This is essentially a neural network trained using a very specific loss function. As such, prac-
titioners can create adversarial defenses by constructing domain-specific neural networks with
which to instantiate the PICE. When plugged into the conformal prediction algorithm, these
can give rise to more powerful defenses than what can be accomplished by directly applying the
IVAP or MultIVAP to an existing model. The disadvantage here, of course, is the fact that one
needs to construct and train an additional model. However, once this model is trained, it can
be re-used to defend any other classifier trained on the same data, as the downstream model is
once again a complete black-box.

The adversarial density filter. The adversarial density filter (AdvDF) is a purification de-
fense rather than a detector like the previous methods. It essentially has the structure of a
variational auto-encoder, but it utilizes a specific loss function which confers certain favorable
statistical guarantees on downstream models. Specifically, we show that the classification error
of a downstream model using the AdvDF as a pre-processing step to purify the inputs provably
grows sublinearly with the perturbation budget of the adversary. This result holds regardless of
the specific attack algorithm and depends crucially on the continuity properties of the AdvDF
encoder module. Like the other methods, the AdvDF can treat the defended models as complete
black-boxes. Similarly to the CANN detector, however, the AdvDF itself consists of an entirely
separate neural network that must be trained accordingly, but this need happen only once for
each data set: a trained AdvDF network can be readily applied to any existing model, although
some fine-tuning may be necessary to maintain performance on clean data. Unlike our other
defenses, the AdvDF is unsupervised and its application is not limited to classifiers; it can in
principle also be used to defend generative models, clustering algorithms or other unsupervised
models.

To summarize, we proposed four defense algorithms against adversarial perturbations, three
of which are detectors and one of which is a purification defense. The detector defenses are
all limited to supervised classification tasks and are based on conformal prediction. Therefore,
they tend to output multiple labels (or none at all) for any given input. To successfully deploy
these methods, one must be able to handle such set-valued predictions. In particular, as with
all detectors, a mechanism must be in place to handle rejections, i.e., when the detector signals
that the underlying model is unreliable, such as by outputting too many labels or no labels at all.
This may be done by flagging rejected samples for manual review or letting them be processed
by more complicated and computationally demanding models. The purification defense is more
broadly applicable, not being limited to supervised problems but able to handle unsupervised
tasks as well. It requires the construction of a separate neural network, however, but this network
can be re-used across different models.



30 CHAPTER 1. INTRODUCTION

1.6.2 On the relevance of adversarial robustness
Before concluding this introductory chapter, I would like to take a moment to discuss the rel-
evance of adversarial robustness to the broader field of machine learning in general. When
reading the literature in this domain, one can get the impression that the main reason to study
adversarial robustness is because of its implications to security, as with the example of the ad-
versarial traffic sign [Eykholt et al., 2018]. However, as pointed out by Gilmer et al. [2018],
often the security implications of adversarial examples are not very severe: in the case of self-
driving cars, for instance, the system already has to cope with “natural” problems such as traffic
signs that have been knocked over, vandalized at random, damaged or obstructed by weather
or temporarily removed as part of routine road maintenance. As such, mission-critical systems
generally do not rely exclusively on machine learning but make use of additional data, safety
checks and redundancies which would make irrelevant many of the threat models commonly
studied in our field. Self-driving cars can use LIDAR and GPS, for example, to cope with
missing or incorrectly identified traffic signs.

That said, there do of course exist specific cases where adversarial examples as they are com-
monly defined in the literature absolutely make sense, such as spam filtering or content modera-
tion, but these are highly specific applications where security happens to be paramount. In many
applications of machine learning, security of the ML system itself is not really that important.
The main question, then, is the following:

Is adversarial robustness relevant for ML applications where security and trustwor-
thiness are not real concerns?

I will argue here, in accordance with plenty of literature on this subject, that the answer is yes,
adversarial robustness can certainly be relevant even in applications where security is not a factor
and the model doesn’t have to be very trustworthy.

First and foremost, adversarial examples are highly interesting in their own right, even if there is
no true “adversary” to speak of. The fact that we can change a single pixel in a high-resolution
input image to a machine learning model and have said model completely change its output
points to some deep problems in our current methodologies. It calls into question how well our
models have truly “learned” to solve their respective problems. Understanding why adversarial
examples exist and how to eliminate them (to the extent that this is possible at all) will undoubt-
edly have profound consequences for the way we practice machine learning. This is perhaps the
most obvious reason why adversarial robustness is broadly relevant to the field.

Less obvious but equally important reasons are given by more recent research that compares
robust and non-robust models according to various benchmarks. It had been argued for quite
some time that adversarially robust models learn better feature representations, based on several
pieces of evidence. Tsipras et al. [2019], for example, find that robust models tend to have more
interpretable gradients that align better with salient visual features of the input. Santurkar et al.
[2019] took this another step further and showed that many of the fundamentalML tasks we per-
form today can be accomplished much more easily by adversarially robust classifiers, even if the
task has no immediate relationship with classification (e.g., image inpainting, style transfer and
super-resolution). It was also shown by Salman et al. [2020a], Utrera et al. [2020] that adversar-
ially robust models perform better in transfer learning tasks than their non-robust counterparts.
Together, these findings strongly suggest that adversarial robustness is useful for essentially all
machine learning tasks, as it fundamentally improves the quality of the learned representations.
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The intuition that adversarial robustness should help generalization has also been experimentally
verified: the AdvProp algorithm by Xie et al. [2020] uses adversarial examples to improve the
generalization performance of convolutional neural networks, FreeLB by Zhu et al. [2019] does
the same for language models and version 4 of the YOLO object detection algorithm also used
adversarial robustness to improve performance [Bochkovskiy et al., 2020].

It should be clear from the above citations that adversarial robustness can certainly be useful for
many, if not all, applications of machine learning. Of course, this was probably not originally
foreseen by Szegedy et al. [2013] when they first discovered this phenomenon in deep neural
networks. In their original paper, Szegedy et al. saw this as an “intriguing property” that was
simply highly unexpected and therefore interesting. They conjectured that adversarial exam-
ples may be related to generalization performance, but at the time concrete evidence for this
(albeit intuitively plausible) hypothesis was lacking. We have come a long way since 2013, and
adversarial robustness is nowadays widely recognized not merely as an academic exercise but a
valuable practical tool for all machine learning practitioners and researchers.
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Chapter 2

Robustness of deep neural
networks

Le Poète est semblable au prince des nuées
Qui hante la tempête et se rit de l’archer;
Exilé sur le sol au milieu des huées,
Ses ailes de géant l’empêchent de marcher.

Les Fleurs du Mal
Charles Baudelaıre

In this chapter, I will provide a contemporary overview of advances in the field of adversarial
robustness. I begin by introducing the problem informally and working my way to a formal
definition that I believe captures the essence of adversarial robustness quite well. I then proceed
to cover notable adversarial attacks and defenses as well as interesting theoretical results that
have been described in the literature. As I have mentioned before, the field of adversarial ML
has attracted an enormous amount of research interest, and so it is impossible to cover all relevant
works in a single chapter, or even a single book (though some have tried; see, e.g., Vorobeychik
and Kantarcioglu [2018]). The selection of works I have decided to present here is therefore
necessarily limited, but I do believe it covers the most important areas of the field.

2.1 Shortcut learning
I recall an anecdote by one of my colleagues at the University of Ghent about an interesting
experience she had during final examinations a few years ago. At the time, she worked at the
Faculty of Medicine, where exams are commonly taken in the form of multiple choice ques-
tionnaires that get graded automatically by computer. The system simply compares the dots
the students have colored in to the answer key and assigns grades accordingly. As it turns out,
the professor in charge of the course had been re-using the exact same exam for at least eight
consecutive years. The students were aware of this, naturally, and as a result they had developed
a shortcut to passing this particular exam: they simply memorized the question numbers and
the corresponding answers, typically a single letter like A, B, C or D. So instead of studying the
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actual course material, many students were able to pass with flying colors by merely associating
numbers with letters. When the professor finally decided to make slight changes to the exam,
almost 100% of the student body suddenly failed the course, despite the new exam being highly
similar to the old one.

This behavior is known in psychology as surface learning or unintended cue learning [Scouller,
1998], where students are merely optimizing their performance on a given test rather than trying
to actually understand the course material. If the test is badly designed (like the exam from our
anecdote), this can lead to bad students who do not understand the material at all outperform-
ing good students who made an honest effort by a very large margin. Interestingly, DNNs are
vulnerable to essentially the same type of behavior: they will achieve exceedingly high accuracy
on standardized benchmarks, often even outperforming human experts on various tasks [Buetti-
Dinh et al., 2019, Ibarz et al., 2018, Silver et al., 2016], yet they break down completely when
slight changes are made to the problem. For instance, Geirhos et al. [2018] found that DNNs
can be more accurate than humans at identifying objects in images, but this superiority quickly
vanishes when the images are slightly manipulated (e.g., rotated, distorted with small amounts
of noise, etc).

In the context of DNNs, this behavior is commonly referred to as shortcut learning [Geirhos
et al., 2020]. The idea is that DNNs tend to learn relationships between the inputs and outputs
that are overly specialized to the idiosyncrasies of the particular data set on which they are
trained. This phenomenon is highly related to, but distinct from, the notion of overfitting. When
a DNN overfits, it is essentially “memorizing” the training data, much like the students who
simply memorized pairs of questions and answers rather than understanding the reasons behind
them. However, shortcut learning is not entirely the same as overfitting, since the DNN is not
memorizing the data set per se. Indeed, the common method for identifying overfitting relies on
plotting two curves during optimization (see figure 2.1): the training loss (the loss of the model
on the training data set) and the validation loss (the loss of the model on a held-out portion
of the data, a portion that is not used for training). The tell-tale sign of overfitting is when the
training loss continues to decrease while the validation loss has begun to increase. With shortcut
learning, on the other hand, it is entirely possible that we see both curves continuing to decrease,
because the model is not memorizing the training data; rather, it is learning rules that allow it to
generalize to unseen samples, but only from the very specific distribution of images from which
our data are sampled. As soon as this distribution shifts even slightly, the model breaks down.

A nice example of this was given by the authors of CycleGAN [Zhu et al., 2017], which is a
DNN that allows one tomake very specific semanticmodifications to given images. For instance,
one could take a picture of a landscape during the summer season, and ask CycleGAN to turn
it into an equivalent picture taken during a hypothetical winter season instead. Figure 2.2 shows
a few examples from the original CycleGAN publication that illustrates many of its use-cases.
At a first glance, CycleGAN appears remarkably capable at accomplishing its task, turning out
highly realistic artistic renditions of the original images in their alternate settings. Upon closer
inspection, however, we can notice subtle details that betray certain shortcuts CycleGAN has
learned from its data. Take the center pair of images in figure 2.2, where a picture of a horse is
transformed into an equivalent picture of a zebra. Notice how the original image was taken on
a green grass field with a lush green forest in the background. Notice how these shades of green
have all turned brown in the transformed image, making it appear as though the environment
has suffered a harsh summer with great drought. The explanation for this phenomenon is due
to a certain bias in the data set: the only pictures of zebras in the data set on which CycleGAN
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Figure 2.1: Illustration of the phenomenon of overfitting. The dashed blue line is the training
loss, i.e., the loss of the model on the training set. The green line is the validation loss, which
is the loss of the model on unseen data not used for training. The vertical red line marks the
transition between the underfitting regime — where the model underperforms on both training
and validation data — and the overfitting regime, where the model continues to improve on the
training set but deteriorates on the validation data. Image due to Goodfellow et al. [2016].

was trained, were taken in savanna landscapes. CycleGAN has therefore learned to associate
zebras with savannas, and transforms the environment accordingly. Another comparable failure
case is shown in figure 2.3, where CycleGAN was again asked to transform a horse to a zebra.
Because the network was never trained on horses with riders on them, it transforms the human
rider as well.

Similar issues have been discussed, for example, by Shankar et al. [2017], who point out that the
most popular machine learning data sets also tend to have a heavy eurocentric and amerocentric
bias: 60% of samples in the Open Images data set1 comes from North America or Europe.
China and India, on the other hand, represent less than 4% of the data despite being the most
populous countries in the world. As a concrete example of this bias, Shankar et al. show that
classifiers trained on this data are very accurate when it comes to classifying bridegrooms in
photos of weddings taking place in Europe or North America. Attempting to classify Pakistani
or Ethiopian bridegrooms, however, often leads to nonsensical classifications such as “chain
mail.”

It should be clear now that this problem is distinct from overfitting. Indeed, CycleGAN performs
very well on images that resemble those present in its data set, which is the most we can expect
from anyML algorithm. Rather, the core problem here is insufficient diversity of the training set
which encouraged themodel to make assumptions that are easily violated in practice. In essence,
if a DNN can make any simplifying or reductionist assumptions that allow it to generalize to the
exact data distribution on which it is trained, then it will almost certainly do so. To counteract
this issue, the practitioner who builds the ML system should carefully investigate the data set

1https://storage.googleapis.com/openimages/web/index.html. Accessed 2022-01-07.

https://storage.googleapis.com/openimages/web/index.html
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Figure 2.2: Examples of CycleGAN [Zhu et al., 2017] applied to different inputs.

Figure 2.3: A failure case of CycleGAN [Zhu et al., 2017]. The network was not trained on
horses with riders and so cannot distinguish between the body of the horse and the body of the
human riding on it.



2.2. FORMAL PROBLEM STATEMENT 37

for potential biases or patterns that do not generalize to the real world and adjust the training
data accordingly. The reader should hopefully start to appreciate now how daunting the problem
of shortcut learning actually is: contemporary ML training data sets typically have millions of
samples and there are infinitely many undesirable patterns that could leak into the data, so a
systematic manual investigation of this kind is simply not feasible.

Therefore, to address this issue, automated mechanisms will have to be developed that can pro-
tect ML models from making these types of mistakes. To do this in a principled manner, of
course, we will first have to formalize the problem mathematically. Section 2.2 provides a typ-
ical formalization popular in the literature that we will be using throughout this work. With
the mathematical framework established, section 2.3 presents algorithms for the generation of
adversarial examples (so-called adversarial attacks); section 2.4 presents known adversarial de-
fenses that have been previously proposed in the literature. Section 2.5 presents some interesting
theoretical results. Finally, section 2.6 ends with historical notes on the field of adversarial ML.

2.2 Formal problem statement
The basic idea behind adversarial examples as they were conceived by Szegedy et al. [2013] is
the following. Starting from a classifier f : Rn → {1, . . . ,k}, a “benign” sample x ∈ Rn (i.e.,
just an ordinary sample from the data distribution, such as a random sample from the training
set), find the minimum set of modifications necessary such that the classification output by f is
altered, i.e., f (x) 6= f (x̃) where x̃ is the modified “adversarial” sample.

Note that this definition crucially relies on what is considered a “minimal” modification. Indeed,
the precise choice of measure is the subject of some debate and controversy within the adver-
sarial ML community. It has become standard practice to use Lp norms for this purpose, i.e.,
to measure the “size” of the modification as

‖x̃− x‖p =

(
n

∑
i=1
|x̃i− xi|p

)1/p

,

where p is typically set to 2 or ∞. One then sets a specific threshold for a given data set and
attempts to create models with the guarantee that their predictions will not change when inputs
are perturbed within that radius. This particular formalization is known as the Lp threat model.
Table 2.1 gives an overview of commonly used bounds for popular data sets. Although these
bounds are obviously somewhat arbitrary, the idea behind them is to capture the threshold of
“perceptibility.” That is, for each data set, these bounds are supposed to guarantee that any
additive perturbation of a sample within that radius does not visibly alter it.

Although many publications in the adversarial ML literature will insist that this particular threat
model is of paramount importance for deep reasons related to cybersecurity, it is in fact merely a
historical accident that the ML community became so obsessed with it. Goodfellow himself has
stated that the original idea behind their work [Szegedy et al., 2013] was to study how “smooth”
the internal representations of neural networks actually were.2 To that end, the objective of

2See his IEEE S&P 2018 talk, Defense against the dark arts. Incidentally, this was only the second of two major
findings of their original paper [Szegedy et al., 2013], the first one being related to how neural networks encode semantic
information in their latent spaces. Despite being the primary result of the paper, this finding is almost never discussed
anymore, and people seem to have forgotten that the paper talked about anything other than adversarial examples.
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Data set L2 threshold L∞ threshold

MNIST 1.5 0.3
Fashion-MNIST 1.5 0.1
CIFAR-10 128/255 8/255
CIFAR-100 128/255 8/255
ImageNet 0.05 4/255

Table 2.1: Some common Lp thresholds for adversarial robustness on popular data sets. These
thresholds assume that the pixel values have been scaled to the range [0,1].

Figure 2.4: The school bus ostrich due to Szegedy et al. [2013]. This image is permanently
burned into the retinas of anyone active in the field of adversarial ML. The image on the left is
correctly classified as a school bus by AlexNet [Krizhevsky et al., 2012], whereas the image on
the right is classified by the same network as an ostrich. The only difference between the two is
the perturbation in the middle, which is almost invisible to the naked eye.

Szegedy et al. was to take an existing image and have it be interpolated between different
classes by maximizing the loss of the model under an additive perturbation. If one started
with an image of, say, an ostrich, and maximized the loss of the classifier under an additive
perturbation of this ostrich, it may eventually be smoothly morphed into a different class, such
as a school bus. At one point during the optimization, one would therefore expect to have an
image of something resembling an eldritch abomination where the ostrich is merged with the
school bus. Szegedy et al. discovered purely by accident that this is not what happens. Instead,
the optimization terminates very quickly, and one obtains a very small perturbation that does
not make any visible changes to the image, yet the output of the classifier is changed. Figure 2.4
illustrates this “school bus ostrich” example.

It is important to note that Szegedy et al. did not introduce this phenomenon from the perspective
of cybersecurity; this is only a post-hoc motivation that researchers in this field added on later.
Instead, Szegedy et al. approached adversarial examples from a generalization point of view:

The existence of the adversarial negatives appears to be in contradiction with the
network’s ability to achieve high generalization performance. Indeed, if the network
can generalize well, how can it be confused by these adversarial negatives, which are
indistinguishable from the regular examples?
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The field has since exhibited a remarkable form of “overfitting” on this original work, taking the
exact same toy optimization problem posed by Szegedy et al. and making it the central object of
study of thousands of papers3 despite this clearly not being the point of the work at all. Rather,
in my opinion, the implication of Szegedy et al.’s work is much broader: they have shown that
DNNs appear to rely heavily on irrelevant features of the input despite achieving high accuracy
on unseen data. The Lp threat model is merely the simplest possible mathematically tractable
formalization of this problem.

As such, to stay true to the spirit of the original work by Szegedy et al. [2013], I propose the
following more general definition of an adversarial example. Given a function f : X → Y ,
constants4 εX > 0 and εY > 0 and an element x ∈ X . An element x̃ ∈ X is said to be (εX ,εY )-
adversarial to f and x if the following properties are satisfied:

1. dX (x, x̃)≤ εX ,

2. dY ( f (x), f (x̃))≥ εY .

Here, dX : X ×X →R+ and dY : Y ×Y →R+ are similarity measures in the input space X and
output space Y respectively. These functions do not need to satisfy any properties of a metric;
they merely need to map pairs of inputs and outputs to non-negative real numbers as a means to
quantify their “similarity,” however that concept may be defined for the particular task at hand.
Mathematically speaking, of course, it would be more convenient to have dX and dY satisfy all
properties of metrics, as this would facilitate proofs of lower and upper robustness bounds. In
practice, however, we may simply not have such a luxury. For example, in the image domain,
we may wish to quantify the distance dX (x, x̃) using some approximation of visual similarity
according to the human visual system, which may not yield a valid metric. In the domain of
natural language processing, we may be looking at vectorized word embeddings and quantifying
their distance according to cosine similarity, which is known not to be a metric.

The above definition easily specializes to the typical Lp threat model used in the vast majority
of the literature: we simply take dX (x,x′) = ‖x− x′‖p, dY (y,y′) = 1[y 6= y′] and εY = 1. How-
ever, it can also capture much more general classes of adversarial threat models. For instance,
if X is the image manifold corresponding to the data distribution and dX is the geodesic dis-
tance between two points on this manifold, then an adversarial sample could be a much more
complicated transformation of the original sample: we would not be limited to small additive
perturbations but could also use rotations, reflections, shearing transforms and other distortions
unique to images. As a tractable proxy for this geodesic distance (which may be very hard to
estimate), we could use the structural similarity index metric (SSIM) proposed by Wang et al.
[2004]. It has been known for many years now that Lp norms are a poor proxy for human per-
ception [Wang and Bovik, 2009], so it is highly desirable to look at the adversarial robustness
problem from this more general lens. There have been some papers that attempted to achieve
this, such as Hendrycks et al. [2020] who proposed DeepAugment. This method perturbs the
intermediate representations of a generative image-to-image model in order to create adversarial
examples that go beyond the Lp threat model (see figure 2.6).

3See Carlini’s list of papers on adversarial examples at https://nicholas.carlini.com/writing/2019/al
l-adversarial-example-papers.html. Accessed 2021-09-20.

4We may consider an alternative definition where εX and εY are not constant but may depend on x and f . Although
I believe this would be an interesting generalization, almost nobody in the adversarial ML literature actually looks at the
problem in this way.

https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
https://nicholas.carlini.com/writing/2019/all-adversarial-example-papers.html
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That said, the vast majority of papers still make use of this threat model, and I will be no
different. There is something to be said about the Lp threat model, of course: if we cannot
even solve the problem of robustness in this limited toy setting, we have absolutely no hopes of
solving it for more complicated classes of perturbations. Regarding the specific choices for p,
the most common are the following:

• p = 0. Although this does not induce a true metric, the L0 “distance” between two images
measures the number of pixels that differ between them. The size of the perturbation is
therefore not constrained on a per-pixel level; individual pixels may be modified arbitrar-
ily. It is only the number of pixels modified that matters.

• p = 2. The L2 threat model measures the perturbation size as the Euclidean distance
between images. This corresponds to the mean-squared error metric which is common
in image processing.

• p = ∞. For L∞, it is only the maximum per-pixel modification that matters. This threat
model does not take into account the number of pixels modified, but it does constrain the
maximum amount by which any pixel may deviate from the original value.

There is also another threat model, known as patch attacks, which is becoming increasingly
popular [Levine and Feizi, 2020]. In a patch attack, an adversary is constrained to rectangular
patches of fixed dimension. There is no constraint on the per-pixel deviation, so individual
pixels may be modified arbitrarily, but the modifications must all be done within a rectangular
patch of fixed size that may appear anywhere in the image. Although similar to L0, it is argued
that this threat model is more realistic than any Lp norm. Figure 2.5 shows an example of a
successful patch attack proposed by Thys et al. [2019] against an older version of the YOLO
detector [Redmon and Farhadi, 2017].

2.3 Adversarial attacks
In this section, I survey some of the notable adversarial attacks onDNNs that have been proposed
since the work of Szegedy et al. [2013]. In general, adversarial attacks may be roughly classified
according to the amount of information about the target they require. The taxonomy I will use
in this work is as follows:

I. White-box, gradient-based. The attack requires complete knowledge of the model to
be attacked, including its exact architecture and weights as well as the ability to evaluate
the gradients of the model on arbitrary inputs.

II. White-box, gradient-free. The attack requires knowledge of the architecture andweights
of the model used by the victim, but does not need its gradients.

III. Black-box, surrogate-based. The attack does not need the original model, but requires
access to a surrogate, i.e., a model trained on similar data as the target.

IV. Black-box, score-based. The attack does not need knowledge of the model, but requires
the ability to obtain the probability scores assigned by the model on arbitrary inputs.

V. Black-box, decision-based. The attack does not need knowledge of the model, but
requires the ability to obtain the predicted class of arbitrary inputs.
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Figure 2.5: A patch attack that can successfully hide people from the YOLOv2 detector [Red-
mon and Farhadi, 2017]. Left: The person without a patch is successfully detected. Right: The
person holding the patch is ignored. Image taken from Thys et al. [2019].

Figure 2.6: Examples of the DeepAugment technique proposed by Hendrycks et al. [2020].
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The idea behind these categories is to rank the adversarial attacks according to the effort they
require of the adversary in terms of gathering intelligence on their target. Category I attacks
require full access to the entire model and are therefore clearly at the top of this hierarchy.
Category II attacks do not require gradient information, but they may require other architectural
details, so they rank slightly below category I. Category III attacks are based on surrogatemodels,
so the attacker does not necessarily have to know anything about the target model except for the
general type of data on which it was trained. They allow the adversary to train their own models
for this purpose, and try to guarantee that the adversarial examples generated for the surrogate
will also work on the real target. However, since category III attacks still require the adversary
to gather sufficient data comparable to the training data of the target, I have ranked them above
score-based and decision-based black-box attacks, since these do not require the adversary to
train an entire model. Although this decision may be subject to some debate, I believe it is
generally harder for an adversary to train their own models than it is to obtain predictions from
their target. Score-based attacks rank above decision-based attacks for the obvious reason that
obtaining real scores from a model gives much more information than just the label itself.

Aside from the categories above which quantify the level of information required for the attack
to operate, we can further characterize adversarial attacks according to the following properties:

• Targeted. The attack requires the user to specify a target class yt beforehand. The adver-
sarial perturbation will then be optimized to push the sample towards this specific class.
The attack is successful only if f (x̃) = yt .

• Untargeted. The attack does not require the user to specify a target class. The adversarial
perturbation is merely optimized to induce a difference in classifications, i.e., f (x̃) 6= f (x).
The precise output of the model on the adversarial sample is not relevant.

There is no real preference ranking for targeted and untargeted attacks as there might be for the
other categories; whether a user prefers a targeted attack or an untargeted one entirely depends
on the use case. For example, if a user wishes to impersonate a specific employee to fool a
biometric security system, a targeted attack is required since a specific classification result must
be reached. On the other hand, if the user wants to cause a computer vision system to not
recognize a specific object, an untargeted attack suffices since the exact result is irrelevant as
long as it differs from the ground truth. Furthermore, any targeted attack can (in principle) be
converted to an untargeted one by simply running the attack for every class except the original
and returning one of the successful results. However, attacks that were designed to be untargeted
will generally be much more efficient than this.

The earliest adversarial attacks developed against DNNswere category I: white-box and gradient-
based. As time went on, of course, researchers crafted increasingly sophisticated algorithms that
were able to attack DNNs in ever more restricted settings. I discuss a few of these attacks below.

2.3.1 L-BFGS
One of the first attacks to be created for DNNs is known as the L-BFGS attack. It was proposed
by Szegedy et al. [2013] and so-named because it is merely an application of the limited-memory
Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimization algorithm [Liu and Nocedal, 1989]
to the following problem:

min
δδδ

c‖δδδ‖+L(x+δδδ ,yt , f ) subject to x+δδδ ∈ [0,1]n. (2.1)
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Here, yt is the target class which must be specified beforehand. The parameter c > 0 is tuned
via a line search so that the smallest value is used for which the minimizer δδδ of (2.1) satisfies
f (x + δδδ ) = yt . It is this algorithm that created the infamous “school bus ostrich” shown in
figure 2.4. It is a targeted white-box gradient-based attack, as we must specify a target class
yt and L-BFGS requires access to the gradients of the objective function. In this case, the
objective function includes the loss of the model on arbitrary samples, and so the attack requires
full access to the target model including its gradients.

2.3.2 Fast gradient sign
The fast gradient sign (FGS) attack was proposed by Goodfellow et al. [2014] in order to make
the generation of adversarial examples much more efficient than the L-BFGS method. It is an
untargeted white-box gradient-based attack. To design it, Goodfellow et al. start from the
following optimization problem:

max
δδδ

L(x+δδδ ,y, f ) subject to ‖δδδ‖∞ ≤ εX . (2.2)

Note that (2.2) is specialized to the L∞ norm. They then consider a first-order Taylor approxi-
mation of the loss term:

L(x+δδδ ,y, f )≈ L(x,y, f )+δδδ
ᵀ
∇xL(x,y, f ).

Assuming this linear approximation is accurate, we can choose the perturbation as follows:

δδδ = εX sgn∇xL(x,y, f ). (2.3)

We then clearly have ‖δδδ‖∞ = εX , satisfying our norm constraint. Furthermore, if we plug this
value into the Taylor approximation, we obtain

L(x+δδδ ,y, f )≈ L(x,y, f )+ εX ‖∇xL(x,y, f )‖1.

If the original sample (x,y) is not a stationary point of the loss, then the 1-norm of the gradient
will likely be proportional to the dimensionality of the data. Therefore, in high dimensions,
merely following the sign of the gradient vector can lead to large increases in loss even though
the input perturbation is very small. Indeed, experiments using the FGS method were highly
successful, achieving very high error rates with relatively small values of εX . It was also very
fast, since the computation of the perturbation δδδ in (2.3) requires only a single backward pass
through the network per sample. These factors combined made FGS one of the most popular
adversarial attacks for many years.

2.3.3 Projected gradient descent
Similar to L-BFGS, the projected gradient descent (PGD) attack is named after an existing
general-purpose optimization algorithm that has simply been specialized to the crafting of ad-
versarial perturbations. Specifically, PGDfinds an adversarial example by iterating the following
update:

x̃t+1← Px+S (x̃t +α sgn∇xL(x,y,θ)). (2.4)

Here, α > 0 is a user-specified constant, S is an appropriate Lp norm ball centered at the origin
and PU (x) denotes the projection of x ontoU . Depending on the choice of norm, the projection
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Figure 2.7: The methodology of Papernot et al. [2017] for attacking a surrogate model.

operator Px+S can take very different forms. In general, it is the solution to an optimization
problem that finds a point u ∈U closest to x according to the particular norm:

PU (x) = argmin
u∈U

‖x−u‖p.

In the case of L∞, the projection can be accomplished merely by clipping the components of
the perturbed sample within the admissible range; for L2, an orthogonal projection onto the ball
x+ S must be carried out.

The PGD attack was made famous by Madry et al. [2017], who performed an extensive analysis
of its theoretical and empirical properties. They argued that PGD is essentially an optimal first-
order adversary, in the sense that no other efficient attack algorithm that uses only gradients
of the loss to construct perturbations could outperform it in terms of success rate. Stronger
adversaries would therefore either have to use higher-order information, which is notoriously
expensive to compute for DNNs, or they would need to perform more expensive computations
using the first-order gradient information. Either way, they would be considerably less efficient
than PGD. Based on this insight, they used PGD to construct robust models for MNIST and
CIFAR-10. These models remained remarkably robust for some time, although the CIFAR-10
model was eventually broken.

2.3.4 Mimicry attack
Concurrently to Szegedy et al. [2013], Biggio et al. [2013] were also working on adversarial
examples in the context of DNNs and support vector machines. They developed a general ad-
versarial attack algorithm that tries to find the smallest additive perturbation to an input such
that the classification of the model changes, but the sample also remains within the support of
the original data distribution. Formally, they consider the following problem:

argmin
x̃∈X

f̂ (x̃)− λ

m

m

∑
i:yi=−1

κ

(
x̃− xi

h

)
subject to dX (x, x̃)≤ εX . (2.5)

Here, f̂ is a surrogate model trained by the adversary, λ > 0 is a regularization parameter, m is
the number of benign samples available to the adversary, κ is a kernel and h is its bandwidth. It
is a targeted black-box surrogate-based attack.

Biggio et al. already considered the possibility that the adversary may not have full access to the
model f used by the victim nor the full data set on which f was trained. They therefore account
for the fact that we may be using a surrogate model that we trained ourselves, with the hopes that
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Figure 2.8: The mimicry attack by Biggio et al. [2013]. If this attack is run for sufficiently many
iterations, the adversarial sample eventually morphs into the target class.

adversarials generated for the surrogate will also work on the real target. This methodology was
further developed by Papernot et al. [2017] and is illustrated in figure 2.7. Essentially, to create
a suitable surrogate, one first collects a sufficiently large number of unlabeled data samples and
queries the target on this data. The predictions returned by the target are then used to create a
labeled data set on which we can train our own model. This model should then resemble the
target well enough that adversarials generated for the surrogate are likely to also work on the
target.

Biggio et al. also account for the fact that the norm constraint by itself may not be sufficient
to guarantee that the adversarial sample will lie close to the original data manifold. Since this
might cause the adversarials to be detected by the victim, a regularization term is added to the
objective which penalizes the distance of the generated sample x̃ to the data samples x1, . . . ,xm
according to a kernel density estimate. They refer to this technique as “mimicry.”

Figure 2.8 shows an example of this mimicry attack on theMNIST data set. Although the attack
can already cause misclassification with almost imperceptible modifications, allowing the algo-
rithm to optimize to complete convergence produces samples that visibly morph into their target
classes. This is in stark contrast to other contemporaneous attacks such as projected gradient de-
scent and fast gradient sign, which will never produce samples that resemble their target classes
at all. This suggests that adversarial attacks which do not incorporate an explicit mechanism for
keeping their samples on the data manifold will indeed produce adversarials that are qualitatively
different from benign data. Such samples may be detected using statistical tests or uncertainty
measures, as suggested in prior work [Gao et al., 2020, Grosse et al., 2017, Roth et al., 2019].
As a response to this, other researchers have proposed novel attacks that explicitly attempt to
constrain the adversarials to lie on the original data manifold, such asManiFool [Kanbak et al.,
2018].

2.3.5 The Carlini-Wagner attacks
Carlini and Wagner [2017c] originally proposed three different attacks specifically to target
defensive distillation [Papernot et al., 2016b], which was one of the only promising adversarial
defenses at the time. They succeeded in reducing the robust accuracy of defensive distillation to
0%, a result that gained immediate notoriety as it was the first complete “break” of an established
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adversarial defense. The three attacks were each designed for a specific threat model, in this
case L0, L2 and L∞ respectively. This set of attacks has become known in the literature as the
Carlini-Wagner (C&W) attack, despite the fact that there are actually three of them and they
are certainly not identical.

The basic insight that led to the C&W attacks is that one must very carefully craft an appropriate
objective function in order to create effective adversarial samples. Specifically, Carlini and
Wagner propose a general framework where one starts from the following optimization problem:

min
δδδ

dX (x,x+δδδ )+λg(x+δδδ ). (2.6)

Here, λ > 0 is a tunable parameter and g is a function with the property that

f (x+δδδ ) = yt ⇐⇒ g(x+δδδ )≤ 0. (2.7)

If g satisfies (2.7), then minimizing g is a consistent proxy for optimizing δδδ such that the target
classifier f outputs the desired class yt . The basic C&W attacks are all therefore targeted
white-box gradient-based types, although Carlini and Wagner proposed untargeted variants
as well.

Clearly, the main design consideration for the C&W attacks is the specific choice of g in (2.6).
Carlini and Wagner experiment with many different options, but the most effective one turned
out to be

g(x′) = max
{

max
i 6=t

Zi(x′)−Zt(x′),−κ

}
.

Here, Z(x) represents the vector of logits of the model on the given sample x and κ ≥ 0 is a
constant that controls the confidence of the resulting adversarial. Essentially, the C&W attacks
optimize the perturbation δδδ such that the resulting adversarial x+δδδ has a higher logit value for
the target class than any of the other classes, leading to a targeted misclassification. Increasing
κ causes the attack to generate adversarial samples with higher confidence in the target class,
which can help them transfer to other models.

We can interpret (2.6) as the Lagrangian relaxation of the constrained optimization problem

min
δδδ

dX (x,x+δδδ ) subject to g(x+δδδ )≤ 0. (2.8)

Due to (2.7), problem (2.8) is itself a relaxation of

min
δδδ

dX (x,x+δδδ ) subject to f (x+δδδ ) = yt , (2.9)

which is the quintessential optimization problem for adversarial attacks. Now, if δδδ is any feasible
solution to (2.9), it holds that

dX (x,x+δδδ )+λg(x+δδδ )≤ dX (x,x+δδδ ).

That is, for any feasible solution δδδ (i.e., such that f (x+ δδδ ) = yt ), the objective value of (2.6)
is a lower bound on the objective value of (2.9). To obtain the best possible approximation
of an optimal solution to (2.9) via the relaxation (2.6), this bound needs to become as tight as
possible. This means that the parameter λ must be minimized, because g(x+δδδ )≤ 0. Indeed,
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Carlini and Wagner confirm this empirically, and therefore extend their attack algorithm with
a modified binary search procedure to choose the minimal constant λ for which the optimizer
can still find feasible solutions.

The Carlini-Wagner attacks are historically significant in this field for two reasons. They were
the first attacks that broke an established defense that seemed highly promising: at the time,
defensive distillation was able to reduce attack success rates from 95% (i.e., 5% robust accuracy)
to 0.5% (99.5% robust accuracy). They are relatively slow, however, requiring many iterations
to reach a good solution. Moreover, since they optimize over the logit space, high-confidence
adversarials produced by the C&W attacks may lead to “over-optimized” perturbations that can
be easily identified via IQR-thresholding of the logit values, since such values are atypical of
benign samples [Ozbulak et al., 2019].

2.3.6 Randomized gradient-free attack
The randomized gradient-free attack [Croce et al., 2020] is notable for being perhaps the only
existing white-box gradient-free attack: it requires access to the entire model specification
yet does not use gradient information. The algorithm exploits the fact that DNNs with RELU
activation functions divide their input spaces into linear regions, i.e., connected subsets where
the DNN reduces to a linear function. This property was demonstrated, e.g., in Arora et al.
[2016]. Croce et al. make use of an explicit construction of these linear regions in order to find
minimal perturbations that cause a given sample to cross a decision boundary. The resulting
optimization problem is a quadratic program that requires only the parameters of the network,
but not its gradients with respect to arbitrary inputs.

One might wonder why it is useful to make the distinction between category I and category II if
the latter category is so sparsely populated. The reason is that the vast majority of category I at-
tacks work by optimizing the additive perturbation δδδ using gradient descent over some function
of the loss of the model. Thus, they crucially rely on the gradients of the loss with respect to
the model parameters or input. However, as shown by Athalye et al. [2018a], category I attacks
can severely overestimate the true robustness of their targets due to a phenomenon known as
gradient masking. This occurs when a model performs certain operations that are not differ-
entiable, such as JPEG compression or randomization. These distort the gradient signal used
by category I attacks and can easily cause them to fail to converge to any satisfactory solution.
Gradient masking can also arise when adversarial defenses consist of explicitly penalizing the
magnitude of the gradient itself. One of the earliest adversarial defenses proposed for DNNs
was the deep contractive network by Gu and Rigazio [2014] which worked in this manner: the
defense explicitly penalized the norm of the gradient during training and was only evaluated
against the L-BFGS attack by Szegedy et al. [2013]. Therefore, it is highly likely that the in-
creased robustness observed by Gu and Rigazio was due to gradient masking.

Essentially, gradient masking defenses cause the models to have near-zero loss on training data
samples, such that category I attacks starting from such samples will not converge due to a lack
of useful gradient information. This is especially obvious in the case of the FGS attack, which
will not perturb the original sample at all if the gradient of the loss at that sample is zero. As
such, one could defend against FGS by encouraging the model to have vanishing gradients near
the data samples. However, it is a mistake to assume that gradient masking actually improves
robustness. This belief is mistaken, because as shown by Athalye et al. [2018a], the robust-
ness supposedly gained from gradient masking defenses quickly vanishes when the attacks are
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modified to accommodate this problem. Athalye et al. themselves suggested a technique known
as backward pass differentiable approximation (BPDA), which circumvents gradient masking
by approximating non-differentiable components of the target network with differentiable op-
erations. For most defenses, the application of BPDA reduces to a simple substitution where
the non-differentiable components are approximated by the identity function. BPDA is thus a
method for adapting category I attacks such that they can also work even when the model is
masking gradients. The motivation behind category II attacks such as the randomized gradient-
free attack by Croce et al. [2020] is that it would be better if the attack was never vulnerable to
gradient masking to begin with, so that these types of “band aids” become unnecessary. Indeed,
although techniques such as BPDA allow us to still craft adversarial examples using category I
attacks against gradient masking defenses, there is no telling to what extent the masked gradi-
ents may still be causing us to overestimate robustness. Hence the need for designing white-box
attacks that do not need to use any gradients of the model.

2.3.7 Universal adversarial perturbations

Bringing the phenomenon of adversarial examples to its logical extreme, Moosavi-Dezfooli et al.
[2017] introduced universal adversarial perturbations (UAPs). A UAP is a single perturbation
δδδ with the property that x+ δδδ is adversarial for any model f : X → Y and any sample x ∈ X .
Figure 2.9 shows an example taken from Moosavi-Dezfooli et al. [2017].

We give the pseudo-code for the UAP algorithm in algorithm 2.1. The function P denotes the
projection operator onto the Lp ball of desired radius. Essentially, all this algorithm does is
create adversarial perturbations for each of the individual data samples and aggregate them all
together into a single one. Note that any adversarial attack can in principle be used on line 4, and
so the specific category to which this attack belongs can be subject to some debate. Based on the
original implementation by Moosavi-Dezfooli et al. [2017], one could classify it as untargeted
black-box surrogate-based.

Algorithm 2.1: Universal adversarial perturbations
Data: data set S, classifier f
Result: universal adversarial perturbation δδδ

1 while fooling rate is too low do
2 for sample x ∈ S do
3 if f (x+δδδ ) = f (x) then
4 Generate an adversarial perturbation ηηη for x+δδδ and f .
5 Update the universal perturbation:

δδδ ← P (δδδ +ηηη).

6 end
7 end
8 end
9 return δδδ
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Figure 2.9: Example of a universal adversarial perturbation created by Moosavi-Dezfooli et al.
[2017]. The single perturbation shown in the middle can cause a model to confuse most of the
samples on the left with their erroneous classifications on the right.
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2.3.8 Other black-box attacks
Due to their practical usefulness, many black-box attacks have been proposed over the years,
and it is not feasible to survey them all here. I will therefore concludemy discussion of black-box
attacks with a few “honorable mentions,” to which I will not dedicate an entire subsection.

The Simple Black-box Attack (SimBA) is a black-box score-based attack proposed by Guo
et al. [2019]. As its name implies, it is an exceedingly simple attack to implement and carry
out: in order to perturb a given sample, SimBA randomly samples a vector from a pre-defined
orthonormal basis and either adds or subtracts it to the input. If the user chooses the standard
basis in Rn, SimBA will perturb only a single randomly chosen pixel at a time. A more interest-
ing choice of basis is the discrete cosine transform (DCT) basis, which makes the algorithm very
effective and query-efficient. This strategy calls to mind the Fourier perspective on model ro-
bustness argued by Yin et al. [2019b], which holds that adversarial examples arise from reduced
robustness of models to perturbations in the low frequency domain.

Chen et al. [2017] proposed the Zeroth Order Optimization (ZOO) attack, which is black-box
score-based (both targeted and untargeted). ZOO can be viewed as an attempt to “lift” the
problem of attacking a black-box model to the problem of attacking a white-box one. It accom-
plishes this by using the symmetric difference quotient to numerically estimate the gradient of
the target model and optimizing a loss function similar to the Carlini-Wagner attack.

The square attack by Andriushchenko et al. [2020] is notable for being one of the most efficient
and strong untargeted black-box score-based attacks proposed to date. It has been included
in the AutoAttack framework, a comprehensive benchmark for evaluating robustness of models
proposed by Croce and Hein [2020b] at ICML 2020. This framework is the foundation of the
RobustBench leaderboard,5 which has become the de facto standard reference for recording
state of the art robustness results.

Brendel et al. [2017] proposed the boundary attack, a black-box decision-based type (targeted
and untargeted). Together withGeoDA [Rahmati et al., 2020], these attacks are notable for being
the only category V types that appear to have been described in the literature to the best of my
knowledge.

2.3.9 Real-world attacks
The attacks discussed in the previous sections are all focused on a “lab setting.” That is, they all
assume we can perfectly manipulate a given input and this input will be provided to the model
exactly as we crafted it. For many applications of machine learning, this is unrealistic: think,
for example, of an autonomous vehicle that uses computer vision to recognize traffic signs. The
inputs to this system are images of the road, but these images can vary from moment to moment
due to all sorts of factors. There might be people or other obstacles that obscure parts of the
signs, or the signs may have been physically damaged somehow. Weather conditions, seasons
and time of day all also have an impact on how traffic signs will be perceived by any vision
system (be it human or machine).

To address these issues, the adversarial ML community has developed real-world attacks which
are designed to cope with typical distortions to which the inputs might be subjected. Seminal
work in this direction was done by Athalye et al. [2018b], who proposed a technique called

5https://robustbench.github.io. Accessed 2021-09-28.

https://robustbench.github.io
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Figure 2.10: The “adversarial turtle” by Athalye et al. [2018b]. This 3D printed turtle figurine
has a special texture applied to it constructed using the EOT technique. It causes computer
vision systems to misclassify the turtle as a rifle under real-world conditions.

expectation over transformation (EOT). This technique has since become widely used not only
to create real-world adversarial examples but also to increase robustness of models in general
(even in the lab setting). The idea behind EOT is to model the distortions to which the input
might be subjected as part of the optimization procedure. Formally, Athalye et al. define a
distribution T of possible transformations. A transformation is simply a X → X function, so T
is a distribution on functions of the input. Before being processed by the vision system, an input
x ∈ X will be affected by some random transformation t ∼ T . Hence, the system will actually
observe t(x) instead of x itself. The objective of EOT is therefore to solve a slightly different
optimization problem:

max
x̃∈X

E
t∼T

[logPr[y′ | t(x̃)]] subject to E
t∼T

[dX (t(x̃), t(x))]≤ ε. (2.10)

Here, y′ is a chosen target class and Pr[y | x] refers to the probability estimated by the target
model for class y given input x. In practice, (2.10) is solved using a Lagrangian relaxation:

max
x̃∈X

E
t∼T

[logPr[y′ | t(x̃)]]−λ E
t∼T

[dX (t(x̃), t(x))]≤ ε, (2.11)

where λ > 0 is a hyperparameter. Athalye et al. used projected gradient descent to solve (2.11),
so their original attack is a targeted white-box gradient-based type.

The EOT algorithm allows for some truly impressive adversarial attacks. For instance, the main
contribution of Athalye et al. [2018b] is to specialize EOT for affine transformations, allowing
them to craft adversarial textures that can be applied to real-world (3D printed) objects, such
as the famous “adversarial turtle” shown in figure 2.10. These textures cause the targeted vision
system to misclassify the object even under various common real-world distortions, such as
changes in pose, surrounding environment, lighting and camera angles.

Concurrently to the work of Athalye et al. [2018b], Eykholt et al. [2018] proposed real-world
adversarial attacks on autonomous vehicle systems using a very similar framework as EOTwhich
they called robust physical perturbations (RP2). A typical example of this attack is shown in
figure 2.11. The RP2 method allows the creation of adversarial examples using simple black and
white stickers that are easily applied to physical objects and which consistently fool computer
vision systems under real-world conditions. Like EOT, it is a targeted white-box gradient-
based attack.
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Figure 2.11: The adversarial stop sign created by the RP2 method of Eykholt et al. [2018]. By
placing a few small black and white rectangular stickers in specific locations, the stop sign is
misidentified by a computer vision system as a speed limit sign.

2.4 Adversarial defenses
Having discussed many of the attacks proposed against DNNs, we can look at a few of the
defenses that have been described in the literature. Before we begin, however, the reader must
be aware that exceptionally many defenses have been published. Indeed, new proposals appear
on arXiv at a frequency of multiple papers per week. It is therefore not possible to discuss
every single one, and I shall not attempt to do so. Instead, I have made a selection of adversarial
defenses to present here that I personally believe are interesting or representative of the field.

Like adversarial attacks, the defenses described in the literature can be roughly classified into
a few distinct groups. The taxonomy I propose here is based on the general strategy used to
defend a model:

• Purification. The defense attempts to remove the adversarial perturbation from the input
and restore the sample to its original form, which can then be processed by the underlying
model as usual. This is a highly popular form of defense and is typically implemented
via specialized auto-encoder architectures. Note, however, that these sorts of defenses
assume that the adversary works in a particular way, namely by first sampling a natural
sample from the original data distribution and subsequently perturbing it to cause mis-
classification. This is not necessarily the case in practice: as shown by Hein et al. [2019],
Nguyen et al. [2015], for example, DNNs can also give high-confidence erroneous pre-
dictions for input samples that have no recognizable semantics and certainly do not come
from the original data distribution. In case there is no perceptibility constraint on the
adversarial sample (a realistic scenario as per Gilmer et al. [2018]), it is not clear what
robustness could be achieved by purification defenses.

• Detection. These defenses focus on detecting adversarially manipulated inputs before
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they are processed by the model. They do not attempt to correct the prediction of the
model in anyway; instead, they extend the set ofmodel outputs to include a special “reject”
signal which implies that the model is likely not reliable on the given sample. How one
handles such rejection depends on the application: the sample could be flagged for manual
review by human moderators or it could be passed on to more computationally expensive
models. It could also trigger the system to resort to some “safe” default option, such
as denying the upload of a file (in the case of content filtering mechanisms) or denying
access to a facility (in the case of biometric security systems). Adversarial detectors
often use techniques inspired from out-of-distribution (OOD) detection, where the goal
is to ascertain whether a given sample came from a known distribution or some other
(unknown) distribution where the model cannot be trusted [Lee et al., 2018].

• Hardening. Hardening defenses do not attempt to remove the adversarial noise nor to
detect when manipulation might have occurred. Instead, these defenses seek to make the
model inherently invulnerable to adversarial perturbations.

Apart from these broad categories, adversarial defenses can also be randomized or determin-
istic. These distinctions are relevant, since randomized defenses need to be evaluated differently
from deterministic ones [Croce and Hein, 2020b]. In the literature, the distinction is also often
made between defenses that are certified versus those that are not. A certified adversarial de-
fense is one for which a certificate of robustness can be produced. This is a mathematical proof
that shows that no perturbation up to a given radius εX could possibly change the outcome of the
classifier. This also must be taken into account during evaluation, because there is no point in
trying to attack a certified defense using perturbations that lie within its certified radius (unless
the certificate of robustness is wrong).

There are exceptions to this, however. In practice, many certificates of robustness are prob-
abilistic, in the following sense. They assume that the adversary creates adversarial examples
by first sampling a natural sample x from the data distribution on which the model is trained
and then finds a perturbation δδδ to cause misclassification. Probabilistic certificates of robust-
ness then usually give the guarantee that, under this mode of operation, there is only a small
probability (taken over the data distribution) that there exists such a perturbation δδδ . Although
probabilistic certificates are clearly better than no certificates at all, they do not completely rule
out the existence of adversarials within their radius of certification. Furthermore, these certifi-
cates typically suffer from the same problem as purification-based defenses: their guarantees
become meaningless when the adversary does not respect their chosen mode of operation, as
with rubbish examples [Nguyen et al., 2015].

2.4.1 Adversarial training
The most successful defense that has been described in the literature as of this writing is adver-
sarial training (AT). The basic idea couldn’t be more straightforward: simply include adversarial
examples in the training pipeline as a form of data augmentation. In practice, of course, the devil
is in the details, and the way we implement AT has changed throughout the years as the field has
gained more insights into the factors and design decisions that can make or break the method.

The first variant of AT was proposed by Goodfellow et al. [2014], in the same paper where
they introduced the FGS attack. Since FGS is so efficient, their AT scheme took the form of
a regularized loss function that essentially performs the FGS attack against all samples in the
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mini-batch and then updates the parameters of the model according to a weighted average of
the loss on the original and adversarial samples:

L(x,y, f ) = αJ(x,y, f )+(1−α)J(x+ ε sgn∇xJ(x,y, f ),y, f ).

Here, α ∈ [0,1] and J is the cross-entropy loss. Due to its extremely high efficiency and seem-
ingly high effectiveness, FGS AT was the preferred method for increasing robustness for some
time. A few years later, however, Kurakin et al. [2016] showed that FGS AT suffers from a
“label leaking” effect: because the FGS adversarials are computed using the gradient of the loss
on the true label, statistical artefacts are introduced that encode the true label in the adversar-
ial image in a form that can be easily detected by DNNs. Thus, using FGS AT, adversarially
trained models often have much higher accuracy on FGS adversarials than on the original, unal-
tered samples. Later, Carlini and Wagner [2017c] also found that FGS is actually a very weak
attack, as FGS AT provides no real protection against stronger attacks such as PGD or even an
iterated version of FGS. These findings caused FGS to fall out of favor both as an attack as well
as the basis for any defense.

The next major innovation in the design of AT schemes came from Madry et al. [2017], who
proposed a more principled way to implement it. They characterized the problem as one of
robust optimization (RO) [Ben-Tal and Nemirovski, 2002]:

θ
? = argmin

θ

E
[

max
δ∈Bε

L(X +δδδ ,Y,θ)
]
, (2.12)

where Bε is the ε ball around the origin in the norm of choice. That is, instead of minimizing
the expected loss on a data set of i.i.d. samples, we try to minimize the loss under worst-case
norm-bounded additive perturbations of the input. The RO view therefore casts AT as a bi-level
optimization problem:

1. Inner maximization. In this step, the current mini-batch of samples is subjected to an
adversarial attack with respect to the current model parameters.

2. Outer minimization. After the adversarial examples have been constructed, the origi-
nal mini-batch is replaced with their adversarial counterparts. These are then used in a
subsequent optimizer to minimize the loss.

Madry et al. originally proposed PGD for the inner maximization, using various arguments to
support the idea that PGD is an optimal first-order adversary. Using PGD AT, they constructed
robust models for MNIST and CIFAR-10 that maintained state of the art robust accuracy in
the L∞ threat model for some time. They publicly launched the MNIST challenge6 and the
CIFAR-10 challenge7 where researchers were invited to submit adversarial examples against
their models, essentially crowd-sourcing their robustness assessments. The CIFAR-10 model
was considered broken by December 2017 using a variant of one of the C&W attacks, which
reduced robust accuracy at L∞ = 8/255 to 47.76%. As of this writing, however, the MNIST
model remains highly robust: even against the best known attack, it still has a robust accuracy
of 88% at L∞ = 0.3.

Thanks to the work by Madry et al. [2017], by the end of 2017 the field had realized that AT
could be an incredibly powerful method of defense. The only real issue was scale: training

6https://github.com/MadryLab/mnist_challenge. Accessed 2021-10-11.
7https://github.com/MadryLab/cifar10_challenge. Accessed 2021-10-11.

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge
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a robust model on a large data set such as ImageNet using the method proposed by Madry
et al. could easily take weeks. This caused researchers to experiment with more efficient meth-
ods, such as generating the adversarials using pre-trained generative models[Baluja and Fischer,
2017, Poursaeed et al., 2018, Xiao et al., 2018], but these approaches tend to be unstable on
complex large-scale data sets. Other work has focused on making the base AT algorithm itself
more efficient, with some remarkable recent results [Shafahi et al., 2019, Wong et al., 2020].

The precise classification of AT according to the taxonomy I proposed here depends on the exact
implementation. The FGS AT and PGD AT variants, for example, could be classified as non-
certified deterministic hardening defenses, since they cannot provide robustness certificates,
do not introduce any additional randomness as part of the defense and aim to make the model
inherently more robust rather than focusing on detecting or purifying adversarial noise. Other
works utilize more advanced ideas from optimization theory in order to implement a training
regime that can provide robustness certificates, such as Sinha et al. [2017]. Typically, such
work goes beyond the original formulation (2.12) by Madry et al. [2017] and instead considers
a distributionally robust optimization (DRO) problem:

θ
? = argmin

θ

sup
Q∈Q

E
Q
[L(X ,Y,θ)] . (2.13)

Here, Q is a class of distributions centered around the original data distribution Q0. The most
common form of DRO takes aWasserstein ball around Q0,

Q = {Q |Wc(Q0,Q)≤ ε},

whereWc is the Wasserstein metric

Wc(P,Q) = inf
M∈Π(P,Q)

E
M
[c(Z,Z′)].

The Wasserstein metricWc(P,Q) between two distributions P and Q is parameterized by a cost
function c, which takes samples from both distributions P and Q and outputs a non-negative
real number. The set Π(P,Q) is the collection of all couplings of P and Q, i.e., the set of all
joint distributions where the respective marginals are P and Q. The Wasserstein metric there-
fore computes the smallest expected cost c(z,z′) when (z,z′) is sampled over all possible joint
distributions with marginals P andQ. The DRO problem (2.13) then consists of minimizing the
worst-case expected loss when the data X can be sampled from any distribution Q in a Wasser-
stein ball around Q0. This essentially formalizes robustness against small distributional shifts,
from which the method derives its name. DRO methods are typically certified deterministic
hardening defenses.

Another important example of a certified AT defense is TRADES [Zhang et al., 2019b]. Like
FGS AT, the concrete implementation of this method takes the form of a regularization added
to the loss function. The theoretically principled nature of the regularizer allows TRADES to
trade-off accuracy and robustness, and allows for the efficient computation of robustness certifi-
cates for adversarially trained models. TRADES gained notoriety for reaching first place in the
Adversarial Vision Challenge at NeurIPS 2018.8 Due to its computational efficiency, certified
nature and impressive robustness results, TRADES has become a popular defense method in
recent years.

8https://www.crowdai.org/challenges/nips-2018-adversarial-vision-challenge. Accessed
2021-10-12.

https://www.crowdai.org/challenges/nips-2018-adversarial-vision-challenge
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Figure 2.12: Illustration of robust overfitting of the AT method by Madry et al. [2017] on
CIFAR-10. The model is more robust in the middle of training than at the end of it. Image due
to Rice et al. [2020].

Adversarial training is not without its issues, however: aside from the often much increased
computational complexity, there is the problem of robust overfitting described by Rice et al.
[2020]. This phenomenon is illustrated in figure 2.12. There appears to be a consistent and sig-
nificant gap between the best robust error obtained during training and the robust error achieved
at the very end of training. Moreover, robust overfitting seems to be a general property of all
AT methods, as Rice et al. observe it not only for the original formulation by Madry et al. but
also in other settings, such as the improved FGS-AT scheme by Wong et al. [2020] and even
TRADES [Zhang et al., 2019b]. After extensive experiments, Rice et al. find that the only ef-
fective remedy appears to be early stopping with a validation set. It is therefore important when
performing model selection on adversarially trained networks to make use of early stopping to
mitigate robust overfitting.

Although Rice et al. do not give an explanation for the phenomenon of robust overfitting, in
hindsight one can give a fairly obvious intuitive justification. Looking back at the robust opti-
mization formulation (2.12), at each iteration, one solves an optimization problem that maxi-
mizes the error of the current model within the ε-norm ball. It stands to reason that as training
progresses and the model loss becomes small, the adversarial perturbations generated by the in-
ner maximization procedure will themselves “overfit” to the target model: the perturbations will
be tailored more and more towards the highly specific idiosyncrasies of the model, especially
when many iterations are used. This can be seen quite clearly from figure 2.12: the robust train-
ing error keeps decreasing whereas the robust test error starts to increase after epoch 100. This
also explains why only early stopping was found to be effective but not other techniques such
as regularization or data augmentation: it is not the model that is overfitting, but the adversar-
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ial perturbations themselves. Using early stopping, one can restore the best model parameters
over the entire course of training and thus mitigate this phenomenon. However, regularizing the
model or incorporating additional data clearly will not do the trick, because this will not pre-
vent the inner maximization procedure from producing overly-optimized perturbations. Aside
from early stopping, this conjecture also provides another possible avenue for mitigating robust
overfitting: by using adversarial attacks that generate diverse sets of perturbations that do not
overfit to any specific model. This may be accomplished by incorporating a transferability con-
straint, where the generated perturbations have to be effective not only against the target model
but against other unrelated models as well. There has been much research into transferable ad-
versarial examples [Liu et al., 2016b, Tramèr et al., 2017, Zhou et al., 2018], with some works
explicitly focusing on adversarial training. Zheng et al. [2020], for example, propose to re-use
adversarial examples from previous epochs, based on the observation that adversarials gener-
ated at one epoch can remain effective for many subsequent epochs as well. This method avoids
the overhead of training multiple models by considering transferability across epochs instead of
models proper, but it simultaneously reduces the potential for overfitting by not always using the
most up-to-date model parameters. To my knowledge, Rice et al. [2020] did not experiment
with such methods in their paper, and hence their potential to mitigate robust overfitting remains
unexplored.

2.4.2 Defensive distillation
Defensive distillation [Papernot et al., 2016b] is notable for being one of the first serious attempts
at an effective adversarial defense. Belonging to the category of uncertified deterministic
hardening defenses, it seemed highly promising when it was first proposed, reducing the success
rate of the FGS and the Jacobian saliency map attack (JSMA) [Papernot et al., 2016a] to less
than 1%. The defense combines two existing methods for training more well-calibrated neural
networks: temperature scaling and distillation.

Temperature scaling (TS) adapts the final softmax layer of a classifier, rescaling the logits z as
follows:

fi(x) =
exp(zi(x)/τ)

∑ j exp(z j(x)/τ)
.

Here, τ > 0 is the so-called temperature. For τ = 1, TS has no effect and reduces to a regular
softmax transformation. For τ < 1, the logits are inflated and hence the resulting probability
estimates will be more tightly concentrated. For τ > 1, logits are reduced and the probability
estimates will tend more towards a uniform distribution. It has been shown that this method
can be a very simple and effective way to drastically improve the calibration of a classifier [Guo
et al., 2017], so its application to adversarial defense makes sense.

Distillation [Ba and Caruana, 2013, Hinton et al., 2015] is a technique originally proposed for
reducing the computational burden of DNNs, by training a smaller “distilled” model on the out-
puts of a larger one. Specifically, given an original training data set S = {(xi,yi) | i = 1, . . . ,m},
distillation will first train a large DNN on S, obtaining a classifier f that outputs probability
scores for each class. Then, a smaller network is trained on the modified data set

S f = {(xi, f (xi)) | i = 1, . . . ,m}.

Hence, instead of being trained on the true labels (which are typically one-hot encoded vectors),
the distilled model is trained on the probability values given by the large network f . The idea is
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that such a training procedure yields smoother probability values, which are more informative
and will temper the network’s tendency towards over-confidence [Guo et al., 2017].

Defensive distillation now proceeds as follows:

1. Train a DNN f on the original training data set S = {(xi,yi) | i = 1, . . . ,m} using TS with
τ > 1. This lowers the confidence of the classifier.

2. Create a modified training set

S f = {(xi, f (xi)) | i = 1, . . . ,m}.

3. Train a distilled model g on S f using TS with the same temperature τ as was used for
training f .

To deploy the final distilled model g, the temperature is set to one, effectively disabling TS and
reverting back to a regular softmax transformation. This will increase the confidence of g in its
predicted class.

Aside from being one of the first serious defenses, defensive distillation is also notable for estab-
lishing what would later become a recurring pattern in the field of adversarial ML. Shortly after
the defense was published, Carlini and Wagner [2016] showed that it was in fact not effective
at all: by slightly modifying the JSMA method, they were able to reduce the robust accuracy of
defensive distillation from over 99% to 3.6%. They attributed the failure of the original JSMA
to two causes:

• Ignoring the softmax layer. JSMA originally worked by computing the gradients of the
input with respect to the penultimate (pre-softmax) layer. However, in doing so, they ne-
glect the effect the softmax has on the final output, which can be considerable. Defensive
distillation exploits this weakness of JSMA by causing the softmax to have a much larger
effect on the output than it otherwise would have, essentially drowning out the JSMA per-
turbations. It is actually only by accident that this form of JSMA even works for standard
networks, since even for such models there is a risk that the softmax causes the effect
of JSMA perturbations to vanish. Carlini and Wagner therefore modified JSMA to take
gradients with respect to the final output of the model.

• Vanishing gradients. Even if one modifies the JSMA method to take gradients with re-
spect to the final output, the TS modification still causes a gradient vanishing problem.
To prevent this, Carlini and Wagner rescale the logits before passing them through the
softmax.

After these modifications, the JSMA method was able to generate adversarials against defen-
sively distilled models without any issues.

This result can be considered the start of a pattern that is all too familiar to researchers working
in adversarial ML, as Carlini andWagner would later go on to break many more defenses shortly
after (and sometimes even before) they were formally published [Athalye and Carlini, 2018, Car-
lini, 2019a,b, Carlini and Wagner, 2017a,b]. The seminal work that essentially “woke up” the
community was their ICML 2018 contribution [Athalye et al., 2018a], where they identified the
same vanishing gradients problem as the root cause of the overestimation of model robustness
in most proposed defenses. In later publications, Carlini et al. would focus more on providing
systematic analyses of common methodological flaws in the design and evaluation of adversarial
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Figure 2.13: Illustration of the idea behind randomized smoothing [Cohen et al., 2019]. The de-
cision regions of the base classifier f are shown in different colors. The dashed circles represent
the level sets of the distribution N (x,σ2I). Given a sample x, RS samples around x according
to N (x,σ2I) to empirically estimate the class probabilities when x is subjected to Gaussian cor-
ruptions. These probabilities directly lead to robustness certificates in the L2 threat model.

defenses and providing concrete guidelines and recommendations for the community [Carlini
et al., 2019, Pintor et al., 2021, Tramer et al., 2020].

2.4.3 Randomized smoothing
Given the relative ease with which researchers were able to break most proposed defenses very
quickly after they became known, the community naturally started to focus more on certified
defenses where one can mathematically prove that no adversarials exist within a certain radius.
Perhaps the most well-known such defense is randomized smoothing (RS) [Cohen et al., 2019].

RS is both remarkably simple and remarkably effective. To implement it, one takes an existing
pre-trained model f and computes the smoothed model

f̂ (x) = argmax
y∈Y

Pr
ηηη∼N (0,σ2I)

[ f (x+ηηη) = y]. (2.14)

Figure 2.13 illustrates the idea behind the smoothing procedure (2.14). By sampling around a
given point x, the stability of the classifier f under small additive perturbations can be assessed.
Despite the fact that RS is randomized, Cohen et al. show that one can derive a deterministic
robustness certificate from it. Specifically, if f̂ is defined as in (2.14), then f̂ (x+δδδ ) = f̂ (x) for
all perturbations δδδ satisfying

‖δδδ‖ ≤ σ

2
(
Φ
−1(p1)−Φ

−1(p2)
)

(2.15)

whereΦ is the standard Gaussian cumulative density function (CDF) and p1, p2 are probabilities
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that obey the following inequalities:

Pr[ f (x+ηηη) = f̂ (x)]≥ p1 ≥ p2 ≥ max
y′ 6= f̂ (x)

Pr[ f (x+ηηη) = y′].

In other words, p1 and p2 correspond to a lower and upper bound respectively on the top-2 class
probabilities assigned by f to the given sample x under Gaussian perturbations. RS therefore
belongs to the class of certified randomized hardening defenses.

The robustness bound (2.15) provided by RS is very intuitive to interpret and very simple to opti-
mize: in order to maximize the robustness of the smoothed model f̂ , one can either increase the
variance σ2 or increase the margin p1− p2 between the top two predictions. The former option
risks lowering classifier accuracy, as the noise may eventually drown out any meaningful signal,
so it should be used sparingly. The latter option, however, will be familiar to ML practitioners
as maximization of probability margins is known to have all sorts of beneficial effects [Anthony
and Bartlett, 1999, Shalev-Shwartz and Ben-David, 2014, Vapnik, 1999]. It would therefore
stand to reason that the combination of RS with other techniques that promote large margins,
such as the large-margin softmax loss [Liu et al., 2016a] or temperature scaling [Guo et al.,
2017], would further aid robustness.

2.4.4 Mahalanobis distance-based detector
Lee et al. [2018] proposed an uncertified deterministic detector technique for simultaneously
identifying out-of-distribution (OOD) samples as well as adversarial examples. They assume
that the class-conditional distribution of the logits produced by the classifier f approximately
follows a multivariate Gaussian,

Pr[ f (X) | Y = y] = N (µµµy,ΣΣΣ).

Here, µµµy is the mean logit vector of f when the input belongs to class y and ΣΣΣ is the covariance
matrix. Note that Lee et al. do not let ΣΣΣ depend on the class, essentially tying the covariances
of all classes together. They then define the Mahalanobis distance-based confidence score:

M(x) = max
y∈Y
−( f (x)−µµµy)

ᵀ
ΣΣΣ
−1( f (x)−µµµy). (2.16)

To compute (2.16) in practice, the mean vectors µµµy and covariance matrix ΣΣΣ are empirically
estimated from data. Detection of OOD samples as well as adversarial examples can then be
done simply by thresholding the confidence score M(x).

The Mahalanobis distance-based detector is extremely easy to implement, very computationally
efficient and yields relatively high detection rates. It still holds up well today compared to newer
techniques [Stutz et al., 2020].

2.4.5 Certifiably robust variational auto-encoders
Barrett et al. [2021] recently introduced a framework for certifying the robustness of variational
auto-encoders (VAEs) against adversarial manipulation. Their method yields a certified ran-
domized purification defense, as it makes use of the randomness in VAEs to yield probabilistic
certificates of robustness of the auto-encoder in the L2 norm.
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They begin by introducing a notion of robustness for VAEs, which they term r-robustness. An
image-to-image model f : X → X is called r-robust against a perturbation δδδ if

Pr[‖ f (x+δδδ )− f (x)‖2 ≤ r]>
1
2
. (2.17)

Themodel f is then said to have an r-robustnessmargin ε if it is r-robust against all perturbations
δδδ with ‖δδδ‖2 ≤ ε . It can then be shown [Barrett et al., 2021, theorem 2] that the r-robustness
margin of a VAE can be controlled if both the encoder and decoder networks are Lipschitz
continuous. Specifically, the r-robustness margin depends on r, the Lipschitz constants of the
encoder and decoder and the norm of the encoder standard deviation.

The construction provided by Barrett et al. has the major advantages of yielding efficiently
computable robustness certificates as well as allowing the models to be efficiently trained. The
constraint that the VAEs have to be Lipschitz, however, is the main limitation of the method.
To implement Lipschitz VAEs in practice, the authors have to make use of special activation
functions such as GroupSort [Anil et al., 2019] and the model weight matrices have to be or-
thonormalized at each update (similar to the Parseval networks of Cisse et al. [2017a]). These
restrictions severely limit the expressivity of the models. Indeed, to the best of my knowledge
such Lipschitz continuous networks have not yet been scaled beyond toy data sets.

2.4.6 Combination therapies
More recent efforts towards improving adversarial robustness have focused on “combination
therapies,” i.e., the combination of many relatively small changes in model architecture, data
curation and training regimes that appear to add up to significantly increased robustness. Gowal
et al. [2020], for example, showed that one can greatly boost adversarial robustness by combining
a number of adjustments:

1. Carefully choosing an appropriate loss function. For adversarial training, Gowal et al.
find that combining TRADES [Zhang et al., 2019b] with early stopping yields the best
results.

2. Increasing model capacity. Larger models such as Wide ResNets (WRNs) [Zagoruyko
and Komodakis, 2016] achieve higher robustness than smaller popular models like stan-
dard ResNets [He et al., 2016].

3. Using additional data. Taking samples from sets such as ImageNet [Fei-Fei et al., 2009]
or 80M-TI [Torralba et al., 2008] and pseudo-labeling them with pre-trained classifiers
also appears to increase robustness.9 There is a trade-off, however, between the quantity
and quality of the data that needs to be taken into account. Furthermore, carefully tuning
the weight of these pseudo-labeled samples in the training loss can be beneficial as well.

4. Training the models using weight averaging (WA) [Izmailov et al., 2018]. WA modi-
fies the weight updates performed by gradient descent to keep a running average of the
parameters. Gowal et al. find that WA consistently results in higher robustness.

5. Carefully choosing the activation functions. While ReLU remains a good choice, im-
provements can sometimes be obtained using the SiLU activation.

9As of June 2020, the 80M-TI data set has been formally retracted due to the presence of offensive content [Birhane
and Prabhu, 2021]. The retraction notice can be found at http://groups.csail.mit.edu/vision/TinyImag
es/. It is therefore no longer to be used by ML researchers.

http://groups.csail.mit.edu/vision/TinyImages/
http://groups.csail.mit.edu/vision/TinyImages/
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In a similar vein, Rebuffi et al. [2021] show that WA combined with carefully chosen data
augmentation strategies can also significantly boost robustness. In particular, Rebuffi et al. rec-
ommend augmenting with samples from state-of-the-art generative models such as Denoising
Diffusion ProbabilisticModels (DDPMs) [Ho et al., 2020] alongwith CutMix [Yun et al., 2019].
At the time of this writing, the models trained by Rebuffi et al. score the highest on the Robust-
Bench leaderboard for CIFAR-10 in the L∞ model (ε = 8/255) and the L2 model (ε = 0.5).

In all, these works seem to give rise to a new consensus within the adversarial ML field as of
2021:

There is no “silver bullet” for adversarial robustness.

That is, the fragility of our DNNs to adversarial perturbations is likely not caused by any one
component of theML pipeline in isolation. Rather, it is a consequence of the interplay of various
elements, from the data curation process to the neural network architecture and specifics of the
training algorithm. This can be seen in the results of the works cited above, where considerable
improvements in robustness are obtained through the combination of many small tweaks rather
than through the construction of an elaborate dedicated defensive component.

2.4.7 Evaluation and benchmarking
Before we conclude the section on adversarial defenses, it is important to reflect on current and
past practices adopted by the field for the evaluation and benchmarking of proposed methods.
This is particularly relevant for adversarial ML, as experience has shown that great care must be
taken in order to properly evaluate defense algorithms. I have hinted at these difficulties at certain
points throughout this section, as in the example of the failure of defensive distillation, but a
dedicated discussion seems appropriate. Historically, most of the proposed defenses against
adversarial examples have failed because of common mistakes in the evaluation methodology.
Carlini et al. [2019] list a few typical errors:

Failure to specify a precise threat model. This problem was especially common in early
papers on the subject, where the threat model was often largely left implicit. However, by failing
to explicitly state the exact threat model for which a defense is designed, it becomes very hard
or even impossible to judge when it is appropriate to deploy the defense. It also makes it hard
to spot subtle errors in the evaluation, such as when certain tacitly assumed limitations of the
adversary are easily violated in practice.

Failure to evaluate against an adaptive adversary. Many proposed adversarial defenses
turned out to work only because they were specifically designed with certain existing attacks in
mind, such as gradient masking defenses that assumed all potential adversarial attacks would
crucially rely on accurate information about the gradient of the loss. In reality, however, adver-
saries will often take the time to carefully analyze a security system before they attack it, and
their attack will be tailored to the defense in question. Proper defense evaluations must therefore
account for this possibility and adapt their attacks accordingly.

Reporting robust accuracy only for a fixed attack budget. Many papers will only report the
robust accuracy of their methods at a single fixed perturbation budget, such as 1/2 for CIFAR-
10 L2 or 4/255 for ImageNet L∞. For detector defenses, often only a single point on the ROC
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curve will be reported. In both cases, however, it is important to report the full curves. For
hardened classifiers, it is desirable to have the robust accuracy as a function of the full range
of plausible attack budgets; for detectors, the full ROC curve is preferred. We obtain much
more information about the defense this way. For one, we can see how quickly its protection
degrades under stronger attacks and use this for comparison to other defenses, to aid in selecting
the best defense for any given situation. We can also see how the defense performs at different
budgets, which may be relevant when the default budgets commonly studied by academics prove
unrealistic in practice.

Neglecting basic sanity checks. Although adversarial defense evaluations can become very
complicated very quickly, there are a few basic sanity checks that can and should always be
carried out. At the very least, one should verify that an unbounded attack, i.e., an attack that
has no limit on the perturbation budget, reaches 100% success rate. After all, with unbounded
perturbations it is possible to transform a given input into any other input and so any target output
could be reached. If unbounded attacks fail, it is highly likely that the defense is implemented
incorrectly and robustness is over-estimated.

Failing to tune hyperparameters. Most adversarial attacks and defenses have at least some
hyperparameters that should be tuned for the specific task. In any evaluation, failing to tune the
hyperparameters of the attacks can underpower them and hence easily cause over-estimation of
robustness. Similarly, when comparing a new defense to prior work, it is in general unfair to
leave hyperparameters of existing defenses at their default values. This is a common and subtle
way in which defense evaluations can become overly optimistic.

These are some of the most common pitfalls observed by Carlini et al. [2019] that should caution
researchers developing new defenses. As discussed by Tramer et al. [2020], the field has mostly
taken these suggestions to heart, and defense evaluations have been getting significantly better
in recent years. The introduction of the AutoAttack suite by Croce and Hein [2020b] and the
RobustBench leaderboard10 serves as another important milestone in this regard, as to date
this is the most successful attempt at systematically benchmarking existing adversarial defense
algorithms.

The RobustBench benchmark works by simply applying the AutoAttack suite to a given defense
for several different data sets and threat models. At the time of this writing, the threat models
considered are CIFAR-10 under L2 = 1/2, L∞ = 8/255 and common corruptions, CIFAR-100
under L∞ = 8/255 and common corruptions and ImageNet under L∞ = 4/255 and common
corruptions. For each defense, the leaderboard reports the original publication that proposed
it, their standard accuracy, robust accuracy according to the AutoAttack suite, a flag indicating
whether the defense uses additional data and a flag indicating whether the evaluation may be
unreliable.

While RobustBench is definitely a step in the right direction and provides a much-needed ref-
erence which simply did not exist less than three years ago, it also has important shortcomings
that researchers need to be aware of:

• RobustBench relies on AutoAttack. The AutoAttack suite is in fact a diverse ensemble of
recently proposed strong adversarial attacks with optimized hyperparameters. While this

10https://robustbench.github.io. Accessed 2022-08-30.

https://robustbench.github.io


64 CHAPTER 2. ROBUSTNESS OF DEEP NEURAL NETWORKS

is certainly better than how things used to be done (i.e., evaluate against FGS and PGD
and be done with it), AutoAttack is not an adaptive adversary: it is a collection of static
adversaries that are deemed to be generally strong against most defenses. It is entirely
possible for a defense to overfit against AutoAttack and fail against adaptive adversaries
for the same reasons defenses used to fail before.

• RobustBench supports only a handful of rather artificial threat models. In particular, the
benchmark is limited to three data sets: CIFAR-10, CIFAR-100 and ImageNet. The first
two are highly similar to each other, both being derived from the same parent data set (80
million tiny images). Furthermore, these data sets only cover image classification tasks.
Natural language processing, for example, is completely absent from this benchmark,
as are any other ML tasks that do not involve classification. Patch attacks, which are
considered more realistic alternatives to Lp attacks [Levine and Feizi, 2020], are also not
supported.

• RobustBench uses fixed perturbation budgets. As argued by Carlini et al. [2019], a proper
evaluation should report robust accuracy for the full range of plausible perturbation bud-
gets.

• RobustBench does not support detector methods. To evaluate a detector method, one
would have to study the ROC curve, but RobustBench does not give the option of report-
ing true positive rates and false positive rates, let alone entire ROC curves.

• RobustBench ignores many additional parameters besides accuracy that are also relevant
when considering whether to deploy any particular defense in practice. There is no column
for memory or runtime overhead of the defense, for example. While RobustBench does
provide a column to indicate whether additional data is necessary, it does not specify the
required sample size, making this column rather uninformative.

To re-iterate, RobustBench has certainly improved how adversarial defenses are evaluated and
compared, but it is by no means perfect. I would therefore urge researchers developing new
defenses to definitely make use of the RobustBench library and the accompanying AutoAttack
suite, but to not limit themselves exclusively to this benchmark. Aside from RobustBench,
researchers should at the very least also consider adaptive attacks in their evaluation and compare
their results to adaptive evaluations of prior work if these are available. Unfortunately, while
many of the shortcomings I mentioned above are relatively easy to fix, it will likely never be
possible to develop adaptive attacks to novel adversarial defenses automatically; this is something
researchers will always have to do manually and with great care. The results of any specific
automated benchmarks for adversarial robustness will necessarily always be upper bounds which
may change at any moment when new attacks are developed.

2.5 Theoretical results
In this section, I survey some of the theoretical results that have been described in the adversarial
ML literature. I begin by considering linear classifiers and the theory that has been developed
around adversarials in this restricted setting. Then, I proceed to results for more complex mod-
els, such as deep RELU networks (i.e., DNNs that use the RELU as their only non-linearity).
Of particular interest to us here are theorems regarding conditions for the (non-)existence of
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adversarial examples, bounds on the robustness achievable by a given model and computational
hardness results for adversarial defense.

2.5.1 The linear model
Before tackling DNNs, it is instructive to study adversarial perturbations in the case where f is
a linear classifier:

f (x) = sgn(wᵀx+b) .

In the L2 threat model, finding an adversarial example then boils down to the following opti-
mization problem:

min ‖δδδ‖2
2 subject to wᵀ(x+δδδ )+b = 0. (2.18)

The Lagrangian function associated with (2.18) is given by

L(δδδ ,λ ) = ‖δδδ‖2
2 +λ (wᵀ(x+δδδ )+b).

Taking derivatives with respect to δδδ ,

∂

∂δi
L(δδδ ,λ ) = 2δi +λ .

To reach a stationary point, it is therefore necessary that

δi =−
1
2

λ

for all i. Hence, taking into account the constraint wᵀ(x+δδδ )+b = 0, this leads to

λ = 2
wᵀx+b
∑

n
i=1 wi

.

Finally, we have the explicit solution to (2.18), given by

δi =−
wᵀx+b
∑

n
i=1 wi

(2.19)

for all i. The L2 norm of this perturbation is

‖δδδ‖2 =
√

n
∣∣∣∣wᵀx+b

∑
n
i=1 wi

∣∣∣∣ . (2.20)

From (2.20) we can see that a linear model cannot be robust in the L2 threat model unless
εX = O(

√
n), i.e., the robustness radius can grow at most proportionally to the square root of

the data dimensionality.

In essence, what we have computed in (2.19) is the orthogonal projection of the sample x onto the
decision boundary of the classifier. Under the L2 metric, this is the shortest possible projection
and hence it corresponds to the smallest possible adversarial. This shows that, fundamentally, the
problem of robustness boils down to maximizing the distance between the data and the decision
boundaries, a property that is reminiscent of the support vector machine or SVM [Cortes and
Vapnik, 1995].
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Naturally, the robustness of SVMs against adversarial examples has been investigated in the
literature. Langenberg et al. [2019], for example, reached the surprising conclusion that the
robustness of the SVM is only weakly affected by the parameters determining the margin be-
tween classes. Instead, the choice of kernel and the resulting non-linearity appears to have a
much greater effect, with polynomial kernels of appropriate degree as well as the radial basis
function (RBF) kernels with well-tuned variance being more robust than a linear one. These
findings are in line with earlier work by Biggio et al. [2013], Šrndic and Laskov [2013] who also
studied SVMs in the adversarial setting. These works lend credibility to the linearity hypothesis:
the idea that adversarial examples are due to excessive linearity of the model, and hence robust-
ness could be achieved by making the models more non-linear. We turn to this hypothesis in
the next subsection.

2.5.2 Boundary tilting and the linearity hypothesis
One of the first hypotheses put forward to explain the existence of adversarial examples in
DNNs was the linearity hypothesis by Goodfellow et al. [2014]. They reasoned that adversarial
examples were due to the excessive linear behavior of neural networks, despite the fact that
DNNs are typically composed of many non-linear functions. Taking the inner product as the
leading example,

y(x) = wᵀx,

it can be seen that the deviation between y(x) and y(x+ δδδ ) grows linearly with the magnitude
of δδδ . In particular, if we set δδδ = ε sgnw, then

y(x+δδδ ) = y(x)+ ε‖w‖1.

Adversarial examples could then theoretically arise due to the high-dimensional nature of the
data: for large n, even a small ε can cause ε‖w‖1 to be very large.

This linearity hypothesis was popular for some time, until Tanay and Griffin [2016] proposed
boundary tilting as an alternative. They first argued that the linearity hypothesis is incomplete,
using two pieces of evidence:

1. The data dimensionality has no substantial effect on adversarial examples for linear clas-
sifiers on MNIST. When the MNIST data set is scaled up from 28× 28 resolution to
200×200, the vulnerability of logistic regression models trained on this data is not mean-
ingfully impacted. Yet, according to the linearity hypothesis, models trained on the higher
resolution data should be much more vulnerable.

2. There are linear classification problems for which adversarial examples provably do not
exist. The concrete example given by Tanay and Griffin is a toy binary classification
task on images of 100× 100 resolution, where the two classes are defined as follows.
The positive class consists of samples where the left half of the image is noisy (random
pixel values in the range [0,1]) and the right half is completely black (pixel value 0); the
negative class consists of images where the left half of the image is noisy (like the first
class) and the right half is completely white (pixel value 1). A linear SVM can be trained
to perfectly separate these classes, and interpolating between classes across the decision
boundary does not yield meaningful adversarials, since the samples will look ambiguous.



2.5. THEORETICAL RESULTS 67

Dense distribution 
of “low probability 
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(a) The “pocket view” suggested by Szegedy et al.
[2013]. Here, adversarial examples are due to pock-
ets of low probability in the input space, which are
undersampled and thus not well-modeled by the clas-
sifier.
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(b) The boundary tilting perspective of Tanay and
Griffin [2016]. Here, the decision boundary learned
by the classifier is slightly rotated with respect to the
ground truth. This leads to samples that lie close to
the data manifold but which are classified incorrectly.

Figure 2.14: Comparison of the “pocket view” of Szegedy et al. [2013] and the boundary tilting
perspective of Tanay and Griffin [2016] on adversarial examples.

Rejecting the linearity hypothesis, Tanay and Griffin [2016] proposed boundary tilting as a new
perspective. Under the boundary tilting hypothesis, adversarial examples are due to a mis-
alignment between the true data manifold and the manifold learned by the model. This idea is
illustrated in figure 2.14b, where the learned manifold is slightly rotated with respect to the data
manifold. Tanay and Griffin contrast this with the “pocket view” put forward by Szegedy et al.
[2013], which holds that adversarial examples lie in “pockets” of vanishingly low probability in
the input space (see figure 2.14a). In that sense, adversarial examples are “dense” in the input
space like the rational numbers on the real line: they certainly exist (there are even infinitely
many of them), but they have zero measure.

This line of reasoning can also be found in Biggio and Roli [2018], Melis et al. [2017], who
consider class-enclosing defenses. The idea is illustrated in figure 2.15 using multiclass SVMs
with RBF kernels. A regular SVM essentially partitions the input space into regions associated
with specific classes. However, because these partitions must cover the entire input space, the
SVM inevitably makes inappropriate associations, since areas that lie completely outside of the
support of the natural data manifold will still be marked with a class. Class-enclosing defenses
aim to ameliorate this by equipping the model with a “reject” option. Instead of partitioning the
entire input space, such defenses consider only high-probability subsets. A sample is only asso-
ciated with a class if it lies within the appropriate subset; if it does not, the sample is “rejected,”
indicating that it cannot be reliably classified using this model. This reflects the intuition that
natural samples lie in high-probability “pockets,” and adversarials necessarily lie in regions of
the input space where support is very low.

2.5.3 Geometrical perspectives
There is an extensive body of work aiming to understand the inner workings of DNNs from a
geometrical perspective. Research in this area typically employs tools from Riemannian geom-
etry to shed light on how the layers of a neural network sequentially deform the manifold of the
input samples to some intermediate, hidden representation. A seminal contribution in this vein
is Poole et al. [2016], who were the first to rigorously formalize and prove the long-conjectured
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Figure 2.15: Illustration of class-enclosing defenses, taken from Biggio and Roli [2018]. The
classes learned by the model no longer completely partition the input space. Instead, each class
is viewed as an enclosed subset, and samples lying outside of these sets are rejected.

Figure 2.16: Illustration provided by Moosavi-Dezfooli et al. [2019] of the relationship be-
tween adversarial vulnerability and curvature of the loss surface on two data sets (CIFAR-10
and SVHN), with and without fine-tuning on adversarial examples. Depicted are the negative
log-likelihood loss values for inputs sampled from a plane spanned by a direction r orthogonal
to the decision boundary of the model and a random direction v. The original sample is shown
as a blue dot. Blue regions correspond to low loss and red regions correspond to high loss.

idea that DNNs work by “disentangling” factors of variation. This idea was popularized by
Bengio et al. [2013], but a formal definition remained elusive. Poole et al. formalized this idea
using differential geometry, viewing the layers of a deep network as deformations of the in-
put manifold, and characterizing the expressivity of a DNN using the extrinsic curvature of the
Riemannian manifolds defined by the decision boundaries.

In the context of adversarial robustness, these ideas were taken up by Fawzi et al. [2017] and
Moosavi-Dezfooli et al. [2019], who related the curvature of the decision boundaries learned by
a DNN to its adversarial robustness. They show that higher curvature of the boundaries implies
higher sensitivity of the network to adversarial attack, and propose a regularization scheme to
reduce this curvature. These ideas are illustrated in figure 2.16. When the curvature of the
loss surface is high, data samples will tend to lie very close to “valleys” where the loss rapidly
increases with small perturbations. However, these valleys tend to be rather isolated, so they are
easily “stepped over” when following random directions. Hence neural networks can be very
robust to random noise but very sensitive to adversarial perturbations.
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Interestingly, as can be seen from figure 2.16, adversarial training works to reduce the curvature
of the decision boundaries. However, this has a paradoxical side-effect: although adversarially
trained models are more robust (in the sense of having fewer adversarial examples within the
specified perturbation budget), they are easier to fool. That is, the adversarial examples that still
exist for adversarially trained models can be found with simpler attacks, such as PGD with a low
number of iterations. This appears to be a direct consequence of the reduced curvature of the
boundaries, which allows gradient-based attacks to converge much faster. For models that have
high curvature, gradient information is less useful and hence more iterations of optimization
are required. In some sense, this is to be expected, since a lower curvature intuitively implies a
“simpler” decision boundary, whereas non-robust models (despite having many adversarial ex-
amples in the vicinity of each data point) may have much more complicated boundaries that are
more difficult to optimize over. This is related to the phenomenon of gradient masking [Atha-
lye et al., 2018a], where some adversarial attacks can severely over-estimate the robustness of
models that have highly complicated decision boundaries.

The work of Moosavi-Dezfooli et al. also has an interesting connection to another branch of ge-
ometrical approaches to understanding adversarial robustness. Specifically, Moosavi-Dezfooli
et al. define the curvature profile of a neural network as the spectrum of the Hessian matrix

H =

(
∂ 2`

∂xi∂x j

)
∈ Rd×d ,

where ` is the log-likelihood loss function. Although Moosavi-Dezfooli et al. did not seem to
consider this connection, under certain regularity conditions, the above quantity essentially cor-
responds to the Fisher information matrix of the input variables. Other works have considered
the robustness of neural networks from the perspective of information geometry [Amari, 2016],
where one views neural networks as points on a statistical manifold. Zhao et al. [2019], for in-
stance, formulate the One-Step Spectral Attack (OSSA) based on these insights. They consider
the following optimization problem as the basis for adversarial attacks:

max
ηηη

DKL(p(y | x)‖p(y | x+ηηη)) subject to ‖ηηη‖ ≤ ε. (2.21)

That is, (2.21) maximizes the KL divergence between the output distribution p(y | x) of the
model on the original input sample x and the distribution p(y | x+ηηη) of the perturbed sample x+
ηηη , where ηηη is subject to a norm constraint. Using a Taylor decomposition of the KL divergence
yields, for sufficiently small ηηη ,

DKL(p(y | x)‖p(y | x+ηηη))≈ 1
2

ηηη
ᵀF(x)ηηη ,

where F(x) is the Fisher information matrix of x. This reduces (2.21) to a quadratic program the
solutions of which are given by the eigenspaces of F(x). In this way, Zhao et al. directly relate
the eigenvalues of the Fisher information matrix to the adversarial robustness of the model, a
finding that agrees with Moosavi-Dezfooli et al. [2019].

It is instructive to apply these ideas to a very simple model. Consider the binary classifier

p(x) = σ(θθθᵀx), (2.22)

where σ(·) is the logistic sigmoid function and θθθ is the weight vector of the classifier, its only
parameter. The Fisher information matrix then has a simple form:

F(x) = p(x)(1− p(x))θθθθθθ
ᵀ.
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The eigenpairs (λ ,u) of F satisfy
F(x)u = λu.

With some re-arranging of terms, this yields

u =
p(x)(1− p(x))θθθᵀu

λ
θθθ .

Adding the constraint ‖u‖= 1 and applying the Cauchy-Schwarz inequality, we find

|λ | ≤ p(x)(1− p(x))‖θθθ‖2. (2.23)

This establishes a simple upper bound on the spectrum of the Fisher information matrix, which
is directly related to the robustness of the model (2.22). In the case of this simple classifier, we
find that robustness can be increased in two ways:

1. Regularization of θθθ .

2. High confidence of the predictions. That is, p(x) should be close to 0 or 1, so that p(x)(1−
p(x)) is minimized.

Although the first finding agrees with most prior work [Hein and Andriushchenko, 2017, Peck
et al., 2017, Tanay and Griffin, 2016], the second may be considered strange: after all, over-
confidence has been linked to vulnerability to adversarial examples [Hein et al., 2019] as well
as poor calibration [Guo et al., 2017]. This suggests that adversarial robustness could be at odds
not just with accuracy (as shown by Tsipras et al. [2019]) but with calibration as well. For well-
calibrated models, (2.23) can be taken to show that some adversarial vulnerability is inevitable,
especially for ambiguous samples where p(x) is close to 50%.

2.5.4 Continuity properties
The function f is Lipschitz continuous in dX and dY if it satisfies the following property:

∃K > 0 : ∀x,x′ ∈ X : dY ( f (x), f (x′))≤ KdX (x,x′). (2.24)

That is, the distance between the images f (x) and f (x′) is at most a constant factor of the
distance between the original samples x and x′, for some fixed universal constant K which is
referred to as the (global) Lipschitz constant.

Lipschitz continuity of f in dX and dY is an interesting property to study for adversarial robust-
ness, for the following reason. Let x̃ be (εX ,εY )-adversarial for x and f . Together with (2.24),
this implies the chain of inequalities

εY ≤ dY ( f (x), f (x̃))≤ KdX (x, x̃)≤ KεX .

It immediately follows that

εX ≥
1
K

εY . (2.25)

That is, the perturbation budget εX in the input space is bounded from below by the required
deviation εY in the output, scaled by the inverse of the Lipschitz constant. This means that
decreasing the Lipschitz constant K of the network will increase the minimum required per-
turbation εX . This simple fact has caused much of the adversarial ML literature to focus on
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ways of maintaining Lipschitz continuity of neural networks during training and to certify up-
per bounds on the resulting Lipschitz constant [Fazlyab et al., 2019, Hein and Andriushchenko,
2017, Jordan and Dimakis, 2020, Scaman and Virmaux, 2018].

The bound (2.25) is rather crude, since the global Lipschitz constant does not take into account
the specific sample x that is perturbed. As a result, it may be very large, yielding a very small
lower bound despite the fact that f could be relatively robust on typical inputs. It is therefore of
interest to study local Lipschitz continuity, where the constant K is allowed to depend on x:

∀x ∈ X : ∃Kx > 0 : ∀x′ ∈ X : dY ( f (x), f (x′))≤ KxdX (x,x′). (2.26)

This would yield a lower bound on εX that depends on the sample being perturbed, which can
be much tighter than the global bound shown in (2.25).

Going further, one could try to work with the minimal assumption that f is continuous in dX
and dY . Formally, this means

∀x ∈ X : ∀ε > 0 : ∃δ > 0 : ∀x′ ∈ X : dX (x,x′)≤ δ =⇒ dY ( f (x), f (x′))≤ ε. (2.27)

In particular, (2.27) implies

dY ( f (x), f (x̃))> εY =⇒ dX (x, x̃)> δ (x,εY ).

Hence, if a sample x̃ is adversarial for f and x, it must hold that dX (x, x̃) > δ (x,εY ). We
therefore have the lower bound

εX ≥ δ (x,εY ). (2.28)

For locally Lipschitz continuous functions, (2.28) specializes via

δ (x,εY ) =
1

Kx
εY .

In general, of course, δ (x,εY ) may be a much more complicated function.

Clearly, studying classes of functions for which the continuity properties can be kept under
control is of great interest for adversarial robustness. However, depending on the choice of
similarity measures dX and dY , continuity may not be desirable or even feasible. Furthermore,
even if continuity can be guaranteed, it is an open problem how to efficiently control the δ in
(2.27) during the optimization of the model parameters. Parseval networks [Cisse et al., 2017a]
are perhaps the most well-known class of neural networks where this can be achieved efficiently
to some extent. Parseval networks restrict their weight matrices to the Stiefel manifold [Absil
et al., 2009], maintaining approximate orthonormality throughout optimization and hence a
near-unit Lipschitz constant. Such methods have not gained much popularity, though, because
they are considerably more complicated to implement and computationally burdensome when
compared to other effective adversarial defenses (e.g., adversarial training).

2.5.5 Hardness results
Much work has also gone into the study of the hardness of robust learning. Specifically, deter-
mining the conditions under which robust learning is possible, and to what extent, is one of the
major problems in the field. In this regard, Gourdeau et al. [2019] have made several important
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contributions. They showed that robust learning is impossible in the distribution-free setting
even when the adversary is restricted to perturbing just a single bit of the input. Therefore, in
order to have any hope of creating robust classifiers, certain distributional assumptions must be
made; no adversarial defense can claim general robustness on arbitrary distributions. However,
there are certain concrete distributions that can be robustly learned under milder conditions: the
class of monotone conjunctions is robustly learnable if the adversary is limited to perturbing
O(logn) input bits.

In a similar vein, Yin et al. [2019a] prove that the Rademacher complexity of robust learning will
unavoidably be larger than its natural counterpart under realistic conditions. The Rademacher
complexity is a fundamental quantity in statistical learning theory, similar to the VC dimen-
sion [Vapnik, 1999], that measures the complexity of infinite hypothesis classes in a way that
can be directly related to the worst-case performance of any finite-sample learner for this class.
A higher complexity of the hypothesis class therefore immediately implies worse lower bounds
on the error of any learning algorithm. Similarly, Montasser et al. [2019] prove that hypothesis
classes with finite VC dimension can be robustly learned, but only improperly. In the case of
neural networks, this can imply that additional model capacity is necessary to obtain robustness.
Diochnos et al. [2019] study the problem of robust learning in the probably approximately cor-
rect (PAC) framework [Valiant, 1984]. They demonstrate conditions under which robust PAC
learning requires either exponentiallymore samples or polynomiallymore samples than standard
PAC learning, and give examples where robust PAC learning is impossible altogether.

2.5.6 Detection vs robust classification
Recently, Tramèr [2021] proved an interesting connection between detection of adversarials
(i.e., detector-based defenses) and robust classification (i.e., purification and hardening defenses).
Specifically, if one can detect adversarial examples up to a radius of εX , then one can also
classify them robustly up to a radius of εX /2 (although the construction provided by Tramèr is
not efficient). The converse also holds: if one can robustly classify up to εX /2, then one can also
detect adversarial perturbations up to εX .

Aside from being an interesting theoretical contribution in its own right, this finding provides
a sort of “sanity check” for adversarial detector methods. Given the enormous research effort
that has gone into constructing robust classifiers, it stands to reason that a novel detector method
should not be able to provide robustness guarantees that would (according to the theorem by
Tramèr) translate into (hypothetical) classifiers with a robust accuracy far in excess of the state
of the art. Indeed, Tramèr studies 13 published defenses and finds that for 11 of them, their
robust detection results would imply such unrealistically robust classifiers. While this result by
itself is of course not sufficient to prove that the proposed detectors don’t work, it is at least
cause for some concern and should motivate the authors to perform more rigorous evaluations.

2.5.7 Robustness certification
In order to assess the robustness of a given DNN in practice, the most straightforward method
is to simply attack the network with a strong algorithm and compute its empirical robustness on
the generated samples. However, this approach may not be efficient if the attack is slow, since
a large number of samples may be required to obtain statistically reliable estimates of robust
accuracy. Moreover, in general, there is no guarantee that high robust accuracy against a given
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attack implies any robustness at all against other attacks. For this reason, there has also been
much interest in developing methods that can efficiently and reliably certify robustness of any
given model without the need for extensive experiments with suites of existing attacks. The
randomized smoothing defense by Cohen et al. [2019] which we described earlier essentially
obtains certification abilities as a side-effect, but other methods exist that focus solely on certi-
fication and do not provide any defense themselves. Li et al. [2019] is perhaps most similar in
spirit to randomized smoothing, as they also rely crucially on additive Gaussian noise to certify
robustness. Their method also allows for the derivation of a training algorithm that improves
robustness.

Themain disadvantage of dedicated certification techniques is that they tend to be highly specific
to certain architectures, as the problem of robustness certification for general neural networks
is known to be NP-hard even under very simple threat models [Weng et al., 2018a, theorem
3.1]. For example, for tree-based models such as decision trees, random forests and gradient-
boosted trees, Chen et al. [2019] proposed an iterative algorithm that gives tight lower bounds.
The CLEVER score [Weng et al., 2018b] has appeared in many publications as a robustness
estimate for general neural networks. It is based on estimation of the local Lipschitz constant,
and its results seem to align well with empirical robustness tests. In a similar vein, Zhang et al.
[2018a] develop the CROWN score, which has also been widely used.

Perhaps the most well-studied scenario is the RELU network, i.e., when the neural network
is restricted to using only the RELU or linear activation functions between layers. Weng et al.
[2018a] introduce Fast-Lin and Fast-Lip to efficiently certify robustness of such networks. Fast-
Lin relies on linear approximations of the individual layers whereas Fast-Lip uses Lipschitz esti-
mation techniques similar toWeng et al. [2018b]. In some cases, researchers cast the robustness
certification problem for RELU networks as a semi-definite program (SDP), which is a rich area
in the field of optimization theory [Vandenberghe and Boyd, 1996]. Raghunathan et al. [2018]
provide one such example, and the work of Wong and Kolter [2018] is similar.

In Peck et al. [2017] we developed theoretical robustness lower bounds which can be applied
to essentially any existing neural network. In particular, we start from the formulation (1.1)
which characterizes any DNN based on a set of layer weightsW1, . . . ,WL, biases b1, . . . ,bL and
activation functions g1, . . . ,gL. Let F denote the full neural network and let ‖ ·‖ be any norm.11
The idea behind our approach is to work backwards from the output layer, since it is generally
very easy to quantify the perturbation needed on the output to change the label: given a vector
of probabilities z = hL(x), the smallest perturbation that must be applied to change the label
is simply the margin between the highest and second-highest values of z. Then, we assume
inductively for any l = 1, . . . ,L− 1 that layer l + 1 requires a perturbation of at least κl+1 to
change the output label and consider the smallest perturbation r such that

‖zl(u+ r)‖= ‖zl(u)‖+κl+1.

Here, zl(u) = gl(Wlu+bl) is the function computed by layer l. The most straightforward way
to obtain such bounds is via a Taylor decomposition:

zl(u+ r) = zl(u)+ J(u)r+ εεε,

11In our original work, we specialized to the Euclidean norm, but the analysis readily generalizes to other norms as
well.



74 CHAPTER 2. ROBUSTNESS OF DEEP NEURAL NETWORKS

where J(u) is the Jacobian matrix of zl at u and εεε is an error term that can be estimated in
various ways [Spivak, 2018]. In this way, we derive several specialized bounds for different
types of layers:

Softmax. For a softmax layer, which is typically the final layer of a classifier, we find the
bound

‖r‖ ≥min
c 6=c′

|(wc′ −wc)
ᵀx+bc′ −bc|

‖wc′ −wc‖
,

whereW is the weight matrix of the layer and b is its bias. We also show that this bound is tight,
in the sense that it is exact for certain linear classifiers.

Fully-connected layers. For general fully-connected layers, we obtain

‖r‖ ≥
√
‖J(x)‖2 +2M

√
nκ−‖J(x)‖

M
√

n
,

where κ is a robustness lower bound for the subsequent layer, n denotes the number of outputs
of the layer andM bounds the second-order derivatives of the layer function hl . The assumption
of second-order differentiability is usually satisfied in practice under mild assumptions, and the
upper bound M can be computed efficiently.

Convolutional layers. For convolutional layers with ReLU activation functions we find

‖r‖ ≥ κ

‖W‖F
,

where κ is a robustness lower bound of the next layer,W is the convolutional kernel and ‖ · ‖F
denotes the Frobenius norm.

Pooling layers. For Lp pooling layers, we have the bound

‖r‖ ≥ κ

tq2/p

where κ is the robustness of the next layer, t is the dimensionality of the output and q is the size
of the receptive field. For max pooling, we can let p→ ∞ to obtain

‖r‖ ≥ κ

t
.

The general conclusion we can draw from these lower bounds, is that robustness can be improved
using certain regularization techniques which penalize the norms of the weight matrices. The
bound on fully-connected layers implies that activation functions with bounded second-order
derivatives are also desirable. Moreover, the norm of the Jacobian ‖J(x)‖ plays an important
role: all else being equal, the robustness of an affine layer is maximized when ‖J(x)‖ is mini-
mized. We note the basic fact in mathematical analysis that a function is Lipschitz continuous
if and only if its Jacobian has bounded spectral norm, so our result supports the theory that
Lipschitz continuous layers improve robustness in DNNs.
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2.6 Historical notes
Reading the literature on adversarial machine learning, one would be tempted to conclude that
this is a relatively new discovery that was first described by Szegedy et al. [2013] and concur-
rently by Biggio et al. [2013]. However, adversarial examples already had a long history before
their discovery in the context of DNNs. The issue of “adversarial classification” was already dis-
cussed by Dalvi et al. [2004] in the context of classical ML. In one of the seminal papers of the
field, Lowd and Meek [2005] introduced the adversarial classifier reverse engineering (ACRE)
learning problem, in fact initiating the formal study of the feasibility of constructing adversarial
examples.

The ACRE learning problem attempts to quantify the hardness of learning sufficient informa-
tion about a classifier to construct adversarial attacks when given only query access to it. In
this way, Lowd and Meek bring an interesting nuance to the modern discourse on adversarial
threat models: while Carlini et al. [2019] rightly emphasize the importance of adaptive robust-
ness evaluations (where an adversary has full knowledge of the classifier, including any and all
defensive measures), the difficulty of actually obtaining this knowledge in practice cannot be
summarily dismissed. Indeed, providing robustness in the worst-case scenario advocated by
Carlini et al. would be theoretically optimal, but it may also be unnecessarily pessimistic if no
attacker could feasibly obtain white-box access to the deployed model.12

The ACRE learning problem assumes a binary classification problem where an attacker has
query access to the target model for arbitrary inputs and has access to an adversarial cost function
a(x) which maps samples to non-negative real numbers (similarly to a norm in the common Lp
threat model). The adversary also knows at least one positive instance x+ and one negative
instance x−. The minimal adversarial cost (MAC) of a classifier f and cost function a is the
minimum cost a(x) over all instances x classified negatively by f :

MAC( f ,a) = min
x∈X
{a(x) | f (x) = 0}.

The instances of minimal adversarial cost (IMAC) is the set of all instances x classified negatively
by f and which achieve the minimal cost:

IMAC( f ,a) = {x ∈ X | f (x) = 0,a(x) = MAC( f ,a)}.

As a relaxation of this definition, Lowd and Meek also define

k−IMAC( f ,a) = {x ∈ X | f (x) = 0,a(x)≤ kMAC( f ,a)}.

Formally, the ACRE learning problem is then defined as the problem of finding instances x ∈
IMAC( f ,a). A set of classifiers F and cost functions A is ACRE learnable if there exists an
algorithm that, for any f ∈ F and a ∈ A , finds some x ∈ IMAC( f ,a) using only polynomially
many queries in the number of parameters of f and the dimensionality of the data. ACRE
k-learnable is defined similarly for x ∈ k−IMAC( f ,a).

12Of course, one can never exclude the possibility of an “inside job” where an adversary has infiltrated the target
organization and illicitly obtained complete access to their systems. In that case, however, it may be safe to say the
organization has much bigger problems than just the threat of white-box adversarial attacks. It is also not clear why, if
an adversary has obtained such a high level of systems access, they would not simply install some ransomware to encrypt
sensitive data instead of bothering with adversarial attacks.
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Under this formalism, Lowd and Meek [2005] prove that linear classifiers are ACRE (1+ ε)-
learnable under linear cost functions for any ε > 0. That is, we can obtain arbitrarily accurate
approximations of instances of minimal adversarial cost for any linear classifier using only poly-
nomially many queries in the number of parameters of the model and the dimensionality of
the data. The only requirement is that we possess at least one positive example and one nega-
tive example, which is feasible in many scenarios. This shows that the white-box threat model
is realistic for linear classifiers, since an attacker does not need many queries to learn enough
information about the classifier to fool it with adversarial examples.

To the best of our knowledge, the ACRE learning problem has not yet been revisited by con-
temporary ML research. As such, it opens a few interesting lines of inquiry that remain under-
explored:

1. Prove ACRE k-learnability for deep neural networks, or restricted classes of DNNs such
as deep ReLU networks.

2. Theorize efficient and effective ML algorithms which are provably not ACRE learnable.

3. Theorize efficient and effective ML algorithms which are provably not ACRE k-learnable
for reasonable values of k.

These questions are clearly of great importance to the adversarial ML community, but it appears
they have not yet been seriously considered. This is particularly striking given the surge of
research interest in black-box attacks, which are essentially variations of the original ACRE
algorithm proposed by Lowd and Meek [2005]. It is a shame this line of research appears to
have been abandoned.



Chapter 3

Conformal prediction

A certain type of perfection can only be realized
through a limitless accumulation of the imperfect.

Kafka on the Shore
Harukı Murakamı

This chapter serves as an introduction to the principles and practice of the field of conformal
prediction, which is relevant to the later chapters 4 and 5 where I develop adversarial defenses
based on these ideas. I will first explain the theory of conformal prediction and derive a relatively
simple preliminary defense method, detailed in algorithm 3.3. This algorithm is applied in a
case study on the detection of malicious domain names to demonstrate its potential. Its various
shortcomings are discussed and addressed in the following two chapters.

Deep neural networks in the supervised classification setting are typically constructed based on
scoring functions. These are mappings g : X → Rk from the input domain X to a real vector
space Rk where the dimensionality k is equal to the number of possible output labels |Y |. In
other words, the scoring function g takes any sample x ∈ X and assigns a real-valued score
to every class y ∈ Y . These vectors of scores g(x) = [g1(x), . . . ,gk(x)] must subsequently be
transformed into individual probabilities p1(x), . . . , pk(x) such that

py(x)≈ Pr[Y = y | X = x]

for every y ∈ Y . That is, the quantities py(x)must be accurate estimates of the true conditional
probability that the label is y given that the input is x. The process of transforming these raw
scores to probabilities is referred to as calibration [Guo et al., 2017]. The most commonmethod
used in the literature is known as Platt’s scaling [Platt et al., 1999]. It calibrates the scores g(x)
as follows:

py(x) =
exp(wᵀ

y g(x)+by)

∑y′∈Y exp(wᵀ
y′g(x)+by′)

.

Here, w1, . . . ,wk ∈ Rk are learned weight vectors and b1, . . . ,bk ∈ R are learned biases. It
is easily seen that the resulting values p1(x), . . . , pk(x) do indeed satisfy the basic axioms of
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probability, i.e., the values all lie within the interval [0,1] and they sum to unity. The final label
is then determined by looking at the most likely estimated outcome:

ŷ(x) = argmax
y∈Y

py(x).

However, as discussed by Guo et al. [2017] and Gal [2016], Platt’s scaling can be unreliable:
it can be prone to over-estimating the probabilities py(x). This is especially true for modern
neural networks trained using the typical categorical cross-entropy loss, which optimizes the
parameters of the model so as to minimize the negative log-likelihood (NLL) of the ground-
truth labels over the training data set:

θ
? = min

θ
−

m

∑
i=1

log pyi(xi;θ).

Since py(x;θ) ∈ [0,1], the NLL takes values in the interval [0,+∞). The global minimum is
reached when the neural network outputs a probability of 100% for the ground-truth labels on
every training sample (and 0% probability for all other classes). This method of training, which
is typical for neural network classifiers, therefore encourages overconfidence. This phenomenon
was confirmed empirically by Guo et al. [2017], but it seems to be merely a logical consequence
of optimization based on the NLL over the training data.

One obvious way to correct this flaw would be to not use probabilities of 100%, but to use more
accurate estimates. Of course, such estimates are almost never available and would be highly
debatable and subjective for many real-world tasks. To address this issue, Szegedy et al. [2016]
proposed label smoothing, a technique that aims to “soften” the outputs computed by neural
networks even in the absence of exact ground-truth probabilities. This is done via a simple
linear interpolation scheme added on top of an existing calibration method:

p′y(x;θ) = (1− ε)py(x;θ)+ εu(y).

The most straightforward choice for u is the discrete uniform distribution on Y , which leads to

p′y(x;θ) = (1− ε)py(x;θ)+
ε

k
.

If the network is overconfident and places 100% probability on a certain output, i.e., py(x;θ)= 1
for some y and py′(x;θ) = 0 for all y′ 6= y, then the smoothed probability for ywill be p′y(x;θ) =

1− ε
(
1+ 1

k

)
. In other words, the final probability for y is interpolated between 100% and 1/k

(i.e., random guessing), and the degree of interpolation is controlled by ε : higher values bring the
final prediction closer to 1/k. Label smoothing has been applied in adversarial settings [Kurakin
et al., 2016], but the method lacks theoretical guarantees.

Naturally, the observation that this method of training can lead to overconfident predictors is
not new, and is the very reason machine learning practitioners have historically made use of all
manner of regularization schemes to prevent overfitting [Vapnik, 1999]. As Guo et al. [2017]
point out, however, regularization seems to have diminishing returns as the neural networks
become larger: the degree of overconfidence and miscalibration becomes more pronounced as
the number of parameters of the network grows.

One plausible avenue of research, therefore, is to consider adversarial examples through the lens
of calibration. That is, we consider that adversarial examples are a consequence of failing to
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properly calibrate our models, leading to a general over-estimation of the conditional probabil-
ities which can be exploited in certain cases to yield high-confidence predictions of erroneous
labels. This idea, which we call the calibration hypothesis, has been explored in other work such
as Qin et al. [2021] and Lee et al. [2018]. Although difficult to prove with certainty, there is
evidence in the literature that calibration plays an important role in adversarial robustness. For
example, in the works by Hein et al. [2019] and Meinke and Hein [2019], it is shown that ReLU
networks in particular1 can severely over-estimate class membership probabilities for specific
samples. The randomized gradient-free adversarial attack by Croce et al. [2020] in fact builds
on these ideas to generate adversarial examples for ReLU networks, showing that overconfidence
(and hence miscalibration) can be exploited in practice to fool classifiers.

With the calibration hypothesis in mind, it is natural to consider alternatives to Platt scaling.
Specifically, we are interested in machine learning algorithms that provide provable guarantees
on their calibration properties. It turns out that such algorithms do exist: they are known as
conformal predictors [Gammerman and Vovk, 2007, Shafer and Vovk, 2008, Vovk et al., 2005,
2015].

The contents of this chapter are based on Peck et al. [2020].

3.1 Background on conformal prediction
Conformal prediction (CP) is a sub-field of statistics and machine learning dedicated to the study
of learning algorithms with provable guarantees on their calibration properties. The field has
a long and respectable history but appears to be mostly unknown within the modern machine
learning and deep learning communities. Although I cannot be sure, I suspect the frequentist
nature of CP is one reason why it remains mostly unknown in the field of deep learning, as there
has been a very clear trend towards more Bayesian techniques within DL, likely to the detriment
of frequentist methods. Indeed, Bayesian neural networks are highly attractive both for adver-
sarial robustness and calibration properties, because they have an inherent ability to provide
uncertainties for their predictions [Gal, 2016]. Mathematically, the prediction of a Bayesian
neural network (BNN) is computed via marginalization over all possible model parameters:

Pr[Y = y | X = x] =
∫

Θ

Pr[θ ]Pr[Y = y | X = x,θ ]dθ .

Here, Pr[θ ] is a prior distribution over the model parameters that must be fixed by the practi-
tioner (as is typical of Bayesian methods). In practice, once the prior is fixed, this integral can be
approximated using sampling, Monte Carlo Dropout, variational inference or stochastic weight
averaging (SWAG) [Gal and Ghahramani, 2016, Jordan et al., 1999, Maddox et al., 2019]. At
first glance, this would seem very promising: if the calibration hypothesis is true and if BNNs
are capable of providing accurate estimates of uncertainty for their own predictions, then they
should also exhibit higher robustness to adversarial attacks. To date, however, no adversarial de-
fense seems to have been published using BNNs that withstands sophisticated adaptive attacks.
One reason for this may lie in the choice of prior distribution Pr[θ ]. Conventional wisdom
within the Bayesian community dictates that one may choose uninformative priors such as the
Jeffreys prior:

Pr[θ ] ∝
√

detI (θ).
1A ReLU network is any deep neural network that uses only linear or ReLU activation functions as non-linearities

in their architectures.
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Here, I (θ) is the Fisher informationmatrix of the parameter θ . This matrix depends on the like-
lihood function defined by the model, which is immediately known once the network is defined.
However, Gelada and Buckman [2020] argue the exact opposite in the case of overparameter-
ized models: if the model has many more parameters than training samples, one should in fact
use so-called generalization-sensitive priors. These are priors which assign high probability to
models that generalize well. Otherwise, the posterior distribution Pr[Y | X ] defined by the BNN
will not “concentrate,” in the sense that it will not be able to distinguish well-performing mod-
els from those that are simply overfitting. In such cases, any Bayesian measures of uncertainty
computed for our BNN predictions run the risk of being utterly meaningless. To make Bayesian
methods work in adversarial settings, it therefore seems that much more care must be taken in
the formulation of the prior distribution.

By contrast, CP is a frequentist procedure that requires no priors. Instead, it relies on the com-
putation of p-values based on some measure of “conformity.” Typically, conformal predictors
must be tuned on a subset of training data, but they require no details about the underlying
model: they only need the scores produced by the model on a sufficiently large sample. In par-
ticular, it is entirely possible to apply CP methods to BNNs, essentially combining frequentist
and Bayesian inference in one model. As discussed by Wasserman [2011], this combination
can be useful in certain cases and can yield Bayesian methods that enjoy frequentist validity
guarantees. This is sometimes referred to as Frasian inference, a portmanteau of frequentist
and Bayesian as well as a tribute to Don Fraser, who originated the idea. The question whether
this marriage of frequentist and Bayesian inference may lead to more robust models is certainly
intriguing, but we leave this as potential future work.

At a high level, CP is concerned with quantifying the degree to which a given sample “conforms”
to data that has already been seen. Following Vovk et al. [2005], a conformal predictor is a func-
tion Γ which takes as input a confidence level ε , a bag2 of instances B = *(x1,y1), . . . ,(xm,ym)+
and an input x ∈ X . It then outputs a set of labels Γε(B,x) ⊆ Y which satisfies a property
called exact validity. Intuitively, exact validity means that the true label of x is in the set
Γε(B,x) with probability at least 1− ε . Formally, consider an infinite sequence of samples
ω = (x1,y1),(x2,y2), . . . from the data distribution. Assume that the data distribution is ex-
changeable.3 Define the error event at significance ε after n samples as

errε
n(Γ,ω) =

{
1 if yn /∈ Γε(*(x1,y1), . . . ,(xn−1,yn−1)+,xn),

0 otherwise.

Exact validity then means that the random variables errε
1(Γ,ω),errε

2(Γ,ω), . . . are all indepen-
dent and Bernoulli distributed with parameter ε . Interestingly, this property cannot be satisfied
by deterministic algorithms [Vovk et al., 2005]; any algorithm that satisfies exact validity must
be randomized. To accommodate deterministic predictors, a weaker property is used known
as conservative validity. For conservative validity, it is only necessary that the error events
errε

n(Γ,ω) be dominated in distribution by independent and identically distributed Bernoulli ran-
dom variables with parameter ε . Formally, this means that there must exist two sequences of
random variables ξ1,ξ2, . . . and η1,η2, . . . such that

2A bag ormultiset is a collection of items where the order is unimportant (like a set) and duplicates are allowed (like
a list).

3A probability distribution is said to be exchangeable if the order of observations does not matter; every permutation
of a sequence is equally likely. In particular, a product distribution (which results in i.i.d. samples) is exchangeable.
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1. each ξi is independent and Bernoulli distributed with parameter ε ;

2. errε
i (Γ,ω)≤ ηi almost surely for all i;

3. the joint distribution of η1, . . . ,ηn equals the joint distribution of ξ1, . . . ,ξn for all n.

It is easy to see that exact validity implies conservative validity: we can simply let errε
i (Γ,ω) =

ξi = ηi for all i. As shown by Vovk et al. [2005], conservative validity implies that the predictor
is asymptotically conservative, which corresponds to the following bound:

limsup
n→∞

Pr

[
1
n

n

∑
i=1

errε
i (Γ,ω)≤ ε

]
= 1. (3.1)

That is, a predictor is asymptotically conservative if the limit superior of its long-term error rate
is bounded by ε almost surely. The predictor is asymptotically exact if

lim
n→∞

Pr

[
1
n

n

∑
i=1

errε
i (Γ,ω)≤ ε

]
= 1. (3.2)

Naturally, if the above limit exists, then (3.1) is equivalent to (3.2) and so asymptotically exact
implies asymptotically conservative. It can also be shown [Vovk et al., 2005] that exact validity
implies asymptotical exactness.

3.2 The general conformal prediction algorithm
Having established the necessary theoretical background on conformal prediction, the question
is raised whether there exist any practical algorithms that achieve exact or conservative validity.
For our purposes, we shall limit ourselves to algorithms that are conservatively valid, as these
can often be made exactly valid with a simple randomization trick [Vovk et al., 2005].

Algorithm 3.1: General conformal prediction
Data: Non-conformity measure ∆, confidence level ε ∈ [0,1], bag of examples

*z1, . . . ,zm+⊆ X ×Y , object x ∈ X
Result: prediction region Γε(*z1, . . . ,zm+,x)⊆ Y

1 foreach y ∈ Y do
2 zm+1← (x,y)
3 for i = 1, . . . ,m+1 do
4 αi← ∆(*z1, . . . ,zm +\ * zi+,zi)
5 end
6 py← 1

m+1 #{i = 1, . . . ,m+1 | αi ≥ αm+1}
7 end
8 return {y ∈ Y | py > ε}

Algorithm 3.1 shows the general conformal prediction algorithm [Shafer and Vovk, 2008]. This
algorithmmust be instantiated with a non-conformity measure ∆, which can be any function that
outputs a non-negative real number given a bag of labeled examples *z1, . . . ,zm+ ⊆ X ×Y and
a new instance (x,y) ∈ X ×Y . Intuitively, non-conformity measures must somehow quantify
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how much the instance (x,y) deviates from (or does not “conform” to) previously seen labeled
instances. Of course, what constitutes a meaningful notion of non-conformity is heavily domain-
specific. The interesting property of algorithm 3.1, however, is that it is always conservatively
valid regardless of the precise definition of ∆. Indeed, ∆ may even be a constant and the algo-
rithm would still satisfy conservative validity. Naturally, not all non-conformity measures are
equally useful: while having conservative validity is nice, it does not guarantee that the algo-
rithm provides useful predictions. For example, the conformal predictor could always output
the entire set of labels: Γε(B,x) = Y for every bag B and object x ∈ X . This algorithm would
be conservatively valid, since its error rate is precisely zero, but it yields no useful information
about the true labels. A good non-conformity measure must therefore strive to minimize the
size of the prediction region.

Given a non-conformity measure ∆, a confidence level ε and a bag of labeled examples,

*(x1,y1), . . . ,(xm,ym)+,

algorithm 3.1 finds a set of candidate labels for a new object x ∈ X by iterating over all y ∈ Y
and computing non-conformity scores α1, . . . ,αm+1 based on the “virtual” instance (x,y). That
is, the conformal prediction algorithm provisionally labels x with every possible class y and,
for each class, quantifies the non-conformity of (x,y) with respect to the labeled data. It then
constructs the prediction region by including all labels y for which the corresponding p-value
exceeds the threshold ε . These p-values are determined by

py←
1

m+1
#{i = 1, . . . ,m+1 | αi ≥ αm+1}.

In other words, py is the fraction of non-conformity scores αi that are at least as large as αm+1,
the non-conformity score of the virtual sample (x,y). If py > ε , the algorithm includes y in
the prediction region. It is clear that algorithm 3.1 therefore also satisfies a so-called nestedness
property:

ε1 ≤ ε2 =⇒ Γ
ε1(B,x)⊇ Γ

ε2(B,x).

That is, the prediction regions become larger as ε becomes smaller. This is in fact a desideratum
for all conformal predictors.

3.3 Inductive Venn-ABERS predictors
One particular conformal predictor that is of interest to us here, is the inductive Venn-ABERS
predictor (IVAP) proposed by Vovk et al. [2015]. The IVAP is designed to take advantage of
some other inductive learning rule, such as a deep neural network, to improve its predictive
efficiency. It can be viewed as a specialization of the general conformal prediction algorithm,
where the non-conformity measure ∆ is crafted based on the scores produced by an existing
model. It was originally proposed for binary classification and, as such, the IVAP does not pro-
duce a discrete set of possible labels; instead, on input a sample x∈ X , it yields two probabilities
(p0, p1) satisfying

p0 ≤ Pr[Y = 1 | X = x]≤ p1.

Other works have extended the IVAP to the multi-class case [Manokhin, 2017], but we shall first
focus on binary classification. The pseudo-code for the IVAP is shown in algorithm 3.2. The
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Figure 3.1: Example of isotonic regression on a 2D data set. The isotonic fit is shown as a red
line. This image was produced with the isoreg function from the R language [R Core Team,
2015].

IVAP first partitions the full data set B into two disjoint sets: a training set B1 and a calibration
set B2. The training set B1 is used to fit a different model (such as a DNN) that supplies us with
a scoring function g : X → R. The scores are then computed on the held-out calibration subset
B2. With these scores, two isotonic regressions are performed based on the calibration set B2
as well as the two virtual samples (g(x),0) and (g(x),1). Isotonic (or monotonic) regression
aims to fit a non-decreasing line to a sequence of observations such that the line lies as close to
these observations as possible. Figure 3.1 shows an example of isotonic regression applied to a
simple 2D data set.

Algorithm 3.2 performs the isotonic regression as follows. Let the computed scores on the
calibration set be s1, . . . ,sm. First, the scores are sorted in ascending order and duplicates are
removed, yielding a subset s′1 ≤ ·· · ≤ s′n. The multiplicity of a score s′j is defined as the number
of times that score value appears in the data set:

w j = #{i | si = s′j}.

The “average label” for s′j is

y′j =
1

w j
∑

i:si=s′j

yi.

For binary classification with Y = {0,1}, the average labels will be real numbers between 0 and
1. The cumulative sum diagram (CSD) is the set of points P1, . . . ,Pn defined by

Pi =

(
i

∑
j=1

w j,
i

∑
j=1

w jy′j

)
= (Wi,Yi).

For these points, the greatest convex minorant (GCM) is computed [Tuy, 1998]. Formally, the
GCM of a function f : U → R is the maximal convex function h : I→ R defined on a closed
interval I containingU such that h(u)≤ f (u) for all u ∈U . Intuitively, the GCM is the “lowest
part” of the convex hull of f . An example is given in figure 3.2.
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Figure 3.2: Example of the greatest convex minorant computed for a set of points sorted in
ascending order. This image was produced with the fdrtool package [Klaus and Strimmer,
2015].

The value of the isotonic fit f computed by algorithm 3.2 at s′j is now defined as the slope of
the GCM betweenWj−1 andWj. That is,

f (s′j) =
h(Wj)−h(Wj−1)

w j
,

where h is the GCM of the CSD P1, . . . ,Pn. We leave the functions undefined at other points,
as we will never need those values.

3.3.1 Detecting adversarial manipulation using IVAPs
According to the calibration hypothesis, adversarial examples may be a consequence of badly
calibrated models where the predicted probability of a label can be a poor approximation of the
true probability, leading to overconfidence that can be exploited to fool the model with minor
modifications to the inputs. In this regard, IVAPs are extremely interesting because they enjoy
a very particular type of validity known as perfect calibration. Formally, a random variable P is
perfectly calibrated with respect to another variable Y if the following equality holds:

E[Y | P] = P. (3.3)

In the case of the IVAP, Vovk et al. [2015] show that it satisfies perfect calibration in the fol-
lowing sense. Let P0 and P1 be the random variables corresponding to the output probabilities
of the IVAP on a random sample (X ,Y ) from the data distribution. Then there exists a random
variable S supported on {0,1} such that PS is perfectly calibrated with respect to Y . Formally,
for the IVAP algorithm, the guarantee expressed by (3.3) reduces to

Pr[Y = 1 | PS] = PS. (3.4)
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Algorithm 3.2: Inductive Venn-ABERS predictor
Data: bag of samples B = *z1, . . . ,zm+⊆ X ×Y , object x ∈ X , learning algorithm A
Result: pair of probabilities (p0, p1) with p0 ≤ p1

1 Divide the full bag of samples B = {z1, . . . ,zm} into two disjoint bags
B1 = {z1, . . . ,zn} and B2 = {zn+1, . . . ,zm}.

2 Run the learning algorithm A on B1 to obtain a scoring function g.
3 for i = n+1, . . . ,m do
4 si← g(xi)
5 end
6 s← g(x)
7 Fit isotonic regression to {(sn+1,yn+1), . . . ,(sm,ym),(s,0)}, obtaining a function f0.
8 Fit isotonic regression to {(sn+1,yn+1), . . . ,(sm,ym),(s,1)}, obtaining a function f1.
9 p0← f0(s)
10 p1← f1(s)
11 return (p0, p1)

Algorithm 3.3: IVAP-based defense against adversarial examples
Data: bag of samples B = *z1, . . . ,zm+⊆ X ×Y , object x ∈ X , learning algorithm A,

precision β ∈ [0,1]
Result: Label y ∈ Y ∪{⊥}

1 Run algorithm 3.2 to obtain probabilities p0 and p1.
2 if p1− p0 ≤ β then
3 Set p← p1

1−p0+p1
.

4 if p > 1/2 then
5 return 1
6 else
7 return 0
8 end
9 else
10 return ⊥
11 end
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In other words, for every input sample, at least one of the probabilities p0 or p1 will be almost
surely equal to the true probability that the label is 1.

The difference p1− p0 is therefore a natural measure of confidence in the prediction: if the
difference is too large, the model cannot be trusted. This is the core idea of our defense against
adversarial examples: we use the IVAP to calibrate an existing model and flag all predictions
where the difference p1− p0 exceeds a certain threshold β . Flagging is done by extending the
label space Y with a special “reject” option, which we write as ⊥. For predictions that are not
flagged, we determine the final probability using the formula proposed by Vovk et al. [2015]:

p =
p1

1− p0 + p1
.

If p > 1/2, we return the label 1; otherwise, we return 0. The pseudo-code for this defense
is shown in algorithm 3.3. This method of quantifying uncertainty and rejecting unreliable
predictions was in fact already mentioned by Vovk et al. [2015], but to our knowledge nobody
has yet attempted to use it for protection against adversarial examples.

We note that the threshold for p can of course be set to a different value than 50%, but we did not
explore such tuning here as the approach already worked well with this default. The precision
threshold β is tuned by maximizing Youden’s index [Youden, 1950] on a held-out validation set
of clean and adversarial examples.

Calibration vs uncertainty. Having formally defined the calibration property of the IVAP
algorithm, we can briefly turn to a more philosophical discussion about our definitions of un-
certainty and calibration, as these concepts are sometimes confused. It should be clear from
(3.3) that perfect calibration does not imply the absence of uncertainty. Indeed, perfect cali-
bration of P with respect to Y only guarantees that the expectation of Y can be derived from P;
it does not mean that we know precisely what value Y has taken on at any given moment, even
after observing P. The stochastic regularization techniques proposed by Gal [2016], Gal and
Ghahramani [2016] are ways of quantifying this uncertainty, typically by using the variance of
the model output under various stochastic perturbations to the parameters. Calibration merely
means that the predicted probabilities supplied by the model match the empirical frequency of
the data. However, even perfectly calibrated models can still yield uncertain predictions. As
a simple example, consider a model that predicts the outcome of a fair dice roll. A perfectly
calibrated model would always predict 1/6 probability for each outcome, but this makes us no
less uncertain about the result of the next roll. We are concerned here only with post-hoc cal-
ibration, i.e., attempting to correct predicted probabilities of given models so that they more
closely match the ground-truth distribution. That is not to say conformal prediction cannot also
deal with uncertainty, however: the notion of credibility [Shafer and Vovk, 2008] comes very
close, and it would be an interesting avenue for future work to study whether credibility can be
incorporated together with calibration to produce even better adversarial defenses.

3.3.2 Data sets
Algorithm 3.3 only works for binary classification tasks, so our experimental evaluation has to
be appropriately limited. We make use of the following data sets to assess the performance of
our defense:
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Zeroes vs ones Our first task is a binary classification problem based on the MNIST data
set [LeCun et al., 1998]. We take the original MNIST data set and filter out only the images
displaying either a zero or a one. The pixel values are normalized to lie in the interval [0,1]. We
then run our experiments as described above, using a convolutional neural network (CNN) as
the scoring classifier for algorithm 3.3.

Cats vs dogs The second task we consider is the classification of cats and dogs in the Asirra
data set [Elson et al., 2007]. This data set consists of 25,000 JPEG color images where half
contain dogs and half contain cats. Again we train a CNN as the scoring classifier for algo-
rithm 3.3. We resized all images to 64x64 pixels and normalized the pixel values to [0,1] to
facilitate processing by our machine learning pipeline.

T-shirts vs trousers The third task is classifying whether a 28x28 grayscale image contains
a picture of a T-shirt or a pair of trousers. Similarly to the MNIST zeroes vs ones task, we
take the Fashion-MNIST data set [Xiao et al., 2017] and filter out the pictures of T-shirts and
trousers. Again, the pixel values are normalized to [0,1] and a CNN is used for this classification
problem.

Airplanes vs automobiles Our fourth task is based on the CIFAR-10 data set [Krizhevsky
and Hinton, 2009], which consists of 60,000 RGB images 32x32 pixels in size. We filter out
the images of airplanes and automobiles and train a CNN to distinguish these two classes.

3.3.3 Adaptive adversarial attack
As pointed out by Carlini and Wagner [2017c], it is not sufficient to demonstrate that a new
defense is robust against existing attacks. To make any serious claims of adversarial robustness,
we must also develop and test a white-box attack that was designed to specifically target models
protected with our defense. Let x ∈ X be any input that is not rejected and classified as y by the
detector. Our attack must then find x̃ such that

1. ‖x− x̃‖p is as small as possible;

2. x̃ is not rejected by the detector;

3. x̃ is classified as 1− y.

Here, ‖u‖p is the general Lp norm of the vector u. Common choices for p in the literature are
p ∈ {1,2,∞}; we will focus on L2 and L∞ norms here.

Following Carlini and Wagner [2017c], we design a differentiable function that is minimized
when x̃ lies close to x, is not rejected by the detector and is classified as 1− y. To do this effi-
ciently, note that whenever a new sample has the same score as an old sample in the calibration
set, it will have no effect on the isotonic regression and the result of applying algorithm 3.3 to
it will be the same as applying the algorithm to the old sample. Hence, we search for a sample
(si,yi) in the calibration set such that

1. yi = 1− y, so the sample satisfies the target classification;

2. f1(si)− f0(si)≤ β , so the sample is not rejected;
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3. the confidence value p = f1(si)
1− f0(si)+ f1(si)

satisfies p > 1/2 if yi = 1 and p≤ 1/2 otherwise.

From among all samples that satisfy these conditions,4 we choose the one which minimizes the
following expression:

‖x− xi‖2
2 + c(s(x)− si)

2.

Here, s(x) is the score assigned to x by the classifier and c is a constant which trades off the
relative importance of reducing the size of the perturbation vs fooling the detector. We choose
these samples in this way so as to “warm-start” our attack: we seek a sample that lies as close
as possible to the original x but also has a score si which lies as close as possible to s(x). This
way, we hope to minimize the amount of effort required to optimize our adversarial example.

Having fixed such a sample (si,yi), we solve the following optimization problem:

min
δ∈[−1,1]d

‖δ‖2
2 + c(s(x+δ )− si)

2 subject to x+δ ∈ [0,1]d . (3.5)

The constant c can be determined via binary search, as in the Carlini & Wagner attack [Carlini
andWagner, 2017c]. In our case, we are applying the attack to a standard neural networkwithout
any non-differentiable components, meaning the score function s is differentiable. The resulting
problem (3.5) can therefore be solved using standard gradient descentmethods since the function
to be minimized is differentiable as well. In particular, we use the Adam optimizer [Kingma and
Ba, 2014] to minimize our objective function. The constraint can easily be enforced by clipping
the values of x+δ back into the [0,1]d hypercube after each iteration of gradient descent.

Note that our custom white-box attack will not suffer from any gradient masking introduced by
our defense. Indeed, we only rely on gradients computed from the underlying machine learning
model. As long as the unprotected classifier does not mask gradients (which it should not, since
the unprotected classifiers will be vanilla neural networks trained in the standard way), this
information will be useful.

As described, the abovemethod of selecting a calibration sample and solving (3.5) only considers
adversarials that are minimal in L2 distance. However, L∞-bounded perturbations are also of
interest, so in our experiments we evaluate both the original L2 formulation as well as an L∞

variant.

3.3.4 Experiments
We performed experiments with algorithm 3.3 in Peck et al. [2020] on the above mentioned
data sets. For each data set, we consider several different settings:

• Clean. Here, the metrics are computed on the original proper test set, without any modi-
fications.

• Adversarial. The metrics are computed on the adversarial test set. This data set is con-
structed by running existing adversarial attacks against the underlying neural network

4Note that, strictly speaking, we are not guaranteed to find a sample matching all of these requirements. However, if
such a sample does not exist, then every sample in the calibration set is either classified as y, rejected or has its predicted
label altered by the IVAP. Although this is theoretically possible, it likely points to problematic data or a very poor
underlying model.
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on the proper test set. They do not take the IVAP into account. The attacks we em-
ployed were projected gradient descent with random restarts [Madry et al., 2017], Deep-
Fool [Moosavi-Dezfooli et al., 2016], local search [Narodytska and Kasiviswanathan,
2016], the single pixel attack [Su et al., 2019], NewtonFool [Jang et al., 2017], fast gradi-
ent sign [Goodfellow et al., 2014] and the momentum iterative method proposed by Dong
et al. [2018].

• Adapted. This is similar to the Adversarial scenario but the attacks are modified to take
the IVAP into account. That is, we run the same set of existing adversarial attacks, but
we target the full defended model instead of the original. For the gradient-based attacks,
we use the natural evolution strategies approach to estimate the gradient, thereby avoiding
any possible gradient masking issues [Ilyas et al., 2018, Wierstra et al., 2014].

• Custom Lp. We compute the metrics for adversarial examples generated using our custom
Lp white-box attack on the proper test set. We report results for p = 2 and p = ∞.

For all scenarios, we report the accuracy, true positive rate (TPR), true negative rate (TNR),
false positive rate (FPR) and false negative rate (FNR) of the detectors. These are defined as
follows:

Accuracy =
TA+TR

N
, TPR =

TA
TA+FR

,

TNR =
TR

TR+FA
, FPR =

FA
FA+TR

,

FNR =
FR

FR+TA
.

Here, N is the total number of samples, TA is the number of correct predictions the detector
accepted, TR is the number of incorrect predictions the detector rejected, FA is the number
of incorrect predictions the detector accepted and FR is the number of correct predictions the
detector rejected. The hyperparameter β was tuned to maximize Youden’s index, which is
defined as

J = TPR−FPR.

Youden’s J is defined for every point on the ROC curve. Graphically, it corresponds to the
distance between the ROC curve and the random chance line.

The implementations of the adversarial attacks, including the gradient estimator using the nat-
ural evolution strategies, were provided by the Foolbox library [Rauber et al., 2020]. The im-
plementation of the Venn-ABERS predictor was provided by Toccaceli [Toccaceli, 2017]. The
different data splits we perform for these experiments are illustrated schematically in figure 3.3.
Almost all neural networks were trained for 50 epochs using the Adam optimizer [Kingma and
Ba, 2014] with default parameters in the TensorFlow Keras framework [Chollet et al., 2015].
The exception is the CNN for the cats vs dogs task, which was trained for 100 epochs. No
regularization or data augmentation schemes were used; the only preprocessing we perform is a
normalization of the input pixels to the [0,1] range as well as resizing the images in one of the
tasks.

Table 3.1 reports the accuracy scores of the unprotected baseline models and table 3.2 summa-
rizes the metrics of the IVAPs for each of the tasks. From these results, we can see that the clean
accuracy of the protected model invariably suffers from the addition of the IVAP. However, in
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Figure 3.3: Illustration of the different data splits. The training data is split into proper training
data on which the scoring classifier is trained and calibration data on which the IVAP fits the
isotonic regression. The test data is split into proper test data, which is used to determine the
overall accuracy of the resulting algorithm, and validation data. Both of these subsets of test data
are used to generate adversarial proper test data and adversarial validation data. The adversarial
proper test data is used for evaluating the robustness of the resulting algorithm, whereas the
adversarial validation data is used together with the validation data to tune β . All splits are 80%
for the left branch and 20% for the right branch.

Data set Clean accuracy Adversarial accuracy

Zeroes vs ones 100% 2.31%
Cats vs dogs 89.87% 1.80%
T-shirts vs trousers 99.75% 3.43%
Airplanes vs automobiles 96.69% 3.75%

Table 3.1: Accuracy scores of the unprotected models

Data set Setting Accuracy TPR TNR FPR FNR

Zeroes vs ones Clean 98.52% 98.51% 100.00% 0.00% 1.49%
Adversarial 46.07% 0.00% 100.00% 0.00% 100.00%
Adapted 97.41% 0.00% 99.06% 0.94% 100.00%
Custom L2 0.00% 0.00% 0.00% 100.00% 100.00%
Custom L∞ 0.00% 0.00% 0.00% 100.00% 100.00%

Cats vs dogs Clean 72.94% 75.90% 48.85% 51.15% 24.10%
Adversarial 52.56% 71.25% 38.86% 61.14% 28.75%
Adapted 59.27% 100.00% 59.18% 40.82% 0.00%
Custom L2 1.64% 100.00% 0.00% 100.00% 0.00%
Custom L∞ 1.69% 100.00% 0.00% 100.00% 0.00%

T-shirts vs trousers Clean 96.88% 96.86% 97.44% 2.56% 3.14%
Adversarial 50.99% 0.00% 99.97% 0.03% 100.00%
Adapted 77.53% 0.00% 77.99% 22.01% 100.00%
Custom L2 0.00% 0.00% 0.00% 100.00% 100.00%
Custom L∞ 0.00% 0.00% 0.00% 100.00% 100.00%

Airplanes vs automobiles Clean 74.38% 73.21% 96.3% 3.7% 26.79%
Adversarial 58.14% 0.00% 100.00% 0.00% 100.00%
Adapted 93.99% 0.00% 94.82% 5.18% 100.00%
Custom L2 0.00% 0.00% 0.00% 100.00% 100.00%
Custom L∞ 0.00% 0.00% 0.00% 100.00% 100.00%

Table 3.2: Results of the IVAP defense
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Figure 3.4: Selections of adversarial examples which can fool our detectors, generated by the
custom L2 white-box attack.

almost all tasks, the false positive and false negative rates are relatively low for the Clean setting.
Our detectors are therefore capable of accepting correct predictions and rejecting mistaken ones
from the underlying model on clean data. The exception is the cats vs dogs task, where the false
positive rate is unusually high at 51.15%. However, we believe these results might be improved
by using a better underlying CNN. In our initial experiments, we used the same CNN for this
task as we did for airplanes vs automobiles and trained it for only 50 epochs. Using a more com-
plex CNN and training it longer significantly improved the results, so we are optimistic that the
results we obtained can be improved even further by adapting the underlying CNN and training
regime.

We also evaluate our IVAP defense against a suite of adversarial attacks. The results are shown
for the Adversarial and Adapted scenarios in table 3.2. When we transfer adversarials generated
for the underlying model to the IVAP, the accuracy always degrades significantly. However, it
is important to note that all unprotected CNNs have very low accuracy on these samples. As
such, in almost all cases, the IVAP has a very high true negative rate as most predictions are in
error. The exception is the cats vs dogs task, where the true negative rate is rather low on the
transferred adversarials. The accuracy is still much higher than the unprotected model, though
(52.56% vs 1.80%), so the IVAP did significantly improve the robustness against this transfer
attack. The adversarials generated using existing attacks adapted to the presence of the IVAP
also degrade the accuracy, but not as severely as the transfer attack. True negative rates remain
high across all tasks and the level of accuracy is, at the very least, much better than without
IVAP protection.

To more thoroughly evaluate the strength of our defense, it is necessary to also test it against
an adaptive adversary utilizing an attack that is specifically designed to circumvent our defense.
For this reason, table 3.2 also shows two rows of test results for each task, where we run our
custom white-box attack for both the L2 and L∞ norms. At first glance, it appears as though
our attack is completely successful and fully breaks our defense, yielding 0.00% accuracy. To
investigate this further, figures 3.4 and 3.5 show random selections of five adversarial examples
that managed to fool the different detectors, generated by our white-box attack. Empirical cu-
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Figure 3.5: Selections of adversarial examples which can fool our detectors, generated by the
custom L∞ white-box attack.

Figure 3.6: Empirical cumulative distributions of the adversarial distortion produced by our L2
white-box attack. The distance metrics are L2 (left) and L∞ (right).
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Figure 3.7: Empirical cumulative distributions of the adversarial distortion produced by our L∞

white-box attack. The distance metrics are L2 (left) and L∞ (right).

mulative distributions of the distortion levels introduced by our white-box attack are shown in
figures 3.6 and 3.7. Visually inspecting the generated adversarials and looking at the distribu-
tions of the distortion levels reveals cause for optimism: although some perturbations are still
visually imperceptible, there is a significant increase in the overall distortion required to fool
the detectors. This is especially the case for the L∞ adversarials, where almost all perturbations
are obvious. Even the L2 adversarials are generally very unsubtle except for the ones generated
on the cats vs dogs task. We believe this is due to the fact that the Asirra images are larger
than the CIFAR-10 images (64x64 vs 32x32), so that the L2 perturbations can be more “spread
out” across the pixels. Regardless, if one compares the adversarial images to the originals, the
perturbations are still obvious because the adversarials are unusually grainy and blurred.

3.3.5 Ablation study
For the experiments carried out above, the IVAP was only exposed to adversarial attacks which
it had already seen: the rejection threshold β was tuned on samples perturbed using the same
adversarial attacks as it was then tested against. An important question that arises now is how
well the IVAP fares if we test it against attacks that differ from the ones used to tune its hy-
perparameters, since in practice it is doubtful that we will be able to anticipate what attacks an
adversary may use. Moreover, even if we can anticipate this, the set of possible attacks may be
so large as to make it computationally infeasible to use them all. Therefore, we also test the per-
formance of the IVAP when β is tuned on adversarials generated only by the DeepFool attack
instead of the full suite of attacks. Our choice for DeepFool was motivated by the observations
that it is efficient and rather effective, but it is by no means the strongest attack in our collection.
It is less efficient than fast gradient sign, but this method was never meant to be a serious attack;
it was only meant to demonstrate excessive linearity of DNNs. It is weaker than NewtonFool,
for example, since this method utilizes second-order information of the model whereas Deep-
Fool is limited to first-order approximations. It is also weaker than some first-order attacks such
as the momentum iterative method, which was at the top of the NIPS 2017 adversarial attack
competition [Dong et al., 2018, Kurakin et al., 2018]. We therefore feel that DeepFool is a
good choice for evaluating how robust our defense is to future attacks.
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Data set Setting Accuracy TPR TNR FPR FNR

T-shirts vs trousers Clean 97.81% 97.89% 94.87% 5.13% 2.11%
Adversarial 49.31% 3.81% 93.02% 6.98% 96.19%
Adapted 56.8% 0.00% 56.93% 43.07% 100.00%
Custom L2 0.00% 0.00% 0.00% 100.00% 100.00%
Custom L∞ 0.00% 0.00% 0.00% 100.00% 100.00%

Airplanes vs automobiles Clean 93.62% 95.39% 60.49% 39.51% 4.61%
Adversarial 52.63% 0.00% 90.52% 9.48% 100.00%
Adapted 69.18% 0.00% 69.73% 30.27% 100.00%
Custom L2 0.00% 0.00% 0.00% 100.00% 100.00%
Custom L∞ 0.00% 0.00% 0.00% 100.00% 100.00%

Table 3.3: Results of the ablated IVAP detectors.

Figure 3.8: Empirical cumulative distributions of the adversarial distortion produced by our L2
white-box attack on the ablated detectors. The distance metrics are L2 (left) and L∞ (right).

We obtained identical values of β for the Zeroes vs ones and Cats vs dogs tasks, so there would
be no difference with respect to table 3.2. The results for the other tasks where β was different
are shown in table 3.3. The conclusions are similar: the accuracy degrades both on clean and
adversarial data, but clean accuracy is still high and true negative rates are high on adversarial
data. The custom white-box attack again appears highly successful. Figures 3.8 and 3.9 plot the
empirical cumulative distributions of the adversarial distortion levels for the ablated detectors.
Figures 3.10 and 3.11 show selections of customwhite-box adversarials which fooled the ablated
detectors. These results show that robustness to our L2 white-box attack is significantly lower
compared to the non-ablated detectors. The L∞-bounded perturbations are still very noticeable,
however. As an illustrative example, figure 3.12 shows histograms of the differences between
the upper and lower probabilities for clean and DeepFool adversarial examples on the zeroes
vs ones task. Although there is a small amount of overlap, the vast majority of adversarial
examples have a much higher difference than clean samples: clean data has a difference close to
0%, whereas adversarials are almost always close to 50%. The tuned model threshold is placed
so that the majority of clean samples are still allowed through but virtually all adversarials are
rejected.
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Figure 3.9: Empirical cumulative distributions of the adversarial distortion produced by our L∞

white-box attack on the ablated detectors. The distance metrics are L2 (left) and L∞ (right).

Figure 3.10: Selections of adversarial examples which can fool our ablated detectors, generated
by the custom L2 white-box attack.

Figure 3.11: Selections of adversarial examples which can fool our ablated detectors, generated
by the custom L∞ white-box attack.
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Figure 3.12: Histograms of the differences p1− p0 for clean and adversarial data along with the
tuned model threshold β . We used the DeepFool attack here to generate adversarials for the
zeroes vs ones model.

Data set Clean accuracy Robust accuracy ε Steps

Zeroes vs ones 99.88% 97.10% 0.30 40
Cats vs dogs 54.94% 3.50% 0.30 10
T-shirts vs trousers 97.12% 85% 0.30 40
Airplanes vs automobiles 82.06% 29.19% 0.30 10

Table 3.4: Summary of parameters and performance indicators for the Madry defense on the
machine learning tasks we considered. Step sizes were always set to 0.01 and random start was
used each time.

3.3.6 Comparison to other methods
In this section, we compare our IVAP method to the Madry defense [Madry et al., 2017] which,
to the best of our knowledge, is the strongest state-of-the-art defense at the time of this writing.
Specifically, we apply the Madry defense to each of the CNNs we used in our experiments and
compare the accuracies of the different methods. We also perform transfer attacks where we
try to fool our IVAP using adversarials generated for the Madry defense and vice versa.

The Madry defense is a form of adversarial training where, at each iteration of the learning
algorithm, the L∞ projected gradient descent attack is used to perturb all samples in the current
minibatch. The model is then updated based on this perturbed batch instead of the original.
To facilitate fair comparison, we do not use the pre-trained models and weights published by
Madry et al. for the MNIST and CIFAR-10 data sets, since these are meant for the full 10-class
problems whereas our defense only considers a simpler binary subproblem. Rather, we modified
the network architectures for these tasks so they correspond to our own CNNs and trained them
according to the procedure outlined by Madry et al. [2017].

Table 3.4 shows the results we obtained with theMadry defense as well as the parameter settings
we used for the PGD attack. The defense performs very well on the zeroes vs ones and T-shirts
vs trousers tasks. However, on airplanes vs automobiles the adversarial accuracy is low and on
the cats vs dogs task both the clean and adversarial accuracies are low. In fact, for the latter
task, the adversarial accuracy is almost the same as if no defense was applied at all. The Madry
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Data set L2 accuracy L∞ accuracy

Zeroes vs ones 46.28% 66.78%
Cats vs dogs 55.26% 55.48%
T-shirts vs trousers 94.94% 93.88%
Airplanes vs automobiles 79.94% 78.38%

Table 3.5: Results of the IVAP-to-Madry transfer attack. Here, adversarial examples generated
for the IVAP defense by our custom white-box attack are transferred to the Madry defense. We
test adversarials generated by both the L2 and L∞ variants of our attack.

Data set Accuracy TPR TNR FPR FNR

Zeroes vs ones 36.05% 30.91% 100.00% 0.00% 69.09%
Cats vs dogs 61.64% 65.08% 52.3% 47.70% 34.92%
T-shirts vs trousers 72.75% 71.02% 84.47% 15.53% 28.98%
Airplanes vs automobiles 45.81% 34.53% 95.92% 4.08% 65.47%

Table 3.6: Results of the Madry-to-IVAP transfer attack, where adversarial examples generated
for the Madry defense were tested against our IVAPs.

defense outperforms our method in terms of robust accuracy on two out of four data sets, but
it is important to note that these are the simplest data sets in our evaluation: Zeroes vs ones
was derived from MNIST and T-shirts vs trousers was derived from Fashion-MNIST. Both of
these data sets consist of grayscale images 28x28 pixels in size. Our method has higher robust
accuracy on Cats vs dogs and Airplanes vs automobiles, which consist of RGB images 64x64
and 32x32 pixels in size respectively. This suggests that the IVAP defense scales better than
Madry at higher dimensionality.

In table 3.5 we transfer the white-box adversarials for our defense to the Madry defense. The
Madry defense appears quite robust to our IVAP adversarials for T-shirts vs trousers and air-
planes vs automobiles, but much less so on zeroes vs ones. The accuracy on the adversarials for
the cats vs dogs task is close to the clean accuracy, so these appear to have little effect on the
Madry defense.

Table 3.6 shows what happens when we transfer adversarials for the Madry defense to our IVAP
detectors. We observe that for the zeroes vs ones and airplanes vs automobiles, the accuracy
drops below 50%. However, false positive rates on these adversarials are very low, so the de-
tectors successfully reject many incorrect predictions. On the other tasks, accuracy remains
relatively high. The false positive rate is rather high for the cats vs dogs task, but low for T-
shirts vs trousers.

Figure 3.13 plots the empirical distributions of the adversarial distortion levels of the Madry
adversarials, both for the L2 and L∞ distances. Comparing this figure with Figs. 10 and 11, we
see that our custom white-box adversarials for the IVAP defense generally require higher L2 and
L∞ levels of distortion than the Madry adversarials. Figure 3.14 plots selections of adversarials
generated for the Madry defenses by the L∞ PGD attack. The visual levels of distortion appear
comparable to our defense (for the L∞ variant of our attack), except in the case of the cats vs
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Figure 3.13: Empirical cumulative distribution curves for the adversarial distortion of theMadry
adversarials.

dogs task where the perturbations for the Madry defense seem much larger. It is important
to note, however, that the performance of the Madry defense on this task is close to random
guessing, whereas the IVAP still obtains over 70% clean accuracy.

We are lead to the conclusion that our defense in fact achieves higher robustness on these tasks
than the Madry defense. Moreover, our defense appears to scale much better: adversarially
training a deep CNN with L∞ projected gradient descent quickly becomes computationally in-
tractable as the data increase in dimensionality and the CNN increases in complexity. On the
other hand, our IVAP defense can take an existing CNN (trained using efficient, standard meth-
ods) and quickly augment it with uncertainty estimates based on a calibration set and a data
set of adversarials for the underlying model. The resulting algorithm appears to require higher
levels of distortion than the Madry defense in order to be fooled effectively and it seems to
achieve higher clean and adversarial accuracy on more realistic tasks. Finally, we note that our
method introduces only a single extra scalar parameter, the threshold β , which can be easily
manually tuned if desired. It is also possible to tune β based on other objectives than Youden’s
index which was used here. On the other hand, the Madry defense requires a potentially lengthy
adversarial training procedure whenever the defense’s parameters are modified.

3.3.7 Conclusions
We have proposed using inductive Venn-ABERS predictors (IVAPs) to protect machine learn-
ing models against adversarial manipulation of input data. Our defense uses the width of the
uncertainty interval produced by the IVAP as a measure of confidence in the prediction of the
underlying model, where the prediction is rejected in case this interval is too wide. The accept-
able width is a hyperparameter of the algorithm which can be estimated using a validation set.
The resulting algorithm is no longer vulnerable to the original adversarial examples that fooled
the unprotected model and attacks which take the detector into account have very limited suc-
cess. We do not believe this success to be due to gradient masking, as the defense remains robust
even when subjected to attacks that do not suffer from this phenomenon.

Of course, the mere fact that our own white-box attack fails against the IVAP defense does
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Figure 3.14: Selections of adversarial examples which can fool the Madry defense, generated
by the L∞ PGD attack.

not constitute hard proof that our method is successful. We therefore invite the community to
scrutinize our defense and to attempt to develop stronger attacks against it. The performance
of the IVAP defense is still not ideal at this stage since clean accuracy is noticeably reduced.
However, we believe these findings represent a significant step forward. As such, we suggest
that the community further look into methods from the field of conformal prediction in order
to achieve adversarial robustness at scale. To our knowledge, we are the first to apply these
methods to this problem, although the idea has been mentioned elsewhere already [Vorobeychik
and Kantarcioglu, 2018].

3.4 Case study: DGA detection
As a practical application of the IVAP-based defense in a real-world setting, we considered the
problem of detecting domain generation algorithms (DGAs) in Grumer et al. [2019]. DGAs are
commonly used by malware authors to establish connections with victim computers, to exfiltrate
data from these systems or send certain commands to the malware [Plohmann et al., 2016].
Specifically, a DGA is any algorithm which, given a random seed, generates a potentially infinite
deterministic list of valid internet domain names that have not previously been registered. Both
the malware and its author have a copy of the DGA, and the seed is generally taken to be some
piece of data from a publicly available source, e.g., the local time in a certain country, the data of
the latest tweet posted by some celebrity, etc. In this way, the attacker can establish a fairly robust
communication channel with their malware: the attacker simply registers some of the domains
generated by the DGA. Themalware finds these domains by iterating over the same list of names
(since it knows both the DGA and the seed used by the author) and establishes connections
with them to await instructions. If any of the domains are ever seized by law enforcement, the
attacker and the malware can simply move down the list until another available domain is found.
This ability to dynamically generate new domain names prevents ordinary blacklisting from
effectively blocking communication between the botmaster and infected machines. As such,
there is a need to develop classification systems which can identify domains generated by DGAs
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in real time [Saxe and Berlin, 2017, Schüppen et al., 2018, Tran et al., 2018, Woodbridge et al.,
2016]. For such classifiers, a low false positive rate is very important, because a false positive
might entail blocking a legitimate domain and disrupting their business.

To give a practical example of a real-world DGA, we consider an early version of the Cryp-
toLocker malware.5 This ransomware program initially used the following algorithm for gener-
ating domain names:

def generate_domain(year: int, month: int, day: int) -> str:
"""Generate a domain name for the given date."""
domain = ""

for i in range(16):
year = ((year ^ 8 * year) >> 11) ^ ((year & 0xFFFFFFF0) << 17)
month = ((month ^ 4 * month) >> 25) ^ 16 * (month & 0xFFFFFFF8)
day = ((day ^ (day << 13)) >> 19) ^ ((day & 0xFFFFFFFE) << 12)
domain += chr(((year ^ month ^ day) % 25) + 97)

return domain + ".com"

This DGA generates a 16-character domain name based on the current date. For example,
on 25 April 2022, it would generate the domain name nerrjcctdufmplay.com; the next
day, it would generate foxiiyctduf mplay.com. Note that these domain names are fully
deterministic and change only once every 24 hours. In later iterations of CryptoLocker, this
algorithm was changed and made more sophisticated, since the domain names generated by this
particular version are too predictable: for the year 2022, for instance, there are only 16 unique
8-character suffixes used by the algorithm that are easily recognizable and would likely never
appear in legitimate domain names:

bqidxxcl cajwaquf dufmplay fadifehn
fchttjcl hearwrfb hjedlway jlcywphn
kjxomkmh lsyiodfb ossttqrj ouwfivmh
serklcrj tcpbbypd xlkgifuf xqorwkpd

Adding these suffixes to a blocklist would be sufficient to shutdown CryptoLocker for an entire
year. This illustrates the subtlety of designing good DGAs: they must be sufficiently complex
so that blocklists are not a feasible countermeasure. At the same time, however, DGAs cannot
simply produce random strings, as this would allow for detection based purely on information-
theoretic analysis of the domain name itself (such as via the Shannon entropy). They must be
at least somewhat plausible as domain names, while ensuring that most of the generated names
have not been registered before.

3.4.1 Data sets
We assess the effectiveness of algorithm 3.3 in DGA detection using three data sets, detailed
below.

5https://arstechnica.com/information-technology/2013/10/youre-infected-if-you-wan
t-to-see-your-data-again-pay-us-300-in-bitcoins/. Accessed 2022-04-25.

https://arstechnica.com/information-technology/2013/10/youre-infected-if-you-want-to-see-your-data-again-pay-us-300-in-bitcoins/
https://arstechnica.com/information-technology/2013/10/youre-infected-if-you-want-to-see-your-data-again-pay-us-300-in-bitcoins/
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Alexa Offers a list of the top one million domains based on their popularity in terms of num-
ber of page views and number of unique visitors. It only retains the websites’ second level
domain names (SLDs), aggregating across any subdomains. For example, according to Alexa,
the three highest ranked domain names in terms of popularity on 2022-04-21 are google.com,
youtube.com, and facebook.com. This Alexa top 1 million list serves as a relatively reliable
source for benign, non-DGA generated domains but is not necessarily an accurate representation
of benign web traffic as whole. The Alexa data set is freely available online.6

Qname Contains domain names originating from a realtime stream of passive DNS data that
consists of roughly 10-12 billion DNS queries per day collected from subscribers including ISPs
(Internet Service Providers), schools, and businesses. We retained 1 million domain names that
match three criteria: (1) the domain is at least 30 days old, (2) the domain has been resolved
at least twice, and (3) queries to the domain have never resulted in an NXDomain response
(indicating a non-existent domain). This data set is intended to serve as a source of benign
ground truth that is more reflective of real web traffic than Alexa.

Bambenek Offers a daily feed of domains generated by reverse engineering known families
of malware. One million different DGA domains were collected over the course of three days
to construct a data set of malicious URLs. This data set is available online, but requires a license
to use as of July 2019.7

The Alexa and Qname data sets serve as negative (i.e., benign) examples, whereas Bambenek
supplies the positive (i.e., malicious) domains. As such, we construct two data sets on which
we train and evaluate our models: AlexaBamb, the concatenation of Alexa and Bambenek,
and QnameBamb, the concatenation of Qname and Bambenek. In both cases, the positive and
negative classes are perfectly balanced, containing 1 million names each. The data sets were
split into four parts: 64% training, 4% validation, 16% calibration, and 16% testing.

3.4.2 Models
Algorithm 3.3 is a sort of “wrapper” method, requiring an existing model to calibrate. We uti-
lize three neural network architectures that have been well-reviewed in past DGA classification
literature:

LSTM.MI A unidirectional LSTM recurrent neural network architecture original proposed
by Tran et al. [2018] that has been shown to be highly effective at DGA detection [Peck et al.,
2019b, Sivaguru et al., 2018].

Invincea A neural network architecture created by Saxe and Berlin [2017] that features par-
allel convolution layers.

MIT A hybrid CNN/RNN neural network architecture introduced by Vosoughi et al. [2016]
and shown to be effective for inline DGA detection [Yu et al., 2018]. It features stacked CNN
layers followed by a unidirectional LSTM layer.

6https://www.alexa.com/topsites
7https://osint.bambenekconsulting.com/feeds/

https://www.alexa.com/topsites
https://osint.bambenekconsulting.com/feeds/


102 CHAPTER 3. CONFORMAL PREDICTION

Data set Model TPR FPR ACC FRR TRR REJ

QnameBamb LSTM.MI 0.917 0.001 0.993 – – –
LSTM.MI + IVAP 0.993 0.001 0.996 0.064 0.922 0.100

Invincea 0.856 0.001 0.991 – – –
Invincea + IVAP 0.986 0.001 0.993 0.126 0.916 0.183

MIT 0.920 0.001 0.993 – – –
MIT + IVAP – – – – – 1.000

AlexaBamb LSTM.MI 0.964 0.001 0.992 – – –
LSTM.MI + IVAP 0.999 0.001 0.999 0.066 0.950 0.082

Invincea 0.966 0.001 0.991 – – –
Invincea + IVAP 0.999 0.001 0.999 0.108 0.969 0.123

MIT 0.909 0.001 0.992 – – –
MIT + IVAP 0.973 0.001 0.988 0.286 0.493 0.290

Table 3.7: Comparisons of model performance with and without IVAP.

3.4.3 Results
The results are shown in table 3.7. For both the QnameBamb and AlexaBamb data sets, we
report results for each of themodels (LSTM.MI, Invincea, andMIT) with and without the IVAP.
The metrics of interest for the baseline models are the true positive rate (TPR), false positive
rate (FPR) and accuracy (ACC). To enable a fair comparison with the IVAP, we compute these
metrics only for the subset of samples that were not rejected by the IVAP-augmentedmodel. For
the IVAP, additional metrics include the false rejection rate (FRR), true rejection rate (TRR)
and overall rejection rate (REJ). Here, a rejection is true when the underlying model prediction
was indeed wrong and false otherwise. The rejection rate is simply the fraction of samples for
which predictions were rejected.

The uncertainty threshold β was tuned on the separate validation set in order to maximize the
difference TRR-FRR similarly to Youden’s index [Youden, 1950]. Note that this is just one of
many possible ways one could tune β . In some applications, one might prefer the lowest possible
FPR, for example. Moreover, since β is just a single scalar hyperparameter, it is also possible
to specify it manually without resorting to potentially expensive hyperparameter optimization
methods on held-out data.

The use of algorithm 3.3 resulted in consistently better predictive scores at the cost of a small
rejection rate and the need for additional data sets. Most notably, the TPR always increases
across data sets andmodels after the IVAP process is applied while the false positive rate remains
stable. This suggests that the IVAP process can be used to improve the performance of existing
DGA classifiers. One exception to this is the MIT model on the QnameBamb data set: here,
all predictions were rejected because the probability interval was always larger than the tuned
threshold would allow. We speculate that this is due to the QnameBamb data set being more
difficult to fit properly, as evidenced by the fact that the classifiers perform consistently better on
AlexaBamb than QnameBamb. This means that models trained on QnameBamb might require
a larger calibration set to obtain good results with the IVAP.



3.4. CASE STUDY: DGA DETECTION 103

3.4.4 Conclusions
We applied the IVAP defense to the practical use-case of DGA detection and showed that it
can significantly improve the predictive scores of several state-of-the-art classification models.
However, we expect that real-time detection of DGA domains based on nothing more than
the domain name itself may become exceedingly difficult in the future as DGAs become more
sophisticated. We demonstrated this with the CharBot algorithm8 in Peck et al. [2019b]. The
pseudo-code of this algorithm is shown in algorithm 3.4.

Algorithm 3.4: CharBot
Data: a list of SLDs D, a list of TLDs T , a seed s
Result: a DGA domain

1 Initialize the pseudorandom generator with the seed s.
2 Randomly select a SLD d ∈ D.
3 Randomly select two indices i and j so that 1≤ i, j ≤ |d|.
4 Randomly select two replacement characters c1 and c2 from the set of DNS-valid

characters.
5 Set di← c1 and d j← c2.
6 Randomly select a TLD t ∈ T .
7 return d.t

CharBot is an extremely simple DGA: it randomly selects an existing domain name from a
list of second-level domains (SLDs) — such as the Alex top 1 million domain names — and
introduces two typographical errors. For instance, if CharBot selected google as the SLD, it
might generate go0gli as the DGA SLD. It then concatenates the generated SLD to a random
top-level domain (TLD), such as com. The end result could then be go0gli.com, which does
not exist at the time of this writing. Indeed, we found that the vast majority of CharBot domains
do not exist, despite the fact that they are generated by randomly replacing two characters from
an existing domain. They also easily bypass three popular detectors which were state-of-the-
art at the time: FANCI [Schüppen et al., 2018], LSTM.MI [Tran et al., 2018] and the B-RF
model from Sivaguru et al. [2018]. When these detectors are re-trained to incorporate CharBot
domains explicitly in their training data, they tend to generate far too many false positives on
benign data to be useful in practice. Adversarial training therefore does not seem like a viable
option in this case.

We suspect that CharBot is so effective for two reasons:

1. Human beings will tend to register domain names that are distinctly different from existing
well-known domains, otherwise their domain might not stand out. This means CharBot
domains will almost always be unregistered.

2. The distribution of CharBot domains is very close to the natural distribution of legitimate
domain names. Hence it is very difficult for any machine learning model to distinguish
legitimate domains from CharBot ones without generating too many false positives.

This suggests that effective DGA detectors may have to incorporate additional information be-
yond just the domain name. We explored this in Sivaguru et al. [2020], where we attempted to

8The name CharBot is derived from the first name of one of our co-authors, Charles Grumer, who initially proposed
it. It also references the fact that the algorithm is character-based.
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Model Features AUC TPR CharBot

B-RF DNS 53.23% 16.21% 1.70% ± 0.24%
Lexical 89.78% 97.44% 3.80% ± 0.00%
DNS + Lexical 98.19% 99.42% 20.06% ± 0.56%

LSTM.MI Domain name string 94.47% 98.80% 8.00% ± 0.00%

LSTM.MI + B-RF Domain name string + DNS 96.51% 99.89% 14.98% ± 0.63%
Domain name string + DNS + Lexical 99.17% 99.91% 15.76% ± 0.54%

Table 3.8: Performance metrics of DGA classifiers. AUC and TPR metrics are reported at a
FPR of 0.1%.

harden the LSTM.MI and B-RF models against CharBot using such side information. In partic-
ular, we found significant improvements in detection rates when the following DNS information
was incorporated into the detector:

• rrlength: The length of the RData field. This field is extracted from the DNS response
resource record. The RData contains a list of resolved IP addresses, the time-to-live value
of the query and the type of resource record.

• country: A potentially multi-valued feature listing the geographic locations to which the
IP addresses resolve that are associated with the domain.

• ttl: The time-to-live of the DNS query, which is the time interval that the resource
record can be cached by the DNS resolver.

• n_ip: The number of IP addresses associated with the domain.

• qtype: The DNS query type that can be extracted from the question section of the DNS
query.

• rtype: The resource record type extracted from the RData field.

• n_asn: The number of autonomous system numbers (ASNs) the IP addresses of the
domain map to.

• subnet: A binary feature indicating whether all IP addresses belong to the same subnet.

• n_countries: The number of countries the domain maps to.

Table 3.8 reports the results of our experiments for the B-RF and LSTM.MI model as well as
a hybrid LSTM.MI + B-RF model, which combines both LSTM.MI and B-RF architectures
by extending the B-RF classifier with the confidence score obtained from the LSTM.MI model
for the given domain name. Using DNS features in conjunction with standard lexical features
extracted from the domain name string yields much higher CharBot detection rates without
compromising AUC or TPR at the desired FPR of 0.1%. However, the highest detection rate we
could achieve was only about 20%, meaning approximately 80% of CharBot domains still went
undetected. Incorporating side information which the adversary cannot modify therefore shows
definite promise, but the problem is still far from solved. Moreover, the availability of useful
side information strongly depends on the particular task: for DGA detection, we can efficiently
extract such data from the DNS system, but other problems (such as image recognition) have
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no viable source of side information. This strategy may therefore only work for certain specific
problems but is not a general-purpose solution to the adversarial robustness problem.
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Chapter 4

The MultIVAP conformal
predictor

You had to draw lines, and that choice was in itself
dangerous; all boundaries had a double edge, were
like swords that could always be turned against you
in the end. But you still had to choose.

Trouble and Her Friends
Melıssa Scott

In chapter 3, we introduced the theory of conformal prediction and the IVAP algorithm by Vovk
et al. [2015]. Using the IVAP, we created a simple adversarial defense suitable for binary classi-
fication problems. We demonstrated the effectiveness of this method on the problem of detecting
domain generation algorithms (DGAs). These ideas were published in Peck et al. [2020] and
Grumer et al. [2019]. The obvious next step is to extend the method to the multi-class setting,
so that we can handle an arbitrary number of classes instead of only two. In this chapter, we de-
velop the MultIVAP algorithm, our multi-class extension of the IVAP defense which preserves
the favorable statistical guarantees of the conformal predictor at minimal computational cost.
These ideas have been published in Peck et al. [2019a].

There are two general ways of transforming a given binary classification algorithm tomulti-class:
one-vs-one (OvO) and one-vs-all (OvA), also known as one-vs-rest [Murphy, 2012].

One-vs-all The OvA strategy trains k classifiers, one for each of the k classes. Each classifier
fi (i = 1, . . . ,k) is a X → [0,1] function that is designed to estimate the probability that the input
sample belongs to class i (as opposed to any other class). The final classification decision is
achieved by choosing the highest output probability across the k models:

ŷ(x) = argmax
i=1,...,k

fi(x).

107
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One-vs-one In this setup, one classifier is trained for each pair of distinct classes. That is,
given a pair of classes i and j with i 6= j, we train a classifier fi j that is designed to classify
samples into either class i or class j. The predictions of the different models are subsequently
ensembled via a simple voting scheme:

si(x) = ∑
j 6=i

fi j(x).

Here, si(x) is the score assigned to class i given the input sample x. It is merely the sum of all
scores assigned by the paired classifiers { fi j | j 6= i} to class i. The final classification decision
is then reached by choosing the label associated with the highest score:

ŷ(x) = argmax
i=1,...,k

si(x).

All else being equal, it is clear that the OvO strategy has a considerably higher computational
complexity than the OvA scheme: OvO requires training k(k− 1)/2 classifiers, whereas OvA
requires only k. Inference using the OvO ensembling method is also slightly more complicated
than the OvA case. Moreover, the OvO strategy reduces the amount of training data available
for the individual classifiers, since fi j can be trained only on samples from classes i and j. On the
other hand, for the OvA case, the training data will generally be severely imbalanced. Although
OvA may be computationally more efficient, one must take care to resolve its inherent class
imbalance, either through over- or undersampling techniques or by using learning algorithms
that are not very sensitive to this problem.

At the time of writing, to the best of our knowledge, only Manokhin [2017] had considered
the problem of extending IVAPs to multi-class problems. They implemented the OvO scheme
where a separate IVAP is calibrated for each pair of distinct classes i and j. The objective is to
estimate the pairwise class probabilities

ri j(x)≈ Pr[Y = i | Y ∈ {i, j},X = x].

Let pi j
0 , pi j

1 denote the two output probabilities of the IVAP calibrated for classes i and j.
Manokhin uses the minimax method introduced by Vovk et al. [2015] to estimate the class
probabilities:1

ri j(x) =
pi j

1 (x)

1− pi j
0 (x)+ pi j

1 (x)
.

These estimates are subsequently merged into individual probabilities p1, . . . , pk using the voting
method proposed by Price et al. [1994]:

pi(x) =

(
∑
j 6=i

1
ri j(x)

− (k−2)

)−1

. (4.1)

Manokhin [2017] experiment with classification algorithms where the class probabilities pi are
calibrated according to (4.1), using IVAPs in a one-vs-one setup to estimate ri j. They find
that this method provides more well-calibrated estimates than existing popular alternatives such
as Platt’s scaling. Since IVAPs are used as the basic components, the method proposed by

1We also made use of this method in our binary IVAP defense.
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Manokhin inherits the advantage of being compatible with essentially any existing scoring clas-
sifier (such as a DNN).

The algorithm we propose here is similar in spirit to Manokhin: we also wish to extend the
IVAP to the multi-class case while maintaining the advantages of computational and predic-
tive efficiency as well as compatibility with existing well-performing models. In the interest of
efficiency, however, we opt instead for the one-vs-rest strategy. That is, we calibrate a single
IVAP for each of the k classes. For any given input x, this yields k pairs of probabilities pi

0(x)
and pi

1(x) for i = 1, . . . ,k. We wish to aggregate these probabilities into concrete label predic-
tions in such a way that perfect calibration as defined by (3.4) is achieved, since the calibration
hypothesis leads us to believe that this would constitute a potentially effective defense against
adversarial examples. However, we know from the work of Vovk et al. [2005] that this cannot
be done unless the resulting classifier is multi-probabilistic, i.e., it must output a set of labels
instead of a single label. In particular, we cannot adopt the algorithm proposed by Manokhin
[2017], since this method — when applied in a “plug-and-play” fashion to existing DNNs as
a replacement for the softmax layer — would not be multi-probabilistic and hence cannot be
perfectly calibrated. It is therefore necessary for us to develop our own way of aggregating the
IVAP outputs into sets of predictionsV ⊆ Y in a way which preserves the calibration properties
of the original algorithm 3.2.

The contents of this chapter are based on Peck et al. [2019a].

4.1 Formal construction
Let L denote the random variable corresponding to the set of labels associated with an input
sample X . The outputs produced by the IVAP bound the probability that a given label should
be included in this set:

pi
0(x)≤ Pr[i ∈ L | X = x]≤ pi

1(x). (4.2)
Our objective is to find the largest set of candidate labels V such that the probability that each
i ∈ V also belongs to L is maximized. In other words, we want to find a set V ⊆ Y which
maximizes Pr[V ⊆ L | X ]. To achieve this, we will prove both a lower and upper bound on this
probability based on (4.2). First, we note that

Pr[V ⊆ L | X = x] = Pr

[∧
i∈V

(i ∈ L)

∣∣∣∣∣X = x

]
≥ ∑

i∈V
Pr[i ∈ L | X = x]− (|V |−1)

≥ ∑
i∈V

pi
0(x)− (|V |−1).

The first inequality follows from the intersection bound and the second inequality follows directly
from (4.2). This establishes a lower bound on Pr[V ⊆ L | X ]. For the upper bound, we use the
elementary property that Pr[A∧B]≤min{Pr[A],Pr[B]} for any events A and B. Hence,

Pr[V ⊆ L | X = x]≤min
i∈V

Pr[i ∈ L | X = x]≤min
i∈V

pi
1(x).

To summarize, we have the inequalities

∑
i∈V

pi
0(x)− (|V |−1)≤ Pr[V ⊆ L | X = x]≤min

i∈V
pi

1(x). (4.3)
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Let ε ∈ [0,1] be the confidence parameter. In order for Pr[V ⊆ L | X = x] ≥ 1− ε to hold, by
(4.3) it is sufficient to have

∑
i∈V

pi
0(x)− (|V |−1)≥ 1− ε.

Define indicator variables

αi =

{
1 if i ∈V ,

0 otherwise.

Then the above is equivalent to

k

∑
i=1

αi
(

pi
0(x)−1

)
≥−ε. (4.4)

Maintaining the constraint (4.4) guarantees an error rate of at most 1− ε . However, there may
be several different subsets of labels which achieve the same error rate guarantee but which may
not all be equally likely. To pick the most likely subset of labels, we also maximize the upper
bound on Pr[V ⊆ L | X = x]. Using the indicator variables αi, this yields

Pr[V ⊆ L | X = x]≤min
i∈Y

1+αi
(

pi
1(x)−1

)
. (4.5)

Our objective is to find the largest subset V ⊆ Y which satisfies the constraint (4.4) and which
maximizes the upper bound (4.5). We can formulate this as a mixed integer linear program
(MILP) [Boyd and Vandenberghe, 2004]:

maximize
α1,...,αk,q

α1 + · · ·+αk +q

subject to α1, . . . ,αk ∈ {0,1},
q ∈ [0,1],

q+αi
(
1− pi

1(x)
)
≤ 1, i = 1, . . . ,k,

k

∑
i=1

αi
(

pi
0(x)−1

)
≥−ε.

(4.6)

The solution of (4.6) is an assignment to the set of binary variables α1, . . . ,αk where each αi
indicates whether label i is included inV or not. The variable q is a dummy designed tomaximize
the upper bound (4.5). Specifically, we have

q+αi
(
1− pi

1(x)
)
≤ 1 ⇐⇒ q≤ 1+αi

(
pi

1(x)−1
)
.

By maximizing q and applying the above constraint for all i = 1, . . . ,k, we effectively maximize
the upper bound (4.5). The pseudo-code of the full MultIVAP algorithm is summarized in
algorithm 4.1.

Note that (4.6) always has at least one feasible solution: α1 = · · ·= αk = 0 (which corresponds
to choosing V = /0) and q = 1. This solution trivially satisfies all guarantees, since Pr[ /0 ⊆ L |
X = x] = 1. This is one reason why we must choose the largest possible set of labels, since the
optimal choice for the smallest set would always be empty. Nevertheless, we do not see this as
a weakness of the method; rather, the guaranteed existence of the trivial solutionV = /0 implies
the possibility of abstaining from prediction. Specifically, if no solution exists other than the
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empty set, we can interpret this as abstention, i.e., all possible predictions are rejected. This
indicates that the model is too unreliable on the given input to output any labels at all, at least
at the ε confidence level. If it is absolutely necessary to obtain some output, the confidence
parameter has to be lowered. This may lead to insufficient confidence for certain applications,
however, at which point one either has to switch to more sophisticated (and computationally
expensive) models or involve a human expert.

The ability of a model to abstain from predictions may seem strange to many ML engineers and
practitioners, but it is in fact quite common in the CP literature. Indeed, there is the notion of
credibility of a prediction, which seems to be entirely unique to the field of CP. It is defined as the
largest ε for which the prediction region is empty [Saunders et al., 1999, Vovk et al., 2005]. This
quantity is usually reported in order to prevent overconfidence when the input is unusual [Shafer
and Vovk, 2008]. Even within the field of adversarial ML, especially in the context of detector
defenses, having the ability to abstain (e.g., when the model detects an adversarial or otherwise
suspicious input) is becoming increasingly common [Carlini and Wagner, 2017a, Grosse et al.,
2017]. This is simply a matter of necessity, as for detector defenses there is no guarantee that
the output of the model on an adversarial example will make any sense at all, and therefore
one might even be better off rolling a die rather than relying on the classifier. In such cases,
the only reasonable action might be to alert a human expert to review the situation and halt
processing of the suspicious input until further notice. This is practical in many settings: for
instance, in content filtering systems, a user who uploads a suspicious file might be notified that
their submission needs further review and will not be made publicly available on the server until
it is cleared manually by a moderator.

Algorithm 4.1:MultIVAP
Data: bag of examples *z1, . . . ,zm+⊆ X ×Y , object x ∈ X , learning algorithm A and

confidence level ε

Result: subset of labels V ⊆ Y
1 Divide the bag of examples into a proper training set {z1, . . . ,zn} and a calibration set
{zn+1, . . . ,zm}.

2 Run the learning algorithm A on the proper training set to obtain a scoring classifier F .
3 for i from 1 to k do
4 Let Fi be the score assigned by F to class i.
5 Create a new calibration set Si = {(xn+1,y′n+1), . . . ,(xm,y′m)} where

y′j =

{
1 if y j = i,
0 otherwise.

6 Use an IVAP to obtain probabilities pi
0, pi

1 for x using Si and Fi for calibration.
7 end
8 Solve (4.6) to obtain an optimal solution V ⊆ Y .
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4.2 Computational complexity
We now consider the computational complexity of algorithm 4.1. Note that the procedure can
be split into two distinct stages:

1. Calibration. When the MultIVAP is first initialized, it is instantiated with a learning algo-
rithm and a training data set. During calibration, it runs the learning algorithm and then
runs the IVAP algorithm k times, once for each class. This step needs to be performed
only once.

2. Inference. Once the MultIVAP is fully initialized, new samples can be processed using
the precomputed isotonic regressions to obtain the probabilistic bounds. Then, the final
prediction is computed by solving a MILP.

The overhead incurred in the calibration phase isO(kc logc), where c is the size of the calibration
set. This follows from the fact that we calibrate k IVAPs on data sets of size c and the complexity
of calibrating an IVAP is dominated by the sorting step in the isotonic regressions [Vovk et al.,
2015]. The inference phase is harder to analyze, since it requires the solution of aMILP. MILPs
are NP-hard in general [Arora and Barak, 2009], but our timing experiments performed in the
next section indicate that the overhead is roughly linear in the number of classes.

4.3 Choosing the calibration set
Another important aspect of the MultIVAP (and the IVAP as well) is the question of how to
choose the calibration set. Formally, the only requirement is that this set must be an indepen-
dent sample from the data distribution similar to the test or validation set [Vovk et al., 2015].
However, it would be interesting to have finite-sample guarantees on the performance of the
predictor depending on the size c of the calibration set. To the best of our knowledge, such
guarantees do not exist yet. Vovk et al. give the only real discussion we have been able to find
in the literature on this issue. They state that the lower and upper bounds pi

0(x), pi
1(x) used

by the MultIVAP will lie very close together for large data sets, but this is only an asymptotic
statement that says little about the actual rate of convergence when the data set is finite.

In our own work [Grumer et al., 2019], we have found that the IVAP can be sensitive to the
particular choice of calibration set size to the point where the predictions can sometimes become
unusable. Unsurprisingly, this appears to depend on the specifics of the underlying model; that
is, some models are harder for the IVAP to calibrate than others. In the absence of theoretical
finite-sample guarantees, the size of the calibration setmay be treated as another hyperparameter
which can be tuned on a separate validation set. The optimal size can then be chosen depending
on how well the accuracy of the resulting predictor is balanced against other considerations such
as computational overhead.

4.4 Example for the binary case
To gain a better understanding of how the MultIVAP works, it is instructive to study the special
case of binary classification. While we originally proposed algorithm 3.3 for this purpose, it is
important to note that the MultIVAP does not specialize to this algorithm in the binary case.
To see how the MultIVAP works for k = 2, we first assume for the sake of simplicity that only
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a single IVAP is used in this case, and that the labels are mutually exclusive (as they are in
the single-label setting commonly assumed for supervised classification). The IVAP yields the
bounds

p j
0(x)≤ Pr[ j ∈ L]≤ p j

1(x)

for any label j ∈ {1,2} and data sample x. In particular, assuming mutually exclusive labels, we
have Pr[1 ∈ L] = 1−Pr[2 ∈ L] and so the above yields the pair of bounds

p1
0(x)≤ Pr[1 ∈ L]≤ p1

1(x),

p2
0(x) = 1− p1

1(x)≤ Pr[2 ∈ L]≤ 1− p1
0(x) = p2

1(x).

The optimization problem (4.6) then reduces to

maximize
α1,α2,q

α1 +α2 +q

subject to α1,α2 ∈ {0,1},
q ∈ [0,1],

q+α1 p2
0(x)≤ 1,

q+α2 p1
0(x)≤ 1,

α1
(
1− p1

0(x)
)
+α2

(
1− p2

0(x)
)
≤ ε.

The only probabilities featured here are p1
0(x) and p2

0(x), the predicted lower bounds of both
classes. This allows us to visualize the decision boundaries of the MultIVAP as a 2D image.
Figure 4.1 gives a few examples of these boundaries for different values of ε , as a function of
p1

0(x) and p2
0(x). We can see that the area corresponding to an empty prediction region (and

hence rejection) forms a square the sides of which measure precisely 1− ε . In the lower-right
corner, there is an equilateral triangle where theMultIVAP outputs both labels (a useless predic-
tion). The sides of this triangle measure precisely ε . The remaining area is divided equally into
two convex sets, each corresponding to a single label. Each of these sets consists of a rectangle
measuring ε × (1− ε) concatenated with a triangle with base ε and height ε/2. Assuming a
uniform distribution of the probability lower bounds within the [0,1] interval, the probability
masses of the four possible prediction regions are then given by

Empty = (1− ε)2, Both =
ε2

2
,

Class 1 = ε(1− ε)+
ε2

4
, Class 2 = ε(1− ε)+

ε2

4
.

The masses of Class 1 and Class 2 are maximized for ε = 2/3, in which case we have

Empty =
1
9
, Both =

2
9
,

Class 1 =
1
3
, Class 2 =

1
3
.

Note that ε = 2/3 also minimizes the sum of the probability masses of Empty and Both. Inter-
estingly, in this case, the MultIVAP has a higher probability of returning both labels than it has
of rejecting the prediction.
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Figure 4.1: Decision boundaries of the MultIVAP in the binary case as a function of the proba-
bility lower bounds p1

0(x) and p2
0(x), for different values of ε . Two values of note are ε = 2/3,

in which case the probability masses associated with Class 1 and Class 2 are maximized (or,
equivalently, the masses of Empty and Both are minimized); and ε = 1

1+1/
√

2
≈ 59%, where the

Empty and Both regions have equal mass of 3−2
√

2≈ 17%. In that case, Class 1 and Class 2
have mass 2

√
2−5/2≈ 33%.
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Figure 4.2: Plots of the probability masses as a function of ε for the MultIVAP outputs in a
simplified binary classification setting.

We plot the probability masses as a function of ε in figure 4.2. At the low end of ε = 0, naturally
we have 100% rejection and theMultIVAP never outputs any labels. At the other extreme, ε = 1,
we have 0% rejection, 50% probability of outputting both labels and each individual label has
a probability of 25%. Extrapolating from these findings in a simplified binary classification
setting, we can conclude that theMultIVAP is a rather conservative algorithm: the probability of
rejection scales quadratically with ε , the probability of any individual class never exceeds 1/3 and
at low rejection rates there is a comparatively high chance of a useless prediction (i.e., outputting
both classes). Of course, these observations must be appropriately nuanced, mainly because we
have assumed a uniform prior for the lower bounds p1

0(x) and p2
0(x), which is likely not realistic

in most practical settings. In a sense, this is the “worst-case” scenario for the MultIVAP, as the
lower bounds can be very uninformative.

4.5 Adaptive attack
To enable a fair and thorough evaluation of the MultIVAP, we also design a custom defense-
aware white-box attack specifically for fooling this defense.2 Given that the MultIVAP is a
multi-probabilistic predictor returning a set of labels rather than a single prediction, we must
slightly modify the typical goal of causing a misclassification since that is ill-defined here. On
the one hand, we do not want the correct label to be present in the resulting label set; on the
other hand, we do not want the MultIVAP to output too many or too few labels either as this
can also raise suspicion. We settle on the following optimization problem:3

min
x̃∈X
‖x− x̃‖∞ +λ‖F(x̃)− s‖∞. (4.7)

2See Carlini et al. [2019] for an overview of the various desiderata that an adversarial defense evaluation should
satisfy.

3We use the `∞ norm everywhere as this is recommended by Madry et al. [2017]. However, the attack can be
trivially adapted to any other norm.
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Here, F : X → Rk is the scoring classifier, λ ∈ R is a parameter and s ∈ Rk is a target vector
of scores. The scalar λ is optimized via binary search so that the magnitude of the perturbation
‖x− x̃‖∞ is as small as possible. The score vector s is determined by searching the calibration set
of the MultIVAP for all calibration samples (x′,y′) such that y′ does not belong to the prediction
region of x. Among these candidates, we randomly sample one element x′ and take its calibration
score vector as the target s = F(x′).

An adversarial example produced by (4.7) is accepted only if the following conditions are met:

1. The perturbation stays within the budget, that is, ‖x− x̃‖∞≤η where η is a user-specified
perturbation bound.

2. The MultIVAP does not return an empty prediction region for the adversarial sample.

3. The true label is not present in the prediction region returned by the MultIVAP.

Solutions to (4.7) satisfying these properties are counted as “successes”, and the success rate of
the attack is the fraction of samples that were counted as such.

The intuition behind our defense-aware attack is the following. The k IVAPs used internally by
the MultIVAP will output the same upper and lower bounds for all samples that are assigned
the same scores by the classifier F . Therefore, if we can corrupt a sample x into a sample x̃
which shares the score vector of another sample x′, then x̃ will be associated with the same
probabilities as x′ and the optimization problem (4.6) will have the same solution sets for both.
This will cause theMultIVAP to output the same prediction regions for x̃ and x′. If, furthermore,
the distance between x and x̃ is small and if the true label of x is not present in the prediction
region of x′, then x̃ can be considered an adversarial example. This is what we aim to achieve
in (4.7). In finding an appropriate sample x′ to target, we try to minimize ‖F(x)−F(x′)‖∞ in
order to “warm-start” the attack.

Note additionally that the objective (4.7) can be optimized using gradient descent without issue,
as the scoring classifier F is a standard (fully differentiable) neural network. In particular, our
defense-aware attack will not suffer from any so-called gradient masking [Athalye et al., 2018a].
This is a common problem affecting gradient-based adversarial attacks where a proposed defense
method has “masked” or somehow corrupted the gradient signal of the model it is supposed to
defend. As shown by Athalye et al. [2018a], this does not actually make models more robust.
It can, however, create the illusion of robustness if one only evaluates against gradient-based
attacks. Importantly, standard neural networks trained using typical methods generally do not
exhibit gradient masking, making it not a concern for our attack.

4.6 Experiments
We perform experiments the following five data sets:

MNIST The MNIST data set was introduced by LeCun et al. [1998] and consists of 60,000
black-and-white handwritten digits. The images are 28x28 pixels in size and are divided into
ten classes (digits 0 through 9).

Fashion-MNIST The Fashion-MNIST data set was proposed by Xiao et al. [2017] as a drop-
in replacement for theMNIST data set. It has the same basic properties (black-and-white 28x28
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pixel images divided into ten classes), but instead of handwritten digits it contains images of
clothing items from the Zalando fashion catalog.

CIFAR-10 The CIFAR-10 data set contains 60,000 RGB images 32x32 pixels in size divided
into ten classes. The classes correspond to certain everyday items, such as automobiles, dogs
and cats. It was proposed by Krizhevsky and Hinton [2009] and originally derived from the
(now retracted) 80 Million Tiny Images data set.

Asirra The Assira data set was introduced by Elson et al. [2007] and contains RGB images
of cats and dogs of various sizes. Accordingly, it is divided into two classes. It was originally
intended to replace classical CAPTCHA systems based on distorted text with the more difficult
problem of distinguishing cats from dogs.4

SVHN The Street View House Numbers (SVHN) data set contains RGB images 32x32 pixels
in size divided into ten classes (again, for the digits 0 through 9). The digits are not handwritten
like MNIST; instead, they come from house numbers.

For each data set, we normalize the pixel values to the interval [0,1]. For the Asirra data set,
we also resized all images to 64×64 pixels to facilitate processing by our pipeline as the images
come in various irregular sizes. We used 64% of the data for training the neural networks,
16% for testing, 4% for validation and 16% for calibrating the MultIVAP. These splits were
constructed by randomly shuffling the entire data set and subdividing the samples accordingly.

We train convolutional neural networks and apply algorithm 4.1 to obtain a calibrated multi-
probabilistic predictor. We used TensorFlow Keras [Abadi et al., 2015, Chollet et al., 2015]
for training the neural networks. Each network was optimized using the Adam optimization
algorithm [Kingma and Ba, 2014] and trained for 10 epochs, except for Asirra which was trained
for 50 epochs. For the IVAPs, we made use of an implementation by Toccaceli [2017].

Proper evaluation of the performance of conformal predictors such as the IVAP poses its own
unique challenges and differs significantly from the evaluation of typical supervised classification
algorithms. In general, conformal predictors output set-valued predictions, i.e., their output is
always a set containing zero or more labels. To assess the performance of the MultIVAP, we
report the following metrics:

• The accuracy (ACC) of the original model. We give both the accuracy of the original
model on the full test set as well as the accuracy of the model on the subset of predictions
accepted by the MultIVAP. This is referred to as the “corrected accuracy” (COR).

• The average Jaccard index (JAC) of the MultIVAP on the test set [Jaccard, 1912]. This
index, also known as the intersection over union (IoU), is defined as

J(x) =
|L(x)∩V (x)|
|L(x)∪V (x)|

where L(x) is the true label set for the sample x and V (x) is the MultIVAP prediction
region. In the special case where L(x) is a singleton (single-label prediction), this formula

4Of course, with the advent of deep learning, in 2022 one could no longer rely on such a system to create reliable
CAPTCHAs.
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reduces to

J(x) =

{
1/|V (x)| if L(x)⊆V (x),
0 otherwise.

That is, it is inversely proportional to the size of the prediction region V (x) if this region
contains the correct label. If it does not, then a score of zero is assigned. In particular,
rejected predictions where V (x) = /0 are treated as if they are erroneous. The average
Jaccard index over the test set is then given by

J =
1
m ∑

i:L(xi)⊆V (xi)

1
|V |

.

If theMultIVAP always returns exactly one label, then the average Jaccard index coincides
with the typical notion of test accuracy. In general, however, the MultIVAP can return
multiple labels or even no labels at all in case of rejection. Therefore, J will always be
bounded by the accuracy and it is expected that it will often be smaller.

• The predictive efficiency (EFF), which is the average number of labels the MultIVAP
outputs across all samples. Ideally, this number should be very close to one.

• The significance level ε at which the results for the MultIVAP were obtained. This level
was determined by tuning the threshold on a held-out validation set such that the predictive
efficiency was as close to one as possible.

• The true rejection rate (TRR) along with the false rejection rate (FRR) and the overall
rejection rate (REJ). Formally, these are computed as follows:

TRR =
TR

TR+FA
, FRR =

FR
FR+TA

, REJ =
TR+FR

TR+FR+TA+FA
.

The quantities appearing in these equations are the number of true rejections (TR), false
acceptances (FA), false rejections (FR) and true acceptances (TA). Samples are rejected
if the MultIVAP returns an empty prediction region. A rejection is true if the underlying
scoring classifier F would have returned an erroneous prediction and false otherwise.
Table 4.1 summarizes these quantities in a more visual manner.

It is of particular importance for us to study the Jaccard index, efficiency, TRR and FRR of the
MultIVAP together and not simply the accuracy score. This is because the MultIVAP is amulti-
label predictor, meaning it yields a set of possible labels for each sample instead of a single point
prediction like most models do. When considering the performance of such a method compared
to a standard classifier that outputs an argmax over a set of estimated probabilities, we must ask
ourselves the following questions:

1. How well do the label sets predicted by the MultIVAP correspond to the true label sets?
This is measured by the Jaccard index, which is one possible generalization of the accu-
racy score specifically for multi-label predictors.

2. How many labels does the MultIVAP output on average? This is the predictive efficiency.
We do not want this quantity to be much higher or lower than the ground truth (which is
usually one), otherwise the MultIVAP can create confusion.
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3. When the MultIVAP rejects a prediction, what is the probability that this rejection was
“justified”, in the sense that the underlying model used by the MultIVAP was wrong?
This is quantified by the true rejection rate and the false rejection rate.

Naturally, we want the Jaccard index at 100%, the predictive efficiency close to one, the TRR
close to 100% and the FRR close to 0%. We can exercise some amount of control over these
metrics by varying the significance level ε . In our experiments, we used a held-out validation
set to tune ε in order to have a predictive efficiency as close to one as possible. Depending on
the particular application, however, one can use many other methods to tune ε . For instance,
in cybersecurity settings, it is considered highly undesirable to unjustly flag benign samples as
malicious because this interferes with legitimate users’ business. In such cases, we might be
more concerned with minimizing the FRR than we are with maximizing predictive efficiency
(or we may want to specify some sort of trade-off between these two metrics) and so we might
tune ε so that the FRR does not exceed some specified threshold instead.

Accept Reject

Correct True accept (TA) False reject (FR)
Incorrect False accept (FA) True reject (TR)

Table 4.1: Confusion matrix for the detector.

To assess the robustness of the MultIVAP against adversarial perturbations, we consider two
threat models:

Defense-oblivious. Here, we evaluate the defense against non-adaptive transfer attacks. That
is, the attacks have no knowledge of the defense; they are crafted against the baseline model
and then simply presented to the MultIVAP. This is the bare minimum of robustness that any
defense should hope to achieve [Carlini et al., 2019]. The attacks we tested against here are
DeepFool [Moosavi-Dezfooli et al., 2016], projected gradient descent (PGD; [Madry et al.,
2017]), fast gradient sign method (FGSM; [Goodfellow et al., 2014]), single pixel [Su et al.,
2019] and local search [Narodytska and Kasiviswanathan, 2016]. All implementations were
provided by the Foolbox library [Rauber et al., 2020]. We chose this particular set of attacks
because of their diversity: there are gradient-based attacks (DeepFool, PGD and FGSM), non-
gradient-based attacks (Single pixel and local search), iterative (DeepFool, PGD, single pixel,
local search) and single step attacks (FGSM).

Defense-aware. In this setting, we use our own adaptive attack to specifically bypass the Mul-
tIVAP. This evaluation should be a worst-case scenario for our defense and provides an estima-
tion of a lower bound on its actual robustness.

Finally, we address the question of computational efficiency of our method. It is difficult to
precisely quantify the complexity of the MultIVAP as it requires the solution of a MILP, which
is NP-complete in general [Boyd and Vandenberghe, 2004]. As such, we perform timing ex-
periments where we measure the average time per prediction for both the baseline model and
the MultIVAP on the test sets of each task.

Results on clean data are reported in table 4.2. We can see from the corrected accuracy that the
MultIVAP can increase the accuracy of the original model at the cost of rejecting a certain per-
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Baseline MultIVAP

Task ACC (COR) JAC 1− ε EFF TRR FRR REJ

MNIST 99.10% (99.59%) 94.16% 33.75% 0.99 56.94% 4.54% 2.90%
FMNIST 91.81% (93.84%) 83.44% 24.20% 1.04 29.62% 4.45% 6.75%
CIFAR-10 76.40% (81.52%) 61.86% 20.77% 1.05 32.73% 8.36% 15.54%
Asirra 88.82% (89.04%) 83.65% 41.86% 1.00 2.69% 0.48% 1.10%
SVHN 92.22% (96.40%) 80.77% 25.23% 1.01 59.22% 7.70% 10.42%

Table 4.2: Results of the baseline models and the MultIVAPs on the different data sets.

Baseline MultIVAP

Task Attack ACC (COR) JAC EFF TRR FRR REJ

MNIST
(η = 0.3)

DeepFool 35.86% (35.83%) 27.18% 0.52 59.23% 60.86% 59.81%
PGD 0.38% (0.33%) 37.23% 0.64 52.32% 46.67% 52.30%
FGSM 4.39% (4.57%) 41.13% 1.10 39.64% 2.85% 38.03%
Single pixel 98.01% (99.01%) 93.96% 0.99 62.89% 4.04% 5.21%
LocalSearch 25.48% (26.13%) 43.24% 0.41 84.02% 2.60% 63.28%

FMNIST
(η = 0.3)

DeepFool 27.98% (28.14%) 29.32% 0.66 43.60% 39.90% 42.56%
PGD 0.00% (0.00%) 35.19% 0.69 41.59% — 41.59%
FGSM 1.10% (1.11%) 28.27% 0.53 56.76% 2.38% 56.19%
Single pixel 85.05% (88.25%) 83.66% 1.02 35.28% 3.45% 8.21%
LocalSearch 51.10% (52.46%) 73.33% 0.76 60.46% 2.84% 31.01%

CIFAR-10
(η = 0.03)

DeepFool 0.01% (0.01%) 37.47% 0.95 24.16% 16.10% 24.10%
PGD 0.00% (0.00%) 35.28% 0.91 28.13% — 28.13%
FGSM 0.00% (0.00%) 32.38% 0.83 32.36% 0.00% 32.25%
Single pixel 60.68% (68.12%) 59.43% 1.01 37.53% 4.39% 17.43%
LocalSearch 18.99% (21.39%) 52.00% 0.73 48.62% 4.10% 40.16%

Asirra
(η = 0.03)

DeepFool 0.00% (0.00%) 37.01% 0.99 1.18% 12.50% 12.04%
PGD 0.00% (0.00%) 41.37% 0.98 1.60% — 1.60%
FGSM 0.00% (0.00%) 37.71% 0.98 1.64% 0.00% 1.63%
Single pixel 75.40% (75.50%) 77.01% 1.00 1.63% 0.00% 0.40%
LocalSearch 57.80% (57.87%) 73.14% 1.00 1.49% 0.00% 0.63%

SVHN
(η = 0.03)

DeepFool 0.01% (0.01%) 31.69% 0.82 36.00% 16.34% 35.86%
PGD 0.00% (0.00%) 27.98% 0.80 41.33% 0.00% 41.33%
FGSM 0.00% (0.00%) 19.16% 0.54 58.72% 0.00% 58.55%
Single pixel 69.59% (77.38%) 72.00% 0.96 58.50% 1.99% 15.78%
LocalSearch 22.91% (25.47%) 56.55% 0.79 71.61% 2.01% 30.32%

Table 4.3: Performance metrics of the baseline models and the MultIVAPs on adversarial trans-
fer attacks.
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centage of the predictions. These percentages can vary significantly depending on the underlying
model and the data set: on Asirra, we reject 1.10% of predictions whereas on CIFAR-10 we
reject 15.54%. If one counts rejection as misclassification, then the corrected accuracy minus
rejections (COR - REJ) can sometimes be lower than the baseline accuracy (ACC). However,
depending on the specific application, it may not be appropriate to treat rejections as if they
are errors: if correctness of the output is of paramount importance — such as when machine
learning is used for medical applications, industrial control systems or autonomous vehicles —
then it can be preferable to reject a relatively large number of predictions and return control to
human moderators instead of allowing the model to continue functioning based on erroneous
output. The risk of false rejection can be outweighed by the risks associated with misclassifica-
tion, especially if the false rejection rate is relatively low (as it is in table 4.2).

The Jaccard indices are relatively high, although (as expected) it is lower than the baseline ac-
curacy because of the rejected predictions. The predictive efficiency is very close to one on
all tasks, with high TRRs and relatively low FRRs. The significance levels 1− ε are rather
low, however, meaning the statistical guarantees provided by our method are relatively weak.
This may be due to our specific way of tuning ε or it may be due to looseness of the bounds.
Improving these bounds and obtaining better guarantees is left to future work.

Results for adversarial transfer attacks are presented in table 4.3. For MNIST and Fashion-
MNIST, we chose η = 0.3; for all other data sets, we let η = 0.03 as these bounds are fairly
typical in the literature. We can see that the MultIVAP is significantly more accurate than the
original models and that it generally has a high TRR on adversarial samples.

Since theMultIVAP inevitably returns multiple labels sometimes, it is interesting to study which
labels it tends to output together. This gives us an idea of the classes that the MultIVAP has
difficulty separating and may be a useful tool for diagnosing model shortcomings. Figure 4.3
plots co-occurence matrices as heatmaps for each classification task, where the cell at row i,
column j contains the number of times that labels i and j were returned together in a prediction
on the proper test set. The diagonals are left blank for clarity since every label trivially co-occurs
with itself each time. We see from these heatmaps that the classes that are most difficult for the
MultIVAP to separate are also the most perceptually similar ones: on CIFAR-10, automobiles
are confused with trucks and deers are confused with horses, for example. On the other hand,
birds are never confused with horses and frogs are never confused with trucks. Similar results
hold for the other data sets.

Figure 4.4 shows the success rate of our defense-aware adversarial attack as a function of the
number of iterations of gradient descent. We used the same values of η for the defense-aware
attack as we did for the transfer attacks. The maximum number of iterations was limited to
5,000 as we noticed that the success rates for all tasks seemed to plateau after this point. The
highest rate we were able to achieve on any task is less than 40%. For CIFAR-10 in particular,
we have a success rate of less than 30%. By contrast, at the time of this writing, state of
the art robust accuracy on CIFAR-10 is less than 50% for η = 0.03 [Shafahi et al., 2019].
On MNIST and Fashion-MNIST, our success rates of 15% and 30% at η = 0.3 seem to be
competitive with existing methods, which achieve robust accuracies of 87.54% and 76.83%
respectively [Andriushchenko and Hein, 2019]. Note also that our `∞ bound of 0.3 for Fashion-
MNIST is three times higher than the 0.1 bound used by Andriushchenko and Hein [2019].

To gain more insights into the precise nature of our defense-aware adversarial examples, we plot
the associated confusion matrices in figure 4.5. We see that these bear a striking similarity to the
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Figure 4.3: Co-occurence matrices of the MultIVAP for the different classification tasks.
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Figure 4.4: Success rate of the defense-aware adversarial attack as a function of the number
of iterations of optimization. The lines represent the mean success rate based on ten random
restarts of the attack. The area between the 5th and 95th percentiles is shaded.
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co-occurence matrices from figure 4.3, where we observed that the MultIVAP mainly confuses
perceptually similar classes. Thismeans that when the defense-aware adversarial attack succeeds
in fooling theMultIVAP, the resulting adversarial sample is usually misclassified into a class that
is visually close to the original correct class. This is an important finding for two reasons:

• It represents a definite improvement over the state of the art in adversarial defense. Cur-
rently, even the most robust models can still be tricked into misclassifying a given sample
into almost any other class regardless of similarity. The fact that the MultIVAP mostly
confuses only perceptually similar classes is a good indicator that it is fundamentally more
robust than other models.

• The mistakes that the MultIVAP makes on the adversarial examples are similar to the
ones it makes on the test set. This suggests that we can make the model more robust
via “traditional” means, that is, by decreasing test error using data augmentation or other
tricks. Co-occurence matrices such as figure 4.3 can show us which classes are the most
difficult for the MultIVAP to separate. This information can be used to guide efforts
for reducing test error. More advanced and computationally expensive methods such as
adversarial training may not be required to increase robustness; standard techniques for
improving the generalization performance might already suffice.

Figure 4.6 shows the results of our timing experiments. Here, we compute the average time per
prediction for the baselines as well as the MultIVAPs and calculate the base-10 log of the ratio
between these two quantities over the proper test set:

LogRatio= log10

(
average MultIVAP inference time
average baseline inference time

)
.

Wefind that the log-ratio is close to one for problemswith ten classes whereas it is close to 0.2 for
the binary classification task. This translates to a slow-down factor of ten and 1.6 respectively.
In practice, we found that this overhead was negligible in wall clock time for the models and
data sets we tested.

4.7 Conclusions
We have proposed a computationally efficient multiclass generalization of the inductive Venn-
ABERS prediction algorithm which we have called theMultIVAP. In our experiments, we have
found that this method significantly increases both the accuracy as well as the adversarial ro-
bustness of any model with which it is instantiated. The MultIVAP takes two hyperparameters,
a calibration data set and a significance level ε , which can be tuned according to various objec-
tives. The method enjoys the theoretical guarantee that its label sets will contain the true label
with a probability of at least 1− ε .

Several avenues for future work are possible. For one, the probabilistic bounds we have obtained
for the error probability of our method have the advantage that they reduce inference using the
MultIVAP to a MILP, which can be solved relatively efficiently. However, this efficiency comes
at the cost of looseness: the tuned values of 1−ε we computed in our experiments are very low
(always less than 50% and often less than 25%). Obtaining tighter probabilistic bounds with
stronger guarantees on the label set is perhaps the most interesting improvement that could be
made. The looseness we suffer with theMultIVAP is likely due to our reliance on the intersection
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Figure 4.5: Confusion matrices of the adversarial examples for each task.
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Figure 4.6: Comparison of the computational efficiency of the baseline models and the MultI-
VAPs. These measurements were taken on a single machine utilizing one NVIDIA Titan Xp
GPU alongside four Intel Core i5-6600 CPUs @ 3.30GHz each.

bound, which means the resulting theoretical guarantees will become weaker as the number of
classes increases and the approximation error introduced by the intersection bound grows larger.
We would need to find other ways of bounding the probability that V ⊆ L given the input data
that do not rely on the intersection bound.

Our method is closest in spirit to the work of Manokhin [2017], who extended the IVAP using
a one-vs-one approach. By contrast, we employ a one-vs-all strategy. This seems to allow us
to derive more straightforward theoretical guarantees on the calibration properties of the Mul-
tIVAP, whereas these guarantees are not so easy to give for Manokhin’s method. On the other
hand, a one-vs-one approach is less sensitive to class imbalance, since each pair of classes is
compared individually; for one-vs-all, every individual class is compared to all other classes.
This makes the resulting binary classification problems heavily imbalanced, which can be exac-
erbated if the data itself is already imbalanced. In scenarios of high class imbalance, it is likely
that the MultIVAP will always include certain labels corresponding to minority classes in order
to hedge the probabilities. Studying how the MultIVAP behaves in such cases could also be
interesting future work.

Improving the computational efficiency of this method when the number of classes becomes
very high is definitely a worthwhile avenue for future work as well. Currently, the MultIVAP
appears to increase inference time by a factor that is approximately equal to the number of
classes. In applications that are very time-sensitive and which have a large number of classes
(e.g., extreme classification as in Jain et al. [2019]), this might be unacceptable. The main
bottleneck here is the optimization problem; the other part of the algorithm which gathers the
outputs of the different IVAPs is straightforward to parallelize as the different classes can be
treated independently. One straightforward solution would be to use off-the-shelf MILP solvers
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that have already been parallelized. We refer the reader to Ralphs et al. [2018] for a survey.

Furthermore, in data-limited settings, it may be undesirable to sacrifice a relatively large portion
of the data set for calibration of theMultIVAP, especially if a separate validation split is required
for tuning other hyperparameters. We did not study the effect of the size of the calibration set in
detail here, but it can prove useful to test how small this set can be made before the MultIVAP
is unable to meet certain guarantees on robustness and accuracy.

It may also be possible to develop stronger defense-aware attacks against the MultIVAP, since
we only studied one attack in this work. We recall Schneier’s Law [Schneier, 2011]:

Anyone, from the most clueless amateur to the best cryptographer, can create an
algorithm that they themselves cannot break.

We therefore invite the community to scrutinize our defense and develop stronger attacks against
it. Nevertheless, even if our particular defense is ever broken, we believe there is a broader point
to be made here: to the best of our knowledge, there exist almost no papers that attempt to tackle
adversarial machine learning using techniques from the field of conformal prediction. Given
that this entire field is dedicated precisely to the problem of trustworthiness of probabilistic
predictions, it would seem there is still much unexplored potential in this area. We refer the
interested reader to the works of Shafer and Vovk [2008], Vovk et al. [2005, 2015].
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Chapter 5

The CANN detector

Γλυκόπικρη, περίεργη εφηβεία, γεμάτη μύθους,
φόβους και απαντοχή. Κρύβαμε το άγχος μας
κάτω από ένα ψεύτικο ρομαντισμό και την
περιέργεια πίσω από μια μάσκα πολυγνωσίας.
Δεν ξέραμε τίποτε. Αλλά οι μύθοι μας ήταν τόσο
αληθινοί για μας, που νομίζαμε πως τα ξέραμε
όλα.

Παρ’ όλα αυτά
Νίκος Δήμου

The binary IVAP algorithm 3.3 and the MultIVAP algorithm 4.1 are adversarial defenses based
on the original IVAP proposed by Vovk et al. [2015], which at its heart is simply an isotonic re-
gression computed on the scores generated by the underlying model. While simple and effective,
there is little architectural leeway in the design of the defense. There are very few hyperparam-
eters that can be tuned: the binary IVAP has the β threshold and the MultIVAP has the ε

confidence parameter. If no setting of these scalar parameters yields acceptable performance
according to relevant metrics, the designer has no choice other than to improve the underlying
classifier, for instance by adversarial training. Depending on the particular task and problem
constraints, this may not be feasible or desirable. Moreover, although we have empirically as-
sessed the computational overhead of the MultIVAP to be approximately linear in the number
of classes, its major bottleneck remains the optimization problem that must be solved for each
individual sample at inference time. For k classes, the number of unknowns to be solved for in
(4.6) is precisely k+1, which may become prohibitive at scale for certain data sets.

In an effort to eliminate these shortcomings, we turn to the general conformal prediction algo-
rithm 3.1. This algorithm requires a non-conformity measure A , which is a function that takes
as input a bag B of previously-seen examples (e.g., the training set or a part thereof) as well as a
new sample z and outputs a non-negative real number A(B,z) ∈R. The main desideratum of A
is that A(B,z) should increase as z becomes more “anomalous” (or non-conformal) with respect
to the bag B. Algorithm 3.1 employs the given non-conformity measure in a simple statistical
test which, in the case of classification, yields a p-value for each possible label. It then returns

129
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the set of labels that have a sufficiently high p-value as specified by the confidence parameter ε .

The idea in this section is to develop an adversarial defense based on algorithm 3.1 formulti-class
classification with greater flexibility and efficiency than theMultIVAP.We achieve this by letting
the non-conformity measure be determined by a neural network trained in a specific manner to
facilitate detection of anomalous samples. For this, we make use of an old statistical tool that
lends itself well to anomaly detection: correspondence analysis (CA) [Greenacre, 2010]. This
method, which we describe in detail below, was originally proposed as a form of dimensionality
reduction for categorical data. More recently, Hsu et al. [2019] generalized CA to continuous
random variables and developed a neural network architecture with which to compute it, known
as the correspondence analysis neural network (CANN). The CANN allows us to apply CA to
large-scale data sets containing continuous variables, such as those commonly of interest in the
field of computer vision and adversarial robustness.

We use thismethod alongwith certainmathematical properties of CA to define a non-conformity
measure that can be computed efficiently given the output of the CANN. This yields a new
adversarial detector that inherits the efficiency of the conformal prediction algorithmwhile being
much more malleable, as the practitioner can now define an entire neural network instead of
only specifying a single scalar hyperparameter. Of course, this increased flexibility also confers
a higher responsibility to the designer to create and train an effective neural network. That said,
the resulting CANN detector algorithm only depends on the data set and can treat the underlying
classifier to be protected as a complete black-box (like the MultIVAP). As such, research can be
dedicated to the construction of well-performing CANN detectors for specific data sets, after
which these models can be released to the public and subsequently re-used “off the shelf” by
ML engineers who do not have the resources to construct these detectors by themselves.

The contents of this chapter were not yet published elsewhere at the time this thesis was written.

5.1 Correspondence analysis
Given two random variables X and Y with support on X and Y respectively, the goal of corre-
spondence analysis is to find functions f1, . . . , fd : X → R and g1, . . . ,gd : Y → R such that the
correlations between fi(X) and gi(Y ) are maximized but the different functions fi and gi are
mutually uncorrelated. More formally, these functions are defined by

( fi,gi) = argmax E[ f (X)g(Y )]2

such that

 f ∈ L2(X ),
g ∈ L2(Y ),
∀ j < i : E[ f j(X) f (X)] = E[g j(Y )g(Y )] = 0.

Here, L2(X ) and L2(Y ) are the function spaces of zero-mean unit-variance X →R and Y →R
functions:

L2(X ) = { f : X → R | E[ f (X)] = 0,E[ f (X)2] = 1},
L2(Y ) = {g : Y → R | E[g(Y )] = 0,E[g(Y )2] = 1}.

This iterative process of optimization yields a set of pairs ( f1,g1), . . . ,( fd ,gd) known as the
principal functions [Calmon et al., 2017]. The principal inertia components are the absolute
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values of the expectations themselves:

σi = |E[ fi(X)gi(Y )]|.

The total number d of principal functions is equal to the minimal dimension of the function
spaces L2(X ) and L2(Y ). In our case, X is a subset ofRn and Y is a finite set of labels {1, . . . ,k}.
As such, we have d = k−1.

The principal functions and principal inertia components can equivalently be defined as the
diagonalization of the conditional expectation operator. Specifically, for any f ∈ L2(X ),

E[ f (X) | Y = y] =
d

∑
i=1

σigi(y)E[ fi(X) f (X)].

Similarly, for any g ∈ L2(Y ),

E[g(Y ) | X = x] =
d

∑
i=1

σi fi(x)E[gi(Y )g(Y )].

As such, they have found many applications in machine learning, information theory and even
cryptography [Bell, 1962, Calmon et al., 2017, Hardoon et al., 2004, Makur et al., 2015, Rényi,
1959]. One property that is relevant to us here is the fact that the sum of squares of the principal
inertia components equals the Pearson χ2-divergence between the joint distribution (X ,Y ) and
the product distribution X×Y :

χ
2(X ;Y ) =

d

∑
i=1

σ
2
i = E

[(
Pr[X ,Y ]

Pr[X ]Pr[Y ]

)2
]
−1.

This is a special case of an f -divergence with f (t) = t2− 1. It is in some sense proportional
to the dependence between X and Y . It is bounded by 0 ≤ χ2(X ;Y ) ≤ d, with χ2(X ;Y ) = 0
indicating that the random variables are statistically independent and χ2(X ;Y ) = d indicating
that X and Y are deterministic measurable transformations of each other. Specifically, we have
χ2(X ;Y ) = d if and only if Pr[ fi(X) = gi(Y )] = 1 for all i = 1, . . . ,d. Essentially, the principal
functions { fi} and {gi} can be seen as the most informative features of the data [Makur et al.,
2015]. Due to these desirable properties, the principal functions are an attractive foundation for
a non-conformity measure for use in a conformal predictor.

For large-scale problems, Hsu et al. [2019] have shown that the principal functions and the prin-
cipal inertia components can be estimated accurately using neural networks. Their construction,
the correspondence analysis neural network (CANN), is depicted in figure 5.1. It in fact consists
of two neural networks: an F-Net which estimates the functions f1, . . . , fd and a G-Net which es-
timates g1, . . . ,gd . The parameters of these networks are jointly optimized via gradient descent
on the PIC loss, a custom loss function which causes the networks to converge to the principal
functions. We will make use of this construction in our detector approach.

5.2 Conformal CANN detector
The basic idea behind our detector is the fact that the principal functions { f j} and {g j} are
minimum mean-squared estimators of each other [Calmon et al., 2017, Makur et al., 2015].
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Encoder

Encoder

X Y

Figure 5.1: The architecture of the Correspondence Analysis Neural Network (CANN) from
[Hsu et al., 2019].

That is,

E[ f j(X) | Y = y] = σ jg j(y), E[g j(Y ) | X = x] = σ j f j(x).

Therefore, we expect the squared difference between f j(x) and σ jg j(y) to be small for all j
whenever x and y are sampled from the joint distribution (X ,Y ). If these values are large, then
this is an indication that x and y may have been sampled from a different distribution. We
consider the mean-squared errors of these estimates for a given sample (x,y):

∆(x,y) =
1
d

d

∑
j=1

( f j(x)−σ jg j(y))2.

Given a data set of samples D = {(x1,y1), . . . ,(xm,ym)}, we can define a non-conformity mea-
sure based on ∆(x,y) for use in a conformal predictor:

A(D,x,y) =

(
∆(x,y)− 1

|D| ∑
(xi,yi)∈D

∆(xi,yi)

)2

.

This measure is simply the squared deviation of ∆(x,y) from the mean over the given data set.
Algorithm 5.1 shows the full conformal prediction algorithm based on this measure. The data
set D which we use here to determine the values αi is a held-out validation set containing the
ground-truth labels.

Algorithm 5.1 will compute a p-value p ∈ [0,1] for each sample x that we provide to it. As is
typical in frequentist statistics, this p-value must be “sufficiently small” in order for us to con-
sider the result significant. A significant result here translates into rejecting the prediction of
the model. Therefore, we must determine some threshold τ such that as many correct predic-
tions are accepted as possible while minimizing the number of accepted incorrect predictions.
Samples with incorrect predictions should be rejected whereas samples with correct predictions
should be accepted. This leads to a confusion matrix such as table 4.1, which we also used to
evaluate the MultIVAP in chapter 4. By plotting the true rejection rate (TRR) against the false
rejection rate (FRR), we obtain the Receiver Operating Characteristic (ROC) curve [Murphy,
2012]. Ideally, we would choose a point on the ROC so that we maximize the TRR and mini-
mize the FRR. One way of achieving this is to find a threshold τ which maximizes Youden’s J
index [Youden, 1950], similarly to the IVAP defense in chapter 3:

J = TRR−FRR.
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Algorithm 5.1: Conformal CANN detector
Data: data set of samples D, new sample x, model fθ , threshold τ

Result: ACCEPT or REJECT
1 Obtain the predicted label ŷ← fθ (x).
2 for i from 1 to |D| do
3 αi← A(D\{(xi,yi)},xi,yi).
4 end
5 α|D|+1← A(D,x, ŷ).
6 p← 1

|D|+1 #{i = 1, . . . , |D|+1 | αi ≥ α|D|+1}.
7 if p > τ then
8 return ACCEPT
9 else
10 return REJECT
11 end

We tune τ to maximize J via a held-out validation data set of both clean and adversarial samples.
More details can be found in section 5.4.

5.3 Adaptive attack
In order to properly evaluate the robustness of our conformal CANN detector approach, we de-
sign an adaptive attack specifically crafted to evade our detector and fool the underlying model.
This means we must find samples x̃ in an ε-ball around the original x such that the model mis-
classifies x̃ and the non-conformity score A(D, x̃,y) is sufficiently low so that the detector does
not reject the sample. We follow Carlini and Wagner [2017a] in the design of our attack. That
is, we solve the following optimization problem:

min
x̃

D(x, x̃)+λg(x̃). (5.1)

The quantity D is a distance metric between the original x and the adversarial x̃. As discussed
in Carlini and Wagner [2017c], the L∞ metric we use here is not easily optimized by gradient
descent. Therefore, the following proxy is recommended:

D(x, x̃) =
n

∑
i=1

max{x̃i− xi− ε,0}.

The function g must have the property that g(x̃)≤ 0 if and only if both of the following condi-
tions hold:

1. fθ (x̃) = y′ for some target class y′ 6= y;

2. the detector accepts the prediction (x̃,y′).

The detector accepts a prediction (x̃,y′) if and only if the non-conformity measure A(D, x̃,y′)
is below some threshold t which depends only on the data set D. We can therefore define the
objective function as follows:

g(x̃) = max{h(x̃),A(D, x̃,y′)− t},
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where h can be any of the objective functions proposed by Carlini and Wagner [2017c] which
have the property that fθ (x̃) = y′ if and only if h(x̃)≤ 0. In our implementation, we use

h(x̃) = max
{

0,max
i6=y′

p̂i(x̃;θ)− p̂y′(x̃;θ)

}
.

In other words, h penalizes the margin between the highest-scoring class and our target class
in terms of the estimated model probabilities. We note that the authors of Carlini and Wagner
[2017c] actually advocate for the use of the model logits zθ (x) instead of the estimated proba-
bilities p̂(x;θ) as this has turned out to be more effective. However, we deliberately chose to
optimize the adversarials with respect to the probability space instead of the logit space. The
reason for this is that logit-based adversarials tend to be heavily over-optimized [Ozbulak et al.,
2019]: the softmax transform “squeezes” the unbounded logits into the compact space [0,1]k, so
that large differences in logit values will translate into only small differences in softmax output.
This makes it easier to create adversarial examples, but the resulting adversarials can easily be
detected using simple techniques such as IQR thresholding [Ozbulak et al., 2019] because their
logit values are highly anomalous. Therefore, we optimize the adversarials in softmax space.

As in Carlini and Wagner [2017c], the parameter λ which provides the trade-off between the
distance metric D and the adversarial loss g is tuned during the optimization itself to obtain
the highest possible success rate. Specifically, we start with a low value of λ = 1e−3 and
successively double the value until the adversarial is successful or we reach an upper bound of
2,048. The objective function (5.1) is optimized using gradient descent, where we initialize the
optimization with adversarial samples generated by the L∞ projected gradient descent attack
from Madry et al. [2017]. As such, the optimization proceeds in two stages:

1. Generate an L∞ PGD adversarial to ensure the model misclassifies the generated input
without perceptible alterations to the original sample.

2. Refine the initial adversarial so that the non-conformity score is minimized and the de-
tector is bypassed. The target class y′ used for this stage of the attack is the predicted
class on the adversarial generated in the first stage.

Algorithm 5.2 summarizes the attack in pseudo-code. Note that in the computation of the loss
`t , we reduce the non-conformity threshold by 1% so that the non-conformity of the adversarial
A(D, x̃t ,y′) is optimized to lie just above the acceptance threshold. This is necessary because
the inequality on line 7 of algorithm 5.1 is strict.

5.4 Experiments
We carry out experiments on four different data sets, described below:

MNIST. The MNIST data set consists of 28×28 grayscale images of handwritten digits [Le-
Cun, 1998]. The total of 60,000 samples is divided equally into ten classes (from 0 to 9).

Fashion-MNIST. The Fashion-MNIST data set was designed by Xiao et al. [2017] as a drop-
in replacement for MNIST. It consists of 28×28 grayscale images of articles of clothing. This
data set has 60,000 samples just like MNIST.
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Algorithm 5.2: Adaptive adversarial attack
Data: data set of samples D, sample (x,y), perturbation budget ε > 0, step size α > 0,

parameter λ > 0, number of iterations T
Result: adversarial sample x̃

1 Run the L∞ PGD attack to obtain an adversarial example x̃0 with ‖x− x̃0‖ ≤ ε .
2 Let y′ be the predicted class on the adversarial: y′← fθ (x̃0).
3 Compute the non-conformity threshold r.
4 for t from 0 to T −1 do
5 Compute the loss:

`t ← D(x, x̃t)+λ max{h(x̃t ,y′,θ),A(D, x̃t ,y′)−0.99r}.

6 Compute the update:
x̃t+1← x̃t −α∇x̃t `t .

7 end
8 return clip(x̃T ,x− ε,x+ ε)

CIFAR-10. The CIFAR-10 data set was created by Krizhevsky and Hinton [2009] and con-
sists of 32× 32 RGB images of common everyday objects and animals. There are 60,000
samples in total.

SVHN. The Street ViewHouseNumbers (SVHN) data set contains pictures of house numbers
collected by Netzer et al. [2011]. There are 99,289 samples in total.

For each data set, we test four models: a simple convolutional neural network (CNN) of our own
design, ResNet50 [He et al., 2016], DenseNet121 [Huang et al., 2017] and Xception [Chollet,
2017]. The architecture of the simple CNN is illustrated in figure 5.2. We fit these models and
evaluate them against adversarial attacks at different perturbation budgets. We plot the robust
accuracy as a function of the perturbation budget along with the true rejection rate (TRR) and
false rejection rate (FRR).

All of our experiments were carried out using the TensorFlow Keras framework [Abadi et al.,
2015, Chollet et al., 2015]. The L∞ PGD attack implementation was provided by the Foolbox
library [Rauber et al., 2020]. For the correspondence analysis, we started from the original
implementation1 by Hsu et al. [2019]. However, we had trouble scaling this implementation to
data sets such as CIFAR-10 and SVHN due to numerical errors. These problems mainly arose
from the use of explicit matrix inverses and naive estimation of empirical covariance matrices.
We resolved these issues, making use of the scikit-learn implementation of the Ledoit-Wolf
covariance estimator [Ledoit and Wolf, 2004, Pedregosa et al., 2011].

Figure 5.3 shows the different data splits used for the experiments. We split the full data set into
70% training data, 20% testing data and 10% validation data. We run the PGD attack on the
testing and validation data sets to create sets of adversarial samples. The training data is used
to fit the baseline model, the testing data is used to evaluate it and the validation data is used for
early stopping. We measure the robust accuracy by evaluating the model on the adversarial test

1https://github.com/HsiangHsu/2019-AISTATS-CA. Accessed: 2020-07-06.

https://github.com/HsiangHsu/2019-AISTATS-CA
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1 import tensorflow as tf
2

3 # Note: input shape depends on the data set
4 input_shape = (32, 32, 3)
5

6 model = tf.keras.models.Sequential()
7 model.add(tf.keras.layers.Conv2D(32, (3, 3), padding='same',
8 input_shape=input_shape))
9 model.add(tf.keras.layers.Activation('relu'))
10 model.add(tf.keras.layers.Conv2D(32, (3, 3)))
11 model.add(tf.keras.layers.Activation('relu'))
12 model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
13 model.add(tf.keras.layers.Dropout(0.25))
14

15 model.add(tf.keras.layers.Conv2D(64, (3, 3), padding='same'))
16 model.add(tf.keras.layers.Activation('relu'))
17 model.add(tf.keras.layers.Conv2D(64, (3, 3)))
18 model.add(tf.keras.layers.Activation('relu'))
19 model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
20 model.add(tf.keras.layers.Dropout(0.25))
21

22 model.add(tf.keras.layers.Flatten())
23 model.add(tf.keras.layers.Dense(512))
24 model.add(tf.keras.layers.Activation('relu'))
25 model.add(tf.keras.layers.Dropout(0.5))
26 model.add(tf.keras.layers.Dense(output_shape))
27 model.add(tf.keras.layers.Activation('softmax'))

Figure 5.2: TensorFlow Keras specification of the Simple CNN architecture.

set. The threshold τ is tuned to maximize Youden’s index on the clean and adversarial validation
sets. That is, we optimize τ so that as many samples as possible from the clean validation set pass
through the detector whereas we try to reject as many samples as possible from the adversarial
validation set. We then determine the clean and adversarial rejection rates by evaluating the
detector on the clean and adversarial test sets, respectively.

Accuracy scores on clean test data of the different baseline models are given in table 5.1. To
apply our detector, we specify a CANN for each data set and fit it according to the method
described by Hsu et al. [2019]. The resulting estimates of the principal functions

( f1,g1), . . . ,( fk−1,gk−1)

and principal inertia components
σ1, . . . ,σk−1

are then used to compute the non-conformity scores for algorithm 5.1.

Table 5.2 shows the mean values of the deviation ∆(xi,yi) across the training data sets. This
is the value used by the conformal predictor to compute the non-conformity score: if ∆(x,y)
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Figure 5.3: Illustration of the different data splits used in our experiments.

Data set Simple CNN ResNet50 DenseNet121 Xception

MNIST 99.24% 99.29% 99.34% 99.11%
Fashion-MNIST 93.21% 91.53% 91.33% 92.04%
CIFAR-10 78.40% 73.83% 78.82% 75.44%
SVHN 93.72% 92.65% 93.47% 93.83%

Table 5.1: Clean accuracy scores of the baseline models.

differs too much from this mean, the prediction is rejected. Note that we trained a separate
CANN for each of the baseline models, so the values differ slightly across models.

5.4.1 Defense-oblivious attack

We first evaluate the robustness of our detector using a defense-oblivious attack where we gen-
erate adversarials using the L∞ PGD attack for the underlying model without taking the defense
into account. We set the perturbation budgets to 30%, 10%, 3% and 3% of the range for
MNIST, Fashion-MNIST, CIFAR-10 and SVHN respectively since these values are common
in the literature. The results are shown in table 5.3. AUROC indicates the area under the ROC
curve, a common measure for these types of detectors that is independent of any particular
threshold. The TRR, FRR and ACC values are reported for our tuned threshold and correspond
to the true rejection rate, false rejection rate and overall detector accuracy.

We see from these results that our detector achieves relatively high AUROC, TRR and ACC
values at low FRR across all models and data sets we tested. In some applications, the FRR val-
ues may still be too high and so one may wish to tune the thresholds using a different metric than
Youden’s index. In cybersecurity settings, for example, it is common to tune the threshold for a
specific false rejection rate (e.g., 0.01%) regardless of the accuracy or true rejection rate [Peck
et al., 2019b]. To put these numbers in perspective, in section 5.6, we compare our method to
other state-of-the-art detector approaches in the defense-oblivious setting.

It is important to note that defense-oblivious attacks have limited practical use, as one can-
not safely assume that the attacker is unaware of the defensive measures that have been put in
place [Carlini et al., 2019]. However, they demonstrate the potential viability of the method,
since robustness against defense-oblivious attacks is a necessary condition for any serious de-
fense.
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Data set SimpleCNN ResNet50 DenseNet121 Xception

MNIST 0.0804 0.0735 0.0848 0.0888
Fashion-MNIST 0.0583 0.0695 0.0644 0.0707
CIFAR-10 0.4527 0.3665 0.3708 0.3872
SVHN 0.1126 0.1135 0.1133 0.1174

Table 5.2: Mean deviation values for the conformal predictor.

Data set Network AUROC TRR FRR ACC

MNIST SimpleCNN 85.89% 80.51% 9.01% 85.71%
ResNet50 83.54% 78.67% 10.52% 84.10%
DenseNet121 87.09% 82.70% 9.64% 86.51%
Xception 81.88% 73.69% 8.11% 82.71%

Fashion-MNIST SimpleCNN 69.22% 46.65% 6.17% 68.64%
ResNet50 70.13% 47.99% 4.96% 69.97%
DenseNet121 62.29% 47.57% 6.98% 68.33%
Xception 70.42% 55.03% 8.73% 71.71%

CIFAR10 SimpleCNN 70.16% 56.40% 7.27% 70.68%
ResNet50 65.96% 57.19% 8.86% 70.40%
DenseNet121 65.01% 55.73% 11.13% 69.04%
Xception 69.82% 60.67% 12.57% 70.83%

SVHN SimpleCNN 79.79% 69.40% 6.17% 82.00%
ResNet50 79.85% 69.35% 5.05% 82.04%
DenseNet121 81.68% 73.82% 5.42% 84.31%
Xception 85.49% 80.43% 4.78% 87.94%

Table 5.3: Performance metrics for the defense-oblivious attack.

5.4.2 Defense-aware attack
To lend more credibility to our claims of robustness, we also evaluate the detector against our
defense-aware attack specified in section 5.3. Note that we do not tune the rejection threshold
τ on validation adversarials produced by our adaptive attack; instead, we reuse the thresholds
that were tuned on the L∞ PGD adversarials. In that sense, the defense is tuned on the L∞ PGD
attack and subsequently evaluated against our adaptive attack. We made this choice for two
reasons:

• The adaptive attack depends on the tuned rejection threshold τ . Therefore, there is a
circular dependency where the threshold first needs to be tuned on adversarials, but these
adversarials can only be generated if the threshold has already been tuned.

• We do not wish to “overpower” our defense against the adaptive attack. The idea behind
adaptive evaluations is that the defense should be fixed beforehand and the adversary
should tailor the attack for the defense as it is specifically deployed. In practice, one
will tune the rejection threshold based on a data set of adversarials generated by existing
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attacks. The defense will then be subjected to adaptive attacks which the practitioners
may not have foreseen. As a result, we keep our defense oblivious to the adaptive attack.

The results of these experiments are shown in table 5.4. As before, the perturbation budgets
are expressed relative to the range of pixel values. We fixed the total number of iterations of
optimization T to 100 here, as we observed no substantial improvements in performance at
higher numbers of iterations.

Data set Network AUROC TRR FRR ACC

MNIST SimpleCNN 87.28% 81.66% 9.01% 86.29%
ResNet50 93.51% 93.63% 10.75% 91.43%
DenseNet121 94.77% 94.47% 9.64% 92.43%
Xception 84.13% 75.24% 8.11% 83.49%

Fashion-MNIST SimpleCNN 72.83% 57.69% 6.18% 74.53%
ResNet50 63.63% 46.16% 6.31% 68.54%
DenseNet121 64.59% 47.18% 6.99% 68.11%
Xception 85.98% 79.83% 8.75% 85.09%

CIFAR10 SimpleCNN 76.45% 63.03% 7.22% 74.82%
ResNet50 72.78% 65.12% 9.01% 75.36%
DenseNet121 65.86% 56.89% 11.12% 70.04%
Xception 75.78% 68.04% 12.55% 75.43%

SVHN SimpleCNN 79.40% 70.92% 6.54% 83.20%
ResNet50 79.73% 70.93% 5.19% 83.23%
DenseNet121 85.20% 78.68% 5.60% 86.97%
Xception 84.77% 79.77% 4.95% 87.69%

Table 5.4: Performance metrics for the defense-aware attack.

The results for the defense-aware adversarials are comparable to the defense-oblivious ones: we
have relatively high AUROC, TRR and ACC values at low FRR. Of course, we must appro-
priately nuance these results. The defense-aware attack we evaluated against here is just one of
many that could potentially be applied. However, the results are still surprising: in the design of
our attack, we followed a methodology similar to Carlini andWagner [2017c], which has turned
out to be highly effective against virtually all defenses proposed thus far [Athalye and Carlini,
2018, Carlini and Wagner, 2017a, Carlini et al., 2019]. The fact that this method of construct-
ing adaptive attacks— which has been so successful against past defenses — seems to fail when
applied to our defense provides at least some cause for optimism. However, as is well-known
in the field of cryptography,2 anyone can develop a security system that they themselves cannot
break. Therefore, we invite the community to scrutinize our defense and attempt to devise more
effective attacks against it.

2https://www.schneier.com/blog/archives/2011/04/schneiers_law.html. Accessed 2020-06-09.

https://www.schneier.com/blog/archives/2011/04/schneiers_law.html
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5.5 Discussion
Based on the above results, it appears that our detector approach could be a viable defense against
adversarial attacks both in the defense-oblivious as well as the defense-aware settings. One ques-
tion that we still wish to address is the matter of computational efficiency in terms of memory
consumption and runtime overhead. To reiterate, our detector requires two components:

1. a correspondence analysis neural network for computing the non-conformity;

2. a conformal predictor.

In our experiments, the CANN was implemented using convolutional autoencoders for the F-
Net and shallow fully-connected networks for the G-Net. As such, the computational overhead
of the CANN is roughly proportional to that of an autoencoder on the given data set. However,
this network only needs to be trained once, after which it can be evaluated efficiently. This
part of the pipeline is also highly flexible, as one can design the architecture freely according
to the computational resources that are available. Moreover, since the CANN depends only
on the data set itself, it is possible to use pre-trained CANNs shared by other parties with
larger computational resources. These pre-trained CANNs could then be fine-tuned in case the
specific data set under consideration is not entirely the same as the one for which the CANNwas
originally trained. This practice of sharing pre-trained models and fine-tuning for specific data
sets has become commonplace in modern machine learning, especially in the field of natural
language processing (NLP) where state of the art models usually have so many parameters that
only a handful of companies could feasibly train these networks from scratch [Vaswani et al.,
2017].

The conformal predictor requires us to store an additional data set D for calibration. This algo-
rithm can then be divided into two stages:

1. Initialization. Here, the values of αi are computed on D and stored for later use. This
takes O(|D|d) time and memory provided that the evaluation of the non-conformity mea-
sure takes O(d) time and memory. In our case, this assumption is realistic since the
non-conformity measure is computed using a fixed neural network and a mean squared
deviation value based on the d outputs of this network.

2. Inference. When the conformal predictor is initialized with a data set D, it can compute
p-values in time O(|D| log |D|) since we can assume the values of αi are sorted. This
relies on the assumption that d ≤ |D|, so that searching through the sorted list of |D|
values will dominate the computations.

To summarize, the conformal predictor incurs an overhead of O(d|D|) in memory requirements
and O(|D| log |D|) in execution time. We used our validation data split for D, which is rela-
tively small (10% of the entire data set; see figure 5.3). In wall-clock time, the overhead of the
inference phase of our detector was negligible.

We wish to stress that the data set D does not need to be stored fully in its original form in order
for our detector to work. We require only the trained CANN, the mean deviation

1
|D| ∑

(x,y)∈D
∆(x,y)
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as well as the values α1, . . . ,α|D|. Given these statistics, the data set D itself can be discarded.
This is important in case the detector needs to be deployed in limited-memory settings where
the full data set D does not fit into memory. It is also relevant in privacy-sensitive situations
where D contains data that cannot be publicly released. Of course, the CANN itself encodes
this data set in a certain form, but this problem is common to all machine learning methods. It
is a central object of study in the field of privacy-preserving machine learning [Xu et al., 2015]
and we consider it out of scope for the present work.

For the sake of completeness, we also mention that the architecture of the CANN depends on
the number of classes k, since the network must produce k−1 output values to compute the full
set of principal functions for use in the deviation measure ∆(x,y). However, the same is true for
the underlying model: it too must have k−1 outputs to perform the classification. The number
of classes will generally be much smaller than the dimensionality of the input, so this is not really
a practical concern. Furthermore, the PIC loss function proposed by Hsu et al. [2019] is flexible
enough that we can approximate the first d principal functions for d < k−1 by simply setting the
number of outputs of the CANN to d. In this way, we approximate the deviation ∆ using fewer
than the full set of k−1 principal functions. In the most extreme case, we could set d = 1 and
therefore only compute the deviation based on the first pair of principal functions. These are also
known as the Rényi correlation functions and are interesting in their own right [Rényi, 1959],
but from our perspective the question is mainly one of computational efficiency. In general, a
practitioner will want to set d to the smallest value that still obtains sufficiently high adversarial
robustness. We set d = k− 1 in all of our experiments, but in principle any value from 1 to
k−1 could be used.

5.6 Comparison to other methods

Detector approaches appear to have largely fallen out of favor after the work of Carlini and
Wagner [2017a], who showed that most detectors proposed in the past were not effective against
adaptive attacks. As a result, the vast majority of new papers on adversarial robustness focus
on hardening approaches. Indeed, most of the detector approaches we are aware of have either
not been thoroughly evaluated yet or have been broken by adaptive attacks. There are a few ex-
ceptions, however. The deep K-nearest neighbors defense proposed by Papernot and McDaniel
[2018] has been evaluated by Sitawarin and Wagner [2019] and found to be moderately robust
against adaptive attacks. Ma et al. [2018] propose a different detector based on the local intrinsic
dimensionality (LID) characteristic which also seems to work well. Lee et al. [2018] developed
a very simple method based on Gaussian discriminant analysis which uses the Mahalanobis dis-
tance between features learned by the DNN.

Similar to our own detector, all of these methods can be applied to any pre-trained softmax
classifier without the need to re-train the model. The deep K-nearest neighbor method is of
particular interest to us, since it is also inspired by conformal prediction techniques and is there-
fore conceptually closest to our own detector. We are aware that there exist still other detector
methods that appear promising, such as the work by Pang et al. [2018]. However, these usually
seem to involve novel training procedures which would require re-training of the underlying
model. The comparison with our method would therefore not be fair, since we wish to focus on
“wrapper methods” that do not need to change the underlying model at all.
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Mahalanobis distance-based confidence score. The method proposed by Lee et al. [2018]
uses the following score to measure the confidence of a classification result:

M(x) = max
y
−(zθ (x)− µ̂µµy)

ᵀ
Σ̂ΣΣ
−1
(zθ (x)− µ̂µµy).

Here, zθ (x) denotes the output of the penultimate layer of the DNN (i.e., the logits). The vector
µ̂µµy is the sample mean of the logit vectors for all samples belonging to class y and the matrix Σ̂ΣΣ

is the sample covariance of the logits across all classes:

µ̂µµy =
1

Ny
∑

i:yi=y
zθ (xi),

Σ̂ΣΣ =
1
N

k

∑
y=1

∑
i:yi=y

(zθ (xi)− µ̂µµy)(zθ (xi)− µ̂µµy)
ᵀ.

Once the matrix Σ̂ΣΣ and the vectors µ̂µµ1, . . . , µ̂µµk have been computed, we can easily create a
detector by thresholding M(x) for new samples x. The results are given in table 5.5. Note that
these are for defense-oblivious adversarials and so table 5.5 must be compared to table 5.3.

Data set Network AUROC TRR FRR ACC

MNIST SimpleCNN 64.68% 63.92% 42.97% 60.50%
ResNet50 86.29% 87.99% 28.44% 79.76%
DenseNet121 84.83% 85.39% 27.95% 78.77%
Xception 96.64% 90.10% 8.57% 90.76%

Fashion-MNIST SimpleCNN 79.10% 65.35% 23.81% 70.40%
ResNet50 87.55% 77.01% 17.33% 79.65%
DenseNet121 88.40% 85.13% 19.50% 83.02%
Xception 94.86% 89.60% 1.52% 93.68%

CIFAR10 SimpleCNN 75.18% 63.07% 23.08% 68.52%
ResNet50 55.64% 67.37% 55.42% 58.50%
DenseNet121 61.11% 59.73% 42.49% 58.84%
Xception 79.45% 68.32% 17.47% 73.71%

SVHN SimpleCNN 57.56% 73.69% 58.78% 56.95%
ResNet50 77.22% 70.40% 28.51% 70.94%
DenseNet121 75.38% 65.02% 26.28% 69.41%
Xception 68.96% 43.06% 12.00% 65.89%

Table 5.5: Performance metrics for the Mahalanobis distance-based detector.

Deep K-nearest neighbor. The deep K-nearest neighbor algorithm proposed by Papernot
and McDaniel [2018] is another instantiation of the conformal prediction algorithm described
in Shafer and Vovk [2008]. The non-conformity measure used by deep K-NN can be written
as follows:

A(D,(x,y)) =
L

∑
l=1

#{ŷ ∈Ωl(x) | ŷ 6= y}.
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Here, L is the number of layers of the neural network andΩl(x) is a multiset of labels associated
with layer l on input x. This set is constructed by performing a k-nearest search on the output of
layer l: for a test point x, we compute the output of layer l and collect the k training data points
nearest to x in the space defined by layer l. The labels of these samples are then collected in
the multiset Ωl(x). Since the intermediate layers of a neural network can be high-dimensional,
the locality-sensitive hashing (LSH) scheme FALCONN by Andoni et al. [2015] is used to
reduce the dimensionality of the outputs before the nearest neighbor search is executed. Since
deep K-NN is also a conformal predictor just like our method, it serves as an easy drop-in
replacement in our experiments. The results are shown in table 5.6 for K = 75 as in Papernot
and McDaniel [2018]. Again, these are for the defense-oblivious setting. It is important to note
that the original deep K-NN algorithm requires the computation of Ωl for every layer l, but this
was not computationally feasible with our hardware. Even for relatively shallow networks, this
method requires an exceedingly high amount of memory. Our compromise was to restrict the
algorithm to the final eight layers of each network (excluding the softmax layer). We are aware
that this must have skewed the comparison in our favor, but we believe the memory and time
requirements of deep K-NN are rather excessive. As such, even if deep K-NN outperforms
our method using a larger number of layers, our method still has the comparative advantage of
requiring less memory and less computation time to achieve the same performance.

Data set Network AUROC TRR FRR ACC

MNIST SimpleCNN 92.68% 89.87% 17.77% 86.08%
ResNet50 66.86% 86.16% 56.02% 65.03%
DenseNet121 61.02% 43.93% 22.46% 60.63%
Xception 45.83% 2.18% 1.82% 49.75%

Fashion-MNIST SimpleCNN 77.28% 78.97% 34.44% 72.72%
ResNet50 68.58% 76.87% 49.39% 64.61%
DenseNet121 85.05% 82.89% 21.83% 80.73%
Xception 48.92% 58.58% 56.45% 51.66%

CIFAR10 SimpleCNN 49.62% 77.04% 73.25% 57.27%
ResNet50 48.74% 92.12% 86.17% 61.69%
DenseNet121 44.14% 3.98% 2.53% 41.50%
Xception 32.59% 3.50% 1.72% 39.45%

SVHN SimpleCNN 75.81% 86.19% 43.21% 71.01%
ResNet50 66.07% 73.78% 50.45% 61.76%
DenseNet121 61.05% 43.21% 24.57% 59.48%
Xception 48.24% 5.58% 2.94% 52.04%

Table 5.6: Performance metrics for the deep K-NN detector.

Discussion. The Mahalanobis distance-based detector does not appear competitive to our
method for the SimpleCNN, ResNet50 and DenseNet121 models as it has a much higher FRR
and significantly lower AUROC, TRR and ACC scores. The Xception network does not fol-
low this trend, however: the Mahalanobis method using Xception appears to be competitive
with our detector on all data sets except SVHN. This suggests that the latent space learned by
the Xception network is more meaningful than that learned by the other networks. The Ma-
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halanobis method may therefore be preferable in cases where the network has learned a very
good representation of the data, although this depends on the specifics of both the data set as
well as the network. The Mahalanobis detector overall tends to have much higher FRR than
our method, however, so it seems to be a lot more conservative: it is much more likely than the
CANN detector to reject a prediction that was actually correct. The deep K-NN detector, on
the other hand, performs significantly worse than our method across almost all tests. It is not
surprising that the performance of deep K-NN deteriorates as the models become deeper, since
we only used a limited subset of layers due to computational constraints. This indicates a par-
ticular shortcoming of deep K-NN: it can only perform well when taking into account a large
fraction of the layers. For deep architectures such as Xception, this makes deep K-NN very
computationally demanding. We conclude that even if deep K-NN outperformed our method
when taking the entire network into account, the CANN detector would still compare favorably
because of its much lower computational overhead.

5.7 Conclusions
We have proposed a technique for detecting adversarial examples based on a combination of
ideas from conformal prediction as well as correspondence analysis. Specifically, we derived
a novel measure of non-conformity based on the theory of correspondence analysis which we
then incorporated into a conformal predictor. The resulting algorithm appears to be a powerful
and efficient method for detecting adversarial examples both in the defense-oblivious as well as
the defense-aware settings. Aside from its effectiveness at detection, one of the main advantages
of our detector is its model-independence: the parameters of the detector depend only on the
specifics of the data set but do not require any information about the underlying model to be
protected. As such, pre-trained detectors can be constructed for a variety of data sets, which
can then be shared and further fine-tuned by other users.

Although the results presented here can be considered promising, the adaptive attack we eval-
uated against is just one of potentially many different evasion techniques that could be tried.
Designing more effective attacks against our specific defense is therefore a primary avenue for
future work. Aside from developing stronger attacks, we could also test how well our detec-
tor is capable of filtering out universal adversarial perturbations (UAPs) such as those crafted
by Moosavi-Dezfooli et al. [2017]. A UAP is a single perturbation which can be added to any
sample from a given data set and which will result in misclassification with high probability for
any model trained on that data. These perturbations are particularly interesting to study due
to the ease with which they can be abused in practice, since an attacker requires almost no
knowledge of the machine learning system in order to use them effectively.

A larger-scale evaluation on more realistic data sets such as ImageNet [Deng et al., 2009] using
state of the art classifiers would also be informative. In this work, we have evaluated against
MNIST, Fashion-MNIST, CIFAR-10 and SVHN, which are standard benchmarks in the field
of machine learning. However, they are also known to be relatively small data sets that are
not representative of many real-world use cases. Moreover, since the CANN is parameterized
by a neural network, there is still a lot of room for experimentation with regards to different
architectures and methods of training which could vastly improve the results.

The frameworks of conformal prediction and correspondence analysis on which our approach
relies are well-studied and have many appealing theoretical guarantees. Therefore, it may be
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productive to try to prove formal robustness bounds for our defense in the Lp norm threat model
similar to those provided by e.g. Fawzi et al. [2018], Hein and Andriushchenko [2017], Peck
et al. [2017], Wong and Kolter [2018].
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Chapter 6

Adversarial density filtering

It’s as though my dreams are a mirror of my waking
world, like finding myself walking down the street
where I could have sworn I caught a glimpse of you,
only to look again and realize it wasn’t you after all.

Sea of Strangers
Lang Leav

In chapters 3 to 5 we proposed several algorithms that allow for the detection of adversarial
examples. Although detector methods can certainly be useful, their main drawback is the in-
creased need for human supervision. Typically, when the detector flags an input as suspicious,
there are only a few reasonable courses of action:

• Inform the user that their data cannot be processed at this time. Notify a humanmoderator
and have them manually process the samples. This can be slow and requires manual
intervention.

• Pass the sample to a more complicated model. This can be unreliable and requires an
additional, more complex model to be deployed.

The second option of course runs the risk that the input may be rejected again (or unduly ac-
cepted). The first option is likely the most desirable in the majority of use-cases, but it involves
potentially burdensome manual labor. In this chapter, we shift our focus to a hardening method
that aims to make an existing black-box model intrinsically more robust, so that it is not fooled
by adversarial examples at all. This obviates the need for any manual inspection and might be
more useful in practice.

The contents of this chapter were not yet published elsewhere at the time of this writing.

6.1 Preliminaries
We consider the supervised learning setting where the goal is to find a function F : X → Y which
maps inputs x∈ X to appropriate outputs y∈ Y . The relationship between the inputs and outputs
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may be stochastic, and so we model it as an unknown joint distribution on random variables
X and Y with respective supports X ⊆ Rn and Y = {1, . . . ,k}. Estimation of F proceeds by
parameterizing it using a set of parameters θ and solving the optimization problem

θ
? = argmin

θ

E[`(X ,Y,θ)]

where ` is an appropriate loss function. In practice, we approximate this objective based on a
finite sample of data points (x1,y1), . . . ,(xm,ym):

θ̂ = argmin
θ

1
m

m

∑
i=1

`(xi,yi,θ).

This technique is known as empirical risk minimization (ERM) [Shalev-Shwartz and Ben-David,
2014], since it is based on minimizing an empirical approximation of the risk functional

R(Fθ ) = E[`(X ,Y,θ)].

Muchwork in adversarial machine learning casts the problem as one of robust optimization [Madry
et al., 2017]. That is, we employ the standard ERM framework but with a modified adversarial
risk functional

Radv(Fθ ;ε) = E

[
sup

δδδ∈B(ε)
`(X +δδδ ,Y,θ)

]
where ε is the perturbation budget and B(ε) is the ε-ball around the origin. To minimize the
adversarial risk Radv, we therefore need to minimize the expectedworst-case loss under bounded
additive perturbations of the input. From a theoretical point of view, we are interested in so-
called risk gaps of the form

Radv(Fθ ;ε)≤ R(Fθ )+h(ε),

where the adversarial risk of a model Fθ can be bounded in terms of its standard risk R(Fθ )
and some function h(ε) of the perturbation budget. Such bounds have attracted much research
interest, as they allow us to provide theoretical performance guarantees in the adversarial setting
independently of any specific attack [Gourdeau et al., 2019, Pinot et al., 2021]. The method
we propose in this work admits very favorable risk gaps, where h(ε) grows sublinearly with the
perturbation budget ε . Other works that prove theoretical risk gaps of this kind usually have at
least linear or quadratic dependencies on the perturbation budget [Pinot et al., 2021].

Aside from accuracy, another important property of a machine learning model is its calibration.
Intuitively, calibration measures the degree to which a model’s predictions can be trusted. For
example, a calibrated classifier should output the correct class for 80% of inputs on which it
predicts said class with a probability of 80%. There exist different metrics for measuring cali-
bration, but the most common one is expected calibration error (ECE) [Guo et al., 2017, Naeini
et al., 2015], defined as follows:

ECE = E
[
|P̂−Pr[Ŷ = Y | P̂]|

]
.

Here, Ŷ represents the estimated class of a random input sample X and P̂ is the probability
assigned by the classifier to Ŷ . Calibration is an additional interesting property for us to study
here in the context of adversarial robustness, since prior work has shown that robust neural
networks tend to be less well-calibrated than their non-robust counterparts [Wen et al., 2020].
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In the sequel, we will also make extensive use of the notion of a modulus of continuity. Let
(U,dU ) and (V,dV ) be two metric spaces. A function ω : R→ R is a modulus of continuity of
another function f : U →V if it satisfies the following two properties:

1. Continuous and vanishing at zero:

lim
t→0

ω(t) = ω(0) = 0.

2. For every x1,x2 ∈U ,
dV ( f (x1), f (x2))≤ ω(dU (x1,x2)).

Sets of functions sharing the same modulus of continuity form so-called equicontinuous fami-
lies. For example, if ω(t) = Kt for some K > 0, we recover the class of Lipschitz continuous
functions. Furthermore, a function is uniformly continuous if and only if it admits a modulus
of continuity.

6.2 The Adversarial Density Filter (AdvDF)
We motivate our approach by considering a multivariate Gaussian density q∼ N (0,ΣΣΣ(x)) with
zero mean and covariance ΣΣΣ(x) ∈ Rt×t . The t × t covariance matrix is a function of an ob-
servation x ∈ Rn, and hence the density q is conditioned on x. Fix such an observation x as
well as some additive perturbation δδδ ∈ Rn. Let us denote q ∼ N (0,ΣΣΣ(x)) = N (0,ΣΣΣ) and
q̃∼ N (0,ΣΣΣ(x+δδδ )) = N (0, Σ̃ΣΣ). As Gaussians with equal means, the KL divergence between q̃
and q has a simple analytical form. If, furthermore, the covariance matrices are diagonal with
ΣΣΣ = diag(σ1, . . . ,σt) and Σ̃ΣΣ = diag(σ̃1, . . . , σ̃t), then the KL divergence reduces to

DKL(q̃‖q) =
1
2

(
t

∑
i=1

log
σi

σ̃i
− t +

t

∑
i=1

σ̃i

σi

)
.

Suppose that the maps x 7→ σi(x) are all uniformly continuous with local modulus of continuity
ωi and that σi(x)> ωi(‖δδδ‖). Then,

DKL(q̃‖q)≤
1
2

(
t

∑
i=1

ωi(‖δδδ‖)
σi

−
t

∑
i=1

log
(

1− ωi(‖δδδ‖)
σi

))
. (6.1)

Hence, if σi is large with respect to ωi(‖δδδ‖) for all i, then DKL(q̃‖q)≈ 0 and the two densities
correspond to almost the same distribution. In such a regime, small additive perturbations δδδ to
the observation x will not have much effect on the resulting conditional density q.

Our proposal, therefore, is to pass input samples x ∈ X through such a density in order to “filter
out” adversarial perturbations that may have been added to the sample. To achieve this, we
introduce the adversarial density filter (AdvDF) as a pre-processing step for themachine learning
model to be protected. The AdvDF is essentially an autoencoder and hence consists of two main
components:

Encoder. The encoder Eφ , a neural network parameterized by a vector of weights φ . It is an
X →Rt

+ function which maps input samples x ∈ X to variance vectors Eφ (x) ∈Rt
+. The latent

vectors z ∈ Z are created by sampling from the distribution

qφ (z | x) = N (z | 0,diagEφ (x)). (6.2)
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Decoder. The decoder Dψ , a neural network parameterized by a weight vector ψ . It takes the
latent vectors z ∈ Z from the encoder and maps them back into the input space X .

In this way, input samples x are mapped to a Gaussian distribution, and the goal of the decoder
is to reconstruct the original input x from samples of qφ (z | x). The decoder therefore aims
to minimize the expected reconstruction error E[‖X −Dψ(Z)‖2] where Z ∼ qφ . On the other
hand, the encoder aims to make qφ resistant to small additive perturbations of the input. By the
upper bound (6.1), this can be achieved by fulfilling the following requirements:

1. Eφ must be uniformly continuous

2. Each component of Eφ (x) must be large with respect to its modulus of continuity

The first constraint can be satisfied through architectural design choices in the specification of
the encoder. The second constraint can be encouraged by regularizing the optimization process.
Specifically, the parameters φ and ψ are optimized by minimizing the following loss:

L(x,φ ,ψ) = ‖x−Dψ(zφ (x))‖2−β

t

∑
i=1

logEφ ,i(x). (6.3)

Here, we write zφ (x) to represent a sample from the conditional distribution qφ (· | x). The
parameter β > 0 balances the competing objectives of the encoder and decoder. Note that
maximizing the sum of the log-variances in the Gaussian case is equivalent to maximizing its
entropy. The reconstruction error can be bounded from below in terms of the entropy (see Cover
[1999]), and so these objectives must indeed be appropriately balanced: if the entropy is too
high, reconstruction will degrade and performance on downstream tasks will suffer; on the other
hand, if the entropy is too low, there may not be any real increase in robustness and the AdvDF
will be ineffective.

Curiously, we find that the regularization term in (6.3) is superfluous. We performed several ex-
periments where we tuned β to achieve an optimal result, but we found no significant improve-
ments in accuracy or robustness. Therefore, we set β = 0 in all our experiments, essentially
disabling the regularization. This phenomenon is further investigated in section 6.3.2.

The theoretical properties of the AdvDF bring us to our main theorem:

Theorem 6.1. The success rate of any adversary against the AdvDF scales like√
1− exp(−O(ω(ε)2))

where ω is the modulus of continuity of the encoder network.

A more formal statement as well as a proof of this result is given in section 6.4.1. We have the
following immediate corollary:

Corollary 6.2. If the encoder network of the AdvDF is Lipschitz continuous, then the success rate
of any adversary scales like o(ε), i.e., sublinearly with the perturbation budget.

We note that corollary 6.2 represents an asymptotic improvement of the dependency on the
perturbation budget ε compared to related work [Pinot et al., 2021]: our bounds are sublinear
in ε whereas others are at least linear (and usually even quadratic) in ε . Moreover, we have
assumed only uniform continuity of the AdvDF encoder component, whereas most prior work
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x Eφ σσσ
z∼ qφ

Dψ x̂ Fθ
y

Figure 6.1: Graphical illustration of the AdvDF defense. The input sample x is first fed to
the encoder network Eφ , which outputs a variance vector σσσ . This variance vector is used to
sample the latent representation z ∼ N (0,diagσσσ). The decoder takes this latent vector z and
reconstructs the original input, obtaining an approximation x̂. This reconstructed input is then
fed to the model Fθ , yielding the output y = Fθ (x̂).

assumes Lipschitz continuity of the entire auto-encoder [Barrett et al., 2021] or even of the
entire network [Fazlyab et al., 2019], which are much stricter requirements. In section 6.4.3,
we provide a more detailed comparison of our work with that of Barrett et al. [2021], as their
results are highly relevant to us as well.

We also wish to stress that the proofs of theorem 6.1 and corollary 6.2 work with any `p norm.
Although we use `2 throughout our work to evaluate the defense in practice, the theoretical
results suggest that the AdvDF should also work well for other norms, such as `∞ or `1. Further-
more, we find that similar results may also hold when the sampling distribution is generalized
to the exponential family rather than restricted to a Gaussian. In section 6.4.4, we discuss such
a generalization of the AdvDF to the exponential family of distributions.

The defense. Given a trainedAdvDF (Eφ ,Dψ) and amodelFθ parameterized by θ , we defend
the model by constructing the following composition:

Gθ = Fθ ◦Dψ ◦ zφ .

The function zφ : X → Z represents the sampling step where an input vector x is mapped onto
a latent vector zφ (x) by sampling from qφ (· | x) = N (0,diagEφ (x)). These samples are then
reconstructed by the decoder Dψ and subsequently fed to the underlying model Fθ . The full
model Gθ can then be trained end-to-end as usual, keeping the parameters φ and ψ of the
AdvDF fixed. Figure 6.1 illustrates this construction graphically.

Note that the AdvDF is fully unsupervised: it does not require any labels in order to function.
It therefore has the useful property of being amenable to a great variety of downstream tasks
including classification, regression, clustering or generative modeling. As such, in our defensive
strategy, the underlying model Fθ does not need to be a classifier, although we do restrict our-
selves to that setting in this work. To the best of our knowledge, there exist very few adversarial
defenses that satisfy this property, since most work in this area appears to be focused exclusively
on supervised learning.

Finally, using the results from Pinot et al. [2021], we can also obtain the following risk gap for
the AdvDF:

Theorem 6.3. The adversarial risk of the AdvDF model Gθ = Fθ ◦Dψ ◦ zφ satisfies

Radv(Gθ ;ε)≤ R(Gθ )+
√

1− exp(−O(ω(ε)2)).
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The proof of this statement can be found in section 6.4.2.

6.2.1 Computing the risk bounds
Given that the AdvDF has certified bounds on the adversarial risk, it would be interesting to
compute these and compare them with empirical estimates of the robustness. Empirical esti-
mates given by adversarial attacks give lower bounds on the adversarial risk, but these bounds
can be very loose if the attack is not well-suited to the defense [Athalye et al., 2018a, Carlini
and Wagner, 2017c]. To obtain a more reliable estimate of the true robustness of the method,
we can compute the risk bound provided by theorem 6.3 numerically. To achieve this, we first
recall the full explicit bound:

Radv(Gθ ;ε)≤ R(Gθ )+E


√√√√1− exp

(
−1

2

(
t

∑
i=1

ωi(ε)

σi(X)
−

t

∑
i=1

log
(

1− ωi(ε)

σi(X)

)))
︸ ︷︷ ︸

Rgap(Gθ ;ε)

.

Here, the expectation is taken over the data sample X . The risk gap Rgap(Gθ ;ε) can be approx-
imated using a sufficiently large data set:

R̂gap(Gθ ;ε) =
1
|S| ∑x∈S

√√√√1− exp

(
−1

2

(
t

∑
i=1

ωi(ε)

σi(x)
−

t

∑
i=1

log
(

1− ωi(ε)

σi(x)

)))
. (6.4)

As a result, the only difficulty in computing (6.4) are the moduli of continuity ω1, . . . ,ωt as-
sociated with the partial functions σ1(x), . . . ,σt(x) that form the components of the variance
vectors σσσ(x).

Let us consider for a moment an arbitrary uniformly continuous function f : R→R. Our goal is
to estimate its modulus of continuityω at a given distance ε . By definition of uniform continuity,
it holds that

ω(ε) = sup
x,x′∈R

{| f (x)− f (x′)| : |x− x′|= ε}.

Equivalently, we can write

ω(ε) = sup
x∈R
{| f (x)− f (x+δ )| : |δ |= ε}. (6.5)

Specializing (6.5) to our use-case, we have

ωi(ε) = sup
x∈X
{|σi(x)−σi(x+δδδ )| : ‖δδδ‖= ε}. (6.6)

We could therefore try to solve (6.6) for every i= 1, . . . , t. Of course, this would quickly become
inefficient for large t, so we instead rely on the following simple fact. Given moduli of continuity
ω1, . . . ,ωt for σ1, . . . ,σt , the function

ω(ε) = max{ω1(ε), . . . ,ωt(ε)}

is clearly a modulus of continuity for σσσ regardless of the norm used to measure distances. We
can therefore simplify (6.6) to

ω(ε) = sup
x∈X
{‖σσσ(x)−σσσ(x+δδδ )‖∞ : ‖δδδ‖= ε}. (6.7)
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The norm constraint on the perturbation δδδ must be measured according to the norm used in the
adversarial threat model, which is L2 in our case. The distance between the variance vectors,
on the other hand, is always measured in L∞.

Note that we do not need to optimize over x and δδδ simultaneously: the data sample x can be
drawn from the data set and the optimization (6.7) can then be solved for each data sample
individually. The final value ω(ε) is then computed by taking a maximum over these data-
dependent results. Formally, we first solve

ω(ε;x) = max
δδδ∈Rn

‖σσσ(x)−σσσ(x+δδδ )‖∞ subject to ‖δδδ‖= ε (6.8)

for a set of data samples x ∈ S. We then take

ω(ε) = max
x∈S

ω(ε;x).

This value can then be used in (6.4) to compute our empirical estimate R̂gap(Gθ ;ε) of the
adversarial risk gap.

6.2.2 Robustness evaluation
In this section, we detail the adversarial attacks used to evaluate the robustness of both our
baseline (non-robust) models as well as the models defended using the AdvDF.

AutoAttack

At ICML 2020, Croce and Hein [2020b] proposed the AutoAttack framework, which is a soft-
ware library that runs a diverse ensemble of adversarial attacks with optimized parameters to
maximize their effectiveness. The code is available online,1 and can be easily deployed to at-
tack our models in the `2 setting. Concretely, AutoAttack runs an ensemble of four adversarial
attacks against the given model and data, with no free parameters the user needs to specify. The
following attacks are run sequentially against all models:

1. APGD-CE. A step-size free version of projected gradient descent (PGD) on the cross-
entropy loss.

2. APGD-DLR. A step-size free version of PGD on the Difference of Logits Ratio (DLR)
loss introduced by Croce and Hein [2020b]. The DLR loss eliminates a common problem
with the cross-entropy loss where the scaling of the logits causes misleading estimates of
model robustness. DLR is thus constructed to be invariant to the scale of the logits.

3. FAB. The fast adaptive boundary attack introduced by Croce and Hein [2020a].

4. Square. A query-efficient black-box attack proposed by Andriushchenko et al. [2020].

Since our defense is randomized, we run AutoAttack combined with Expectation over Transfor-
mation [Athalye et al., 2018a], a feature that the library supports natively. This further eliminates
the possibility that the increase in robustness could be due to gradient masking.

Note that AutoAttack is not an adaptive robustness evaluation, i.e., the adversarial attacks have
no specific knowledge of the AdvDF except that it is randomized. Although AutoAttack is an

1https://github.com/fra31/auto-attack. Accessed 2021-09-03.

https://github.com/fra31/auto-attack
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excellent baseline for an adversarial defense, a key component of a good robustness evalua-
tion is an adaptive attack, i.e., an adversarial attack that is specifically tailored to the proposed
defense [Carlini et al., 2019, Tramer et al., 2020]. We therefore also develop three adaptive
attacks, which are detailed below, to complement the defense-oblivious AutoAttack.

Maximum damage attack

Our first idea for an adaptive attack against the AdvDF is to attempt to find small perturbations
δδδ in the input which cause large deviations in the reconstructions produced by the decoder. This
naturally leads us to the maximum damage attack originally proposed by Camuto et al. [2021]
to assess the robustness of variational auto-encoders (VAEs):

max
δδδ∈Rn

d(Dψ(zφ (x+δδδ )),Dψ(zφ (x))) subject to d(x+δδδ ,x)≤ ε.

We maintain a strict norm constraint on the perturbation δδδ . This attack was shown to be highly
effective against VAEs and is therefore a logical candidate for our defense as well, given that the
AdvDF is architecturally2 nothing more than a VAE where the mean vectors are always set to
zero.

Maximum variance attack

In order to accurately reconstruct an input sample x from a sample z of its latent distribution
N (0,diagEφ (x)), the decoder can only use information encoded in the variance vector Eφ (x).
Hence, similarly to the maximum damage attack, a natural idea is to attack the encoder network
Eφ so that it produces a very different variance vector. More specifically, in order to generate
an adversarial x̃ for a given input x, we solve the following optimization problem:

max
δδδ∈Rn

d(Eφ (x+δδδ ),Eφ (x)) subject to d(x+δδδ ,x)≤ ε. (6.9)

That is, we attempt to find a small additive perturbation δδδ such that the variance Eφ (x+δδδ ) is far
from the original variance Eφ (x) while maintaining a strict norm constraint on δδδ . If the metric
d(·, ·) is the Euclidean distance, the objective (6.9) is fully differentiable and can be minimized
iteratively using gradient descent.

Latent space attack

To achieve robustness, the AdvDF crucially relies on a small KL divergence DKL(q̃φ‖qφ ) be-
tween the latent distributions of the corrupted samples and the clean samples. Hence, another
method of attack specifically tailored to this defense could proceed as follows. We start from an
original sample xo that we wish to perturb and a target sample xt from a different class. Then,
we optimize a perturbation δδδ such that the KL divergence between the latent distribution asso-
ciated with xo +δδδ and the distribution associated with xt is minimized. This is the idea behind
the latent space attack for VAEs [Gondim-Ribeiro et al., 2018, Kos et al., 2018, Tabacof et al.,
2016], which attempts to solve the following optimization problem:

min
δδδ∈Rn

DKL

(
q̃φ

∥∥∥q(t)
φ

)
subject to d(xo +δδδ ,xo)≤ ε.

2Aside from the architecture, the AdvDF is trained differently from the VAE: we minimize the `2 reconstruction
loss instead of maximizing the evidence lower bound [Kingma andWelling, 2013, Zhang et al., 2019a], and the AdvDF
is additionally regularized to maximize the variance components.
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Here, q̃φ refers to the latent distribution associated with the perturbed sample xo + δδδ and q(t)
φ

refers to the distribution associated with the target sample xt .

Implementation details. For all adaptive attacks, we used 1,000 iterations of gradient descent
in the optimization loops with the Adam optimizer [Kingma and Ba, 2014].

6.2.3 Black-box attack
The adaptive attacks we described in section 6.2.2 are all gradient-based, which means they rely
upon the gradients of the model in order to perform a successful attack. As shown by Athalye
et al. [2018a], gradient-based attacks can fail for various reasons, collectively called “gradient
masking.” To ensure that our model remains robust even against attacks that do not suffer from
gradient masking, we also implement a gradient-free approach inspired by the Simba attack3
from Guo et al. [2019]. The attack functions in the `0 regime, that is, it attempts to minimize
the number of pixels perturbed instead of the global perturbation magnitude. Pseudo-code is
given in algorithm 6.1.

Algorithm 6.1: Pseudo-code for the black-box attack
Data: model F , sample x ∈ Rn, budget ε ∈ (0,1), iterations N, pixel bounds (L,U)
Result: sample x̃ ∈ Rn

1 foreach iteration in {1, . . . ,N} do
2 Sample a random fraction of pixels I of x with |I|= dnεe (without replacement).
3 Initialize x̃← x.
4 foreach pixel i ∈ I do
5 if xi ≤ (L+U)/2 then
6 x̃i←U
7 else
8 x̃i← L
9 end
10 end
11 if F(x) 6= F(x̃) then
12 return x̃
13 end
14 end
15 return x

The attack is instantiated with a perturbation budget ε ∈ (0,1), which specifies the fraction of
pixels we are allowed to perturb, as well as a number of iterations N. For instance, on a data
set like MNIST where the input samples are 28× 28 grayscale images LeCun et al. [1998],
ε = 1% would correspond to an `0 budget of eight pixels (rounded up). The magnitude of the
perturbation applied to these pixels does not matter; only that they are modified with respect to
the original sample. For each input sample x, the attack chooses a fraction ε of the pixels from
x at random and changes their values to either the minimum or maximum value observed in the
data set, whichever causes the largest deviation. If the classification changes as a result of these

3In fact, our attack is equivalent to Simba using the standard basis together with our slightly different procedure for
selecting the pixel-wise perturbations.
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modifications, the modified sample is returned as the adversarial. Otherwise, this procedure
is repeated with fresh random pixels until a successful adversarial is found or the number of
iterations N is exhausted.

6.3 Experiments
In this section, we empirically evaluate the usefulness of the AdvDF for robust machine learning.
We utilize various adversarial attacks for this purpose and vary their perturbation budgets to
show the deterioration in accuracy of the baselines compared to the AdvDF in section 6.3.2.
The experiments were carried out using the TensorFlow Keras framework [Abadi et al., 2015,
Chollet et al., 2015] along with the Foolbox and ART libraries [Nicolae et al., 2018, Rauber
et al., 2020]. We used one NVIDIA Titan Xp GPU and two NVIDIA GeForce RTX 2080 Ti
GPUs to run all experiments.

Gradient masking. To prevent gradient masking, we use the Backwards Pass Differentiable
Approximation (BPDA) technique by Athalye et al. [2018a] for all adversarial attacks. That is,
we replace the AdvDF component Dψ ◦zφ by the identity in the backward pass. In essence, this
amounts to approximating the gradient ofGθ at x̂ using∇xFθ (x) �x=Dψ (zφ (x̂)). The forward pass
remains unchanged. This is the recommended approach for defenses like ours, which belong to
the class of “straight-through estimators.”

6.3.1 Data sets and models
We perform all our experiments on the four image classification data sets detailed below. For
each data set, we utilize a particular model architecture and set of hyperparameters for the
AdvDF. The influence of these hyperparameters is further elaborated on in section 6.3.2. All
data sets were made available in the TensorFlow Datasets catalog 4.

Fashion-MNIST. The Fashion-MNIST data set [Xiao et al., 2017] consists of images from
the Zalando catalog of clothing articles. The training set contains 60,000 examples and the test
set contains 10,000 examples. Each example is a 28×28 grayscale image belonging to one of
ten possible classes. The latent dimensionality t of the AdvDF is set to 128 for this data set.

CIFAR-10. The CIFAR-10 data set [Krizhevsky and Hinton, 2009] consists of 60,000 RGB
images 32×32 pixels in size. The samples are divided into 10 classes, with 6,000 images per
class. We set t = 2048 here. The model architecture for this data set was based on ResNet [He
et al., 2016].

Cats vs dogs. The cats vs dogs data set [Elson et al., 2007] contains RGB images of cats and
dogs in various sizes. To streamline the processing of the samples, we resize them to 64× 64
pixels. We let t = 8192.

4https://www.tensorflow.org/datasets. Accessed 2021-09-07.

https://www.tensorflow.org/datasets
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Rock, paper, scissors (RPS). The rock, paper, scissors data set [Moroney, 2019] consists of
300×300 RGB images of human hands playing the rock, paper, scissors game. The goal is to
classify the pose of each hand into one of the three classes: rock, paper or scissors. For our
purposes, we resize the images to 80×80 pixels. We let t = 5184.

For each data set, all samples are normalized so the pixel values lie in the range [0,1]. We must
also remark that the DLR loss as the authors proposed it in Croce and Hein [2020b] is undefined
for classification problems that are comprised of fewer than four classes. We therefore excluded
this attack from the evaluation when running AutoAttack on the Cats vs dogs and Rock, paper,
scissors data sets; we include it for CIFAR-10 and Fashion-MNIST.

6.3.2 Results
To evaluate the robust accuracy, we subject Gθ to several adversarial attacks. First, we run the
AutoAttack benchmark [Croce and Hein, 2020b] which consists of an ensemble of diverse ad-
versarial attacks. Then, we consider the following non-adaptive gradient-based attacks which are
not included in the AutoAttack evaluation: the fast gradient method (FGM) [Goodfellow et al.,
2014], the projected gradient descent attack (PGD) [Madry et al., 2017] and the Brendel-Bethge
attack [Brendel et al., 2019]. We also test the AdvDF against our own adaptive gradient-based
attacks detailed in section 6.2.2. For each of these attacks, we utilize the `2 norm to measure
the perturbation budget. Finally, we assess the performance of the AdvDF against the gradient-
free black-box attack described in section 6.2.3. Note that this attack measures the perturbation
budget in terms of the number of perturbed pixels and ignores the magnitude of the global per-
turbation. In this case, the budget ε represents the fraction of pixels perturbed. We also compute
the relative squared error (RSE) values for the reconstructed samples. For a given sample x with
reconstruction x̂ = Dψ(zφ (x)), the RSE is computed as RSE(x, x̂) = ‖x−x̂‖22/‖x‖22. The AdvDF is
compared against the randomized smoothing defense [Awasthi et al., 2020, Cohen et al., 2019,
Salman et al., 2020b] using the implementation provided by the Adversarial Robustness Toolbox
(ART) [Nicolae et al., 2018].

Data set Baseline AdvDF RSE

Fashion-MNIST 89.40 ± 0.13 88.47 ± 0.12 1.20 ± 0.05
CIFAR-10 85.61 ± 0.14 74.67 ± 0.31 1.70 ± 0.04
Cats vs dogs 88.60 ± 0.28 82.08 ± 0.42 2.41 ± 0.02
RPS 91.91 ± 3.36 94.19 ± 1.10 0.97 ± 0.04

Table 6.1: Accuracy and relative squared error (RSE) of the different models.

Table 6.1 reports the accuracy and RSE scores of the baseline and AdvDF models. The re-
ported results are the means of ten different runs of the experiments with the standard errors
indicated. We observe that the AdvDF often incurs a drop in clean test accuracy. This is typical
of adversarial defenses in practice, especially given that all models were trained under identical
circumstances (using the same optimizer, number of epochs, etc). This phenomenon is known
as the accuracy-robustness trade-off, and there is some theoretical evidence that it cannot be
avoided in general [Gourdeau et al., 2019, Schmidt et al., 2018]. However, when plotting the
robustness curves (figures 6.2 and 6.3 in the main text and figures 6.5 to 6.11 in section 6.5), we
see that the robust accuracy of the AdvDF seems to degrade much more slowly than the base-
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lines within the perturbation budgets we tested. In fact, in most cases, the robust accuracy of the
AdvDF is significantly higher than the baselines and randomized smoothing defenses for certain
intervals of the perturbation budget. A more extensive comparison to randomized smoothing is
given in section 6.3.3.

The RSE also appears to be very low across all data sets. For a more qualitative assessment,
we give examples of randomly selected reconstructions in section 6.5. There, it can indeed be
observed that the reconstructions tend to resemble blurred versions of the original samples, as
is common for autoencoders trained with an `2 loss.

Risk gap. Unfortunately, when we compute the adversarial risk gap R̂gap for the models in
table 6.1, the estimates of the moduli of continuity given by (6.7) are very large and cause
the resulting risk bounds to become vacuous (i.e., greater than 100%). This is similar to the
problem faced by classical generalization bounds when applied to deep neural networks [Zhang
et al., 2021a]. The main quantities used to bound the generalization gap, such as the Vapnik-
Chervonenkis dimension or the fat shattering dimension, become too large to obtain meaningful
bounds. In statistical learning theory, the aim is typically to control some notion of “represen-
tational power” of the network. The modulus of continuity is similar in that regard since it
measures how much the neural network can “stretch” or “compress” its input space. The op-
timization problem (6.8) essentially involves computing adversarial examples for the encoder
network σσσ , which explains why it can be so successful if special care is not taken. In particular,
one must ensure that the modulus of continuity of the encoder is small, a condition that does
not appear to have been studied in great detail before. There is an increasing amount of related
work on Lipschitz regularisation [Gouk et al., 2021], but this is a much stricter constraint than
the uniform continuity that we require. Moreover, we only need to constrain the encoder net-
work; the decoder component and the downstream classifier are not constrained at all, a rather
remarkable property which may significantly reduce the overhead of the AdvDF compared to
other approaches which must constrain the entire network end-to-end. That said, it may come
as a surprise that our AdvDF constructions are still able to provide significant robustness despite
the large moduli. The main objective of our future work in this area is to find ways to effectively
constrain the uniform continuity and obtain non-vacuous risk gaps.

Sanity check. As an additional sanity check for our defense, we verify that the AdvDF does
not provide any significant robustness on a task where this is provably impossible. Specifically,
we take the binary classification problem constructed by Tsipras et al. [2019] and train both a
baseline and AdvDF model. We mimic the CIFAR-10 data set in our setup: the data dimen-
sionality is 32×32×3 and we generate 60k samples for training and 10k samples for testing.
We let p = 0.2 and η = 3/

√
3071. This way, standard classification should achieve very high

accuracy (over 90%) but robust classification against an `∞-bounded adversary should not per-
form better than random guessing for ε = 2η ≈ 0.11. We evaluate the models against the `∞

FGM attack, since this method is most susceptible to gradient masking. The results confirm our
expectations: the baseline and AdvDF models achieve 98.29% ± 0.20% and 92.20% ± 1.53%
standard accuracy respectively (averaged across ten different runs) whereas their corresponding
robust accuracy is 2.77%± 0.28% and 21.16%± 2.00%. These figures are significantly worse
than the level of random guessing, which is 50% in this case.
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Figure 6.2: Robustness curves for the AutoAttack benchmark on the different models.

Plausibility of the theoretical assumptions. Theorem 6.1 relies on several theoretical as-
sumptions about the AdvDF networks. Specifically, we require that the network be uniformly
continuous and that the components of the variance vectors be large with respect to the mod-
ulus of continuity. In section 6.5.5, we verify these assumptions by studying the magnitude of
components of the variance vectors and plotting the KL divergence of the latent densities when
subjected to adversarial attacks. We confirm that the variances are large and that the KL diver-
gence appears to scale quadratically with the perturbation budget ε . These results lend empirical
support to theorem 6.1 and corollary 6.2.

Hyperparameters. In section 6.5.6, we experiment with varying the latent dimensionality t of
the AdvDF to study its effects on standard and robust accuracy. We find that a larger t increases
both standard accuracy and robust accuracy up to a certain point, after which standard accuracy
levels off but robust accuracy tends to decrease. This suggests that there exists an optimal “filter
bottleneck” where the AdvDF removes just enough information so that the downstream model
can be both robust and accurate. Below this level, we erase too much information and the model
is no longer accurate; above it, we retain too much information and the model becomes fragile.
These findings are in line with the theory of robustly useful features proposed by Ilyas et al.
[2019]: for a well-chosen latent dimensionality t, the AdvDF appears to make it harder to learn
non-robust features of the input, forcing the downstream model to rely exclusively on robustly
useful features.



160 CHAPTER 6. ADVERSARIAL DENSITY FILTERING

0.0 0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

no defense
AdvDF
sigma = 0.01
sigma = 0.02
sigma = 0.03
sigma = 0.04

(a) Fashion-MNIST

0.0 0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

no defense
AdvDF
sigma = 0.01
sigma = 0.02
sigma = 0.03
sigma = 0.04

(b) CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

no defense
AdvDF
sigma = 0.01
sigma = 0.02
sigma = 0.03
sigma = 0.04

(c) Cats vs dogs

0.0 0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

no defense
AdvDF
sigma = 0.01
sigma = 0.02
sigma = 0.03
sigma = 0.04

(d) RPS

Figure 6.3: Comparison of the baselines to the AdvDF and randomized smoothing defenses for
the `2 PGD attack.

Calibration. In section 6.5.3, we plot ECE values of the baseline, AdvDF and randomized
smoothing methods for different perturbation budgets against the `2 PGD attack. We observe
that the AdvDF tends to have a significantly lower ECE for small perturbation budgets (the
common scenario). For larger budgets, depending on the data set, randomized smoothing may
be better calibrated than the AdvDF.

Efficiency. Aside from increased robustness, computational efficiency is another strength of
the AdvDF. Timing experiments in figure 6.17 show that inference using the AdvDF is on av-
erage 31x faster than randomized smoothing for the tasks we considered. For training, we do
require that the AdvDF be trained first, independently of the downstream model. Then, the
downstream model must be retrained (or at least finetuned) using the fixed AdvDF. However,
we believe that the overhead incurred during training will often be offset by the improved ro-
bustness and fast inference times.

Robustness to natural corruptions. Aside from adversarial perturbations, which are worst-
case corruptions of the input, deep neural networks are also expected to be robust to natural
corruptions. Natural corruptions can be very different from adversarial ones; indeed, prior work
has identified that robustness to adversarial perturbations often comes at the cost of robustness
against other distortions [Taori et al., 2020, Yin et al., 2019b]. To assess the generalization
of the AdvDF to naturally occurring perturbations, we evaluate our CIFAR-10 models on the
CIFAR-10-C data set proposed by Hendrycks and Dietterich [2019]. The CIFAR-10-C data set
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consists of samples from the CIFAR-10 test set which have been subjected to various types of
noise and distortions of varying severity levels. We discuss these experiments in more detail in
section 6.5.4. To summarize, for 14 out of 19 corruption types considered in the CIFAR-10-C
data set, we find that the AdvDF is significantly more robust than the baselines. By the standards
of a defense against adversarial perturbations, the AdvDF exhibits a remarkable resilience to
natural corruptions as well.

6.3.3 Comparison to randomized smoothing
At the time of this writing, the state of the art in certified adversarial defenses is randomized
smoothing [Awasthi et al., 2020, Cohen et al., 2019, Salman et al., 2020b]. It is therefore inter-
esting to contrast theorem 6.1 with the theoretical guarantee given by the randomized smoothing
method [Cohen et al., 2019]. Given a variance σ2 and a sample x, randomized smoothing is
provably robust within the `2-radius

ρ(x) =
σ

2
(
Φ
−1(p1)−Φ

−1(p2)
)
,

where Φ−1 is the inverse Gaussian CDF and p1, p2 are the top-2 prediction probabilities for
x. Note that the guarantees of randomized smoothing do not naturally generalize to other `p
norms; this requires some additional work [Awasthi et al., 2020]. Furthermore, although ρ(x)
is easy to compute in practice, it is not clear how this function behaves exactly with varying σ ,
since p1 and p2 are computed using the randomized smoothing model with variance σ2 on the
input x. These probabilities may therefore exhibit highly non-linear behavior and they will lead
to a trivial robustness radius when p1 ≈ p2. By contrast, our guarantee does not directly depend
on the probability margin; instead, it depends on the standard accuracy of the model as well as
the continuity properties of the encoder network.

It is important to keep in mind that the nature of our theoretical guarantee is fundamentally
different from that of randomized smoothing. In a sense, randomized smoothing yields a “hard”
guarantee: the model prediction will remain constant within the entire ball of radius ρ(x) around
x. On the other hand, our guarantee is “soft” in the sense that it bounds the probability that an
adversary will succeed in attacking the model using samples drawn from the original data dis-
tribution. It is entirely possible that a model protected by the AdvDF still has many adversarial
examples. However, we claim that the probability of drawing a sample x from the data distri-
bution that can be successfully perturbed into an adversarial x̃ = x+ δδδ such that ‖δδδ‖ ≤ ε and
Gθ (x) 6= Gθ (x̃) grows very slowly with ε . This means that, although strong adversarial exam-
ples likely still exist for the AdvDF, they will be hard to find. This is conceptually similar to the
defense of Madry et al. [2017], which also does not give any “hard” robustness claims but rather
relies on an argument that finding adversarials for the defended model becomes computationally
prohibitive.

The AdvDF is clearly not universally better than randomized smoothing for every data set, model
and adversarial attack. For some combinations of model, data set, adversarial attack and pertur-
bation budget, the AdvDF can perform significantly worse and randomized smoothing may be
the better option. However, we do see that the robust accuracy of the AdvDF tends to decrease
more slowly with the perturbation budget than the robust accuracy of randomized smoothing,
and that there are certainly cases when the AdvDF is much more robust. Furthermore, the
AdvDF incurs almost no overhead during inference, whereas randomized smoothing can slow
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AdvDF Randomized smoothing

+ Fast inference times - Slow inference times
+ Clear sublinear dependence on ε - No clear analytical dependence on ε

+ Amenable to unsupervised learning - Only used for supervised learning (*)

- “Soft” robustness guarantee + “Hard” robustness guarantee
- Need to retrain the downstream model + No need for retraining
- Need to specify an additional model + Only need to specify σ

Table 6.2: Comparison of the relative advantages and disadvantages of the AdvDF and random-
ized smoothing methods. (*) To the best of our knowledge

down the inference times by two orders of magnitude. Hence, the choice between our method
and randomized smoothing is not clear-cut but depends on the specific design considerations of
the concrete machine learning system in which it is to be deployed. We list some advantages
and disadvantages of each approach in table 6.2. This list is not necessarily exhaustive, and of
course it does not take into account the precise performance characteristics of the methods for
a given machine learning problem.

6.4 Theoretical results
In this appendix, we discuss our main theoretical results in more detail. Section 6.4.1 presents
our proof of theorem 6.1 and corollary 6.2. We also discuss the relationship to the closely
related work of Pinot et al. [2021] in section 6.4.2. Finally, in section 6.4.4, we study a possible
generalization of the AdvDF to the case where the encoder samples from a distribution within
the exponential family.

6.4.1 Proof of theorem 6.1 and corollary 6.2
In this section, we present the proof of our main result (theorem 6.1). First, we introduce some
notation. Let Yθ denote the output of the model on a random sample from the data distribution.
Similarly, Ỹθ denotes the output of the model on a corrupted sample from the data distribution.
Specifically, if X is a random variable representing a sample from the data distribution and if
Gθ is the classifier (protected using the AdvDF), then Yθ = Gθ (X) and Ỹθ = Gθ (X +δδδ ). Here,
δδδ ∈ Rn is only required to satisfy ‖δδδ‖ ≤ ε for some ε ≥ 0; it is otherwise unconstrained. In
particular, it can (and usually will) depend on X . We let Y denote the true label of the data
distribution.

We are most interested in Pr[Ỹθ 6= Y | Yθ = Y ], that is, the probability that an adversary can
take a sample that was initially classified correctly and transform it into an incorrectly classified
sample using a bounded additive perturbation.

The data processing inequality (DPI) [Cover, 1999] immediately yields5

DKL(Ỹθ‖Yθ )≤ DKL(q̃φ‖qφ ).

5Note that this divergence is defined here for Yθ and Ỹθ conditioned on X = x. We will also use δ (Ỹθ ,Yθ ) for the
total variation distance between Ỹθ andYθ conditioned on X = x and similarly forDKL(q̃φ‖qφ ). For the sake of brevity,
we prefer to omit the explicit conditioning in this notation since we will never consider the KL divergence or the total
variation distance between the marginal distributions.
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We note that, in the case of classification, the random variables Yθ and Ỹθ follow categorical
distributions conditioned on X = x:

Yθ ∼ Cat(p1(x), . . . , pk(x)), Ỹθ ∼ Cat(p̃1(x), . . . , p̃k(x)).

As such,6

Pr[Yθ 6= Ỹθ | X = x] = 1−Pr[Yθ = Ỹθ | X = x] = 1−
k

∑
i=1

pi(x)p̃i(x).

The total variation distance is

δ (Ỹθ ,Yθ ) = max
i
|p̃i(x)− pi(x)|.

This implies p̃i(x)≥ pi(x)−δ (Ỹθ ,Yθ ) and so

Pr[Yθ 6= Ỹθ | X = x]≤ 1−
k

∑
i=1

pi(x)(pi(x)−δ (Ỹθ ,Yθ )).

The Bretagnolle-Huber inequality [Bretagnolle and Huber, 1979] states that

δ (Ỹθ ,Yθ )≤
√

1− exp(−DKL(Ỹθ‖Yθ )).

Therefore,

Pr[Yθ 6= Ỹθ | X = x]≤ 1−
k

∑
i=1

pi(x)
(

pi(x)−
√

1− exp(−DKL(Ỹθ‖Yθ ))

)
.

Using the DPI, we obtain

Pr[Yθ 6= Ỹθ | X = x]≤ 1−
k

∑
i=1

pi(x)
(

pi(x)−
√

1− exp(−DKL(q̃φ‖qφ ))
)
.

In the special case where themodel outputs a one-hot encoding of the label, this bound simplifies
to

Pr[Yθ 6= Ỹθ | X = x]≤
√

1− exp(−DKL(q̃φ‖qφ )).

Contrary to the more complicated bound that includes all probabilities pi, this one is never vac-
uous. Furthermore, this setting is closer to typical practice in machine learning where the label
is chosen deterministically (usually via an argmax over the logits) rather than probabilistically
(via sampling from the softmax probabilities).

Now,

Pr[Ỹθ 6= Y | X = x,Yθ = Y ] =
Pr[Ỹθ 6= Y,Yθ = Y | X = x]

Pr[Yθ = Y | X = x]

≤ Pr[Ỹθ 6= Yθ | X = x]
Pr[Yθ = Y | X = x]

.

6We made use here of the fact that Yθ and Ỹθ are conditionally independent given X , since we have the fork Yθ ←
X → Ỹθ .
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If everything remains fixed except the perturbation budget ε , then from (6.1) we obtain

DKL(q̃φ‖qφ ) = O(ω(ε)2)

where ω is the modulus of continuity of the encoder. Hence

Pr[Ỹθ 6= Y | Yθ = Y,X = x] =
√

1− exp(−O(ω(ε)2)).

Note that this bound holds for any x ∈ X . To get rid of the conditioning on X , we make use of
a simple auxiliary lemma:

Lemma 6.4. Let f : R×R→ R and g : R→ R be functions. Let U be a random variable. If
f (u,v) = O(g(v)) for every u ∈ R, then E[ f (U,v)] = O(g(v)).

Proof. We consider the full expression of the expectation:

E[ f (U,v)] =
∫
R

pU (u) f (u,v)du.

Since f (u,v) = O(g(v)), it holds that

∃k > 0 : ∃v0 ∈ R : ∀v > v0 : | f (u,v)|< kg(v).

Fix an appropriate k > 0 and v > v0. Then

E[ f (U,v)]≤ E[| f (U,v)|] =
∫
R

pU (u)| f (u,v)|du <
∫
R

pU (u)kg(v)du = kg(v).

We conclude that the function v 7→ E[ f (U,v)] also satisfies O(g(v)).

Marginalizing over X and using lemma 6.4 therefore yields

Pr[Ỹθ 6= Y | Yθ = Y ] =
√

1− exp(−O(ω(ε)2)),

which is the stated result. In particular, if the encoder network is Lipschitz continuous, then
ω(ε) = Lε for some constant L > 0. In that case, the robust accuracy of the AdvDF degrades
sublinearly with the perturbation budget, as

√
1− exp(−O(ε2)) = o(ε).

The above is a succinct asymptotic characterization of the more explicit bound

Pr[Ỹθ 6= Y | Yθ = Y ] =
√

1− exp(−O(ω(ε)2))E
[

1
Pr[Yθ = Y | X ]

]
.

Note that the term within the expectation is independent of ε and so does not affect the asymp-
totic behavior of the bound as a function of the perturbation budget. It is, however, interesting to
note that this quantity is inversely proportional to the clean accuracy of the model. The AdvDF
therefore has no inherent trade-off between accuracy and robustness: as long as the modulus
of continuity ω can be kept under control, the robustness of the AdvDF should improve along
with its accuracy. This is another feature which distinguishes it from many existing adversar-
ial defenses, which usually have to sacrifice considerable accuracy in order to obtain improved
robustness.

Finally, remark that we did not need to assume that the norm ‖ · ‖ was `2. Hence, this result
applies to any `p threat model.
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6.4.2 Relationship to Pinot et al. [2021]
Pinot et al. [2021] provide (to our knowledge) the only other theoretical study of the robustness
of randomized classifiers using probability metrics. Their work is particularly relevant to us,
since their theoretical results generalize the ones we presented here specifically for the AdvDF.

A randomized classifier is a classifier Gθ that outputs a categorical random variable

Yθ ∼ Cat(P1, . . . ,Pk).

Pinot et al. [2021] call such a classifier (αp,ε)-robust if for all x,x′ ∈ X ,

‖x− x′‖p ≤ αp =⇒ D(Gθ (x),Gθ (x′))≤ ε.

Here, D can be any probability metric, e.g., the Renyi divergence or the total variation distance.
We have mainly focused on the KL divergence in our own work, which is not a metric. However,
we have a bound on the total variation distance between Yθ and Ỹθ :

δ (Yθ ,Ỹθ )≤
√

1− exp(−DKL(Ỹθ‖Yθ )) =
√

1− exp(−O(ω(ε)2)).

Hence, in the language of Pinot et al. [2021], we have that classifiers constructed using the
AdvDF are (ε,

√
1− exp(−O(ω(ε)2)))-robust. In particular, if the encoder network of the

AdvDF is Lipschitz continuous, the classifier is (ε,o(ε))-robust. By [Pinot et al., 2021, theorem
1], this leads to the risk bound

Radv(Gθ ;ε)≤ R(Gθ )+
√

1− exp(−O(ω(ε)2)).

6.4.3 Relationship to Barrett et al. [2021]
Barrett et al. [2021] investigate certified robustness of variational auto-encoders, a topic that
is highly relevant to us given the similarities between the AdvDF and VAEs. Since VAEs are
non-deterministic, Barrett et al. introduce the notion of r-robustness: a model F is r-robust (in
the `2 norm) on a sample x and perturbation δδδ with probability q if

Pr[‖F(x+δδδ )−F(x)‖2 ≤ r]≥ q.

The model F under consideration here is supposed to be a generative model such as a VAE,
so that F(x) produces an approximate reconstruction of the sample x. In Barrett et al. [2021,
theorem 1], the authors prove a bound on the r-robustness probability of Lipschitz continuous
VAEs of the form

Pr[‖F(x+δδδ )−F(x)‖2 ≤ r]≥ 1−O
(

L2ε2

r2

)
.

Here, L is the Lipschitz constant of the VAE and ε is the perturbation budget. We can prove a
similar result if we assume the entire AdvDF is Lipschitz continuous:

Theorem6.5. If the entire AdvDF (both the encoder and decoder network) is Lipschitz continuous
with constant L, then we have the following r-robustness probability bound:

Pr[‖Dψ(z)−Dψ(z̃)‖2 ≤ r]≥ 1−O
(

Lε

r

)
.
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Proof. Suppose Dψ is Lipschitz continuous. Consider any input x and perturbation δδδ such
that d(x+ δδδ ,x) ≤ ε . Let qφ = N (0,diagEφ (x)) and q̃φ = N (0,diagEφ (x+ δδδ )). By simple
computations, we know that DKL(q̃φ‖qφ ) = O(ω(ε)2).

Now let z∼ qφ and z̃∼ q̃φ . If Dψ is Lipschitz with constant L,

d(Dψ(z),Dψ(z̃))≤ Ld(z, z̃).

If d(·, ·) is the Euclidean distance, then

d(z, z̃) =

√
t

∑
i=1

(zi− z̃i)2.

Since zi and z̃i are independent Gaussians for all i, their difference zi− z̃i is also Gaussian. In
particular, zi− z̃i ∼ N (0,Eφ ,i(x)2 +Eφ ,i(x+δδδ )2). Hence we may write

d(z, z̃)2 =
t

∑
i=1

(Eφ ,i(x)2 +Eφ ,i(x+δδδ )2)ν2
i ,

where ν1, . . . ,νt ∼ N (0,1). This quantity can be modeled by a generalized chi-squared distri-
bution,

ξ =
t

∑
i=1

wiyi,

with weights wi = Eφ ,i(x)2 +Eφ ,i(x+δδδ )2 and chi-squared variables yi ∼ χ2(1,0). The expec-
tation is given by

E[d(z, z̃)2] =
t

∑
i=1

(Eφ ,i(x)2 +Eφ ,i(x+δδδ )2).

Linearity of the expectation thus yields

E[d(Dψ(z),Dψ(z̃))2]≤ L2
t

∑
i=1

(Eφ ,i(x)2 +Eφ ,i(x+δδδ )2).

Given the uniform continuity of the encoder and the norm constraint on δδδ , we have

Eφ ,i(x+δδδ )≤ Eφ ,i(x)+ω(ε).

As such,

E[d(Dψ(z),Dψ(z̃))2]≤ L2
t

∑
i=1

(2Eφ ,i(x)2 +2Eφ ,i(x)ω(ε)+ω(ε)2).

HenceE[d(Dψ(z),Dψ(z̃))2] =O(L2ω(ε)2). Concavity of the square root together with Jensen’s
inequality then yields E[d(Dψ(z),Dψ(z̃))] = O(Lω(ε)). Applying Markov’s inequality, we find

Pr[d(Dψ(z),Dψ(z̃))≤ r]≥ 1− O(Lω(ε))

r
.

In particular, if the encoder is Lipschitz with ω(ε) = Mε , this bound reduces to

Pr[d(Dψ(z),Dψ(z̃))≤ r]≥ 1− O(MLε)

r
,

which completes the proof.
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Theorem 6.5 shows that the AdvDF can be certified in the framework of Barrett et al. [2021]
with an r-robustness probability that depends linearly on the Lipschitz constant L of the full
AdvDF network, the perturbation budget ε and the margin r.

6.4.4 Generalization to the exponential family
The results we obtained for the AdvDF combined with the existing literature on the robustness
of randomized classifiers suggest a general pre-processing scheme where the input to a classifier
F is first transformed by a randomized auto-encoder (E,D). The AdvDF is a special case of
this where the encoder E maps the input to a Gaussian random variable with zero mean. Given
that this construction has such favorable theoretical guarantees, it may be of interest to consider
generalizations beyond the Gaussian. The most straightforward generalization is the exponential
family. Therefore, in this section, we consider the robustness of a generalized AdvDF where
the encoder maps the input to a random variable from the exponential family.

A probability density f is said to belong to the exponential family if it takes the form

f (z | θθθ) = h(z)exp(η(θθθ)ᵀT (z)−A(θθθ)),

where h, η , T and A are known functions. For a given input x the encoder E defines a random
variable E(x) ∼ f (z | θθθ(x)). Let θθθ = θθθ(x) and θ̃θθ = θθθ(x + τττ) for ‖τττ‖ ≤ ε . We are then
interested in the quantity

DKL( f (z | θ̃θθ)‖ f (z | θθθ))

=
∫

f (z | θ̃θθ) log
f (z | θ̃θθ)
f (z | θθθ)

dz

=
∫

f (z | θ̃θθ) log
exp(η(θ̃θθ)ᵀT (z)−A(θ̃θθ))
exp(η(θθθ)ᵀT (z)−A(θθθ))

dz

=
∫

f (z | θ̃θθ)
[
η(θ̃θθ)ᵀT (z)−A(θ̃θθ)−η(θθθ)ᵀT (z)+A(θθθ)

]
dz

=
∫

f (z | θ̃θθ)η(θ̃θθ)ᵀT (z)dz−
∫

f (z | θ̃θθ)η(θθθ)ᵀT (z)dz+A(θθθ)−A(θ̃θθ)

= (η(θ̃θθ)−η(θθθ))ᵀ
∫

f (z | θ̃θθ)T (z)dz+A(θθθ)−A(θ̃θθ).

Letting Z̃ ∼ f (z | θ̃θθ), this yields

DKL( f (z | θ̃θθ)‖ f (z | θθθ)) = (η(θ̃θθ)−η(θθθ))ᵀE[T (Z̃)]+A(θθθ)−A(θ̃θθ).

As a result, we have the following risk gap for any AdvDF where the encoder samples from a
distribution within the exponential family:

Radv(G;ε)≤ R(G)+ sup
τττ∈B(ε)

√
1− exp

(
A(θ̃θθ)−A(θθθ)+(η(θθθ)−η(θ̃θθ))ᵀE[T (Z̃)]

)
.

Note that this gap vanishes when ε = 0, as expected. Furthermore, there is still a dependency
on the original set of parameters θθθ (which depends on the input sample x) and the perturbation
τττ (which results in an optimization problem). Therefore, to make this bound useful in practice,
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one has to specialize the functions A, η and T for the chosen distribution and prove some lower
bound of the form

A(θ̃θθ)−A(θθθ)+(η(θθθ)−η(θ̃θθ))ᵀE[T (Z̃)]≥ h(ε),

where h : R→R depends only on the perturbation budget ε . This would then yield the risk gap

Radv(G;ε)≤ R(G)+
√

1− exp(h(ε)).

In the case of our AdvDF construction, we have h(ε) = O(ω(ε)2).

6.5 Additional figures
In this section, we supply additional visualizations produced by our experiments. Section 6.5.1
shows examples of input samples reconstructed by the AdvDF autoencoder. Section 6.5.2 is
perhaps the most interesting section, as it presents full robustness curves of all models against
all attacks. In the case of the PGD attack, we also provide comparisons with the state-of-the-art
randomized smoothing defense as implemented by ART [Nicolae et al., 2018]. Section 6.5.3
plots the ECE values of the baselines, AdvDF and randomized smoothing methods for different
perturbation budgets under the `2 PGD attack. Section 6.5.5 collects some additional results
lending empirical support for the theoretical assumptions made about the AdvDF construction
in order to prove theorem 6.1. In section 6.5.6, we experiment with the hyperparameters of
the AdvDF, specifically the latent dimensionality t, to study its effects on the robust accuracy.
Finally, in section 6.5.7 we perform timing experiments to compare the computational efficiency
of the AdvDF to randomized smoothing.
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6.5.1 Examples of reconstructed inputs

(a) Cats vs dogs (b) CIFAR-10

(c) Fashion-MNIST (d) Rock, paper, scissors

Figure 6.4: Examples of reconstructions made by the AdvDF decoder. For each data set, the top
row shows a random selection of original samples and the bottom row shows their reconstructions
by the decoder network of the AdvDF.
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6.5.2 Robustness curves

0.0 0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

1.0
ac

cu
ra

cy

no defense
AdvDF

(a) Fashion-MNIST

0.0 0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

no defense
AdvDF

(b) CIFAR-10

0.0 0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

no defense
AdvDF

(c) Cats vs dogs

0.0 0.2 0.4 0.6 0.8 1.0
epsilon

0.0

0.2

0.4

0.6

0.8

1.0

ac
cu

ra
cy

no defense
AdvDF

(d) RPS

Figure 6.5: Robustness curves for the `2 FGM attack on the different models.
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Figure 6.6: Robustness curves for the `2 PGD attack on the different models.
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Figure 6.7: Robustness curves for the adaptive `2 maximum damage attack on the different
models.
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Figure 6.8: Robustness curves for the adaptive `2 variance attack on the different models.
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Figure 6.9: Robustness curves for the adaptive `2 latent space attack on the different models.
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Figure 6.10: Robustness curves for the `2 Brendel-Bethge attack on the different models.
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Figure 6.11: Robustness curves for the black-box attack (algorithm 6.1) on the different models.
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6.5.3 Calibration curves
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Figure 6.12: Comparison of the ECE for the baseline and AdvDF models against the `2 PGD
attack.
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6.5.4 Performance on CIFAR-10-C
TheCIFAR-10-C data set was introduced byHendrycks andDietterich [2019] in order to bench-
mark the robustness of neural networks against common corruptions and perturbations. This is
distinct from adversarial perturbations, which are designed to beworst-case and hence can differ
substantially from naturally occurring distortions. Indeed, it has been observed that robustness
to adversarial perturbations often comes at the cost of robustness to natural corruptions [Taori
et al., 2020, Yin et al., 2019b]. Yet it is of course desirable for neural networks to be robust
to both classes of perturbations (worst-case and natural). Therefore, as an additional bench-
mark for our method, we evaluate the AdvDF on the CIFAR-10-C data set and compare to the
undefended baselines.

The CIFAR-10-C data set consists of samples from the CIFAR-10 test set which have been
subjected to about twenty different forms of noise and corruption, divided into five severity
levels. For a given model f and corruption type c, we report the relative corruption error (RCE)
as defined by Hendrycks and Dietterich [2019]:

RCEc =
∑

5
s=1 (Es,c( f ′)−Eclean( f ′))

∑
5
s=1 (Es,c( f )−Eclean( f ))

.

Here, f ′ is the robust equivalent of f (i.e., defended using the AdvDF), Es,c( f ) is the error of
model f against corruption type c with severity level s and Eclean( f ) is the error of f on the
clean test data. The RCE thus measures the ratio of the drop in accuracy of the AdvDF f ′ and
the original model f , summed across all severity levels. An RCE value greater than 1 indicates
that the robust model suffers a larger relative drop in accuracy than the baseline, so it is desired
that RCEc < 1 for all corruption types c.

Note that, as a relative measure, the RCE is not sensitive to the absolute accuracy of the mod-
els on the data; it only depends on the ratios of the differences between the accuracies on the
original and corrupted data. As an extreme example, if f ′ does no better than random guessing,
then Es,c( f ′)≈ Eclean( f ′) and RCEc ≈ 0 regardless of the accuracy of f . The RCE only gives
information about the resilience of the model to corruptions; it is entirely possible that low RCE
values may be achieved using models that are undesirable to deploy in practice. In order to be
meaningful, one must take into account the absolute accuracy along with the RCE.

Figure 6.13 plots the RCE of our CIFAR-10 models for each corruption type. We computed
the RCE for every model trained on CIFAR-10, i.e., ten models initialized with unique random
seeds, and indicated the standard error with black bars. For 14 out of the 19 corruption types
included in the data set, we find that the AdvDF has significantly lower RCE than the baselines.
There are only five types where the AdvDF incurs a significantly higher drop in accuracy. From
these five, we notice two major outliers: brightness and fog, both with an RCE of around
200%. The saturate and contrast corruptions follow with an RCE of about 150%. It
therefore appears that theAdvDF ismore susceptible to corruptions that influence the brightness,
contrast and color saturation of the image. It is least susceptible to corruptions such as Gaussian
noise, blurring, compression artifacts, zooming, etc.
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Figure 6.13: Bar plot of the relative corruption error (RCE) of the CIFAR-10 models against
all corruption types and severity levels included in the CIFAR-10-C data set. The dashed red
line marks 100% RCE.
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6.5.5 Theoretical assumptions
In this section, we perform some additional experiments regarding the assumptions underly-
ing theorem 6.1. We first verify that the components of the variance vectors produced by the
encoder networks are relatively large. We also plot the KL divergence values of the latent den-
sities when subjected to adversarial attacks, in order to check whether the bound (6.1) holds in
practice.

Variance vectors. In figure 6.14, we plot cumulative distributions of the log-variances pro-
duced by the encoder networks. We find that, across all data sets, the components of the variance
vectors Eφ (x) tend to be either very large (at the maximum of the permissible range) or very
close to zero; only relatively few components lie somewhere in between. Note that this result
holds despite the fact that we did not utilize any regularization in the loss (6.3). This points to
a curious property of the AdvDF: the encoder network will naturally tend towards high entropy
regardless of whether we encourage this behavior or not, and this phenomenon is reproducible
across architectures and data sets.

KL divergence values. Theorem 6.1 relies on several assumptions that may not be satisfied in
practice. To confirm that our AdvDF models follow these assumptions and hence are subject to
theorem 6.1, we plot the KL divergence values along with a quadratic polynomial approximation
in figure 6.15. For each data set, we subject our trained AdvDFmodels to the `2 FGM attack for
ε ∈ [0,1] and compute the average KL divergence across all samples for the original densities
qφ (· | x) and perturbed densities qφ (· | x̃). The resulting curves appear to grow quadratically
with the budget: the quadratic fits lie close to the average KL divergence values and the residual
sum of squares (RSS) values are very low.

These findings about the magnitude of the variance components as well as the KL divergence
values of the latent densities provide empirical support for the assumptionsmade in corollary 6.2.
We therefore expect the success rate of the adversarial attacks to scale sublinearly with ε . This
appears to be confirmed by our empirical robustness curves: the robust accuracy of the AdvDF
models seems to degrade very slowly as a function of the perturbation budget.
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Figure 6.14: Cumulative distributions of the log-variance components of the AdvDF encoder
networks.
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Figure 6.15: Plots of the KL divergence values for the different AdvDF models against the `2
FGM attack. The residual sum of squares (RSS) values for the quadratic fits are also given.
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6.5.6 Hyperparameters
Aside from the model architectures themselves, the main tunable hyperparameter of the AdvDF
is the dimensionality t of the latent space. We experiment with varying t for the CIFAR-10 data
set, choosing t ∈ {64,128,256,512,1024}. For each value, we retrain the AdvDF model and
report its clean test accuracy as well as the robust accuracy against the `2 PGD attack at ε = 0.4.
The results are given in figure 6.16. We see that a smaller value of t leads to a smaller gap
between the clean and robust accuracy scores. However, at a certain point, the clean accuracy
appears to plateau whereas the robust accuracy continues to decrease gradually. To tune t, one
should therefore select the smallest possible value that still yields acceptable clean accuracy.
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Figure 6.16: Clean and robust accuracies when varying the latent dimensionality t of the AdvDF
for the CIFAR-10 data set. Note that t appears to take values in the set {1,2,4,8,16} here,
but this is because the last layer of our CIFAR-10 encoder network is a convolutional layer
with outputs of dimension (8,8,r). Hence, t = 64r and we let r ∈ {1,2,4,8,16} so that t ∈
{64,128,256,512,1024}.
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6.5.7 Computational efficiency
Figure 6.17 shows the relative increase in inference time with respect to the baseline models for
the AdvDF and randomized smoothing methods. These ratios are shown on a log-10 scale, that
is, we plot

log10

(
inference time of the defense
inference time of the baseline

)
.

We measure the inference time across all samples in the test set of the respective task. The
results clearly show that the AdvDF incurs virtually no overhead with respect to the baselines,
while randomized smoothing is approximately two orders of magnitude slower.
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Figure 6.17: Comparison of the inference times for the different methods.

6.6 Conclusions
We have proposed the adversarial density filter (AdvDF), a simple and scalable defense against
adversarial examples that appears to offer high robustness at relatively low computational cost.
We have experimentally verified the effectiveness of the defense using a variety of adversarial
attacks, including the AutoAttack benchmark and three adaptive attacks. The AdvDF signifi-
cantly outperforms the baselines and compares favorably with the state-of-the-art randomized
smoothing method of defense, both in terms of robustness as well as overhead at inference
time. The experimental findings support our theory that the robust accuracy of the AdvDF de-
cays sublinearly with the perturbation budget, whereas prior work usually scales at least linearly
or quadratically.

The AdvDF construction requires an additional auto-encoder to be trained on the data, but it
makes no further assumptions on the downstream model to be defended. In fact, only the en-
coder module of the AdvDF is subject to any real constraint, namely that it must have a small
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modulus of continuity. This implies that the encoder must be a uniformly continuous function,
which is a much less stringent requirement than the Lipschitz continuity that is commonly as-
sumed in related work [Gouk et al., 2021]. Indeed, uniform continuity is already satisfied by
many neural networks used in practice. However, in this work, we were not yet able to construct
encoder modules with small moduli of continuity: when estimated via our optimization proce-
dure (6.8), the resulting moduli are too large and cause the risk bounds to become vacuous. The
main avenue for future work, therefore, is to find methods of effectively constraining the modu-
lus of continuity of the encoder networks so that we may give non-trivial generalization bounds.
That said, it is worth noting that our AdvDF models still obtained significant improvements in
robustness despite our inability to provide meaningful theoretical bounds. This may indicate
that our bounds are too pessimistic, or it could imply that our current benchmarks (including
AutoAttack) still significantly over-estimate robustness even when there is no gradient masking
or other apparent obstacles to robustness evaluation.

Architecturally speaking, the AdvDF is identical to a VAE [Kingma and Welling, 2013]. The
important difference is that the AdvDF is also trained to maximize the entropy of its latent distri-
bution, which we accomplish here by instantiating it with an isotropic Gaussian and maximizing
the variance. The VAE, on the other hand, penalizes the KL divergence of its latent distribution
from a unit Gaussian. Theoretically, we could inherit all the advantages of the AdvDF by sim-
ply using a VAE where the unit Gaussian in the KL divergence term is replaced by an isotropic
Gaussian with high variance. This variance could either by fixed beforehand or it could also be
learned, in which case a penalty may be added to encourage the variance to be large. Moreover,
VAEs typically do not have zero-mean latent distributions, the mean being determined by the
encoder neural network. However, if the mean is non-zero, this would introduce a quadratic
dependency on the modulus of continuity of the mean function in the KL divergence bound
(6.1). To suppress this effect, we would either have to use a zero-mean variant of the VAE or
the mean would have to be carefully constructed to have small modulus of continuity. Exploring
this relationship further could be interesting given the success of VAE methods.

Another avenue for future work could be to evaluate the AdvDF in the unsupervised setting, as
we have only considered the supervised setting in this work. Theorem 6.5 already provides a
theoretical foundation for such work. Furthermore, combining the AdvDF with model weight
averaging and data augmentation strategies such as those employed by Rebuffi et al. [2021]
would likely boost the performance of the models considerably. These techniques have recently
shown great promise, are straightforward to implement alongside the AdvDF and would come
at little additional cost. Using them to improve the robustness of the encoder module of the
AdvDF may be a first step towards a solution to the problem of large moduli of continuity, since
we expect that robust models composed of uniformly continuous functions would naturally have
small moduli. If they do not, then this likely means our adversarial attacks are not strong enough.
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Chapter 7

Conclusions

With them the Seed of Wisdom did I sow,
And with my own hand labour’d it to grow:
And this was all the Harvest that I reap’d-
“I came like Water, and like Wind I go.”

Rubaiyat
Omar Khayyam

7.1 Summary of contributions
This work has focused on several avenues for defending deep neural networks against adversarial
perturbations. The result of this PhD has been a number of different algorithms that improve
the reliability of machine learning models. The obvious question that arises now is when and
why to use each of these algorithms. In this section, we recapitulate the proposed algorithms
and list their particular use-cases. These observations are also summarized in table 7.1.

The binary IVAP defense. The binary IVAP (algorithm 3.3) is an efficient and effective
detector-type defense for binary classification tasks where a pre-existing scoring classifier is
already available. It requires two hyperparameters: a calibration set and a threshold β . The
calibration set may be taken to be (part of) the training data of the scoring classifier, or it might
be entirely new data. The threshold β is an intuitive scalar parameter which is easy to set
manually based on some empirical tests, but it can also be tuned automatically to optimize
various metrics of interest. As a detector defense, the binary IVAP is only able to signal when a
model predictionmight be unreliable, but it cannot (in general) correct it. To deploy this defense,
therefore, there needs to be some mechanism that deals with rejected predictions. This may be
as simple as notifying the user that their submission has been rejected or must be subjected to
manual review. This could be appropriate in content filtering systems such as those employed by
YouTube. Alternatively, rejections may be handled by a more complicated model that requires
more computational resources.

185
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The MultIVAP defense. The MultIVAP (algorithm 4.1) was proposed as a generalization of
the concept of the binary IVAP defense to the multiclass case. Its efficiency and effectiveness
are comparable to the binary IVAP; its main computational bottleneck seems to be the number
of classes: inference using the MultIVAP requires the solution of an optimization problem the
complexity of which seems to scale linearly with the number of classes. Like the binary IVAP
defense, the MultIVAP assumes a pre-existing scoring classifier on which it can be calibrated.
It also has two hyperparameters: the calibration data and a confidence parameter ε . Again, the
calibration data may simply be the original training data; this does not matter much as long as
it constitutes an i.i.d. sample of the data distribution. The confidence parameter can be tuned
manually or automatically, e.g., to target a specific Jaccard index or predictive efficiency value.
The MultIVAP can be considered a detector-type defense, as it has several ways of expressing
unreliability of a prediction: it can output nothing at all or it can output multiple labels. To
deploy this algorithm, onemust therefore be able to handlemulti-valued and even empty outputs.
Empty outputs can be handled the same way as rejections in the case of the binary IVAP, but
multiple labels could be approached differently. There might be a logical preference ordering
on the labels, so that multi-label predictions can be reduced to single labels; there might also
be a threshold on the maximum number of labels allowed before the prediction is considered
too unreliable and treated as a rejection. It is also possible that the problem itself is indeed
inherently multi-label, in which case it can be entirely appropriate to apply more than one label
to a single input.

The conformal CANN detector. Whereas the IVAP and MultIVAP defenses are based on
the IVAP algorithm by Vovk et al. [2015], the CANN detector we proposed in algorithm 5.1
is a direct instantiation of the general conformal prediction algorithm 3.1. The non-conformity
measure was chosen based on the mean-squared difference between the principal functions of
the underlying data distribution because of their desirable properties [Hardoon et al., 2004,
Makur et al., 2015]. The CANN detector makes use of a separate neural network based on
Hsu et al. [2019] which estimates the principal functions and is trained independently of the
model to be defended. Similarly to the IVAP and MultIVAP, the CANN detector is can be
readily applied to any model without the need for retraining or finetuning. The neural network
on which the detector is based is simultaneously its main advantage as well as its main disad-
vantage: the neural network model gives the practitioner much greater control over the detector,
since its architectural details and specifics of training can be heavily modified as desired to fit
various requirements such as memory, speed and accuracy. On the other hand, this greater de-
gree of control also means that appropriate tuning of these hyperparameters may be much more
intensive. That said, construction of the CANN detector depends only on the underlying data
distribution. As such, the defense is modular and re-usable: practitioners can develop differ-
ent pre-trained CANN detectors for various data sets and practical settings in advance, which
can then be deployed off the shelf by practitioners who do not have the resources to construct
them from scratch. In case of distribution shift, the CANN detector may be adapted using
lightweight finetuning, a technique that is well-established in, e.g., the NLP community, where
large language models that are infeasible to retrain are often finetuned and quickly adapted to
novel problems [Brown et al., 2020].

The adversarial density filter. The adversarial density filter (AdvDF) was proposed in chap-
ter 6 as a certifiable purification defense. It has the main advantage of admitting specific bounds
on the adversarial risk that grow sublinearly as a function of the perturbation budget. The de-
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Algorithm Type Certified Randomized Remarks

Binary IVAP Detector 7 7 1. binary classification only
2. possibility of rejection

MultIVAP Detector 7 7 1. possibility of rejection
2. multi-label outputs
3. inference time scales linearly

with number of classes

CANN detector Detector 7 7 1. possibility of rejection
2. requires an additional neural net-

work
3. modular and re-usable

AdvDF Purification 3 3 1. requires an additional neural net-
work

2. may require re-training

Table 7.1: Summary of the salient properties of the different defenses proposed in this work.

fense itself is essentially a type of variational auto-encoder trained using a specific loss function
that encourages high entropy in the latent distribution, thus preventing small modifications of the
input from having a large impact on the latent code and, subsequently, the reconstructions. This
also makes it relatively efficient, as inference using the AdvDF merely requires an additional
forward pass through a neural network. Its main drawback is that it requires the practitioner to
specify an entire auto-encoder network, but this might not be a significant hurdle since there
exist many published auto-encoder architectures that perform well on many tasks. The AdvDF
can be trained on its own, without any knowledge of downstream models, making it a modular
defense that can potentially be applied in many different tasks at once. However, depending on
the specific downstream task, the defended model may have to be retrained or fine-tuned. As a
purification defense, the AdvDF will never reject any input or flag any prediction as unreliable,
making it suitable for use-cases where rejections or multiple labels are undesirable.

7.2 Future research directions
To conclude this work, let us take a step back and analyze where the field of adversarial ma-
chine learning has come from, what its current status is and where it could go from here. First,
allow me to emphasize a point that is sometimes contentious within the wider machine learning
community: adversarial robustness is important and useful to study, but not for the reasons that
most people seem to believe. The problem is often cast as one of cybersecurity, where a mali-
cious adversary could gain all sorts of unauthorized access and control by manipulating machine
learning systems in imperceptible manners. As I have said before, I do not believe this setting
to be very compelling, because a well-engineered security-sensitive system should not crucially
rely on any single component. This is especially true when it comes to machine learning, since
we know that even our most accurate models have a non-negligible probability of error even in
the complete absence of any sort of adversary. This is a simple statistical fact. Therefore, any
system that incorporates machine learning should also have redundancies and fail-safes in place
to ensure the system does not malfunction when the ML component breaks down. This sim-
ple principle of good engineering immediately rules out most of the common adversarial attack
scenarios, such as attacks on self-driving cars which could be compensated by LIDAR systems
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and GPS data. A case can also be made that in a good portion of the remaining adversarial
attack scenarios which cannot be adequately compensated by redundancy and fail-safes, there
is often no need to respect any form of imperceptibility requirement: an attacker can introduce
arbitrarily large distortions, because no human will be looking at the data anyway (or at least,
not until it’s too late). The objective of most attackers would hence simply be to fool the system
however they can, even if this means crafting inputs that are highly anomalous. They have this
advantage by virtue of the fact that most machine learning applications are developed specifi-
cally for use-cases where manual inspection of the data by human moderators is prohibitively
expensive or inefficient.

Therefore, what makes adversarial machine learning a compelling problem to study, is because
of what it means for generalization. In specific cases, of course, this may have security impli-
cations as well, but that is not our main concern. What research into adversarial robustness has
taught us, is that our models are generally unreliable. Consider, for example, a classifier tasked
with screening resumés. By now, there exist many companies that provide such automated re-
sumé screening as a commercial service. But can we trust these services if we know that the
decision of the model may very well be entirely reversed by manipulating a specific character in
the name of the candidate, or by manipulating a handful of pixels in their profile picture? What
has the model actually learned if it can so easily make such egregious errors?

7.2.1 Explainable AI
These questions naturally bring us to the domain of explainable AI (XAI). There are obvi-
ous connections between adversarial robustness and XAI, and I believe further exploring them
should be one of our principal future research directions. Specifically, there is a glaring con-
tradiction that must be resolved: if the goal (broadly speaking) of XAI is to understand why a
model made a certain prediction on a certain sample, how is it that XAI techniques have failed to
independently confirm the existence of adversarial perturbations? Indeed, we know that many
XAI techniques themselves can be fooled by adversarial samples: this is shown, for instance, in
the works by Dombrowski et al. [2019] and Heo et al. [2019]. Figure 7.1 shows some striking
examples of their results.

We would intuitively expect that any “good” XAI technique should be able to discover that a
model may be making a correct prediction for the wrong reasons, such as overly relying on
specific values of certain pixels in an image, but to my knowledge this is not the case: when
XAI techniques are applied to models known to be fragile against adversarial perturbations,
the methods generally do not detect this vulnerability, and defenses based on XAI have been
shown to fail [Carlini, 2019a]. Moreover, for many XAI techniques, it is possible to generate
adversarials that simultaneously fool the models and also allow us to manipulate the generated
explanations however we want. This seems to point toward a deep flaw in our methodologies
when it comes to explaining model predictions, but it also represents a certain opportunity.
Indeed, it shows that the fields of XAI and AML have valuable things to learn from each other.

7.2.2 Moving beyond the toy problem
Another important research direction that ought to be explored further, is the refinement of the
adversarial robustness problem itself. As it stands, researchers are much too heavily focused
on computer vision and the L∞ threat model. Although one of course has to start somewhere,



7.2. FUTURE RESEARCH DIRECTIONS 189

(a) Dombrowski et al. [2019]

(b) Heo et al. [2019]

Figure 7.1: Examples of how the explanations generated by XAI methods can be arbitrarily
manipulated by adversarial attacks.

at the time of this writing it has been almost ten years since the work of Szegedy et al. [2013]
introduced the deep learning community to this phenomenon, yet we are still studying essentially
the same problem despite its known shortcomings. The Lp threat model is a particularly poor fit
for computer vision: large Lp perturbations do not necessarily translate to heavily altered images,
nor do small Lp perturbations imply small distortion. A small rotation, for instance, could imply
a very large Lp perturbation but would not actually change much of what is seen in the image.
Furthermore, adversarial robustness is a problem for virtually all machine learning models, not
just deep neural networks for image recognition. In the case of natural language processing,
for example, it is unclear what exactly constitutes a “small” or “imperceptible” perturbation.
Most work in this area considers the introduction of typographical errors, where one or more
letters of a word are replaced, thus causing slight misspellings in the text. In essence, this is
the equivalent of the Lp threat model using the Levenshtein distance as the metric instead of
an Lp norm. However, one could also justify replacing words with synonyms or homophones,
which could drastically increase the Levenshtein distance but would nevertheless only make a
very small difference to human readers.

As a first step towards overcoming the limitations of the toy problem, we can take the robust
optimization approach by Madry et al. [2017] as our starting point:

θ
? = argmin

θ

E
[

max
δδδ∈Bε

L(X +δδδ ,Y,θ)
]
.

Suppose now we have a collection of transformations Φ of X → X functions and we wish to be
robust to all of these. A straightforward generalization to consider would then be

θ
? = argmin

θ

E
[

max
φ∈Φ

L(φ(X),Y,θ)
]
.
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Figure 7.2: Images equally far away from a reference image in the Lp sense can be dramatically
different in perceived distance as measured by the Structural Similarity Index (SSIM). Figure
due to Wang and Bovik [2009].

We recover the original formulation by Madry et al. [2017] by simply setting

Φ = {x 7→ x+δδδ | δδδ ∈ Bε}.

This is essentially what techniques such as Expectation over Transformation (EOT; Athalye et al.
[2018b]) hope to achieve. EOT was, however, introduced with a much more narrow scope in
mind: to produce physical adversarial examples that could be printed on stickers or 3D printed
onto solid objects. This idea could certainly be generalized far beyond this one setting. How-
ever, there are significant technical barriers that must be resolved. The most obvious one being
the question of how to choose Φ such that networks can still be trained efficiently and we ob-
tain non-trivial robustness. The problem is already exceptionally hard in the case where Φ is
restricted to norm-bounded additive perturbations, so extending it to more general transforma-
tions poses a great challenge. To make such optimization remotely practical, Φ would have
to consist of a finite number of parametric families of functions Φ1, . . . ,Φk, such that the loss
L(φ(X),Y,θ) can be maximized using standard methods for any φ ∈ Φ. In the most extreme
case, these families could be neural networks, so that each inner maximization would correspond
to training an auto-encoder. However, such an approach likely would not scale. Moreover, even
for relatively simple transformations there remains the question of how to guarantee that the
transformed input retains its original label. For example, on the MNIST data set, rotating digits
by 180 degrees can cause sixes to transform into nines and vice versa, so one must be careful
to limit the maximum rotation degrees. In general, however, it is unclear how to constrain a
complicated function class Φ such that φ(x) always has the same ground-truth label as x for any
φ ∈ Φ. In fact, this is already nearly impossible in the Lp threat model for computer vision, as
even very small additive perturbations in Lp space can dramatically alter the appearance of a
given image. This was demonstrated quite effectively by Wang and Bovik [2009] and Gilmer
et al. [2018], using figure 7.2.

I believe progress on this front can be made by taking inspiration from differential geometry.
There is a somewhat folkloristic idea within the ML community, tacitly assumed by many ex-
isting algorithms, often referred to as the manifold hypothesis. This hypothesis posits that the
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Figure 7.3: The Swiss roll, a typical example of a non-Euclidean manifold embedded in Eu-
clidean space and a common benchmark data set for manifold learning algorithms. This image
was generated using the scikit-learn library [Pedregosa et al., 2011].

input data of our ML algorithms, although they are typically given as vectors in Rn for some
potentially large n, in fact almost always lie on an embedded submanifold of much lower di-
mensionality d� n. An archetypal illustration of the manifold hypothesis is given by the Swiss
roll, depicted in figure 7.3. Although samples on this manifold would be most conveniently rep-
resented as real-valued vectors in R3, the actual structure of the data is more complicated. In
particular, the Swiss roll is not well-modelled by three-dimensional Euclidean space and metric
structure, as two points may lie very close to each other in the ambient R3 space but very far
along any geodesic of the manifold. However, the Swiss roll can be easily transformed such that
Euclidean metric structure is respected: indeed, by “unfolding” the Swiss roll, we can project it
onto R2 in such a way that Euclidean distance is a good proxy for its geodesic distance. Some
variants of the manifold hypothesis hold that similar transformations can be found for essen-
tially any data set of interest, where the original data manifold can be “flattened” into some
Euclidean space.1 The manifold hypothesis tends to be an unavoidable requirement for most
ML algorithms, particularly those dealing with dimensionality reductions [Ma and Fu, 2012].
The work of Fefferman et al. [2016] is perhaps one of the most important contributions in this
area, as they not only gave a rigorous statement of the manifold hypothesis, but also gave explicit
algorithms to test this hypothesis as well as learn the manifold in question, along with statistical
sample complexity bounds.

A blog post by Steven Traversi gives a more realistic example of the manifold hypothesis in prac-
tice, on the MNIST data set.2 He considers the classification accuracy of a k-nearest neighbor
(kNN) algorithm on MNIST samples after dimensionality reduction with principal component
analysis (PCA). PCA is a linear dimensionality reduction method, i.e., it assumes that the em-
bedded manifold is a linear subspace of the ambient space. In the case of MNIST, the ambient
space is the Euclidean vector spaceR28×28 ∼=R784. Mathematically, the result of applying PCA
to any n-dimensional data set is a matrixW ∈Rd×n where d is the chosen dimensionality of the

1See http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/ for a nice discussion of
these ideas.

2https://steven.codes/blog/ml/how-to-get-97-percent-on-MNIST-with-KNN/. Accessed
2022-06-03.

http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/
https://steven.codes/blog/ml/how-to-get-97-percent-on-MNIST-with-KNN/
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reduced space. That is, we have a linear transformation that maps vectors x ∈Rn in the ambient
space to the reduced space Rd . Using cross-validation, Traversi is able to obtain a maximum of
97% accuracy by reducing the 784-dimensional MNIST input space to a 45-dimensional space
via PCA, and then applying kNN with k = 6. This shows that MNIST is well-modelled by a
45-dimensional Euclidean space despite actually living in a 784-dimensional space. This also
suggests much potential for non-linear dimensionality reduction methods (e.g., based on neural
networks) on other, more complicated data sets.

To make the connection with adversarial robustness explicit, consider a continuously connected
Riemannian manifold (M,g), where M is the topological manifold and g is the Riemannian
metric tensor.3 The metric tensor assigns an inner product to each of the tangent vector spaces
TpM, for all p ∈M. These inner products are typically written as gp, with corresponding norms

|v|p =
√

gp(v,v)

for v ∈ TpM. Under the assumption of continuous connectedness, g induces a metric structure
on M. Specifically, it gives rise to the distance function

dg : M×M : (p,q) 7→ inf{L(γ) | γ ∈ Γ(p,q)}.

Here, Γ(p,q) is the set of all continuously differentiable curves connecting the points p ∈ M
and q ∈M. That is, it consists of all continuously differentiable functions γ : [0,1]→M where
γ(0) = p and γ(1) = q. In the language of differential geometry, the function γ : [0,1]→ M
is differentiable if it assigns to every t ∈ [0,1] a vector γ ′(t) in the tangent space Tγ(t)M. The
function L(γ) computes the length of any differentiable curve, which we can define thanks to
the metric tensor g:

L(γ) =
∫ 1

0
|γ ′(t)|γ(t)dt =

∫ 1

0

√
gγ(t)(γ ′(t),γ ′(t))dt.

Using this machinery of differential geometry, the adversarial robustness problem can be gen-
eralized as follows. Under the assumption of the manifold hypothesis, we posit that our input
data in fact lie on a Riemannian manifold (M,g). Furthermore, this manifold is embedded in
Euclidean space Rn via some map ι : M → Rn, and its dimension may be much less than n.
Now consider any classifier f : Rn→ Y which maps the real vector representations of points on
the manifold M to labels in some finite set Y . We can then define point-wise robustness of f at
some point p ∈M as

ρ(p; f ) = inf
q∈M
{dg(p,q) | f (ι(p)) 6= f (ι(q))}.

Its general robustness with respect to some probability density pM on M can then be defined as

ρ( f ) = E
p∼pM

[ρ(p; f )].

We can recover the typical Lp notion of robustness by simply assuming that ι is the identity map
onRn andM is Euclidean. In essence, the common Lp formulation of the adversarial robustness

3The exposition here is necessarily rather superficial. For a more thorough development of the theory of differential
geometry, we refer the interested reader to the introductory textbook of Tu [2010] or the more advanced work by Lee
[2010].
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problem can be motivated from the perspective of differential geometry by virtue of the fact that
Riemannian manifolds locally behave as Euclidean space. Indeed, for any p ∈M there exists an
open subsetUp ⊆M that is diffeomorphic to Rn. Let us denote this diffeomorphism by ψ and
take any q ∈Up. Let γ : [0,1]→M be a curve connecting p and q. Since ψ is differentiable,
we can apply Taylor’s theorem to obtain

ψ(q) = ψ(γ(1))≈ ψ(γ(0))+
[

d
dτ

ψ(γ(τ))

]
τ=0

= ψ(p)+
[

d
dτ

ψ(γ(τ))

]
τ=0

.

In other words, if the manifold M is sufficiently “flat” around p, and q is sufficiently close to
p, then dg(p,q) ≈ ‖ι(p)− ι(q)‖ and the Lp threat model makes sense. However, it has been
made abundantly clear by now that this approximation does not allow us to achieve the level
of robustness we desire from our models. This is likely due to the fact that, although the data
manifolds are locally Euclidean, this notion of locality is too strict, i.e., the Euclidean structure
already starts to break down for very small distances ‖ι(p)− ι(q)‖. This happens, for example,
when the manifold M is highly curved, something which seems realistic for many real-world
data sets [Sritharan et al., 2021]. This may also explain, in part, why Lp adversarial robustness
seems to be at odds with accuracy: small perturbations in the ambient Euclidean space can
correspond to large perturbations in the embedded manifold. This is demonstrated by the Swiss
roll in figure 7.3 or, more realistically, by figure 7.2. Depending on the exact structure of the
data manifold, it might not make any sense at all to perform Lp adversarial training, because
we may actually be training the model on incorrectly labeled examples or examples that are
nonsensical, lying completely off the data manifold (such as those generated by Nguyen et al.
[2015]).

For these reasons, I believe the future of adversarial ML may lie in manifold learning. Indeed,
suppose that we can construct some accurate approximation of a data manifold M based on
i.i.d. samples in Euclidean space Rn, yielding a map ψ : Rn→M. This may be the latent space
of some auto-encoder or generative adversarial network [Creswell et al., 2018], or the output
of some normalizing flow [Kobyzev et al., 2020]. In that case, we can consider an alternative
characterization of adversarial training that respects the underlying manifold structure:

θ
? = min

θ
E
[

max
X̃∈Bε (X)

L(X̃ ,Y,θ)
]
. (7.1)

Here, the neighborhood Bε(x) is defined as the set of all points x̃ ∈Rn whose geodesic distance
from x on the manifold is bounded by ε :

Bε(x) = {x̃ ∈ Rn | dg(ψ(x),ψ(x̃))≤ ε}.

Equivalently, we can consider the set L(p,ε) of all continuous curves γ : [0,1]→M with γ(0) =
p and L(γ)≤ ε . More formally,

L(p,ε) = {γ ∈ Γ(p,q) | q ∈M and dg(p,q)≤ ε}.

We can then write (7.1) as

θ
? = min

θ
E
[

max
γ∈L(ψ(X),ε)

L(γ(1),Y,θ)
]
. (7.2)
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The formulation (7.2) may be more convenient than (7.1), as we may not have a useful charac-
terization of the geodesic distance dg but we might be able to define continuous curves starting
from some given point p ∈M. For example, in computer vision, it is generally hard to quantify
the perceptual distance (according to the human vision system) between two arbitrary images.
On the other hand, given some image p, we can define many continuous curves that start at
p and end in some other image perceptually close to p: rotations where we let the angle vary
continuously, translations where the offset varies continuously, etc.

We could even imagine a utopian scenario where the mapψ manages to induce Euclidean topol-
ogy, similar to the unfolding of the Swiss roll, in which case we can take it to be an Rn→ Rd

function where d is the dimension of M. This would yield a variant of adversarial training that
comes very close to the Lp version:

θ
? = min

θ
E
[

max
ηηη∈Bε (ψ(X))

L(ψ−1(ψ(X)+ηηη),Y,θ)
]
. (7.3)

In this case, Bε(z) is the regular Lp norm ball around z∈Rd . In other words, we are constructing
adversarial examples by additively perturbing the latent code z = ψ(x) of the given input x
with vectors ηηη of bounded Lp norm and then mapping the resulting perturbed code z̃ = z+ηηη

back to the input space, obtaining x̃ = ψ−1(ψ(x)+ηηη). Of course, this imposes the additional
requirement that ψ be invertible as well, but this is satisfied in the case of auto-encoders and
normalizing flows. The works of Zhang et al. [2018b] and Zhang et al. [2019c] essentially
follow the spirit of these ideas, but they do not appear to have made any real impact on the
adversarial ML community. It would seem that differential geometry is in the same boat as
conformal prediction in this particular case: the groundwork has been laid and the ideas have
much potential, but they seem to be underappreciated by the broader ML community.

It is important to recognize that, should any of the above ideas be adopted, novel benchmarks
also must be developed. Indeed, since many Lp perturbations may lie off the data manifold,
they would not be explored by adversarial training methods based on (7.1). Consequently, with
respect to current benchmarks such as AutoAttack [Croce and Hein, 2020b], models trained
along these lines could still exhibit zero robustness. This could be at least partially mitigated
by pairing the models with a detector that signals when inputs lie off the manifold. There is
extensive work on such out-of-distribution detection, such as Lee et al. [2018], which could be
applied here. On the other hand, Kanbak et al. [2018] have proposed ManiFool, an adversarial
attack that explicitly tries to create examples that lie on the original data manifold. Attacks like
ManiFool could be used as tractable approximations with which to instantiate (7.1), or they
could be employed as benchmarks. Ideally, however, we would want our models to be able to
gracefully handle out-of-distribution samples as well, e.g., by rejecting the input. This means
that any method for generalizing the Lp robustness problem should be a true generalization, in
the sense that robustness in the generalized setting (whatever it may be) should imply robustness
in the Lp setting. So far, it seems, we have not been able to accomplish this...

7.2.3 Benchmarks
How do we measure progress? The typical scientific answer is deceptively simple: formulate a
metric M which takes any method A and outputs a real number M(A) ∈ R. Method A is then
defined to be “better” at solving our problem than method B if and only if M(A) > M(B). As
a typical scientific answer, of course, it is also wildly unhelpful in practice, as it deliberately
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abstracts away all the important details. How should we choose the metric M? Does there even
exist any single metric that can capture all variables of interest or do we need a whole collection
of them? How do we appropriately define trade-offs between different metrics?

The AML community still has to contend with most of these questions. In particular, we lack
good benchmarks. There is AutoAttack [Croce and Hein, 2020b] and RobustBench,4 and they
are certainly useful, but they do not address all of the important benchmarking issues. The
current state of the art in benchmarking adversarial defenses at the time of this writing is as
follows. We consider at most three data sets — CIFAR-10, CIFAR-100 and ImageNet — and
we train models for them we hope will be robust. Then, we run AutoAttack or some other
suite of attacks which function within either the L2 or L∞ threat model. For CIFAR-10 and
CIFAR-100, we set the perturbation budget to 8/255 in the L∞ model and 1/2 in the L2 case;
for ImageNet, we set the L∞ budget to 4/255. The L2 threat model for ImageNet is not typically
considered. Then we report standard and robust accuracy scores. There are a few issues with
this entrenched methodology I believe should be addressed:

• Who decided these perturbation budgets? The ε = 8/255 in the L∞ threat model for
CIFAR-10 can be traced back to Madry et al. [2017], who observed that they couldn’t
make their models robust at higher values. However, to my knowledge, these experiments
have never been replicated for other models, data sets and attacks, and this value is highly
specific to the setting used by Madry et al. [2017]. They certainly weren’t advocating that
it be used as a general benchmark, but the community adopted it as such nonetheless.
Yet it is easy to see that whatever perturbation budget we choose will strongly depend on
the data set as well as the context in which the model is deployed. It makes little sense to
hold this value fixed to some constant. This sentiment is echoed by Carlini et al. [2019],
who argue that we need to look at curves that plot the robust accuracy as a function of
the perturbation budget.

• Why only these three data sets? What makes us believe that an adversarial defense that
works for CIFAR-10, CIFAR-100 and ImageNet will also work for every other data set?
In particular, these data sets are all crafted specifically for image classification. Other
domains, such as natural language processing, are neglected despite their obvious impor-
tance. This concern becomes especially relevant when we consider that most published
defenses often require extensive tuning of hyperparameters tailored to each specific data
set. To properly evaluate our defenses, we ought to adopt a much more diverse collection
of data sets and tasks on which to test them.

• We need a more diverse set of metrics on which to score adversarial defenses. Standard
and robust accuracy scores are obviously important, of course, but there are also other
concerns. How much additional data is needed for the defense to work? How many
more parameters and hyperparameters must be tuned? How does the defense affect the
efficiency of inference with the model? These are all pertinent questions for practitioners
that are not typically given much attention in the literature.

I think it would be a major benefit to the field if we started standardizing our methodologies to
the point where we could create a single tool (for example, a website similar to RobustBench or
a downloadable library such as AutoAttack) that can take any standardized implementation of
a proposed defense and run it through a battery of tests where it has to defend different mod-

4https://robustbench.github.io/. Accessed 2022-01-06.

https://robustbench.github.io/
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els trained on different data sets. The output could contain a plethora of information on how
the defended model compares to undefended baselines as well as previously published defenses
according to all sorts of different metrics, including but not limited to standard and robust ac-
curacy, average inference speed, training time and memory consumption.

7.2.4 Lightweight solutions
An often overlooked aspect of adversarial defenses is its computational complexity. Researchers
have been able to come up with some remarkably effective defenses over the past few years,
but it appears every defense proposed thus far can satisfy at most two of the following three
desiderata:

1. Efficiency. The defense should be efficient with respect to the number of parameters of
the underlying model, the amount of additional data needed and the perturbation budget.

2. Certifiability. The defense should provide a certificate of robustness, proving (at least
with high probability) that successful attacks against it do not exist.

3. Reasonable trade-off between accuracy and robustness. The defense should achieve rea-
sonable levels of robustness without major penalties to standard accuracy.

To the best of my knowledge, no known defense satisfies all three of these properties. At best,
we are able to achieve two out of three. Randomized smoothing, for instance, is a certifiable
defense that achieves a reasonable trade-off between standard accuracy and robustness, but it is
not efficient. The defense requires that, for each input sample x, thousands of Gaussian pertur-
bations x+δ be computed and evaluated, thus slowing down inference times by several orders of
magnitude. Although these queries can be run in parallel to some extent, the slowdown remains
significant. Adversarial training is typically not certifiable or not efficient, requiring an adversar-
ial attack be run on each sample within the mini-batches during the full phase of training. One
particularly extreme example is the work of Schott et al. [2018], who created one of the most
complex adversarial defenses I have ever seen, in the hopes of at least solving this problem for
MNIST. Their defense remains seemingly undefeated to this day, but it suffers from two main
shortcomings:

• It is overly complicated for a simple data set such as MNIST, and as it is their approach
would barely scale to CIFAR-10, let alone ImageNet. It is just not practical.

• Owing to its complexity, properly evaluating robustness becomes more difficult. One of
the major conclusions of Tramer et al. [2020] is that simplicity (both in attacking and
defending) is a virtue. In particular, complicated defenses tend to have only a few simple
components that actually matter for robustness, the others merely serving to confuse and
obfuscate.

Therefore, it is highly likely that the defense by Schott et al. [2018] will never be deployed in
practice, either because it doesn’t scale to larger data sets or because the robustness it is claimed
to have has been overestimated due to the complexity of the defense.

There is an important realization that needs to sink in with the AML community: since every
DNN appears to be vulnerable to adversarial attacks, and since these attacks seriously undermine
the trustworthiness of the models, we should strive to make every DNN robust. This means that
robustness ought to become as easy to practitioners as the training of the networks itself, with no
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noticeable overhead during training or inference and nomeasurable performance hit with respect
to metrics of interest such as accuracy. Eventually, we want to find some set of defenses that
can become widely adopted as community standards and integrated into the basic frameworks
of machine learning. When a machine learning practitioner uses Keras, for example, to load in
a data set, setup a model and run model.fit(), they should end up with a network that is as
accurate and robust as possible without even having to think about robustness at all. Whatever
mechanism exists to make the models robust should be as transparent and invisible as all the
other internal house-keeping done by the framework. It should just work. That should be the
goal of the AML community: to become invisible yet ever-present.

One can of course appreciate that robustness is a hard problem, and despite the significant
progress made over the years we are still very far from a general-purpose solution that we could
standardize and implement in regular frameworks. I am of course talking about long-term goals
for the field, and this should not be taken as some meta-commentary about how the field has
somehow failed in any way. It has not. In fact, we have achieved impressive results in a rela-
tively short amount of time given the difficulty of the problem we are studying. But we must
not lose sight of the ultimate goal: creating defenses that can be standardized and integrated
into regular ML pipelines. At this time, there is no defense that could meet this requirement,
either because they do not scale or because they are simply too finicky. Adversarial training, for
example, sounds easy enough to implement in theory, and indeed one can get a basic implemen-
tation working without too much hassle. However, if one wishes to reach any sort of non-trivial
robustness against adaptive attacks, one must be very particular about how the training is carried
out: choosing any set of hyperparameters that is not entirely optimal can ruin everything. The
model might not converge at all anymore, or it might even be less robust than its vanilla coun-
terpart. I have been in this position plenty of times, where I sat behind my laptop, screaming
internally as I witnessed my fiftieth iteration of an adversarial training implementation crash
and burn with 1% robust accuracy against the AutoAttack suite. Turned out I had to adjust the
learning rate scheduling ever so slightly, or tweak the step size of the attack. Or maybe it was
pure dumb luck that eventually fixed it. Who knows? Our understanding of how adversarial
training works, or indeed any robust training mechanism, is still very much lacking. Things go
wrong far more often than not, and we rarely know how to fix it. If we were to silently incor-
porate adversarial training into Keras now, people would stop using Keras altogether. What we
need are defenses that work well under a variety of circumstances without the need for excessive
tuning of hyperparameters.

7.2.5 Conformal prediction
The majority of novel contributions in this work are squarely situated in the field of conformal
prediction (CP). First proposed by Vovk et al. [2005], CP focuses mainly on quantifying the
reliability of predictions made by statistical models. At a conceptual level, the premise of CP
seems ideally suited to the development of adversarial defenses, since adversarial attacks by
definition construct inputs on which the target model is unreliable. Researchers in CP have
constructed various efficient algorithms for ascertaining the reliability of model predictions,
some of which are in particular compatible with DNNs. The IVAP [Vovk et al., 2015] is one
such example for which reference implementations are publicly available [Toccaceli, 2017].

Nevertheless, despite its promising connections to adversarial robustness, CP seems to be largely
unknown to the broader ML community. The only other work we have been able to find that
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explicitly takes inspiration from CP in the context of adversarial defense is Papernot and Mc-
Daniel [2018]. At the time of this writing, this work stands at 359 citations according to Google
Scholar, but almost none of the works that cite it make use of conformal prediction themselves
(at least not in the context of robustness). The fact that we have been able to construct several
reasonably strong and efficient defenses based on CP in the course of this single Ph.D. suggests
that far more can be done if a larger concerted effort were made by the community. This ought
to be one of the main take-aways of our research: conformal prediction methods hold much
promise in the field of adversarial ML and deserve greater attention from the community.
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Epilogue

Early on she ceased to allow her image to be recorded. You worked with what you
had. You justified her image, rotated her through planes of light, planes of shadow,
generated models, mapped her skull in grids of neon. You used special programs to
age her images according to statistical models, animation systems to bring your
mature Marie-France to life. You reduced her image to a vast but finite number of
points and stirred them, let new forms emerge, chose those that seemed to speak to
you... And then you went on to the others, to Ashpool and the daughter whose face
frames your work, its first and final image.

Mona Lisa Overdrive
Wıllıam Gıbson

If the reader will indulgeme, I’d like to take some time here to reflect onmy personal experiences
doing this Ph.D. in a section of the book that is allowed to be less formal and less professional
than its main matter. I’m just going to speak my mind frankly here, in order to get a few things
off my chest as well as to give the manuscript a personal touch. The rest of the book is dry
enough as it is. After all, it is supposed to be a work of science.

But what actually is a work of science? Doing this Ph.D. has been fascinating, because it serves
in some sense as an “initiation” into the world of science. Amaster thesis gives a student a certain
taste of this world as well, of course, but there are several important differences to a Ph.D., the
most obvious one being its length: a master thesis usually only takes a single academic year,
and in some circumstances even less. It is also not generally expected of a master thesis to
be worthy of publication in a serious scientific venue, though that is something students and
their advisors will sometimes strive for. Even so, a master student must receive a great deal of
direction from their advisor, and the nature of the scientific project cannot be too elaborate due
to the time constraints. If the thesis is published at all, it is often the only scientific publication
ever undertaken by the student. A Ph.D., by contrast, takes much longer: often four years or
more. During this time, a Ph.D. student is expected to work on a much more sophisticated
research agenda that could not feasibly be accomplished in a single year. The results of our
investigations are usually published in multiple papers over several years, and we are expected
to present our ideas and results regularly at academic conferences. Ph.D. students therefore form
much stronger connections to the scientific community than any thesis student ever could. We
set up our own collaborations and manage our own projects almost fully independently, relying
on our advisors mostly to double-check our results, brainstorm new ideas, make sure we remain
on track to graduate and (as our direct superiors) approve our absences in the HR system when
we’re suffering another mental breakdown.
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A Ph.D. basically marks the start of a potential scientific career, if one wishes to pursue it.
Through this process, we are initiated into our chosen field of science and become recognized
as worthy contributors to it. We are introduced into what I like to call a culture of knowledge
production. I deliberately avoid the term science here, because it tends to obscure the very
human aspects of our communities. Doing research in my particular field (machine learning)
has been fascinating in this regard, because it has clearly revealed to me said human nature of the
scientific enterprise: far from being a well-oiled machine that consumes coffee and tax money
to produce objective and useful truths, science as a whole really is a patchwork of different
cultures as diverse and idiosyncratic as the individual scientists themselves. This is only natural:
all scientists are human, after all, and any community of people that interact with each other over
a sufficiently long period of time will develop their own culture that may be alien and perhaps
even hostile to outsiders. Although, in the abstract, we remain singularly fixated on thoroughly
studying interesting problems and faithfully reporting our well-reasoned conclusions, cultural
and personal factors significantly impact how science is done in individual fields. I am of course
not suggesting that the validity of, say, mathematical proofs of specific theorems is a matter
of personal taste. Rather, the cultural influences that pervade the scientific world tend to be
much more subtle: they determine, for example, the specific research questions the community
deems sufficiently interesting to pursue, and which questions we dare not even ask. They can
also determine the precise methodology employed to study any given problem. Let me give a
few concrete examples:

• At the time of this writing, the field of deep learning is very interested in methods to
efficiently train ever larger models. The OpenAI GPT-3 paper [Brown et al., 2020],
for example, uses as one of its main selling points the fact that GPT-3 has 175 billion
parameters, ten times larger than the state of the art at the time. To the authors’ credit,
they discuss various potentially negative effects of this model in their impact statement.
However, despite the growing awareness of the issues affecting large models — chief
among which are bias, fairness and environmental concerns — the community has not
really evolved beyond paying lip service to these causes. Compared to papers like Brown
et al. [2020], there is an absolute paucity of research into how to make these models
environmentally sustainable, economically fair and socially just. As discussed at length
by Crawford [2021], the cost of developing and maintaining large AI systems goes far
beyond what is typically considered in papers: from the reliance on conflict minerals to
the increasing power of the surveillance state and erosion of human rights, our field is beset
with problems to which we remain strategically blind. In fact, the community sometimes
even responds to this type of research with outright hostility, as the infamous firings of
ex-Google researchers Timnit Gebru and Margaret Mitchell painfully illustrate.5

• In recent years, there has been a major surge of research interest into Bayesian statistical
methods to study various machine learning problems. However, the Bayesian school is
not the only possible foundation for statistics, its main competitor being the frequentist
school. It is not necessary to get into the specifics of the ideological divide between
these differing schools of thought; suffice to say that they approach statistical questions
in slightly different ways, obtaining sometimes very different and incompatible results.
To me, there is no clear reason why the field of machine learning has grown to prefer
Bayesian methods over the frequentist ones. Indeed, both fields have a long history and
both are respected as mature scientific subdisciplines of statistics. Yet almost all recent

5https://www.bbc.com/news/technology-56135817. Accessed 2022-05-09.
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papers in the field are decidedly Bayesian in methodology. It’s almost as if frequentist
statistics don’t exist anymore. Scientifically speaking, there is no reason why one should,
in general, absolutely prefer one school over the other, so I am inclined to conclude that
the current resurgence of Bayesian methods in machine learning are merely a trend of
fashion: the Bayesian methods are simply more appealing on an intuitive level to the
current generation of machine learning scientists and practitioners. This has the obvious
consequence of collectively blinding the field to interesting findings that could more easily
(or perhaps exclusively) be achieved via frequentist means.

My experience in the scientific world over the past few years has shown that the scientific com-
munity, as much as any human community, is subject to certain arbitrary whims, fashion trends,
rivalries and politics. I make no secret of the fact that many scientists, including myself, have
a love-hate relationship with the scientific community. On the one hand, it can be positively
delightful to collaborate with like-minded people on an interesting problem, write a nice paper
about it, get it published with favorable reviews from other experts and then present the work
at a conference where the audience literally applauds your efforts and actively wants to discuss
your work further in detail. I have had several such experiences over the course of my Ph.D.,
and these memories I will carry with me forever. They never fail to lift my spirits. These are
the good parts of our culture: the ones where we support each other, take an interest in each
other’s work and collaborate for the benefit of mankind.

Naturally, there is a flip-side to this story, and I have several grievances with the machine learn-
ing community that I think I must discuss. The broader issues affecting the entire scientific
community at large— poor work-life balance, broken peer review, publish-or-perish mentality,
etc. — are well-known,6 and I have nothing to add to that discussion. Instead, I wish to focus
on what I think are major problems specific to my own field of research. This is, in my opinion,
a crucial aspect of what makes someone an expert in a certain area: the ability to critique it
intelligently. An expert is supposed to be more than simply someone who knows a lot about a
given subject. An expert must also know how the subject is practiced by other experts, and must
be able to critically examine this process. Experts are not glorified parrots; they are supposed to
have a thorough knowledge of their field of study, of course, but they must also have their own
well-informed opinions on how to improve the field. We are not passive bystanders but active
participants in this culture of knowledge production who collectively shape the future direction
of the field. The following, therefore, is my personal take on how the field of machine learning
could be improved.

It is important to keep in mind that, although some people may feel “called out” or attacked
in some way by the things I write here, none of this is intended to be taken personally. Like
I said, science is not a machine but a culture, and it can be very difficult for people embedded
in a certain culture to come to terms with its problems or even realize these problems exist at
all. The views I express here are also by no means mine alone; they have been raised by several
other experts as well in recent years.

That said, there are twomajor problems I believe the field of machine learning must reckon with.
The first and perhapsmost surprising issue is the pervasiveness of outright pseudo-scientific ideas
in contemporary research papers that are nonetheless taken seriously by respectable scientific
publishers and conferences such as IEEE, Springer and NeurIPS. I have collected some concrete
examples here, in no particular order:

6https://slowscience.be
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• A NeurIPS 2019 paper claiming that we can reconstruct a person’s face based purely on
audio samples of their voice [Wen et al., 2019].

Aside from the problematic implications regarding individual privacy, there are obvious
confounders here that the authors do not consider at all. In particular, most data sets of this
kind consist mostly of white people. The observation that facial features can be accurately
reconstructed from a biased data set that is not representative of the general population
is not surprising at all, nor is it interesting or useful. This racial bias is obviously present
based on the authors’ own examples in figures 3-5. The majority of the data set also
appears to consist of women, as women clearly dominate all of the examples given by the
authors. The data sets used are Voxceleb for the audio recordings and VGGFace for the
facial images. I can’t speak to the Voxceleb data set, but VGGFace is known to be heavily
racially biased. This fact is even admitted by the authors of the data set themselves,7 but
this obvious source of confounding does not appear to be discussed anywhere in the paper.
One would expect NeurIPS to hold its authors to higher standards.

Aside from the statistical confounders, the scientific evidence considered by the authors
to support the idea that facial appearance is related to voice is either weak or incorrectly
cited, and they attempt to cover this up with the misleading statement that “[a] person’s
voice is incontrovertibly statistically related to their facial structure.” Be that as it may,
the research cited in the paper only provides evidence of a relationship between voice and
skeletal structure of certain parts of the face (such as the throat or mouth). The idea that
one can create an accurate approximation of the person themselves is, in my opinion, not
sufficiently supported. Moreover, in the case of transgender individuals, the predicted
gender and facial reconstruction is likely to be entirely wrong depending on how far along
the individual is in transition. A similar failure case occurs for gender-nonconforming in-
dividuals, men with feminine-sounding voices or women with masculine-sounding voices.
These important and obvious potential problems are not considered anywhere in the work.

• A widely-publicized 2017 paper claiming that machine learning can deduce sexual ori-
entation from facial images [Wang and Kosinski, 2018].

To put it bluntly, this work is promoting outright phrenology or physiognomy, the de-
bunked pseudo-scientific idea that personality traits can be inferred from facial features.
There are way too many papers just like this that try to infer sexual orientation or other
personal characteristics from facial images alone, despite the fact that phrenology has long
been debunked. It is the machine learning equivalent of chemists who still publish works
on phlogiston theory, or medical doctors who still investigate the miasma theory of dis-
ease (except such research likely would not involve the gross violations of privacy that
have become so normalized in machine learning). The irony is that the authors begin the
manuscript with a discussion of physiognomy and state that it is nowadays rightly rejected
as pseudo-science, before going on to argue why their specific brand of physiognomy is
not pseudo-scientific after all. For this they employ a common fallacious rhetorical tac-
tic, where they strawman their detractors as claiming that no links between personality
traits and physical appearance exist at all. This is clearly nonsensical, as it would imply
phenotypes do not exist and genes do not correlate with behavior. Obviously they do, but
the mere fact that some personality traits may correlate with certain aspects of physical
appearance does not justify a link between any particular trait and physical attribute. This

7https://www.robots.ox.ac.uk/~vgg/data/vgg_face/
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would need to be investigated as a separate scientific question, but the authors make no
such case. Instead, they see the mere fact that their algorithm works on a very specific
data set as all the evidence required to prove the existence of a relationship between sex-
uality and facial attributes, ignoring all of the pitfalls known to be associated with such
methodologies.

The data collection process employed by the authors is fraught with issues as well. First,
they obtained their data by scraping profile pictures from unnamed U.S. dating websites.8
This is perhaps the most obvious source of bias: because the pictures came from a dat-
ing website, users are encouraged to post material that overtly communicates their sexual
orientation. The kind of images one would upload of themselves on a dating website is
generally not the same as what one would upload on Facebook or Instagram, and is cer-
tainly not representative of how one acts in public. It is therefore not surprising at all that
sexual orientation can be deduced from such pictures, especially by someone who is fa-
miliar with dating apps. The set of images was then processed using Amazon Mechanical
Turk workers “to verify that the faces were adult, Caucasian, fully visible, and of a gender
that matched the one reported on the user’s profile.” Here the authors introduce overt bi-
ases against gender-nonconforming individuals as well as any non-Caucasian people. The
authors never seem to realize that all these factors significantly compromise the validity
and generality of their conclusions.

This work is sloppy at best and harmful pseudo-science at worst, as works like this could
serve no earthly purpose other than to label people as homosexuals against their own
wishes. This can be potentially life-threatening: at the time of this writing, over 70 coun-
tries criminalize homosexuality, imposing prison sentences or even the death penalty.9
Even if this work were scientifically sound (which it certainly is not), its creation consti-
tutes nothing short of an act of overt aggression against the LGBTQ+ community, who are
often mortally dependent on keeping their identities secret. A tool that reveals people’s
sexual orientation without their consent can never have any legitimate use-cases, mak-
ing one wonder what the motivation behind this work could possible have been. Perhaps
it is an illustration of the Arendtian notion of the banality of evil, where evil arises not
through the edicts of malevolent dictators but as a side-effect of the baffling ignorance
and complacency of otherwise intelligent people.

The most ironic thing about this work is that it didn’t have to be pseudo-scientific at all:
as I’ve argued earlier, sexual orientation can likely be deduced very easily from a good
majority of profile pictures uploaded to dating apps and websites because of the obvious
incentive people have to clearly signal their sexual preferences in these contexts. If the
authors had gone no further than this conclusion, that would have been a valid result in
my opinion, but of course in that case the work would not have been interesting enough
for publication. In other words, the authors fell victim to the same publish-or-perish
mentality that affects all scientists: they had to overstate their claims to make their work
appear more interesting than it actually is. To achieve this, they had to argue that their
work proves the existence of a genetic link between sexual orientation and facial features,
a hypothesis that is not well-supported at all given the evidence they provide. This still

8They do not mention whether any of the people whose pictures were used gave their consent to participate in this
study, so I’m guessing the authors never bothered to contact any of them. This makes the work a non-consensual study
involving unaware human participants, something every reasonable ethics board would object to.

9https://76crimes.com/76-countries-where-homosexuality-is-illegal/
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does not answer the question as to why this work exists in the first place, however, and
the potential damage it can do to the LGBTQ+ community is simply ignored.

• A 2017 IEEE paper claiming that machine learning can predict a woman’s attractive-
ness [Xu et al., 2017].

The paper markets itself as a general method for “facial beauty prediction,” but the data
set used, SCUT-FBP [Xie et al., 2015], consists exclusively of pictures of women. Once
again, many papers exactly like this one can be found published in reputable venues with a
little searching. Indeed, going through the references of this paper as well as other papers
that cite it reveals an unsettling sub-community of male researchers who are strangely
obsessed with ranking women according to their attractiveness. What this shows, perhaps
unsurprisingly, is a significant presence of misogynist men in our field who use the air of
scientific authority as an excuse to objectify women.

If one were being generous, one could defend this paper as a study into the reality of how
people generally understand facial beauty. However, I have found no significant insights
in any of these papers that reveal anything about traditional beauty standards we did not
already know. This type of research therefore adds nothing novel to the scientific record.
Moreover, as discussed by O’Neil [2016], by formalizing these sorts of overtly subjective
value judgements in an opaque algorithm, the public is deceived into thinking that the
resulting scale somehow reflects an objective reality rooted in biology or physics rather
than being exposed for what it is: an arbitrary human social construct. This only serves
to prevent productive conversations about the ways in which traditional beauty standards
harm and oppress women and certain minority groups.

The fact that certain groups of researchers apparently take seriously the idea that there
could (or should) be a simple scale “objectively” ranking female attractiveness from 1 to
5 is likely a symptom of the deeper underlying patriarchal pathologies that deter women
from participating in this field.

• A 2016 Springer paper claiming that emotions can be accurately inferred from short video
clips [Kahou et al., 2016].

Although this work dates back to 2016, papers attempting to infer emotions from facial
images or videos are published on a regular basis to this day. The basic fallacy all of these
papers have in common is that they assume emotions are primarily and accurately ex-
pressed via facial expressions or other visible mannerisms. This is barely a toddler’s level
of understanding of how emotions work, and the consensus among psychologists is that
such tools couldn’t possibly be accurate.10 However, as is tradition, the machine learn-
ing community ignores these inconvenient nuances provided by subject matter experts in
favor of flashy reductionist soundbites that make clickbait headlines in the mainstream
media.

The list could go on, but I believemy point has beenmade. It seems clear tome that, in each case,
researchers did not stop to first consider the scientific plausibility of their hypotheses. Instead,
they likely started out with a data set already at hand for reasons unrelated to the actual research
and simply tried to predict various things based on this data indiscriminately. At no point in
most of these works do the authors ever stop to critically examine their data and methodology

10https://www.nature.com/articles/d41586-020-00507-5
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for potential biases. Indeed, if biases are considered at all, this is usually done as a virtue
signalling tactic with no real intent to reckon with the implications.

I believe this issue is caused in large part by the fact that machine learning is considered a
figurative hammer and hence every scientific question is seen as a potential nail, a process that
is enabled by the vast indiscriminate data collection to which we are subjected despite all the
efforts by privacy advocates and legal reforms. Consider how the scientific method (at least in
the abstract) is supposed to work:

1. Formulate a hypothesis regarding the answer to some question of interest.

2. Gather data that could validate or refute this hypothesis.

3. Critically examine the data and draw well-founded conclusions.

The crucial aspects that need to be stressed here are the fact that data is gathered after the
hypothesis has been formulated and that we are not explicitly aiming to verify the hypothesis;
we are prepared to let the chips fall where they may. If the data does not support the hypothesis,
we are expected to be honest about this. In machine learning, however, this process sometimes
appears to be distorted. While certainly not true of all research in this field, many papers appear
to follow this methodology instead:

1. Gather data about anything and everything you can get your hands on.

2. Iterate over all attributes X1, . . . ,Xn present in this data set. For each attribute Xi, use
machine learning to infer Xi from all of the other attributes.

3. If this process is successful for some Xi, claim that there is a causal link between the other
attributes and Xi which can be predicted by machine learning.

Instead of starting with an interesting scientific question, certain researchers tend to start with
the data they were able to collect. Moreover, they tend to only report positive results which
verify the hypothesis, neglecting to report when the data do not support it. In other words, the
fundamental question the scientific method tries to answer is reversed. The question we should
be asking regarding any hypothesis is the following:

What data could plausibly validate or refute our hypothesis?

The question we appear to be asking in practice is

What hypothesis could we validate using this data?

No serious effort appears to be made to refute the hypothesis or to consider potential problems
in the methodology. Instead of critically examining their assumptions and data sets for potential
biases and statistical confounders, themere fact that theywere able to train a successful algorithm
on their specific data is taken as all the evidence that is necessary to prove that the hypothesized
relationship actually exists. Researchers believe, for example, that they can infer sexuality based
on facial images merely because they were able to do this on certain data sets. The fact that
sexuality is not known to have any significant phenotypical expression of this kind, and that the
existence of such expressions is a necessary pre-condition for their hypothesis to make sense, is
conveniently ignored or obfuscated. It is certainly no coincidence that most papers of this sort
perform experiments on just a single data set.
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This phenomenon is well-known within the statistical sciences under various names: data dredg-
ing, data snooping, p-hacking, etc. It has received extensive scholarly critique [Smith and
Ebrahim, 2002], and it clearly undermines the validity of any scientific conclusions. When
testing a scientific hypothesis, we obviously cannot use the same data that was employed to for-
mulate the hypothesis in order to validate it. As a trivial example, consider a sequence of five
coin tosses resulting in three heads and two tails. One might then conclude that the coin is biased
in favor of heads, but this pattern could be explained purely by chance. What we should do in
order to conclude whether or not the coin is biased is to do one sequence of tosses, compute the
potential bias (in this case, 3/5 probability of heads and 2/5 probability of tails), then do another
sequence of tosses and verify whether the bias is still present in this new independent sequence.
In practice, when all we have is a single finite data set of samples, this means we need to split the
data set into one part (the “training data”) on which we formulate our hypothesis and another
data set (the “validation data”) on which we verify said hypothesis. Hypothesizing after the
results are known (“HARKing”; Kerr [1998]) introduces a circularity to the scientific process
which clearly undermines the generality of the conclusions, yet it appears to be commonplace
within machine learning.

In recent years, however, the scientific community has begun to take these issues much more
seriously and introduced the notion of pre-registration [Nosek et al., 2018]. When a study is pre-
registered, the research questions and analysis plan are defined and stored in a central registry
before the outcomes are actually observed, i.e., before the study really begins. Although the re-
liability of pre-registration is obviously lessened in cases where data has already been collected
(as is often the case in contemporary machine learning), it is still a valuable tool and presents a
much-needed innovation towards the prevention of HARKing and other related problems men-
tioned above. In my opinion, the ML community should seriously consider pre-registration, at
least for studies that have potentially harmful societal implications.

A curious observation common to many machine learning papers that struggle with HARKing
is that they tend to use data sets containing highly specific and sensitive personal information,
begging the question how (and why) this data even came to exist in the first place. This leads me
to the second issue facing the field of machine learning: its almost complete lack of any ethical
considerations. Researchers collect whatever data they can, often using automated scripts to
scrape content off websites despite the fact that many jurisdictions would consider this an illegal
abuse of digital access. In many cases, the people whose data is scraped quite obviously never
intended for anyone to collect and use it in this manner, and would not give their consent if it
were asked. Machine learning researchers rarely bother with consent, however. These practices
have led to public outcry, leading to censoring11 and even retraction12 of certain data sets.

Aside from the problematic data collection practices, many of the most popular applications of
modern machine learning techniques are inherently dubious and ethically questionable. Con-
sider that the most popular research topic by far in the machine learning community at this
time is the development of facial recognition algorithms that classify people into various groups
based on pictures of their faces. One struggles to understand why this could possibly be such
an interesting problem to researchers. Why would we, as a society, want to invest such enor-
mous sums of money into research grants for projects that essentially serve no other purpose
but to allow governments and corporations to more efficiently invade our privacy and violate our

11https://www.wired.com/story/researchers-blur-faces-launched-thousand-algorithms/
12https://groups.csail.mit.edu/vision/TinyImages/

https://www.wired.com/story/researchers-blur-faces-launched-thousand-algorithms/
https://groups.csail.mit.edu/vision/TinyImages/
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rights in everyday life? The answer is that we don’t want this at all,13 but clearly the interests
and incentives of the machine learning community are not aligned with the interests of society.
Particularly egregious examples can be found in the Chinese machine learning community, who
publish a plethora of papers annually on ethnicity recognition specifically to differentiate be-
tween Han Chinese, non-Han Chinese and Uyghur people [Wang et al., 2016]. These works are
not pseudo-scientific in nature, but they clearly serve no other purpose than to facilitate the Chi-
nese government’s programs of discrimination and genocide against non-Han Chinese minority
groups in China. The Uyghur are an especially vulnerable community in this regard, and it is
known that the Chinese government employs a vast system of surveillance (including automated
facial recognition algorithms) to identify, track and detain Uyghur people and other minorities
for essentially no reason.14 These people are then put into “re-education centers” reminiscent
of Nazi concentration camps. In this case, machine learning researchers are actively enabling
atrocious human rights violations by a fascist regime, all in the name of citation counts, and the
scientific peers that are supposed to review these works appear to be either oblivious to these
issues or apathetic to them.

This apathy is too often justified by an argument which, in my opinion, borders on the criminally
insane: the idea that scientists should not be “political.” This is a dangerous misconception: it
should be obvious that many scientific findings (such as the examples I have given here) clearly
only exist to serve very particular political agendas. Ignoring these implications is irresponsible
at best and reprehensible at worst. Should we uncritically accept the development of facial
recognition algorithms that can serve no other purpose but to be used by governments to make
“undesirable” people vanish from the face of the Earth without any form of due process, because
objecting to the research on these grounds would be “too political”? Should we ignore the
tangible harms caused by certain lines of research, because it might make some powerful people
uncomfortable or because it might lead to lower citation counts? What a depraved argument.
Even if we accept that scientists should not be political, it requires an astonishing amount of
mental gymnastics to refuse to see that the mere conception of such tools in the first place
constitutes an overtly political act. If nothing else, this position is self-defeating because it
precludes doing any science that could possibly have political implications. On such grounds we
might as well refuse to do any further vaccine research, because vaccines have been so heavily
politicized. Indeed, engaging in politics is not a bane but a part of the duty of a scientist.
Politics, by themselves, are not the problem; politics are inevitable. The problems arise when
these politics, whatever they are, are not allowed to be challenged or are actively obfuscated.

The harsh conclusion I am led to, then, is that we — the machine learning community — have
betrayed this most fundamental value every scientist should have: that our work should aim
to improve our living conditions. By contrast, the primary technologies developed by machine
learning researchers tend to make peopleworse off, both in the way they are constructed (requir-
ing a lot of personal data to be collected) and the way they are deployed (shifting power away
from regular people and towards already very powerful individuals and companies). Instead of
trying to improve people’s lives, we worry about our citation counts, and this leads us to publish-
ing papers which (either directly or indirectly) contribute to the erosion of our collective human
rights and the pollution of the scientific record. We are well past the era that scientists could
pretend to be nothing but passive observers, reporting the facts of the world without any biases

13https://www.amnesty.org/en/tech/surveillance-giants/
14https://thediplomat.com/2019/07/which-countries-are-for-or-against-chinas-xinjian

g-policies/
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or politics. The fabled “view from nowhere” described by Nagel [1989] is exactly that: a fable,
a lie complacent scientists like to tell themselves in order to shirk their societal responsibilities
and feign innocence as they actively participate in horrendous acts of destruction and aggression.

The good news is that I believe it doesn’t have to be this way at all. To move forward and
make meaningful change, I think at least the following recommendations should be adopted by
governments, funding agencies and scientific publishing venues around the world:

1. Institute mandatory ethical review boards for all machine learning research involving the
collection of personal data. Reject research proposals where the cost of data collection is
clearly not outweighed by the benefits provided by the proposed novel technology. If any
personal data is collected at all, every individual involved must have provided informed
consent. They must also be able to retract this consent at any point during the research
process.

2. Reject papers that do not critically examine their own methodology. If there are clear sta-
tistical confounders or other sources of bias that might very well compromise the validity
of the results, the authors must clearly and thoroughly address these issues before publi-
cation is possible. Pre-registration as well as encouraging the publication of reproduction
studies should facilitate this objective.

3. If the authors made use of Amazon Mechanical Turk or similar services to enable their
experiments, workers must be adequately compensated for their labor. Funding agen-
cies and review boards would do well to impose reasonable minimum wages for these
workers. These services have become immensely popular for ML research, especially for
the labeling of training data sets such as ImageNet [Deng et al., 2009] as well as natu-
ral language processing [Rashkin et al., 2018]. It is never made clear how much these
workers were paid, and services such as Mechanical Turk raise considerable labor rights
concerns [Crawford, 2021].

These guidelines could put a stop to the indiscriminate collection of sensitive data about millions
of individuals around the world without their consent. They would ensure that underprivileged
workers who provide valuable assistance to scientific experiments are appropriately compensated
instead of being outright exploited. Researchers would be encouraged to engage more critically
with their work, making honest attempts at refutation and appropriately qualifying their con-
clusions with clear caveats and limitations instead of emphasizing reductionist and misleading
claims for the sake of clickbait.

Some might balk at these conditions, arguing that they are much too heavy a burden for projects
that require large-scale data sets in order to function. Current state-of-the-art large language
models are an excellent example of this: these models only appear to work because its devel-
opers were able to train them on billions of documents, and they were only able to construct
such an incredibly large repository of data because they could easily scrape all of it from the
internet without bothering to differentiate between benign and problematic data or even to re-
spect copyright. Indeed, the data sets involved are just too large for any sort of screening to be
feasible, and the data sets must be big, because neural networks are big! My response to such
criticism is this: perhaps there are only very few, if any, legitimate scientific projects that require
data of this kind. If you find yourself needing to violate the human rights and dignity of untold
people in the name of science, if your project requires the exploitation of underpaid workers,
then you’re doing the wrong kind of science. For large language models, perhaps the number
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one research priority should be to design model architectures and training algorithms that are
much less data hungry than the techniques we have now. Decreasing the required sample size
of our AI systems would already go a long way, and this is indeed an active area of research.
However, the efforts put into this extremely important research program that could bring about
real progress are completely dwarfed by the number of researchers and companies that simply
take large sample sizes as a given, and who abuse their position of power to obtain them.

Could we call this meaningful progress? In what direction are we progressing if we allow such
malpractice to continue? Certainly not a direction I care for. I will also point out that many
other scientific fields that work with sensitive data on such large scales, such as the medical
community, are able to stick to stringent ethical requirements. The only cost is that it slows the
research down, but the research is better off because of this. Other fields emphasize quality over
quantity, and this perhaps reveals the fundamental problem with our field: we want to publish
as many papers as possible, as fast as possible. We don’t care if we break things and we don’t
care to pause and critically examine our work. What matters is the citation count, the impact
factor, the h-index. To quote Kate Crawford [Crawford, 2021]:

It is a failure of imagination and methodology to claim that it is necessary to ex-
periment on millions of people without their consent in order to produce good data
science.

Of course, the grievances I have discussed here should not be taken as blanket statements about
every single scientist working in machine learning. I have met many great people over the course
of my Ph.D. whose work I very much respect, and I am not suggesting that our scientific record
is rife with pseudo-scientific nonsense. But these trends cannot be denied, and the field is in need
of urgent reform. We can no longer practice machine learning as if we’re still in the 1990s, back
when we were only using machine learning to classify hand-written digits or flag spam e-mails,
and personal data was much harder to collect. We have a real impact on the world now that we
are clearly ill-equipped to handle. Machine learning needs to grow up.
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