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ABSTRACT

Dose reduction remains an important goal in interventional X-ray. We propose an image quality (IQ) measure
called the Visibility Overshoot Index. Given a patient image and a specified clinical task, the index quantifies
the maximum acceptable dose reduction. The dose control system can then use this information to deliver the
minimum dose necessary for detection of clinical signals, reducing unnecessary radiation exposure. We developed
an experimental visual model to estimate signal detectability as a function of image features such as noise and
signal contrast. The model is used to find a feature’s threshold – the maximum change in noise or signal contrast
where signal detectability remains possible. An automated algorithm measures the magnitudes of these features
on a frame. Visibility Overshoot is expressed in terms of the image features: the Noise Overshoot and Contrast
Overshoot indices are the ratio of the threshold to measured noise/contrast. The indices demonstrate good
agreement with detector dose, Channelized Hotelling Observer results, and clinicians’ judgments. In our study
of a cylindrical object phantom acquired at seven dose levels, we found that the Noise Overshoot index is linearly
related to the square root of detector dose and the CHO detectability index, with Pearson correlation 0.995–1.0
for signals 1-4 mm diameter. For interventional cardiology and neurology sequences acquired at standard and
25–30% dose, the index and clinicians rank IQ similarly. Results on the phantom suggest at least 15% dose
reduction could be achieved in fluoroscopy mode. Our patient-specific IQ approach could bring additional dose
savings to clinical practice.

Keywords: image quality, video quality, patient-specific, task-based, fluoroscopy, angiography, dose reduction,
dose optimization

1. INTRODUCTION

We propose a novel method to measure patient-specific image quality (IQ) in interventional X-ray images, with
the goal of improving dose reduction for a given clinical task. Interventional X-ray systems are used to conduct
procedures where imaging and intervention occur simultaneously, such as navigating a catheter through blood
vessels, diagnosing a blocked coronary artery, and treatment with stent placement. In angiography procedures,
which is the focus of this work, patients are exposed to X-rays while a contrast medium is injected into blood
vessels. This shows the vessels as dark, low intensity objects on a monitor. Depending on the procedure, X-ray
pulses are typically delivered at 2 to 15 frames per second (FPS). The doctor – an interventionalist – is able to
dynamically view anatomy in real-time. Total X-ray exposure time to both the patient and staff can range from
several minutes of fluoroscopy and 10 to 15 short angiography runs during a standard procedure, such as the
ones in this study,1,2 to over one hour of fluoroscopy for more complex procedures.3 Fluoroscopy is a lower-dose
acquisition used for navigation, and the higher-dose angiography run is for diagnostic tasks. Although modern
dose reduction techniques have significantly reduced X-ray exposure for standard procedures,4–6 they have in
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turn facilitated longer procedures of increasing complexity,3,7 effectively limiting the overall savings to both
patients and staff. Therefore, dose reduction remains an important goal in interventional X-ray imaging.

A fundamental goal of radiation protection in X-ray imaging is to deliver as low as reasonably achievable
dose of ionizing radiation, in which its benefits outweigh its harms (ALARA principle8). In angiography, the
‘benefits’ of X-ray exposure can be expressed in various ways, such as enabling the visibility of clinical objects
during fluoroscopy (e.g. guidewires, stents, and needles) and the accurate performance of a diagnostic task
during angiography.9 Both are a task-based approach to measuring image quality – the preferred approach to
optimizing the performance of medical imaging systems. That is, a system’s IQ is defined as the efficacy of an
image for a given detection task, rather than the image’s technical characteristics such as noise and contrast.10

Efficacy is measured as the average performance of a human observer for conducting a detection task.10 For this
reason, automated measurement of IQ in medical applications is challenging.

Model observers (MO) are a class of algorithmic observers that predict human detection performance and
therefore directly quantify IQ. Ideal and quasi-ideal observers and the Channelized Hotelling Observer (CHO)
are several examples. MOs are regularly used for offline IQ/dose optimization and have a long history in
interventional X-ray – for example to optimize dose-pulse/frame rate frequency,11,12 motion blur,13 contrast
enhancement14 and noise reduction 15,16 algorithms, X-ray detectors,17 and general IQ.18–20 However, MOs such
as the CHO require carefully selected datasets and their detection capabilities do not generalize well beyond
the datasets used for training. Others are only suitable for signal known exactly / background known exactly
(SKE/BKE) tasks. Thus, the suitability of most MOs for evaluating the IQ of patient images is limited.

For on-line task-based dose optimization, the latest automatic dose control (ADC) systems used by several
interventional X-ray manufacturers21,22 simulate the IQ of an object embedded in a patient. IQ is measured as
the (quasi) ideal observer’s spatial frequency corrected signal difference to noise ratio (SDNR).23 The approach
incorporates physical modeling of the properties of the patient (based on estimated thickness), the object (e.g.
guidewire), and the acquisition parameters to simulate the object’s SDNR. The system optimizes and maintains
the target IQ level. As far as we are aware, this approach does not measure IQ directly on the acquired image,
after simulation. In other modalities, the ‘in-vivo detectability index’ is a patient-specific method recently
developed for computed tomography (CT).24,25 This approach has shown agreement with human detection
accuracy for clinical CT but has not been tested in interventional X-ray imaging, in which sequences are comprised
of high-contrast signals viewed in dynamic mode. Other dose optimization approaches include calibrated patient
thickness-dose curves26 and post-processing to enhance low-dose acquisitions,5 such as denoising or contrast
enhancement. However, these approaches specific to interventional X-ray do not quantify the IQ of the acquired
image, and thus do not take advantage of the possibility that a detection task could potentially be accurately
conducted at a lower dose level.

We propose a task-based method in which the task is defined as detection of contrast-enhanced vessels, and
ALARA as the minimum dose that achieves this. We hypothesize that greater dose savings can be achieved by
exclusively targeting the minimum dose at which the detection task can be accurately performed. The underlying
assumption is that beyond a certain point, a reduction in image noise or an increase in signal contrast does not
help the doctor execute the task more accurately. Once the interventionalist detects the clinical object, higher
dose levels may produce a more pleasing image, but it does not affect the task – vessel detection has already
been realized at the lower dose. Therefore the dose control system should deliver the minimum dose necessary to
ensure the detection of clinical objects, and no more. We refer to any excess dose above this point as overshoot.
Determining this minimum point is a more straightforward task in interventional X-ray, where we know in
advance that our clinical signal of interest should be present – e.g. contrast-enhanced vessels – and must always
be visible to the interventionalist. This is unlike diagnostic and screening radiology – for example mammography
– where lesions may be absent in images acquired from healthy patients.

The minimum dose level can be found by identifying the minimum IQ level at which clinical objects become
reliably visible to a human observer – the ‘detection task’. This is accomplished with an experimental visual
model we developed that represents the probability of detecting a signal as a function of the magnitude of
image features. These features are signal contrast ratio, image noise, and background intensity. Adjusting a
feature’s magnitude can affect signal detectability, but we are interested in the range of values that do not
impair detectability. The visual model can directly estimate the acceptable range for a given feature. The target
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value is that which results in the lowest dose output. For example, we can determine how much X-ray tube
current can be reduced (resulting in higher image noise) before the signal drops below the noise level and can
no longer be detected by the clinician. Assume we detect a clinical signal in the image and measure the noise
standard deviation in the background as 2%. Using the model, we estimate that noise can be increased up to
maximally 5% without affecting the detectability of that signal. We conclude that an overshoot has occurred.
We call this the Noise Overshoot index (o′σ), defined as the ratio of the two values: o′σ = 5/2 = 2.5. Thus,
the system can increase noise by a factor 2.5 and the vessel will continue to be visible, if its contrast ratio and
background intensity remain constant. We can apply the same procedure to estimate the maximum acceptable
loss of contrast: the Contrast Overshoot index (o′c).

We refer to this class of indices collectively as the Visibility Overshoot index, shortened to Overshoot index
or Overshoot. The amount of dose reduction is directly calculated from one of the Overshoot indices, depending
on which acquisition parameters should be adjusted; we focus primarily on tube current, which affects noise. We
found that for a phantom dataset, the Noise Overshoot index is a function of the square root of the detector
dose. For this dataset, detector dose is predominantly a function of tube current and pulse duration. When dose
is reduced, the amount of Noise Overshoot is proportionally lower. The dose control system can therefore map
the desired reduction in Overshoot to a reduction in tube current and/or pulse duration. Using the previous
example, if Noise Overshoot is 2.5 and we target an Overshoot of 2 (above the threshold of detectability of
Overshoot = 1, as a safety margin), the difference of 0.52 is proportion to the acceptable dose reduction.

We envision a workflow that operates in real-time during a patient’s procedure. In the first frame, the system
delivers its reference dose level, for example based on the patient’s weight. Our proposed method measures
image features in the frame and estimates the amount of Noise Overshoot. If Overshoot occurs, the equivalent
reduction in tube current and pulse duration are computed from the index and the desired Overshoot target.
Subsequent frames are imaged at the lower dose level, as long as the field of view remains unchanged. Results
on the phantom dataset show that Noise Overshoot can help achieve at least 15% dose reduction in fluoroscopy
mode, when the target Overshoot is set to 2. The index also shows high correlation with a CHO for a cylindrical
object phantom and corresponds with clinicians’ image quality judgments for two clinical datasets. The results
demonstrate that automatic dose reduction can be achieved using the Noise Overshoot index.

This work contains several novelties. First, the Overshoot appears to be a new IQ FOM, as far as we are
aware. Existing measures such as CNR and detectability FOMs do not explicitly quantify the limits of dose
reduction. Second, computation of the Overshoot relies on an unconventional use of the well-known psychovisual
model of contrast detection, and contains several differences compared to typical implementations. IQ algorithms
that employ visual models, such as the contrast sensitivity function (CSF), often target non-medical applications
and are commonly used to assess whether image artifacts (e.g. noise) are below the threshold of detectability,
often compared to a reference image. However, we employ a visual model to quantify the IQ of signals above
threshold detection (‘suprathreshold’ range), rather than estimating whether distortions are visible. In addition,
our model can operate on single images; a reference image is not required. Unlike the CSF, we do not consider the
spatial extent of the signal. However, we do incorporate the effect of background intensity, which has a significant
influence on threshold contrast. This also differentiates our model from CNR, which does not account for the
impact of background intensity on signal visibility. The third novelty of this work is the fully-automated, patient-
specific algorithm. The pipeline automatically extracts clinically relevant signals, estimates image features in
the luminance domain, and computes a local and global Overshoot index around clinical signals using the visual
model.

In Section 2, we describe the visual model and the Visibility Overshoot index, the automated algorithm, and
the datasets and analysis used in this study. The Results are shown in Section 3, in which the Overshoot index is
compared to dose, the detectability index from a CHO, and clinicians’ judgments. The Discussion is in Section 4
and we end with the Conclusions in Section 5.

2. METHODS

The derivation of the Overshoot index is described in Section 2.1. The fully-automated algorithm that estimates
image features and the Overshoot index on patient images is described in Section 2.2. The datasets used in this
study are described in Section 2.3, and an explanation of the statistical analysis is in Section 2.4.
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2.1 Derivation of Overshoot FOM
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(a) Example of visual model output
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Figure 1. The visual model is used to estimate a signal’s threshold contrast cT and its corresponding Overshoot. In (a),
cT is a function of the background luminance bM and dynamic noise σM around the signal, shown for the experimentally
derived model explained in Section 2.1. We define threshold contrast at 99.5% detection probability. Higher noise levels
and lower background intensity flatten the response curve. This reflects the observer’s decision uncertainty, and shifts cT
to higher thresholds. Values for bM and σM represent realistic image characteristics as measured on the PhantomChest
dataset. In (b), the Contrast Overshoot index is derived from the relationship between the estimated cT and the signal’s
measured contrast cM . The Noise Overshoot index is derived using the same principle.

The Visibility Overshoot Index (o′), shortened to Overshoot, represents the factor by which either image noise
or contrast can be adjusted without affecting the clinician’s ability to detect a clinical signal. For example, if
we the dose control system would reduce X-ray tube current, image noise will increase, while signal amplitude
will remain approximately constant. The ‘threshold noise’ is the maximum noise standard deviation in which
the signal remains detectable. We can estimate this value and compare it to the actual noise standard deviation
measured on the image. We define the Noise Overshoot index with respect to noise standard deviation (σ) as

o′σ =
σT

σM
, (1)

where σT is threshold noise and σM is the image’s current noise level. If we seek maximum dose reduction,
Overshoot should be minimized for a given detected signal. Thus the system should deliver the minimum dose
necessary for a clinician to reliably visualize the signal, and no more.

We use the same approach to estimate the limit of contrast reduction. The Contrast Overshoot for signal
contrast ratio (c) is

o′c =
cM
cT

, (2)

where cM is the contrast ratio measured for the signal and cT is ‘threshold contrast’ – the minimum contrast
at which the signal remains detectable. The algorithm that measures σM and cM on images is explained in
Section 2.2. Estimates of σT and cT are made from the visual model explained next.

The visual model p = f(c, σ, b) expresses the probability p that an observer detects a signal as a function
of the image features, where b is the background intensity. The model is comprised of a series of psychometric
functions we derive experimentally, represented by Weibull cumulative distribution functions (CDF). When σ
and b are held constant, the function is monotonic with contrast c, as shown in Fig. 1. Thus, an observer is more
likely to detect a signal as contrast increases. The function undergoes a shift when σ and b are varied, as shown in
Fig. 1a for 6 scenarios: dynamic noise with spatial standard deviation 0, 1 and 3%, and background intensities 14
and 100 cd/m2, selected to represent realistic image characteristics as explained later in this section. The legend
shows the corresponding threshold contrast cT when detection probability reaches 99.5% for that condition. As
seen from the figure, more contrast is required to detect signals in noisier and darker backgrounds; cT is higher.
However, detection probability is limited to 0 ≤ p ≤ 1; above a certain contrast, p is always 1. Therefore, we
seek the lowest contrast where detection remains possible: the threshold contrast cT when p = 1. Threshold
contrast is estimated from the inverse CDF; we solve for cT at a detection threshold of pT = 99.5%, holding σM
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and bM constant. After cT is estimated, calculation of the Contrast Overshoot is straightforward: o′c = cM/cT .
Likewise, we solve for σT to estimate the Noise Overshoot: o′σ = σT /σM .

We have evaluated three formulations of the Overshoot and found the ratio of threshold-to-measured value
the most meaningful. The two other formulations are the absolute difference between threshold and measured
σ or c, and the relative percentage. The absolute difference is not proportion to the change in dose; one unit
difference will have a different effect size depending on the feature’s magnitude. Relative percentage suffers from
the same problem, with absolute difference in the numerator. Moreover, one unit difference will be amplified
when the denominator is smaller. The ratio is independent of these effects.

Psychometric functions are derived from Yes/No staircase experiments. Experimental data are fit to the
function p = γ + (1 − γ − λ) · F (x), where F (x) is the Weibull CDF: F (x) = 1 − exp (−x/α)β and x is
contrast. Terms γ and λ are the guessing and lapse rates; they constrain the lower and upper asymptotes of the
function. Factors α and β define the shape of the CDF for a given test condition. The psychometric functions
for intermediate noise and background levels are derived by interpolating the α and β values corresponding to
the tested conditions. The factor α is linearly interpolated between two tested background or noise levels; β is
logarithmic. Threshold contrast is computed from the inverse CDF for a test condition with known α, β, γ, λ,

given by: cT = α(− log(1− p̂T ))
1/β

where p̂ = (pT − γ)/(1 − γ − λ) and pT = 0.995. Threshold noise is found
by interpolating α, β corresponding to cM , bM .

Our choice of pT = 99.5% detection probability is unusual. Contrast detection experiments are often designed
such that observers achieve 75% correct responses, as this provides the most accurate estimate of the visual
response function.27 Threshold contrast is defined with respect to 75% detection probability. However, reducing
the signal’s amplitude to this level within a dose control system would render the signal too subtle for diagnostic
purposes. Hence we have defined the lower boundary for Overshoot as the threshold contrast at which a signal
is correctly detected 99.5% of the time; threshold contrast is determined analytically, as explained above. Our
staircase experiments employ the standard 75% target, as detailed below.

Fig. 1a illustrates our motivation for selecting a higher operating point. As seen on the left-most curve,
the visual response for images without noise approaches a step function. In noisier and darker backgrounds,
the function undergoes two changes. First, the midpoint of the function shifts to the right – more contrast is
required to detect the signal, as would be expected. Furthermore, the function becomes flatter. As the task
difficulty increases, the observer is unable to consistently detect the signal over a wider range of contrasts. Thus,
the observer’s decision uncertainty is higher. For example, on a dark, noisy background (bM = 14, σM = 3%),
the observer’s range of uncertainty extends to 8.8% signal contrast before reaching maximum detectability. If we
would instead select 75% probability, the corresponding contrast threshold is lower, at 7.4%. If the dose control
system would target the 7.4% threshold, vessels may be rendered too subtle for diagnostic use. Our choice of
pT = 99.5% avoids this risk and acts as a safety margin.

Staircase experiments were conducted with a single-interval adjustment-matrix (SIAM) procedure.28 SIAM
adaptively adjusts the signal contrast based on the observer’s response for signal positive (SP) and signal negative
(SN) stimuli. Contrast thresholds were determined for a range of test conditions: additive white Gaussian
noise in the range of 0–8.4% (luminance units) and background intensities of 3, 8, 26, and 170 cd/m2. These
values were selected to reflect realistic image characteristics, based on measurements from the PhantomChest
dataset described in Section 2.3. Experiments were conducted on a medical display with dynamic range 0.57–
202.7 cd/m2. Signals were Sloan letters embedded in the test conditions, adapted from Ref. 29. Signals were
hypointense, consistent with clinical signals in interventional X-ray. Stimuli were displayed dynamically at 15
FPS. Two interleaved staircases targeted 50% and 75% correct responses. Although the targets in the staircase
experiments are lower than pT = 99.5%, their purpose is to derive the full psychometric function. Per test
condition, the staircase responses were fit to psychometric functions using psignifit 3.0.30 Function parameters
were estimated with constrained maximum likelihood estimation.

2.2 Fully automated algorithm

The fully automated algorithm we developed segments contrast-filled vessels from a single frame in the patient
image and measures image features in luminance: contrast ratio of vessel edges (cM ), noise standard deviation
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(σM ), and background intensity (bM ), as illustrated in Fig. 2. These features serve as the inputs to the visual
model described in Section 2.1, allowing for the calculation of the Overshoot index for the frame. Algorithm
parameters were tuned using ground truth extracted from the PhantomChest dataset (see Section 2.3).

Pixel grey levels are converted to luminance (cd/m2) using the DICOM grayscale display function (GSDF)31,32

conversion for a generic display. A pixel-to-luminance look-up table (LUT) is generated for a sequence based
on the image bit depth and target display characteristics. Display bit depth and minimum/maximum display
luminance are based on the staircase experiment described in Section 2.1. All subsequent processing is conducted
in luminance domain units, referred to here as intensity (i).

We derive an image noise map σM for each frame using an adaptation of Ref. 33. Our implementation
generates an intensity-dependent noise model, as typically found in fluoroscopy images, but it also accounts for
the effect of post-processing, which distorts the relationship. This adaptation is based on a method originally
proposed by Ref. 34, in which the intensity gradients in a uniform image corrupted by Gaussian noise can be
described with a Rayleigh distribution, with the peak of the probability density function (PDF) equal to the
noise standard deviation σ. In non-uniform images, the peak of the PDF can shift away from the ‘true’ noise
value σ. Ref. 33 makes an adaption for this shift and derives spatio-temporal gradients from first order horizontal
and vertical wavelets; one σ value is estimated for the entire image. In our implementation, we compute σ within
small intensity bins and employ additional adaptations to remove the shift in the peak. Noise is computed only
in the spatial domain.

The adapted noise algorithm employs Symlets 2 discrete stationary wavelet decomposition to compute the
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Figure 2. Examples of the fully automated algorithm’s intermediate steps and its output, the Overshoot map. Data from
the Cardiac dataset: (a) the standard-dose Xper system, (b) the low-dose Clarity30 system. Overshoot (õ′σ) is lower in
(b) than in (a), indicating lower image quality – the vessels in (b) are closer to the threshold of visibility. This is due to
the higher noise level in (b), which is not compensated by the brighter background. The median values are shown.
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image gradient magnitude G =
√
(g2h + g2v), where gh and gv are the first-order horizontal and vertical Symlet

coefficients CD
(h)
1 and CD

(v)
1 . The gradients G are binned by their corresponding image intensity. Within a bin

n with mean intensity in and vector of gradients Gn, gradient coefficients are iteratively shrunk to eliminate edge
responses, such as anatomical and other structural boundaries in the image. Any wavelet coefficients greater
than the shrink factor, computed as the value of the Donoho and Johnstone VisuShrink35 estimator, are set to
zero. The remaining coefficients Ĝn are fit to the Rayleigh distribution with maximum-likelihood estimation; the
distribution’s scale parameter (PDF peak) is the initial σn estimate. After applying a linear shift calibrated to
the training data, similar to Ref. 33, a model of the shifted σ̂n values are fit to the intensities in over all n bins.
In unprocessed fluoroscopy data, intensity-dependent X-ray noise can be modeled with various functions, e.g.
as discussed in Ref. 36. However, clinical systems apply non-linear processing to raw acquisitions, e.g. contrast
enhancement, noise suppression, or other post-processing, which tends to distort this relationship. Therefore,
we construct a linear spline between (ij , σ̂j) and (ij+1, σ̂j+1) for each interval j = 0, 1, .., n − 1, giving σ̂ as a
function of i. We rename σ̂ to σM , to refer to the measured noise standard deviation, giving σM = f(i). Finally,
to generate the noise map, for a pixel at coordinate (x, y), the median luminance (̃i) in a 3x3 region of interest
(RIO) is used to look up the local noise level σM (x, y) = f (̃i(x, y)). A new noise map σM is generated for each
frame.

Contrast ratio cM and background intensity bM maps for each frame are computing on image intensities
after extracting a vessel mask. Vessel edges are segmented using an implementation of the ProbShrink estimator
extended to nonstationary noise.37,38 This approach estimates the probability of a wavelet coefficient representing
a signal embedded in noise. A map of the nonstationary image noise (σM ) is used to estimate the ‘true’
correlation between coefficients in a local neighborhood, giving a better estimate of the probability that a
coefficient represents a ‘true’ signal. Our approach employs shearlets39 – directionally sensitive wavelets that are
well suited for rotationally asymmetric (‘sheared’) signals such as contrast-enhanced vessels. The first shearlet
scale with 4 orientations are used for the clinical datasets; the first scale with 2 orientations are used for the
PhantomCHO dataset, which contains rotationally-symmetric signals.

Once the vessel mask is extracted, the intensities of the vessels (iv) and background (ib) are taken as the
median value within small ROIs. The Weber contrast between vessel edges and background is measured as
cM = (ib − iv)/ib within the ROIs. We rename ib to bM for notational ease and consistency with the other
image features. The noise and contrast Overshoot indices, o′σ and o′c, can now be computed by taking the image
features cM , σM , bM as inputs to the visual model from Section 2.1. Indices are computed as the median values
within a small sliding window.

2.3 Datasets

This study includes one training dataset (PhantomChest) and three testing datasets (PhantomCHO, Cardiac,
NeuroDSA). An overview of their image characteristics is given in Table 1.

The training dataset PhantomChest ,40 generated by the authors (AGL, AD, AK), was used to tune the
extraction of image features described in Section 2.2. Acquisitions of a static anthropomorphic chest phantom
containing contrast-filled coronary arteries (Radiology Support Devices Alderson Phantoms, Long Beach, USA)
were made on an Allura interventional X-ray system (Philips Healthcare, Best, The Netherlands) with and
without 10 cm polymethyl methacrylate (PMMA) to simulate standard and large chest thickness, respectively.
Sequences of 2 seconds were acquired at six dose levels per phantom size at 15 frames per second (FPS). Image are
in raw format without any post-processing or proprietary image processing, except for logarithmic normalization
of pixel intensities. Frames are 14-bit, 890 x 890 pixels. Entrance skin dose was calculated as 0.308, 0.643, 0.978,
1.302, 1.973, 2.613 mGy/sec and 2.475, 3.320, 4.140, 4.980, 6.700, 9.330 mGy/sec for the standard and large
phantoms, respectively. Ground truth data were generated from manual segmentation of vessels on the highest
dose sequences.

The PhantomCHO19 dataset was used to evaluate the Overshoot indices on controlled dose levels and to
benchmark Overshoot performance against a state-of-the-art IQ measure – a CHO with Gabor channels and
bias correction to estimate the detectability index (d′∞,o in Ref. 19, which we shorten to d′ in this work). The
cylindrical object phantom is comprised of a 2.5 mm thick PMMA phantom containing 7 rotationally symmetric
objects of 0.5–4.0 mm diameter. Sequences were acquired at 7 dose level for 1204 frames at 30 FPS on a Siemens
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Table 1. Image characteristics of interventional X-ray sequences

Dataset Type
Dose
levels

Seq/
dose

Frames/seq FPS
Bit

depth
(bpp)

Frame size

PhantomChest40
training
phantom

12 1 30 15 14 890 x 890

PhantomCHO19 phantom 7 1 301 30 8 512 x 512

Cardiac2 clinical 2 72 ; 69 61 [34–147] 12.5 ; 15 8 512 x 512

NeuroDSA1 clinical 2 40 20 [15–23] 2 14 1000 x 1000

Seq = Sequence. Frames/seq given as: median [minimum–maximum]. FPS = frames per second. bpp = bits per pixel.
Frame size in pixels.

Artis Zee VC21 system (Siemens Medical Solutions, Germany). Frames are 8-bit, 512 x 512 pixels. This study
analyzed 301 frames. Detector target doses (DTD) are 6, 10, 18, 36, 65, 120, 240 nGy/frame generated from
the following acquisition settings: peak tube potential from 93.6 to 96.2 kilovoltage peak (kVp), pulse duration
from 3.5 to 9.2 milliseconds (ms), and tube current from 9 to 246 milliamps (mA).

The Cardiac2 dataset is comprised of cardiology procedures acquired in a clinical setting at two dose levels:
a standard dose Philips Xper system and a Clarity30 mode – 30% of standard dose and ClarityIQ denoising
technology. Seventy-two patients were divided over the two modes, with two views acquired per patient, for
a total of 72 sequences for Xper and 69 for Clarity30. Sequences were acquired at 12.5 FPS (Xper) and 15
FPS (Clarity30 ) for a median of 61 frames (minimum/maximum 34–147 frames) per sequence, depending on
room, system, and anatomy. Images are 8-bit, 512 x 512 pixels. Kerma air products for the total procedure,
including multiple angiographic runs, were measured as 47.4 (33.6–66.5) and 12.0 (7.59–20.1) Gy·cm2 (median
and interquartile range) for Xper and Clarity30, respectively. Four interventional cardiologists evaluated 3 image
attributes (resolution, image contrast, noise) and perceived IQ on a 0–5 scale (Very poor to Excellent).

The NeuroDSA1 dataset is comprised of digital subtraction angiography (DSA) neuroradiology procedures
acquired in a clinical setting at two dose levels: a standard dose mode Philips Xper FD20/20 biplane and a
Clarity25 mode – 25% of standard dose and ClarityIQ. Twenty patients underwent interventions under both
modes, with two views per patient, for a total of 40 sequences per system. Sequences were acquired at 2 FPS
for 20 (15–23) frames. Images are 14-bit, 1000 x 1000. Dose Area Products for sequences were measured as
553 (479–682) and 142 (118–170) Gy·cm2 (median and interquartile range) for Xper and Clarity25, respectively.
Three neuroradiologists evaluated perceived IQ on 3 bolus phases using a 1–5 scale (Unsatisfactory for diagnosis
to Superior visualization of vasculature); scores were averaged to generate an overall average perceived IQ score.

2.4 Analysis

For the PhantomCHO dataset, we fit a regression between noise Overshoot o′σ and detector target dose (DTD),
and between o′σ and the CHO detectability index d′. We calculate the regression coefficients and the Pearson
correlation coefficient (PCC) between terms. We derive one Overshoot index per signal diameter per frame (o′σ)
by taking the intra-frame median within an ROI around each signal.

For the Cardiac and NeuroDSA datasets, the IQ of the standard-dose and low-dose systems are compared.
ANOVA is used to conduct statistical significance testing between scores for the two systems. ANOVA is Analysis
of Variance, a form of linear regression where predictors are categorical (the two systems under test). Clinicians’
IQ ratings and the Overshoot indices are analyzed separately, to evaluate global trends. We derive one Overshoot
index for a sequence (õ′σ, õ

′
c) by pooling pixel values: first by taking the intra-frame median, then the inter-frame

median. Frames with too few detected pixels are automatically identified and excluded (e.g. pre- or post-bolus
frames).

While the previous analysis is useful for offline optimization, one Overshoot index per frame may not be
sufficiently informative to drive a real-time dose control system. Patient frames will contain various vessel
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diameters and background anatomy, and relying on a global index risks over- or under-estimating the margin
for dose reduction. Therefore, we construct a heatmap of Overshoot distributions to examine how its behavior
changes by frame and dose. First, the relative frequencies of all o′ values for one frame are calculated. Data are
grouped into bins of [1 o′ unit x 10%] (PhantomCHO) or [1 o′ unit x 1% relative frequency] (clinical datasets).
For example, the first Overshoot bin is comprised of 1 < o′ ≤ 2. The distributions from all frames for all
sequences are superimposed. This is plotted as a heatmap (shown in Fig. 5, with color-coding representing the
number of frames falling within a bin. The plots are limited to o′ ≤ 17 for easier visualization; many images
contain larger Overshoot values corresponding to highly-visible main vessels.

3. RESULTS

Fig. 2 shows an example of the algorithm’s intermediate steps and its final output, the Noise Overshoot map.
Examples are taken from the Cardiac dataset. Fig. 2a is a frame from the standard-dose Xper system. Fig. 2b
is the low-dose Clarity30 system. The Overshoot map for (b) Clarity30 suggests lower image quality – lower
median õ′σ scores signify that on average, the vessels are closer to the threshold of visibility. As seen from
the intermediate outputs, this is due to the higher noise level. Moreover, the brighter background is unable to
compensate for the increased noise. The slightly lower contrast level also contributes to lower IQ.

In the following sections, we show the relationship of the Overshoot index to dose and CHO d′ in Section 3.1
and Overshoot versus clinical judgments in Section 3.2. We examine the distribution of Overshoot scores within
a frame in Section 3.3 and describe how this could potentially be used to set a maximum boundary for dose
reduction in a dose control system.

3.1 Overshoot versus dose and d′

Fig. 3 shows Noise Overshoot o′σ is positively correlated with both dose and d′. The Pearson correlation coef-
ficients (PCC) between the square root of the dose and Overshoot is between 0.999 and 1, as seen in Fig. 3a.
Similarly, d′ has a linear relationship to Overshoot as shown in Fig. 3b, with PCC between 0.995 and 1.

As seen on both figures, o′σ is a function of signal diameter. This effect arises because smaller signals were
measured to have lower contrast, leading to smaller Overshoot, even at the same dose level (determined from
the intermediate outputs, not shown). Therefore, the regression line between dose and Overshoot is flatter for
smaller signals (Fig. 3a). However, the fit with d′ changes in the opposite direction, becoming steeper for smaller
signals (Fig. 3b). The slope increases to 0.9 as signal diameter decreases to 1 mm. This is because d′ is also
a function of signal size but increases faster than o′σ. For example, at 240 nGy/fr, d′ for the 4 mm signal is a
factor 4.8 greater than d′ of the 1 mm signal;19 for o′σ this factor is approximately 1.6.

Notably, the algorithm is able to quantify signals near the threshold of visibility (o′σ ∼ 1) on images acquired
at the lowest doses. For example, for the 1 mm signal at 6 nGy/fr, median o′σ is 1.25. However, the algorithm
could not compute Overshoot for the smaller signals (0.5 and 0.75 mm), due to unreliable segmentation at these
diameters. Signals smaller than 1 mm diameter correspond to the septal segments branching off the Left anterior
descending (LAD), based on coronary artery measurements taken from angiography sequences.41 Signals 1 mm
and larger were correctly segmented, corresponding to all 12 segments of the three main coronary arteries (Right
coronary artery, Left main, Left circumflex), 11 of 12 segments of the LAD, and nearly all remaining branch
arteries. In clinical practice, the entire length of the vessel would typically be imaged, whereas this phantom
represents a cross-section of a vessel. In addition, our automated algorithm is optimized to extract vessel-like
objects and not circular targets. This is also the reason for the larger o′σ error bars on the 1 mm signal. The
algorithm does automatically extract signals 1 mm or larger for at least 70% of frames.

3.2 Overshoot versus Clinical judgments

For clinical datasets, o′σ and o′c are both in concordance with clinicians’ judgments, as seen in Fig. 4. For the
Cardiac dataset (Fig. 4a), clinicians judged the noise content of Xper as better (Q Noise plot, red points), in
agreement with the indices. However, clinicians on average rate the two systems as equivalent for Overall IQ
(Q IQ). Evidently, their Overall IQ judgment was not affected by noise, leading to the conclusion reached by
Ref. 2 that dose reduction up to 75% can be achieve while maintaining diagnostic image quality. As neither

Proc. of SPIE Vol. 12467  124670T-9
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 17 Apr 2023
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



1 mm 1.5 mm 2 mm 3 mm 4 mm

6 18 36 65 120 240 6 18 36 65 120 240 6 18 36 65 120 240 6 18 36 65 120 240 6 18 36 65 120 240

1

3

5

7

9

11

Dose (nGy/fr)

o
′ σ

 

(a) Noise Overshoot versus Detector Target Dose

1 mm 1.5 mm 2 mm 3 mm 4 mm

0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
1

3

5

7

9

11

 d ′

o
′ σ

 

Dose
(nGy/fr)

240
120
65
36
18
10
6

(b) Noise Overshoot versus CHO d′

Figure 3. Noise Overshoot on the PhantomCHO dataset for the five largest signal diameters: (a) o′σ versus dose, showing
a linear relationship with dose after square-root transformation. Pearson correlation coefficient ranges from 0.999 to 1.0.
(b) o′σ versus d′. Pearson correlation ranges from 0.995 to 1.0. For both plots, the linear regression line is shown. Error
bars indicate the 25%-75% quartile range across frames.
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(b) NeuroDSA

Figure 4. For the two clinical datasets, violin plots showing agreement between clinician’s quality judgments and the two
visibility Overshoot indices. For all y-axes, higher scores indicate better IQ scores. Individual points reflect the median
score for one sequence; points have been horizontally jittered for better visualization. The width of the violin indicates
the density of points at that coordinate. Stars indicate level of statistical differences between the two systems. Q IQ is
an overall IQ rating, Q Noise is the rating of IQ with respect to noise.
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index has õ′ values near 1, our results support this conclusion. For the NeuroDSA dataset, shown in Fig. 4b,
clinicians judged the Clarity25 system significantly better (Q IQ, blue points). The indices are in agreement,
indicating that the IQ of the Clarity25 system is on average better.

3.3 Overshoot distribution

A dose control system operating in clinical practice requires setting a stopping point, especially if combined with
an approach that aims to reduce dose as low as practically possible. Although we could define o′ = 1 plus an
additional safety as a reasonable stopping point, the use of one global FOM for an entire frame will be inadequate.
As shown for the PhantomCHO dataset in Section 3.1, Overshoot values for larger signals are up to a factor
1.6 greater than for smaller signals. Therefore, it would be imprudent to define one ‘average’ Overshoot target
for clinical images comprised of an uncontrolled number and diameters of vessels being imaged. Dose reduction
tuned to the average Overshoot could reduce the visibility of smaller vessels below the clinician’s detection
threshold. We investigate an alternative – the distribution of Overshoot values within a frame. The heatmaps in
Fig. 5 represents superimposed histograms, generated from one histogram per frame for all sequences/datasets.
Color-coding represents the number of frames falling into a bin. Additional explanation is given in Section 2.4.

The trends are similar for all three datasets: sequences with higher IQ show a more uniform distribution across
all Overshoot values. Conversely, sequences with lower IQ have a distribution that peaks at lower Overshoot
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(c) NeuroDSA

Figure 5. Heatmap of Overshoot distributions, showing a shift towards lower overshoot values at lower image quality levels.
Heatmaps are generated by calculating the Overshoot histogram within a frame and superimposing the distributions for
all frames and sequences at that dose level; a detailed explanation is in Section 2.4. On (a) PhantomCHO: at 240 nGy/fr,
values are distributed at higher quality levels and no frames contain values in bin 1 ≤ o′σ < 2. With decreasing dose and
IQ, the distribution is concentrated at smaller o′σ values with greater frequency. By 6 nGy/fr, most o′σ values are at the
threshold of visibility. On the clinical datasets, the lower IQ sequences exhibit the same shift to lower Overshoot values:
(b) Cardiac–Clarity30 and (c) NeuroDSA–Xper.
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values. This trend is most easily seen on the PhantomCHO dataset, shown in Fig. 5a. At the highest dose level,
240 nGy/fr, the distribution is concentrated equally at higher Overshoot values. Moreover, no frames contain
Overshoot values at the limit of visibility (bin 1 ≤ o′σ < 2). Dose reduction shifts the distribution to the left,
concentrating at smaller o′σ values with greater frequency. By 6 nGy/fr, most o′σ values are at the threshold
of visibility for almost all frames. Fig. 5b shows the same trend for the Cardiac dataset, where the Clarity30
system was rated as lower IQ than Xper. The Clarity30 distribution peaks at lower Overshoot values, while
the standard-dose Xper has a uniform distribution with relatively low Overshoot frequencies across frames. For
the NeuroDSA dataset, the Xper system was rated as lower IQ then Clarity25, but the differences between the
two systems are smaller than those for the Cardiac dataset. Therefore, the two distributions in Fig. 5c appear
similar. Nevertheless, the Xper distribution is shifted left and peaks at lower Overshoot values.

To implement this in clinical practice, we would first define an Overshoot threshold; for example, o′σ = 2,
which includes a margin of safety above the threshold of visibility. The dose control system would then adjust
the dose while tracking the frequency of Overshoot values falling below the threshold. When the number of
pixels in this range would exceed a certain frequency, for example when more than 10% of pixels have o′σ < 2,
the system would cease dose reduction. Based on the heatmaps of the clinical datasets in Fig. 5, many of the
frames in the low-IQ sequences are concentrated around 10% frequency for 1 ≤ o′σ < 2. Additional experiments
will help determine whether such an approach will match human judgments in detecting the lowest acceptable
dose level, and whether the same frequency target would generalize across different image content.

4. DISCUSSION

This work presents an IQ index and an automated algorithm to measure patient-specific IQ for interventional
X-ray imaging. The Overshoot Index reflects the ‘excess’ IQ in the image, beyond what is required to reliably
visualize contrast-enhanced vessels – ‘the clinical task’. The dose control system will reduce dose until the target
Overshoot is reached. For example, at a target Overshoot of 1, signals will be at the threshold of detectability. A
higher target Overshoot may be defined, as an added safety margin. We found a linear relationship between the
Noise Overshoot index and the square root of the detector dose. Thus the the maximum allowable dose reduction
can be calculated directly and is equivalent to the difference between the measured and target Overshoot values.

The dose control system will operate in two steps. The first step is identical to existing clinical systems.
The system will acquire one frame at its reference dose level, for example based on the patient’s weight. The
proposed method will take over in the second step. The automated algorithm will measure image features in
that frame and estimate the amount of Noise Overshoot. If Overshoot occurs, the equivalent reduction in tube
current and pulse duration will be computed from the maximum allowable reduction in Overshoot. As long as
the field of view remains unchanged, subsequent frames will be imaged at the lower dose level.

We hypothesized that by seeking the minimum dose that facilitates the clinical task, additional dose reduction
beyond a system’s default configuration could be achieved. Our study suggests this is feasible: results on the
PhantomCHO dataset suggest a dose reduction of 15–58% depending on the the desired safety margin. The
authors of Ref. 19, who have shared the PhantomCHO with us, state that fluoroscopy is routinely acquired at
18 nGy in their clinic. Noise overshoot at 18 nGy/fr is estimated as o′σ = 2.14 for the 1 mm signal. If the dose
control system is configured to target o′σ = 2, the equivalent dose reduction would be approximately 15%, with
a target DTD of 15.4 nGy/fr. For a more aggressive target of o′σ = 1.5, dose savings could reach nearly 58%
at DTD 7.6 nGy/fr. Either target translates into a significant reduction in dose exposure for both patients and
staff in the operating theater.

The Overshoot index may also function as a suitable substitute for the well-known CHO in real-time patient-
specific dose optimization, given several caveats. Our results show that Noise overshoot is linearly correlated
with d′ from a CHO optimized for interventional X-ray. Models such as the CHO mimic detection performance
of humans using a signal detection theory (SDT) approach. The model estimates statistical differences between
signal present (SP) and signal negative (SN) stimuli and computes the probability that a given stimulus belongs
to one class. SDT explicitly incorporates the phenomenon that observers – models and humans – may incorrectly
identify a SP stimulus as SN and vice versa, depending on the amplitude of the signal and image characteristics.
Thus the detectability of a signal is given as a probability, not a binary visible/not-visible class. In our approach,
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however, the segmentation algorithm assigns a binary class to the signal. The vessel detector currently works
by classifying a candidate pixel as SP or SN based on a hard probability threshold. This threshold – i.e. the
ROC operating point of the detector – was optimized for the PhantomChest ground truth segmentation, and
does not guarantee the same operating point holds for other datasets. In future work, we will investigate an
adaptive detector that adjusts the classification threshold based on a fixed ROC operating point. However, the
visual model implicitly handles the phenomenon of decision uncertainty. Our model is derived from staircase
experiments incorporating a SDT protocol. Threshold contrast is computed from the visual model where the
probability of detection is greatest, i.e. the least decision uncertainty. Our approach does not require extensive
training, unlike the CHO, but it is dependent on accurate measurement of the visual model across a range of
conditions, such as different types of noise correlation – a current limitation of our method.

For the clinical datasets, the Overshoot indices display the same trends as clinicians’ judgments. However, the
two IQ ratings exhibit low correlation and the data are highly dispersed. This may be due to the experimental
setup. Clinicians were asked to evaluate perceived IQ; the experiment did not involve a vessel detection task.
Ref. 42 found a similar discrepancy in a digital pathology application. Six veterinary pathologists rated the
perceived IQ of altered digital pathology slides under two conditions: while free viewing and while conducting
a diagnostic task. The introduction of a clinical task led to different judgments of perceived IQ, possibly by
inducing a shift in the participants’ attention and perceived IQ criteria.

The proposed work brings several benefits over existing IQ measurement and dose optimization approaches.
First, unlike the CNR metric, the Overshoot explicitly incorporates the effect of background intensity, which has
a significant impact on threshold contrast. This effect is easily seen from the examples in Fig. 1a. Comparing the
two backgrounds 14 versus 100 cd/m2 with 3% noise standard deviation, reflecting realistic interventional X-ray
values, the equivalent CNR at threshold contrast using CNR = cT /σM is CNR14 = 2.9 and CNR100 = 1.4. Thus,
while we would conclude that the first signal has twice the CNR of the second, in fact an observer’s ability to
detect the two signals on a detection task are equivalent: detection probability of 99.5%. From the perspective of
performing the clinical task, which we defined as the ability to detect contrast-enhanced vessels, the two stimuli
have equivalent IQ. Second, the formulation of the Overshoot index explicitly incorporates the lower bound of
a clinical signal’s visibility threshold. This allows the dose control system to target maximum dose reduction
while ensuring the interventionalist’s ability to carry out their clinical task is not affected. Third, the proposed
method does not require prior training as with some MOs. Post-processing algorithms, such as denoising and
contrast enhancement, distort spatio-temporal noise correlation as well as the intensity-noise model. A CHO
would require continuous retraining of the image statistics as different post-processing parameters are explored,
whereas our approach can be applied directly. Finally, the Overshoot index is independent of the underlying
algorithm used to quantify image features.

The proposed approach contains several limitations, in addition to those already mentioned. The algorithm
relies on accurate segmentation of contrast-enhanced vessels and cannot currently estimate the visibility of other
important clinical objects such as guidewires. In the future, deep learning algorithms trained on angiography
sequences could be investigated; several implementations from the literature are publicly available. The index
could also estimate Overshoot from the virtual guidewire approach used by several manufacturers, explained in
Section 1. Second, our visual model does not consider aspects such as the spatial extent of the signal, noise
correlation, object motion, presentation frame rate, and display LCD response rate, among others. To improve
the model’s accuracy, we are exploring adapting existing visual models to this application. In addition, the
algorithm could be adapted to estimate Overshoot with respect to perceived luminance at the eye, rather than
display luminance. Finally, the relationship found between Noise Overshoot and dose has not been verified for
other exposure parameters, such as tube voltage, filtration, and focal spot extent, nor for other vendors’ systems.
We consider this a proof-of-concept approach; despite the aforementioned approximations in the model, the
method performs well on the tested datasets.

5. CONCLUSIONS

We propose a novel index and a fully automated algorithm to measure patient-specific image quality (IQ) in
interventional X-ray images, with the goal of improving dose reduction for a given clinical task. We define the
task as detection of contrast-enhanced vessels. The method determines the maximum increase in image noise
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or reduction in signal contrast that does not affect task performance, which we call the Noise and Contrast
Overshoot indices, respectively. We refer to this class of indices as the Visibility Overshoot.

The Noise Overshoot index is found to have high correlation with d′ from a Channelized Hotelling Observer on
a phantom dataset. Both indices show good agreement with clinicians’ subjective judgments for clinical datasets.
When either index is coupled to acquisition parameters, the dose control system will deliver a lower dose to the
patient, proportional to the amount of Overshoot in a given acquisition frame. For the phantom dataset, the
Noise Overshoot index varies linearly with the square root of detector dose, where dose is predominantly a
function of tube current and pulse width. The index predicts a dose reduction of 15–58% may be feasible in
fluoroscopy mode, depending on the desired safety margin. The proposed approach shows promise for greater
dose reduction compared to existing dose optimization methods. This reduction will benefit patients undergoing
interventional X-ray procedures and staff in the operating theater.
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