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ABSTRACT
The assessment of future extremes is hindered by the lack of long time series.
Weather generators can alleviate this problem, but easily become more complex
when generating multiple variables. In this study, a weather generator combining
Bartlett-Lewis models and vine copulas is presented. The combination of these mod-
els allows for the stochastic and physically coherent generation of longer time series
with statistics similar to those of the time series used as input. This model chain
has already been assessed on the basis of historical observations, but never on the
basis of future simulations. However, the model chain could have practical value
for extending climate simulations, which should be investigated. Combining recent
versions of the Bartlett-Lewis model (for the generation of precipitation) and vine
copulas (for the generation of temperature and evaporation), the model was applied
for two time series of historical observations and one time series simulated by the
RCA4 RCM for the years 2071-2100. For the future simulations, the weather gen-
erator performed comparably as for the historical observations for the statistical
moments and the correlation. The results for the extremes were more ambiguous,
but still provided valuable information. The adequate performance for the statistical
moments and the correlation, combined with the continuous development of both
Bartlett-Lewis models and vine copulas, indicates that the weather generator might
be of use for the characterization of extreme events under climate change.
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1. Introduction

Under climate change, it is important to correctly design hydraulic structures. The
simulation of future statistical moments by climate models is nowadays considered
standard practice for this purpose (François, Schlef, Wi, & Brown, 2019). Although
climate models, whether they are Global Climate Models (GCMs) or Regional Climate
Models (RCMs), run detailed simulations for the full 21st century, often only the end
of the century is considered for long-term planning purposes. Data from e.g., the
years 2071 until 2100, present an assumed stable climate and the extreme values
can be compared with recent (e.g., 1970-2000) or current (e.g., 1990-2020) climate
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(e.g., Hirabayashi et al. (2013)). However, with only 30 years of data, there are few
extreme events and the uncertainty becomes very large (Brunner, Slater, Tallaksen,
& Clark, 2021). This lack of data can be overcome with weather generators (Maraun
et al., 2010; Wilks & Wilby, 1999), which can extend time series while preserving the
statistical moments. As such, this extension allows for inferring more information from
a climatological time series.

Recently, Pham, Vernieuwe, De Baets, and Verhoest (2018) developed a weather
generator combining Bartlett-Lewis models for precipitation generation (Rodriguez-
Iturbe, Cox, & Isham, 1987) and vine copula models (Aas, Czado, Frigessi, & Bakken,
2009) for the generation of temperature and evaporation. The combination of both
models allows to stochastically generate the three variables conditionally on each other,
which is valuable for many impact models (Zscheischler et al., 2018). Bartlett-Lewis
models combine rectangular rainfall blocks, which resemble small mesoscale precipi-
tation systems (Burlando & Rosso, 1993; Onof & Wang, 2020). Vine copula models
allow for the consistent generation of both temperature and evaporation by exploiting
the relationship between multiple variables (Pham, Vernieuwe, De Baets, Willems, &
Verhoest, 2016; Pham et al., 2018). The stochastic element is obtained by random
sampling: a combination of Poisson processes and sampling from gamma distributions
in the Bartlett-Lewis model, and sampling from a uniform distribution in the vine
copula models.

Although the weather generator developed by Pham et al. (2018) might thus be
a powerful tool for climate change impact assessment, it has only been calibrated
and assessed on historical conditions. Nonetheless, the set-up should in theory be
transferable to future conditions. By conditioning on future time series simulated by
climate models and hence generating longer time series, the weather generator might
improve the assessment of extreme meteorological values. There are only a few exam-
ples of such a direct application of Bartlett-Lewis models on climate simulations (e.g.,
Onof and Arnbjerg-Nielsen (2009) or Cross, Onof, and Winter (2020)). In contrast,
most studies applying Bartlett-Lewis or related models in a climate change context
rescale the weather generator model parameters on the basis of the difference between
historical and future climate model simulations (e.g., Kilsby et al. (2007), Burton,
Fowler, Blenkinsop, and Kilsby (2010), Fatichi, Ivanov, and Caporali (2011)). This
‘change factor’ method has been criticised by Cross et al. (2020) on the basis of two
arguments. First, it assumes that the scaling relationships of rainfall statistics are sta-
tionary between the present and the future. The second problematic assumption is the
relationship between mesoscale circulation and point precipitation as simulated by the
Bartlett-Lewis models. Both relationships could change in the future, and evidence
is indeed mounting that precipitation dynamics will change in north-western Europe,
the area under study here (Bevacqua et al., 2021; Bevacqua, Zappa, & Shepherd, 2020;
Kahraman, Kendon, Chan, & Fowler, 2021). Thus, change factor methods might be-
come less applicable and new ways to apply the Bartlett-Lewis models under climate
change conditions have to be explored, such as the weather generator studied here.
Similarly, although the application of standard bivariate copulas in climate science has
grown steadily over the past decade (Schölzel & Friederichs, 2008; Tootoonchi et al.,
2022), the application of the multivariate vine copulas in weather generator or simi-
lar set-ups is limited (e.g. Vernieuwe, Vandenberghe, De Baets, and Verhoest (2015)).
Yet, they are gaining popularity in climate science (e.g., Hobaek Haff, Frigessi, and
Maraun (2015), Bevacqua, Maraun, Hobæk Haff, Widmann, and Vrac (2017), Sun et
al. (2021)) because of their ability to model the joint distribution of any number of
variables. Thus, implementations within the field of weather generation might prove
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fruitful.
Given the sparse application of both Bartlett-Lewis models and vine copulas within

weather generation, the knowledge of the transferability of such models under climate
change conditions is limited: it is possible that this model chain cannot completely deal
with the nonstationarity induced by climate change. Consequently, its performance has
to be assessed. If the quality of generated time series based on future simulations is
similar to the quality of the time series generated on the basis of historical data, it can
be assumed that the weather generator is transferable to future simulations, where it
could be of use not only for hydrological impact analysis, but also many other types of
impact. For example, the study of multivariate compound events (Zscheischler et al.,
2020) could profit from a conceptually relatively simple multivariate weather generator.

In summary, in this paper we will assess for the first time the direct calibration of a
model chain consisting of a Bartlett-Lewis model and vine copula models on climate
model output, with the goal of extending the climate model time series. This should
allow for a better investigation of climate extremes. The Bartlett-Lewis model under
study is point-based and hence only observed and simulated data for Uccle, Belgium,
will be used. To assess whether biases in the model chain affect climate change impact
analysis, the generated data will be used as input for a hydrological model.

2. Methods

2.1. Data

Two sets of time series are used in the present paper. For the historical calibration
of the weather generator, the meteorological time series of Uccle, collected by the
Royal Meteorological Institute of Belgium, is used. This time series consists of 100
years (1901-2000) of daily temperature, 120 years of 10-min precipitation (limited to
a series from 1901 to 2000 and aggregated to the daily level to be consistent with the
temperature) and daily potential evaporation, calculated using the Penman-Monteith
method on the basis of other measured variables. The precipitation time series has
been analysed frequently (Bertrand, Ingels, & Journée, 2021; De Jongh, Verhoest, &
De Troch, 2006; Demarée, 2003) and was already used for the calibration of Bartlett-
Lewis models in earlier studies, based on a part of the complete series (Onof & Wang,
2020; Vandenberghe, Verhoest, Onof, & De Baets, 2011; Verhoest, Troch, & De Troch,
1997).

For the future calibration, end-of-the-century data (2071-2100) from the Rossby
Centre regional climate model RCA4 were used (Strandberg et al., 2015), as it is one
of the few models with potential evaporation as an output variable. This model is part
of the EURO-CORDEX project (Jacob et al., 2014) and was forced with boundary
conditions from the MPI-ESM-LR GCM (Popke, Stevens, & Voigt, 2013). As climate
model data, and especially climate model precipitation data, are often biased (Maraun
et al., 2010), the Quantile Delta Mapping (QDM, Cannon, Sobie, and Murdock (2015))
bias-adjusting method was applied on all variables before the calibration of different
models, similar to Van de Velde, Demuzere, De Baets, and Verhoest (2022). Although
multiple variables are considered in this set-up, we have chosen for the univariate
bias adjustment by QDM, as this method was shown to be robust under climate
change for the Uccle dataset (Van de Velde et al., 2022). Given the limited spatial
resolution of only 0.11°, or 12.5 km, and the limited topography around Uccle (Brussels
area), we assumed that the meteorological conditions were similar enough to only
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apply bias adjustment. Nevertheless, a bias-adjusting method applied to RCM data
will always work as a de facto downscaling method. This should be avoided, as both
bias adjustment and statistical downscaling have different goals (Lange, 2019). In
addition, the large-scale variability will be transposed to the point level, inflating
the local variability, unless a stochastic method is used (Maraun, 2013). As QDM is
not stochastic, this should be taken into account, although earlier work illustrated
the robust performance of this method (Van de Velde et al., 2022). However, while
important for impact assessment, this does not influence the argumentation in this
paper. In fact, the application of QDM transforms the RCM data into point-based
data, which is the most logical choice for Bartlett-Lewis calibration.

2.2. Stochastic generator chain

2.2.1. Bartlett-Lewis model

The first step in the model chain consists of a Bartlett-Lewis model (Rodriguez-Iturbe,
De Power, & Valdes, 1987). Bartlett-Lewis models generate a precipitation time series
by generating storms using a Poisson process. Within storms, multiple overlapping
rain cells are simulated according to another Poisson process: the final precipitation
amount at a time step t is based on the superposition of the rain cells. The strength of
Bartlett-Lewis models lies in their relative simplicity and a physical interpretation as
small mesoscale precipitation systems (Burlando & Rosso, 1993). Although BL models
performed adequately for most statistical moments at many locations (Onof et al.,
2000), they have been further improved, e.g., for precipitation extremes (Kaczmarska,
Isham, & Onof, 2014), sub-hourly rainfall simulation (Onof & Wang, 2020) and for
low-frequency variability (Kim & Onof, 2020; Park, Onof, & Kim, 2019).

In the original version of the model chain (Pham et al., 2018), the ‘Randomized
Bartlett-Lewis model’ (RBL) (Rodriguez-Iturbe, Cox, & Isham, 1988) was used. How-
ever, the RBL model underestimates precipitation extremes, which can propagate
through the model chain and in impact models (Verhoest et al., 2010). Hence, Kacz-
marska et al. (2014) proposed a new model version, the ‘Randomized Bartlett-Lewis
model 2’ (RBL2), which performed well in recent studies (Onof & Wang, 2020). In
this paper, this more recent version (Onof & Wang, 2020) is used for the generation
of precipitation time series.

Seven parameters describe the RBL2 model (Fig. 1). First, a series of rainstorm
arrivals is generated according to a Poisson process with parameter λ [1/T]. For each
of the corresponding rainstorms, a temporal scaling factor η [1/T] is generated from
a gamma distribution with shape and scale parameters α [−] and 1/ν [1/T], respec-
tively. The duration of the rainstorms is exponentially distributed with parameter ηϕ,
with ϕ [−] a model parameter. The rain cells in a storm arrive according to a Poisson
process with parameter ηκ, with κ [−] an additional model parameter. The rain cell
duration is exponentially distributed with parameter η and the intensity is gamma dis-
tributed with shape and scale parameters ω [−] and ιη/ω, where the scaling factor ι [L]
determines the relation between intensity and duration. Thus, the seven parameters
of the model are λ, α, ν, ϕ, κ, ω and ι.

2.2.2. Vine copula models

For the simulation of evaporation and temperature, the vine copula models by Pham
et al. (2016, 2018) are used. These models apply the vine copula theory initiated by
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Figure 1.: Illustration of the rain intensity (dashed line) generation in the RBL2 model

Bedford and Cooke (2001, 2002); Joe (1996). Using bivariate copulas (Nelsen, 2006),
the joint distribution of any number of variables can modeled using vine copulas.
As a short reminder, Sklar’s theorem (Sklar, 1959) states that for every bivariate
distribution H with marginals F (x) , G (y), a copula C exists such that for all x, y
in R̄

H (x, y) = C (F (x) , G (y)) ,

with R̄ = R ∪ {−∞,∞}. If F and G are continuous, then C is unique.
Although other methods for modelling multivariate dependencies also exist (Joe,

2014), vine copulas have the advantage of offering a flexible choice in bivariate copulas
(Aas, 2016; Aas & Berg, 2009). Trees, as defined in graph theory (Diestel, 2018),
form the basis of the vine copula construction, and the combination of multiple trees
resembles a vine, hence the name. Each tree consists of nodes and edges. In the first
tree, the nodes represent the variables used and each bivariate copula is associated
with an edge. These bivariate copulas are transformed into the nodes of the next tree
according to the following formula:

F (x | v) =
∂Cx,vj |v−j

(F (x | v−j)F (vj | v−j))

∂F (vj | v−j)
, (1)

where F (· | v) is the conditional cumulative distribution function, v is a vector of
conditioning variables, vj is an arbitrarily chosen component of v and v−j is the vector
without this component. The choice of the conditioned variable x and the vector of
conditioning variables v determine the structure of the vine copula, where the number
of possible constructions rapidly increases with an increasing number of variables.
The regular vine was introduced by Bedford and Cooke (2001, 2002) to guide the
construction, but still allows for many possible vine copulas. The subclasses of C- and
D-vines further constrain the choice. In C-vines, there is one variable in every tree
that is joined with every other variable. In contrast, in D-vines, variables are joined
with no more than two other variables. In the present paper, we only apply C-vines, as
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only they allow for a driving meteorological variable in the vine copula construction.

2.3. Set-up

2.3.1. Ensemble overview

In the present paper, three different set-ups were run to investigate whether the
stochastic generator chain can be easily used in a future climate change setting. In the
first set-up, 100 years of the daily Uccle time series of P , T and E are used to calibrate
the models and stochastically generate 100 years of daily data for the three variables.
Care should be taken with this time series, as it is much longer than what can be
considered as a climatological time series according to the WMO definition (Trewin,
2007). However, in the context of hydrological extreme-value analysis, a 100-year time
series is valuable and a comparison of models calibrated on shorter time series with
models calibrated on this time series could be informative. To account for nonstation-
arity probably present in the time series, a detrending is performed, as detailed in
Section 2.3.2. In the second set-up, only the last 30 years (1971-2000) of the Uccle
dataset are used to calibrate, but once again 100 years of data are generated. If the
statistical moments of the 30-year calibrated time series are similar to those of the 100-
year calibrated time series, this provides strong evidence that calibrating the models
on 30 years of future data can provide valuable long time series of climatological data.
Finally, 30 years of future RCA4 simulations are used to calibrate the model chain
and subsequently generate 100 years of P , T and E data. The three resulting 100-year
time series will be discussed in what follows as ‘Hist100’ (calibration on 100 years of
historical data), ‘Hist30’ (calibration on 30 years of historical data) and ‘Fut30’ (cali-
bration on 30 years of future data). The details of the calibration and simulation are
discussed in Sections 2.3.2 and 2.3.3.

To account for the stochasticity in the models, an ensemble is created in each of the
aforementioned set-ups. In every set-up, the RBL2 is run 20 times. Temperature is then
generated 20 times conditioned on each RBL2 run. For each of the resulting 400 runs,
evaporation is generated 20 times conditioned on the 400 temperature series and the
corresponding 20 precipitation series. Thus, in the end we obtain 8000 100-year daily
time series of evaporation, 400 100-year daily time series of temperature and 20 100-
year daily time series of precipitation. This ensemble allows for an adequate assessment
of the statistical moments of each of these variables.

2.3.2. Calibration and model fit

The Bartlett-Lewis model is calibrated with the generalized method of moments
(GMM) (see Jesus and Chandler (2011); Vanhaute, Vandenberghe, Scheerlinck,
De Baets, and Verhoest (2012) for a thorough overview). In this calibration method,
k theoretical and observed statistics are compared according to the objective function

S (θ | T) =

k∑
i=1

wi (Ti (y)− τi (θ))
2 , (2)

with T (y) the observed statistic, τ the expected value under the given model with
parameter vector θ and w a weight for the given statistic. Based on the work of Jesus
and Chandler (2011), the weight matrix is the diagonal matrix of inverse variances. The
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chosen statistics are the mean, the variance, the lag-1 autocovariance, the zero depth
probability and the skewness at the aggregation levels of 24 h, 48 h and 72 h; each
month is calibrated separately. The objective function is optimized with the Shuffled
Complex Evolution algorithm (Duan, Gupta, & Sorooshian, 1993), as suggested by
Vanhaute et al. (2012). The optimization algorithm is repeated 20 times, and for each
month, the best-scoring result is used to determine the parameter values.

For the simulation of temperature, a 3-dimensional vine copula is fit to the temper-
ature (T ) and precipitation (P ) of the same day and temperature of the previous day
(Tp). In what follows, this vine copula will be denoted as VTpPT . For the simulation
of evaporation (E), this variable is combined with temperature (T ), precipitation (P )
and evaporation on the previous day (Ep), fitting a 4-dimensional vine copula VTPEpE .
Before the data are fit, they should be independent and identically distributed. To en-
sure this, the time series is split into monthly series and a vine copula model is fit
to every month. Within-month trends are assessed by an ANOVA test when distribu-
tions are homoscedastic, a Welch ANOVA test when distributions are heteroscedastic
(Welch, 1947), or a Kruskal-Wallis test (Kruskal & Wallis, 1952) when distributions
are non-normal and heteroscedastic, at a significance level of 0.001. The within-month
trends are then removed to standardize temperature and evaporation before fitting
the copula models. The fit itself is realized using the VineCopula R package (Nagler
et al., 2021). The choice was limited to C-vines, and only Gaussian, Clayton, Gumbel
and Frank copula models were considered for the fit. The C-vine structure was defined
before the fit, with Tp and T the central variables of respectively VTpPT and VTPEpE .
This choice was based on the high correlation of these variables with respectively T
and E in the original time series. The copula families were fit at the bivariate copula
level, with the AIC (Akaike, 1973) as criterion. Once all bivariate copulas were fit, the
global goodness-of-fit was assessed using the White goodness-of-fit test (Schepsmeier,
2015, 2019).

The calibrated RBL2 and vine copula parameter values can be found in the Ap-
pendix, respectively in Table A1 and Tables B1–B6. Although slightly varying, most
RBL2 parameter values have the same order of magnitude across the three calibra-
tion time series. The only exception is ω, which varies more when calibrated for both
30-year time series in comparison with calibration for the 100-year time series. It thus
seems that the longer time series constrains this parameter. For the vine copulas, Ta-
bles B1–B6 show that varying configurations are obtained depending on the month.
As can be seen from these tables, the configurations all resemble each other and no
set-up has remarkable differences with an other. Yet, larger differences could occur
with a broader selection of copula families. The White goodness-of-fit test results in-
dicate that the global fit of the VTpPT vine copula is poor for all three set-ups. This is
especially pronounced in the Hist30 and Fut30 set-ups; in the Hist100 set-up, only a
few months have a globally poor fit. In addition, the Hist30 set-up has a poor global fit
for the VTPEpE vine copula. The poor fits do not necessarily imply that the estimation
and fitting procedures are futile. The bivariate copula families and their parameters
are determined tree by tree with the sequential method (Aas, 2016), whereas the
goodness-of-fit is determined globally. This causes a trade-off between the global and
local fit in vine copula fitting (Dißmann, Brechmann, Czado, & Kurowicka, 2013).

2.3.3. Sampling

The generation of new time series by RBL2 is relatively straightforward. Based on the
monthly parameters, rain cells are generated according to the principles described in
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Section 2.2.1. The precipitation of these cells is summed to obtain a daily precipitation
amount.

The sampling of the vine copulas is done according to Section 2.2.2. If the condi-
tioning vector v is univariate, Eq. (1) can be simplified as the h-function (Aas et al.,
2009):

h (x, v,Θ) = F (x | v) = ∂Cx,v (x, v,Θ)

∂v
, (3)

where the second variable always corresponds to the conditioning variable and Θ
denotes the vector of parameters of the copula. For the sampling, either Eq. (3) or its
inverse is used. As the structure of the vine copulas is defined such that the unknown
variable (T or E) is the fourth variable, the sampling becomes easy to understand.
First, the h-function is applied for all copulas joining known variables, such as CTP

in the first or CPEp|T in the second tree of the VTPEpE vine copula. This application
thus passes through all trees sequentially, using the values for conditional cumulative
probabilities calculated on the basis of the former tree as input for the following
bivariate copula. Upon reaching the last tree, a random value is uniformly drawn from
[0, 1] to describe the cumulative probability of the vine. From this point on, the inverse
of the h-function is used to calculate the unknown conditional cumulative probabilities,
starting from the second-to-last tree. This is an implementation of the standard vine
sampling algorithm; Czado (2019) provides a full overview.

2.4. Hydrological model

In this study, we use the Probability Distributed Model (PDM, Moore (2007)) to
analyze the impact of potential biases in the stochastic generator chain. The PDM
is a lumped conceptual rainfall-runoff model that uses precipitation and evaporation
time series as inputs to generate a discharge time series. The PDM as used here was
calibrated for the Grote Nete watershed in Belgium (RMSE =0.9 m3, see Pham et
al. (2018) for more details). The distance between the Uccle measurement station and
the watershed is ±50 km. The Uccle grid cell thus does not contain the watershed,
but given the limited distance and the flat topography, the meteorological conditions
can be assumed to be similar. Besides, the intended application of the hydrological
model is not to make predictions, but to illustrate the sensitivity of an impact model
to biases generated by the stochastic generator chain. Hence, no observed discharge
simulations will be used for comparison, but the original Uccle observations or climate
model output, i.e., the input for the stochastic generator chain, will be used as input
for the hydrological model.

3. Results

3.1. Distribution

The probability density functions (PDFs) of the variables allow us to determine
whether the yearly distribution is well reproduced by the stochastic generators. The
PDFs are shown in Fig. 2 and all indicate that the model chain is able to correctly re-
produce the distributions, apart from some small deviations. This is confirmed by the
Perkins’s Skill Score (PSS) values (Perkins, Pitman, Holbrook, & McAneney, 2007),
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which are all higher than 0.95 (on a maximum of 1).

Figure 2.: Original (blue lines) and ensemble of generated (red lines) PDFs of evapo-
ration, temperature and precipitation for the three set-ups.

Although the results for the PDFs indicate that the distributions are well repro-
duced, the statistical moments should be studied more in depth. As all models were
calibrated monthly, studying the moments at a monthly level allows for a better as-
sessment of the calibration quality. The moments for P are shown in Fig. 3 for the
24 h aggregation level. In the Hist100 set-up, all moments are generally simulated
adequately, apart from a slight underestimation of the variance in June and August
and an overestimation of the third central moment in June and August. The perfor-
mance of the Hist30 set-up is similar to that of the Hist100 set-up. Only the results
for the mean are slightly worse, but the results for the third central moment are bet-
ter, with less pronounced outliers. The good performance of the Hist30 set-up implies
that the time series length has a limited effect on the calibration. This conclusion is
corroborated by the results for the Fut30 set-up, although some months display large
biases. For the mean, February and November are consistently underestimated by the
model. For May and June, and to some extent September and November, the vari-
ance, autocovariance and third central moment are poorly simulated. As the results
for these months are generally better in the historical set-ups, this could be an effect
of climate change, and especially the effect of climate change on the extremes. For
example, the precipitation amount in one September month was an extreme outlier,
which had a large influence on the calibration for September. This month was con-
sequently removed from the data, leading to an improved calibration. The results for
this September month imply that months with single high precipitation extremes can
exacerbate the results. However, removal of more months might create unrepresen-
tative and unrealistic results. Alternatively, one could consider to work with longer
time series through which single events have less impact on the calibration. Yet, this
discards the meteorological definition of ‘climate’, which is relevant for communication
and comparison purposes.

The moments for temperature (Fig. 4) are adequately simulated for every set-up.
For variance and autocovariance, there are some limited biases, but the original values
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Figure 3.: Original (blue dots) and generated (box-plots) moments of the precipitation
time series for the 24 h aggregation level.

are still included in the interquartile range. Although the statistical moments for pre-
cipitation were poorly reproduced in the Hist30 time series, the bias for temperature
is much smaller, which illustrates the robustness of the weather generator: biases are
not simply recreated or enlarged in subsequent steps. For evaporation, Fig. 5 shows
that the moments of original time series are satisfactorily reproduced by the Hist100
set-up, although the autocovariance is slightly underestimated from May until August.
The Hist30 and Fut30 set-ups perform similarly. Nonetheless, for all three time series,
the underestimation is small in absolute values and the reproduction of the mean and
variance is the most important aspect.

3.2. Extremes

One of the main goals of the weather generator is the assessment of extreme weather
conditions. As the precipitation variable is most skewed, we will focus on the pre-
cipitation extremes in this section. From Fig. 6, it can be seen that the results are
far more consistent for the historical set-ups than for the Fut30 set-up. While the
Hist100 and Hist30 set-ups respectively adequately reproduce and slightly underesti-
mate the highest return period, the future set-up underestimates all return periods
larger than 5 years. Given the results for the calibration (Fig. 3), it seems that the
limited capability of the Bartlett-Lewis model to correctly calibrate the third central
moment in the Fut30 set-up is the reason for the poor reproduction of the extremes.
This becomes more clear when analyzing the extremes on a monthly basis (not shown):
the months with poor calibration results for variance, autocovariance and third central
moment also show a poor performance for the reproduction of the extremes. In the
context of the application of the Bartlett-Lewis model on future data, it is important
to understand where the extremes in the original climate data originate from. Climate
variability is the most obvious explanation, e.g., that these are extremes with a higher
return period than 30 years which are included in the limited 30-year time series. There
are two arguments in favour of this hypothesis. First, the extremes are appropriately
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Figure 4.: Original (blue) and generated (box-plots) statistical moments of temperature
for the three set-ups.
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Figure 5.: Original (blue) and generated (box-plots) statistical moments of evaporation
for the three set-ups
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reproduced in the historical time series. Second, when running the Bartlett-Lewis sim-
ulations for 1000 years (not shown), the highest precipitation values in the original
time series correspond with return periods of ± 100 years, which is reasonable. Thus,
the combined results for all three set-ups suggest that the RBL2 model is able to ap-
propriately simulate extremes, with the length of the input time series as the largest
source of uncertainty.

Figure 6.: Original (red) and ensemble of generated (grey) rainfall extremes for all
three set-ups.

3.3. Correlation

As the preservation of the correlations is an important goal of the application of vine
copulas, these should be properly assessed. In Fig. 7, the Kendall tau values for the
original and generated time series are shown. For every plot, only 20 randomly chosen
pairs were used. For all three set-ups, the same patterns emerge: the P -T and P -
E relationships are slightly underestimated, but the E-T correlation is adequately
reproduced. Despite the underestimation for P -T and P -E, the seasonal pattern is
represented quite well, implying that with some small modifications, the correlation
could be even better reproduced. The easiest modification would be the inclusion of
more copula families, although this would increase fitting complexity. In addition,
copula modelling is continuously evolving (Aas, 2016; Größer & Okhrin, 2021) and
recent advances in parameter estimation and goodness-of-fit testing could also improve
the results. Less straightforward would be the inclusion of more advanced models, such
as dynamic vine copulas (Acar, Czado, & Lysy, 2019).

3.4. Discharge

The application of a hydrological model allows for understanding the impact of biases
in the stochastic generator chain on a subsequent impact model. The difference be-
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Figure 7.: Original (blue) and generated (box-plots) correlations for the three set-ups

tween Hist100 and Hist30 on the one hand, and Fut30 on the other hand, was clearest
for the moments of precipitation (Fig. 3) and the precipitation extremes (Fig. 6). As
both have a large impact on the discharge, we can also expect a difference between
the discharge calculated on the basis of historical or future set-ups. The discharge
moments (Fig. 8) and extremes (Fig. 9) illustrate the propagation of the biases in the
Fut30 set-up. For the moments, the biases are largest in January, March and Novem-
ber. Except for November, these months do not correspond with biased months for the
precipitation moments (Fig. 3), i.e., May, June and September. This illustrates how a
hydrological model integrates P and E over a longer time period and thus makes it
more complex to link biases in the discharge with biases in precipitation. This inte-
gration and complex link is a principle that can be extended to most impact models.
The discharge biases are clearest for variance and autocovariance. As was noticed for
precipitation, a bias in variability often corresponds with biases in the extremes. A
comparison of the historical set-ups and Fut30 illustrates this. Hist100 and Hist30 are
only slightly biased: they mostly overestimate the original variance and autocovariance
(except for January). This overestimation leads to a small overestimation of the ex-
tremes. However, the biases for Fut30 are larger. For January, March and November,
the variance is clearly underestimated, leading to an underestimation of the extremes.
Yet, as for precipitation, the biases can to some extent be attributed to the limited
length of the time series. This implies that with either longer time series or longer
simulations, the model chain can yield relevant results for impact models.

4. Discussion and conclusion

In this paper, we studied the reproduction of different statistical aspects of precipi-
tation, temperature and evaporation by a multivariate stochastic weather generator.
In general, the results for the three set-ups considered show that most aspects are as
well reproduced in the future time series as in the historical time series: the PDFs
(Fig. 2), statistical moments (Figs. 3–5) and correlation (Fig. 7) were all fairly well
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Figure 8.: Original (blue) and generated (box-plots) statistical moments of discharge
for the three set-ups.

Figure 9.: Original (red) and ensemble of generated (grey) discharge extremes for all
three set-ups.
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reproduced, although there are some considerable biases in the Fut30 set-up depend-
ing on the month or the statistical aspect. Yet, the largest biases were present in the
reproduction of the extremes (Fig. 6). In contrast with the historical set-ups, the ex-
tremes were clearly underestimated in the Fut30 set-up. As a consequence, discharge
extremes (Fig. 9) were also underestimated.

The results for the extreme values for precipitation are linked to the biases in the
statistics. The highest extreme values present in the original data are underestimated
by the Bartlett-Lewis model (Fig. 6). On a yearly basis, it is hard to pinpoint the origin
of these biases. However, on a monthly basis, there is a clear correspondence between
a poor calibration and poor results for the extremes. As it is clear that anomalously
high extremes exacerbate the calibration and hence the reproduction of extremes, they
should be better understood. There is always a chance that precipitation extremes with
an effective return period larger than 30 years occur in the limited 30-year time series.
This seems to be the major reason for difficulties in the calibration of the Bartlett-
Lewis model. Despite these difficulties, the model chain can yield relevant results. The
good performance of the Hist100 and Hist30 set-ups indicates that the model chain is
preferably applied to generate long simulations of at least a few 100 years. These long-
term results could provide extremes with a more realistic occurrence probability than
the original 30-year time series, which was the goal of the paper. If only the original
time series would be used, the occurrence probability of the highest extremes would
be inflated, leading to possible over-design. In addition, impact models often integrate
meteorological aspects over longer time frames and may be non-linear, as was shown for
the discharge discussed in this paper. This further complicates results and may lead to
relatively large biases on the extremes when using only limited time series. In addition
to long simulations, the recent advances in the simulation of low-frequency variations
with Bartlett-Lewis models (e.g., Kim and Onof (2020); Park et al. (2019)) should
further improve the extremes. The problem of representation of extreme values with
Bartlett-Lewis models, either of precipitation or discharge, has often been discussed
(Verhoest et al., 2010). For a long time, many studies have focused on improving the
calibration (see e.g. Onof and Wang (2020) for a recent example). However, during
the past few years, the extension of the Bartlett-Lewis model with additional steps
for monthly to seasonal precipitation simulation has also proven to be fruitful (Kim
& Onof, 2020; Park et al., 2019). While the performance of the Bartlett-Lewis models
is good at the hourly to daily scale, these additional steps allow for more variation on
longer time scales and thus more varied extremes. Although it is a seemingly obvious
suggestion, simulation of longer time series and extending the model chain might be
better solutions for climate change impact assessment than using longer input time
series of e.g., 50 years instead of only 30 years. Under climate change, precipitation
statistics might change too much if a too long time series is considered. Introducing
longer time series for climate change impact assessment might thus actually negatively
affect the calibration, as they can no longer be considered representative of the climate
in the strict meteorological sense.

The results in this study are promising and could open up many possibilities, but
it is important to remember that they are all conditional on the input data, i.e., the
observations and the bias-adjusted climate simulations. If not done properly, bias ad-
justment can introduce additional uncertainties and biases (Ehret, Zehe, Wulfmeyer,
Warrach-Sagi, & Liebert, 2012). For example, although Van de Velde et al. (2022)
warned that non-stationarity can influence the bias adjustment of the simulated fu-
ture time series, this is not considered in this paper: only the reproduction of the values
is of importance. In addition, inflation could cause an unrealistic level of variability
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at the station level (Maraun, 2013). Thus, when using this weather generator set-up
for effective climate change impact assessment studies, these uncertainties should be
taken into account. Both the reproduction of the seasonal cycle and the correct adjust-
ment of the variables could have a large impact on the final result of the generator.
Besides the role of the bias adjustment, only one climate model and location was
used in this paper, whereas for impact assessment a model ensemble should be consid-
ered and multiple locations should be assessed, although this ultimately depends on
the goal of the impact assessment. In this situation, statistical downscaling (Maraun,
Widmann, & Gutiérrez, 2019) should also be applied to bridge the gap between the
climate model output and the station level preferred for Bartlett-Lewis calibration.
However, it could also be worthwhile to integrate the approach considered here with
already existing spatio-temporal Bartlett-Lewis models (Aryal & Jones, 2021), which
could be calibrated more directly on climate model output. Finally, in the context of
climate impact assessment, one should take into account that nonstationarity of the
variables might be more problematic than anticipated here. The traditional approach
of calibrating a Bartlett-Lewis model (and subsequent models) on calendar months
might thus not suffice, and other approaches, such as calibration on temperature bins
Cross et al. (2020), could be further investigated.

In summary, the results showed that the generator performs almost as well for the
future simulations as for the historical observations for most statistical aspects. The
largest biases were present for the third central moment of precipitation, leading to
underestimated extremes. This illustrates the limitations of a 30-year time series. As
using longer time series might have a negative impact, it will be more advantageous to
apply other recent advances in Bartlett-Lewis modelling (e.g. Kim and Onof (2020))
and use these to generate sufficiently long time series. Nevertheless, the adequate
results for most statistical moments imply that the weather generator can already be
transferred to future conditions.
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B: Vine copula calibration results

Table B1.: Fitted copulas for VTpPT for 100 years of historical data. F: Frank copula,
N: Gaussian copula, C: Clayton copula.

Month Copula
Tp, P Tp, T P, T ;Tp

Jan F N F
Feb F N F
Mar C N F
Apr F N F
May F N F
Jun F N F
Jul F N F
Aug F N F
Sep N N F
Oct C N F
Nov F N N
Dec F N N

Table B2.: Fitted copulas for VTpPT for 30 years of historical data. F: Frank copula,
N: Gaussian copula, C: Clayton copula.

Month Copula
Tp, P Tp, T P, T ;Tp

Jan F C N
Feb F F F
Mar N F F
Apr F N F
May F N F
Jun F N F
Jul F F F
Aug F F F
Sep N F N
Oct N N N
Nov C F N
Dec F F N
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Table B3.: Fitted copulas for VTpPT for 30 years of future data. F: Frank copula, N:
Gaussian copula, C: Clayton copula, G: Gumbel copula.

Month Copula
Tp, P Tp, T P, T ;Tp

Jan C C F
Feb C F F
Mar C N G
Apr G F F
May F N F
Jun F N F
Jul F N F
Aug F N F
Sep F N F
Oct C N G
Nov N N F
Dec F F N

-

Table B4.: Fitted copulas for VTPEpE for 100 years of historical data. F: Frank copula,
N: Gaussian copula, C: Clayton copula, G: Gumbel copula.

Month Copula
T, P T,Ep T,E P,Ep;T P,E;T Ep, E;T, P

Jan F F F N F F
Feb F F F F F C
Mar F N N F F G
Apr F G G F F G
May F N N F F G
Jun F N N F F G
Jul F N N F F G
Aug F G G F F G
Sep F N G N F G
Oct N G G F F F
Nov C F G N N F
Dec F F F N N F
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Table B5.: Fitted copulas for VTPEpE for 30 years of historical data. F: Frank copula,
N: Gaussian copula, C: Clayton copula, G: Gumbel copula.

Month Copula
T, P T,Ep T,E P,Ep;T P,E;T Ep, E;T, P

Jan F F F F F F
Feb F F C N N C
Mar F N N F N N
Apr F G N F F N
May F G N F N G
Jun F F F F N F
Jul F F F F N N
Aug F F F F N N
Sep N F N F F F
Oct N N N F F N
Nov C C C F F F
Dec F F F N N F

Table B6.: Fitted copulas for VTPEpE for 30 years of future data. F: Frank copula, N:
Gaussian copula, C: Clayton copula, G: Gumbel copula.

Month Copula
T, P T,Ep T,E P,Ep;T P,E;T Ep,E;T, P

Jan F F F N N G
Feb F N G G N G
Mar C G G F F N
Apr F G G F F N
May F F G F F N
Jun F N G N F N
Jul F F G F N N
Aug F F G F N N
Sep F F G F F N
Oct G G G N F F
Nov N F F F N F
Dec F F F F F F
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Größer, J., & Okhrin, O. (2021). Copulae: An overview and recent developments. Wiley
Interdisciplinary Reviews: Computational Statistics.

Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D., Watanabe, S., . . .
Kanae, S. (2013). Global flood risk under climate change. Nature Climate Change, 3 (9),
816.

Hobaek Haff, I., Frigessi, A., & Maraun, D. (2015). How well do regional climate models sim-
ulate the spatial dependence of precipitation? An application of pair-copula constructions.
Journal of Geophysical Research: Atmospheres, 120 (7), 2624–2646.

Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., . . . Yiou,
P. (2014). EURO-CORDEX: new high-resolution climate change projections for European
impact research. Regional Environmental Change.

Jesus, J., & Chandler, R. E. (2011). Estimating functions and the generalized method of
moments. Interface Focus.

Joe, H. (1996). Families of m-variate distributions with given margins and m(m − 1)/2
bivariate dependence parameters. In Distributions with Fixed Marginals and Related Topics
(pp. 120–141). Institute of Mathematical Statistics.

Joe, H. (2014). Dependence Modeling with Copulas. CRC Press.
Kaczmarska, J., Isham, V., & Onof, C. (2014). Point process models for fine-resolution rainfall.

Hydrological Sciences Journal , 59 (11), 1972–1991.
Kahraman, A., Kendon, E. J., Chan, S., & Fowler, H. J. (2021). Quasi-stationary intense

rainstorms spread across Europe under climate change. Geophysical Research Letters.
Kilsby, C. G., Jones, P. D., Burton, A., Ford, A. C., Fowler, H. J., Harpham, C., . . . Wilby,

R. L. (2007). A daily weather generator for use in climate change studies. Environmental
Modelling & Software.

Kim, D., & Onof, C. (2020). A stochastic rainfall model that can reproduce important rainfall
properties across the timescales from several minutes to a decade. Journal of Hydrology .

Kruskal, W. H., & Wallis, W. A. (1952). Use of ranks in one-criterion variance analysis.
Journal of the American Statistical Association.

Lange, S. (2019). Trend-preserving bias adjustment and statistical downscaling with
ISIMIP3BASD (v1. 0). Geoscientific Model Development , 12 (7), 3055–3070.

Maraun, D. (2013). Bias correction, quantile mapping, and downscaling: Revisiting the infla-
tion issue. Journal of Climate, 26 (6), 2137–2143.

Maraun, D., Wetterhall, F., Ireson, A. M., Chandler, R. E., Kendon, E. J., Widmann, M.,
. . . Thiele-Eich, I. (2010). Precipitation downscaling under climate change: Recent de-
velopments to bridge the gap between dynamical models and the end user. Reviews of
Geophysics.

Maraun, D., Widmann, M., & Gutiérrez, J. M. (2019). Statistical downscaling skill
under present climate conditions: A synthesis of the VALUE perfect predictor ex-
periment. International Journal of Climatology , 39 (9), 3692–3703. Retrieved from
https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5877

Moore, R. J. (2007). The PDM rainfall-runoff model. Hydrology and Earth System Sciences.
Nagler, T., Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B., & Erhardt, T. (2021).

VineCopula: Statistical Inference of Vine Copulas [Computer software manual]. (R package

25



version 2.4.2)
Nelsen, R. B. (2006). An Introduction to Copulas, Second Edition. Springer Science+Bussiness

Media, New York.
Onof, C., & Arnbjerg-Nielsen, K. (2009). Quantification of anticipated future changes in high

resolution design rainfall for urban areas. Atmospheric Research, 92 (3), 350–363.
Onof, C., Chandler, R. E., Kakou, A., Northrop, P., Wheater, H. S., & Isham, V. (2000).

Rainfall modelling using Poisson-cluster processes: a review of developments. Stochastic
Environmental Research and Risk Assessment , 14 (6), 384–411.

Onof, C., & Wang, L.-P. (2020). Modelling rainfall with a Bartlett–Lewis process: new devel-
opments. Hydrology and Earth System Sciences, 24 (5), 2791–2791.

Park, J., Onof, C., & Kim, D. (2019). A hybrid stochastic rainfall model that reproduces
some important rainfall characteristics at hourly to yearly timescales. Hydrology and Earth
System Sciences, 23 (2), 989–1014.

Perkins, S. E., Pitman, A. J., Holbrook, N. J., & McAneney, J. (2007). Evaluation of the
AR4 climate models’ simulated daily maximum temperature, minimum temperature, and
precipitation over Australia using probability density functions. Journal of climate, 20 (17),
4356–4376.

Pham, M. T., Vernieuwe, H., De Baets, B., Willems, P., & Verhoest, N. E. C. (2016). Stochastic
simulation of precipitation-consistent daily reference evapotranspiration using vine copulas.
Stochastic Environmental Research and Risk Assessment , 30 (8), 2197–2214.

Pham, M. T., Vernieuwe, H., De Baets, B., & Verhoest, N. E. C. (2018). A coupled stochastic
rainfall–evapotranspiration model for hydrological impact analysis. Hydrology and Earth
System Sciences, 22 (2), 1263–1283.

Popke, D., Stevens, B., & Voigt, A. (2013). Climate and climate change in a radiative-
convective equilibrium version of ECHAM6. Journal of Advances in Modeling Earth Sys-
tems, 5 (1), 1–14.

R Core Team. (2021). R: A Language and Environment for Statistical Computing [Computer
software manual]. Vienna, Austria. Retrieved from https://www.R-project.org/

Rodriguez-Iturbe, I., Cox, D. R., & Isham, V. (1987). Some models for rainfall based on
stochastic point processes. Proc. R. Soc. Lond. A.

Rodriguez-Iturbe, I., Cox, D. R., & Isham, V. (1988). A point process model for rainfall:
further developments. Proc. R. Soc. Lond. A, 417 (1853), 283–298.

Rodriguez-Iturbe, I., De Power, B. F., & Valdes, J. B. (1987). Rectangular pulses point
process models for rainfall: analysis of empirical data. Journal of Geophysical Research:
Atmospheres, 92 (D8), 9645–9656.

Schepsmeier, U. (2015). Efficient information based goodness-of-fit tests for vine copula models
with fixed margins: a comprehensive review. Journal of Multivariate Analysis, 138 , 34–52.

Schepsmeier, U. (2019). A goodness-of-fit test for regular vine copula models. Econometric
Reviews, 38 (1), 25–46.

Schölzel, C., & Friederichs, P. (2008). Multivariate non-normally distributed random variables
in climate research-introduction to the copula approach. Nonlinear Processes in Geophysics,
15 , 761–772.
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Tootoonchi, F., Sadegh, M., Haerter, J. O., Räty, O., Grabs, T., & Teutschbein, C. (2022).
Copulas for hydroclimatic analysis: A practice-oriented overview. Wiley Interdisciplinary
Reviews: Water .

Trewin, B. C. (2007). The role of climatological normals in a changing climate. World

26



Meteorological Organization.
Vandenberghe, S., Verhoest, N. E. C., Onof, C., & De Baets, B. (2011). A comparative

copula-based bivariate frequency analysis of observed and simulated storm events: A case
study on Bartlett-Lewis modeled rainfall. Water Resources Research, 47 (7), W07529.

Van de Velde, J., Demuzere, M., De Baets, B., & Verhoest, N. E. C. (2022). Impact of
bias nonstationarity on the performance of uni- and multivariate bias-adjusting methods:
a case study on data from Uccle, Belgium. Hydrology and Earth System Sciences, 26 (9),
2319–2344.

Vanhaute, W., Vandenberghe, S., Scheerlinck, K., De Baets, B., & Verhoest, N. E. C. (2012).
Calibration of the modified Bartlett-Lewis model using global optimization techniques and
alternative objective functions. Hydrology and Earth System Sciences.

Verhoest, N. E. C., Troch, P. A., & De Troch, F. P. (1997). On the applicability of Bartlett–
Lewis rectangular pulses models in the modeling of design storms at a point. Journal of
Hydrology , 202 (1-4), 108–120.

Verhoest, N. E. C., Vandenberghe, S., Cabus, P., Onof, C., Meca-Figueras, T., & Jameleddine,
S. (2010). Are stochastic point rainfall models able to preserve extreme flood statistics?
Hydrological Processes, 24 (23), 3439–3445.

Vernieuwe, H., Vandenberghe, S., De Baets, B., & Verhoest, N. E. C. (2015). A continuous
rainfall model based on vine copulas. Hydrology and Earth System Sciences, 19 (6), 2685–
2699.

Welch, B. L. (1947). The generalization of student’s’ problem when several different population
variances are involved. Biometrika, 34 (1/2), 28–35.

Wilks, D. S., & Wilby, R. L. (1999). The weather generation game: a review of stochastic
weather models. Progress in Physical Geography , 23 (3), 329–357.

Zscheischler, J., Martius, O., Westra, S., Bevacqua, E., Raymond, C., Horton, R. M., . . .
Vignotto, E. (2020). A typology of compound weather and climate events. Nature Reviews
Earth & Environment .

Zscheischler, J., Westra, S., Hurk, B. J. J. M., Seneviratne, S. I., Ward, P. J., Pitman, A., . . .
Zhang, X. (2018). Future climate risk from compound events. Nature Climate Change,
1.

27


