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Nuclear quantum effects on zeolite proton
hopping kinetics explored with machine
learning potentials and path integral
molecular dynamics

Massimo Bocus 1,2, Ruben Goeminne1,2, Aran Lamaire 1,
Maarten Cools-Ceuppens1, Toon Verstraelen1 & Veronique Van Speybroeck 1

Proton hopping is a key reactive process within zeolite catalysis. However, the
accurate determination of its kinetics poses major challenges both for theo-
reticians and experimentalists. Nuclear quantum effects (NQEs) are known to
influence the structure and dynamics of protons, but their rigorous inclusion
through the path integral molecular dynamics (PIMD) formalism was so far
beyond reach for zeolite catalyzed processes due to the excessive computa-
tional cost of evaluating all forces and energies at the Density Functional
Theory (DFT) level. Herein, we overcome this limitation by training first a
reactivemachine learningpotential (MLP) that can reproducewith highfidelity
the DFT potential energy surface of proton hopping around the first Al coor-
dination sphere in the H-CHA zeolite. The MLP offers an immense computa-
tional speedup, enabling us to derive accurate reaction kinetics beyond
standard transition state theory for the proton hopping reaction. Overall,
more than 0.6 μs of simulation time was needed, which is far beyond reach of
any standardDFT approach. NQEs are found to significantly impact the proton
hopping kinetics up to ~473 K. Moreover, PIMD simulations with deuterium
can be performed without any additional training to compute kinetic isotope
effects over a broad range of temperatures.

Brønsted-acidic zeolites are versatile, resistant catalysts that for dec-
ades have been recognized as the workhorse of the petrochemical
industry1. Furthermore, they are also expected to play a vital role in
next-generation biorefineries for the conversion of non-fossil
feedstocks2. From a theoretical point of view, zeolites belong to the
most studied materials in the field of heterogeneous computational
catalysis3. In their ideal, defect-free crystalline form, Brønsted-acidic
zeolites are composed of interconnected SiO4 tetrahedra, where a
fraction of the Si4+ ions is substituted by Al3+. The excess of negative
charge is compensated by the addition of a proton—the Brønsted Acid
Site (BAS)—on one of the oxygens in the first coordination sphere of

the Al substitution. Interestingly, the BAS is not confined to a specific
oxygenof theAl tetrahedron, but it can jump fromoneoxygen atom to
another in what is commonly known as the ‘proton hopping’ reaction.
This process is one of the most fundamental activated events within
zeolite chemistry (Fig. 1a) and represents the archetypal proton-
transfer reaction which is at the base of any Brønsted acid-catalyzed
reaction.

Because of its apparent simplicity, proton hopping is an ideal case
study for both experiment and theory, hence various methods have
been used to investigate the process kinetics. Experimentally, Nuclear
Magnetic Resonance (NMR)4–6, Impedance Spectroscopy (IS)7 and
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InfraRed spectroscopy (IR)8 have been employed to retrieve the acti-
vation energies for the proton hopping process. From the theoretical
side, the reaction has been tackled with various methodologies ran-
ging from static simulations9–15 to enhanced-sampling techniques
based on molecular dynamics (MD)16. Given this plethora of scientific
reports, it would be tempting to assume that every detail of the proton
hopping reaction is now revealed. However, when surveying the
available literature, a huge spread in both the theoretically and
experimentally obtained activation energies for proton hopping bar-
riers can be found (Fig. 1b).

In general, activation energies derived from NMR spectroscopy
are lower than the theoretical ones. From IRexperiments, twodifferent
activation energies were obtained for two different temperature ran-
ges (398-548 and 573–773 K, see red diamonds in Fig. 1), a fact thatwas
attributed to the switch from intra-site hopping to inter-site hopping8.
However, a more recent investigation has disproven such interpreta-
tion and indicated active site proximity effects as the main cause for
the observed change in activation energy17. Inter-site hopping was also
suggested to be responsible for the high activation energies retrieved
with IS7.

To understand this lack of consistency, it is important to consider
themain possible sources of discrepancy between the proton hopping
barriers from literature. First, the residual presence of water in the
catalyst is often indicated as the main source for the—in general—low
experimental barriers10, as it is almost impossible to achieve a com-
pletely dry material with routine drying procedures18. Moreover, the
presence of defective sites like extra-framework aluminum species is
known to alter the BAS’ acidity compared to the pristine material19. On
the theoretical side, most of the calculations performed so far did not
explicitly account for the quantum nature of the hydrogen nucleus.
Instead, the nuclei in the system are treated as classical particles
moving on an underlying Potential Energy Surface (PES), which is
obtained by solving the electronicmany-body problemusing quantum
many-body techniques. This is normally done usingDensity Functional
Theory (DFT) for the sake of computational efficiency. In what follows,
the terminology ‘classical DFT PES’ will be used to refer to nuclei that
are treated as classical particles on a DFT-determined PES, thus the
electronic degrees of freedom are treated quantum mechanically
whereas the nuclei are treated as classical particles. To include Nuclear
Quantum Effects (NQEs), approximative methods have been used. For

example, tunneling corrections have sometimes been applied to
account for NQEs12. To more rigorously account for NQEs, one should
resort to computationally more expensive methods such as the Path
Integral Molecular Dynamics (PIMD) approach, which relies on Feyn-
man’s path integral formulation of quantum mechanics. Within PIMD
simulations, the statistics of quantum particles are retrieved using a
classical ring polymer consisting of P replicas of the system20. Each
replica runs on the classical DFT PES, making PIMD P times more
expensive than a standard MD simulation. This is because an inde-
pendent DFT-level energy and force evaluation must be performed
every MD step for each replica. Within the field of heterogeneous-
catalyzed reactions such simulations have so far been mostly unfea-
sible due to the high computational cost of each PIMD step, as at least
10 replicas are usually required to achieve converged results—making
the simulations prohibitively expensive21. Nonetheless, there is clear
evidence that NQEs may have a significant impact on the physico-
chemical properties of systems containing light atoms20,22–24. For
example, it is well-known that they can significantly affect the strength
of hydrogen bonds in a variety of systems25,26. NQEs have never been
explicitly included in zeolite-related reactions and thus it remains
unclear to what extent they would affect the rate of proton hopping
and by extension any proton-transfer reactions within the field of
zeolite catalysis.

To fill this gap of knowledge, we present in the current con-
tribution amethodology thatmayallow to systematically includeNQEs
when investigating activated hydrogen transfer events. To this end,
proton hopping in H-CHA with isolated active sites is used as a case
study (Fig. 1c), for whichwe first trained an accurateMachine Learning
Potential (MLP) based on an underlying set of high-temperature DFT
Umbrella Sampling (US) simulations. The use of enhanced-sampling
simulations is essential to explore in an efficient way the less-probable
highly energetic regions of the PES, which are typically associated with
reactive events. The underlying DFT simulations at finite temperatures
serve as input to train a deep neural network MLP (Fig. 2). Once an
accurate MLP is constructed, an enormous computational speedup
can be achieved, which allowed to: (i) compute the Free Energy Sur-
faces (FESs) of all possible hoppings around an isolated Al defect in the
temperature range 273–873 K with a large number of umbrellas and
long simulation times to obtain well-converged results, (ii) explicitly
include NQEs through the PIMD approach, (iii) derive accurate kinetic

1 10 2101 10 210
0

50

100

150

Si/Al ratio

−
1

A
ct

iv
at

io
n 

en
er

gy
 (

kJ
 m

ol
)

1 10 210 1 10 210310

300K
600K

398-548K
573-773K

CHA MFI MOR FAU

ab initio

IR
NMR
IS

a

c

b

Si
O

Al
O

Si

H

398-548K

573-773K
398-548K

573-773K

Zeolite topologies

O2
O3

O4

Fig. 1 | Poor agreement is found in the available literature for the activation
energy of the proton hopping reaction. a Schematic depiction of the proton
hopping reaction. b Activation energy for the proton hopping process as function
of the Si/Al ratio formultiple zeolites, as derived from the available literature75. The
data was obtained from ab initio calculations (blue, the points with an asterisk
correspond to cluster calculations and, therefore, the Si/Al ratio ismeaningless) or
IR (red), NMR (yellow) and IS (green) spectroscopies. If more values are available

for different temperatures, they are reported with diamonds interconnected by a
dotted line. Formore details about the reported values and a full list of references,
the interested reader is referred to Supplementary Note 1. c Part of the H-CHA unit
cell, showing the conventional nomenclature of the oxygen atoms in the first
coordination sphere of the Al defect adopted herein (Si is in yellow, O in red, Al in
blue and H in white).
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constants beyond the Transition State Theory (TST) approximation,
taking barrier recrossing into account via the reactive flux formalism27

and (iv) perform an additional set of simulations with deuterium
instead of protium to explicitly compute the Kinetic Isotope Effect
(KIE) on the reaction.

We show that even at catalytically relevant temperatures (>400K)
NQEs may still be important to consider when computing reaction
kinetics and their relevance is not restricted to the absolute low tem-
perature regime. While the work performed here is illustrative for the
most basic proton hopping reaction in zeolites, it provides the means
to routinely include NQEs and explicitly calculate KIEs when studying
any proton-transfer event in heterogeneous catalysis.

Results
Construction of a reactive MLP with DFT accuracy
To train an accurate MLP, a sufficiently large set of DFT datapoints is
required, which should cover the relevant regions of the reaction
phase space. To this end, high-temperature (873K)DFTUS simulations
were performed on a CHA conventional cell containing 36T Si atoms,
where 1 silicon is replaced by Al to give a final Si/Al ratio of 35. The
temperature choice of 873 K is arbitrary but, in general, on the higher
end of typical zeolite-catalyzed processes1. In the CHA topology, all T
atoms are equivalent. However, the four O atoms in the first coordi-
nation sphere of the Al defect are not (Fig. 1c). This leads to 6 distinct
hopping paths, which are all considered in this work. To assess whe-
ther anypath couldbe significantly disfavored, activation free energies
were initially screenedwith static calculations. The results suggest that
all 6 possible hopping paths have relatively similar activation free
energies (within ~20 kJmol−1) and no single one is strongly (dis)favored
(Supplementary Note 2). Therefore, 6 separate DFT US simulations at
873K were performed to sample all the possible hoppings. A differ-
ence in coordinationnumbers between the proton and the twooxygen
atoms involved in the hopping was used as main collective variable to
bias the system (see “Methods” section and Supplementary Note 3).
One-dimensional umbrellas were used to sample the reaction path
and, if needed, additional two-dimensional umbrellas were added to
improve the sampling of scarcely visited regions of the phase space
(more details are reported in Supplementary Note 3.2). A full overview
of the DFT US results is reported in Supplementary Note 4.

Energies and forces were extracted every 5 fs from the DFT US
trajectories, yielding a total of ~1,200,000 structures which were used
to train an MLP with the SchNetPack package (see “Methods” section
and Fig. 2)28,29. Performing MD simulations with the MLP provides a

dramatic speedup in computational time, going from ~8.3 s/step on 56
Xeon E5-2680v4 CPUs@2.4GHz cores to ~0.01 s/step on a single NVI-
DIA Volta V100 GPU. As part of the MLP validation, well-converged
873KDFTFESswere generated to compare themwith theMLP-derived
ones within a reasonably small uncertainty. To this end, about 50 ps of
simulation time was required for each DFT umbrella. Considering that
19 umbrellas are needed to sample each of the 6 hoppings, this was a
computationally demanding task. On the other hand, it also provided
uswith a very large number ofDFTdatapoints, hence the large number
of structures used to train the MLP. With the acquired knowledge that
a mean absolute error on the force of about 40meVÅ−1 is sufficient to
obtain very accurate FESs (vide infra), we also tested the performance
of newer andmore data efficient equivariant neural networks30, where
preliminary results indicate that a few hundred fs per umbrella
are sufficient to achieve converged results (Supplementary Note 10),
providing an enormous computational saving in the DFT data
generation.

To further validate the trained MLP, we also tested whether it
could reproduce FESs at lower temperatures than the training one. To
this end, three additional sets of DFT US simulations were performed.
The 2–3 hopping was tested at 573 and 273 K, while the 1–4 hopping
was tested at 273 K. With this choice, the hoppings with the smallest
activation energies are tested and all four oxygens are considered at
the lowest temperature. For the sake of clarity, a detailed comparison
between the MLP and DFT results is presented in Supplementary
Note 6.1, while here only the 2–3 hopping is discussed in detail. As
shown in Fig. 3, the DFT and MLP FESs exhibit an almost perfect
overlap, with most variations contained well within the error bars. The
free energy barrier exhibits a clear increase with temperature, which is
in line with a rigid transition state associated with a negative entropy
variation. It must be pointed out that, thanks to the large computa-
tional speedup enabledby theMLP, longer simulation times (100ps vs.
50 ps per umbrella) and a larger number of umbrellas (39 vs. 19 per
hopping) were easily achievable. This led to a vastly improved sam-
pling of the reaction PES, thereby obtaining much better converged
FESs. Moreover, all MLP simulations were repeated three separate
times starting fromdifferent initial velocities and the associated results
and uncertainties were obtained by averaging over these three inde-
pendent runs. Initially, the 573 K DFT profile presented a moderate
spike in the transition state region, which was not present in the MLP
profile. Therefore, 2 additional umbrellas were added in the proximity
of the transition state and an additional 40 ps of simulation was per-
formed in every umbrella, for a total of 90ps. The final DFT profile
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Fig. 2 | Kinetic and thermodynamic properties with and without NQEs over a
wide range of temperatures can be computed using an MLP trained on high-
temperature enhanced-sampling DFT simulations. The pictures show a simpli-
fied schematic representation of the PES experienced by the protonwhenhopping

between two oxygens around the Al site (red and blue spheres, respectively),
sampledwithDFT simulations (a) and subsequently learnedwith theMLP (b). Inb a
schematic view of the hydrogen ring polymer with P beads running on the classical
MLP PES is shown.
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reaches almost perfect agreement with theMLP one, highlighting how
the (small) differences betweenMLP andDFT FESs are almost certainly
caused by sampling issues rather than by significant deviations in the
underlying PES. The results show that (i) the trained MLP is effectively
capable of encoding chemical reactivity and (ii) high accuracy on the
computed FESs is retained also for temperatures lower than the
training one, offering thermodynamic transferability in terms of
operating conditions.

While directly superimposing FESs provides an intuitive visual
means of comparison, the FES itself is not experimentally measurable.
The finalmacroscopic quantity of interest is the kinetic constant of the
reaction, which does not depend on the choice of the collective vari-
able used to represent the FES31,32. By means of classical (TST), the
forward and backward kinetic constants for the 6 high-temperature
hoppings, the 2–3 hopping at 573 K and the 1–4 and 2–3 hoppings at
273K were retrieved (see “Methods” section). Fig 4 reports a graphical
comparison between the DFT and MLP rates, where the computed
kinetic constants are converted to a corresponding phenomenological
barrier using Eyring’s equation32. The sole purpose of the latter is to
provide a more tangible equivalent to the kinetic constant, without
comparing values that can span multiple orders of magnitude (more
details are provided in the “Methods” section). None of the computed
barriers differ more than ~5 kJmol−1 and, for most of the hoppings, the
MLP values lie within the error bars of the DFT ones. These results
indicate that the MLP accurately reproduces the DFT PES underlying
the proton hopping reaction in H-CHA and can therefore be used to
compute reaction rates at any temperature of interest and to explicitly
introduce NQEs through the PIMD approach (Fig. 2).

Full characterization of the hopping kinetics
Having validated the MLP to faithfully reproduce the proton hopping
FESs over a broad temperature range (273-873 K), additional US
simulations were performed to retrieve the full reaction kinetics con-
sidering all hopping paths. Moreover, NQEs can be systematically
included in the reaction investigation as the PIMD formalism becomes
accessible, thanks to the large computational efficiency of theMLP. To
obtainwell-converged FESs, at least 16 system replicas (also referred to
as beads) are required in the ring polymer (Supplementary Note 7.1). A
graphical visualization of the spreadof the beads around the transition
state region comparedwith the classical case is shown in Fig. 5,where it
becomes clear that quite some uncertainty is present on the proton’s
position compared to the classical deterministic trajectories. A full
overview of the classical and quantum FESs is reported in Supple-
mentary Notes 6.1 and 7.3, respectively. Introducing NQEs leads to a
general decrease of the free energy barriers compared to the case

where nuclei are treated classically. This effect tends to lessen with
increasing temperatures, in accordance with the expected con-
vergence between the quantum and classical behavior for high
temperatures.

Not only does the MLP allow to include in a reliable—yet com-
putationally feasible—way NQEs, but it also allows to determine
reaction kinetics beyond classical TST and explicitly include barrier
recrossing through the reactive flux formalism (obtaining the true
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mentary Note 3.3. Source data are provided as Source Data File.
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kinetic constant of the reaction)27,33, which is in its turn part of the
Bennett-Chandler reaction rate theory34,35. In this approach, multi-
ple unbiased simulations (5000 in this case) are initialized atop the
transition state and monitored through time, to retrieve whether
they end up in the product basin or whether they recross the barrier
towards the reactant basin (see “Methods” section). This approach
is most appropriate when NQEs are included, as quantum TST
approximations such as ring polymer molecular dynamics (RPMD)
TST do not yield a strict upper bound for the quantum rate (more
details can be found in Supplementary Note 7.4)36. Overall, the MLP
US simulations allowed to compute three different kinetic con-
stants for all hopping paths and all temperatures: a classical TST-
based one (kc

TST), derived from classical MD and the TST approx-
imation, a classical Bennett-Chandler one (kc

BC), where barrier
recrossing is now explicitly taken into account and, finally, a
quantum Bennett-Chandler one (kq

BC), analogous to kc
BC but derived

from the RPMD simulations and thus including NQEs. Remark that
the amount of data used to obtain them is well beyond the reach of
any pure ab initio methodology where all energy and force evalua-
tions are performed at the DFT level. Even when excluding the
thousands of short trajectories required to obtain well-converged
kBC values, computing the quantum FESs requires 42 sets of US
simulations (6 hopping paths at 7 different temperatures), each
consisting of 39 umbrellas simulated with 16 parallel beads—for a
total of more than 0.6 μs of simulation time. Such simulation
lengths are clearly beyond the limit of any DFT-based MD
simulation.

While demonstrating the impact of NQEs on the reaction rate is
important to highlight the cases in which NQEs cannot be neglected
and should thus be accounted for computationally, the resulting
‘quantum speedup’ is not experimentally measurable as NQEs are an
intrinsic part of nature. What is often measured experimentally, on
the other hand, is the KIE—namely the change in rate when the
hydrogen atoms in the system are substituted with deuterium
(other isotopic substitutions are of course also possible37). Inter-
estingly, the MLP trained on 1H simulations can be directly used for
KIE calculations, as the reaction PES does not depend on the atomic
masses but only on their charge. An additional set of PIMD simula-
tions was therefore performed at 273, 573 and 873 K with the BAS
mass set to 2 a.m.u. Given the linear behavior of ln kq

BC

� �
over the

whole temperature range (vide infra, Fig. 7), the intermediate
temperatures were no longer considered. A full overview of
the simulations’ results is reported in Supplementary Note 7.5. The
error on the MLP forces with respect to DFT remains basically
unaffected by the change in the hydrogen mass, confirming that
both simulations sample analogous PES regions (Supplementary

Fig. 20). The reactive flux kinetic constant for the PIMD simulations
with deuterium will be indicated with kq

BC(
2H), while for protium

simulations the isotope label will be omitted.
Using the computed kinetic constants, the equilibrium coverage

of the 4 oxygen sites (θi, i= 1� 4) was determined as a function of
temperature (more details can be found in Supplementary Note 8).
The results for 1H are shown in Fig. 6a–c. When considering the kc

TST

and kc
BC kinetic constants, similar equilibrium populations are

obtained within the limits of uncertainty (Fig. 6a, b), which is a con-
sequence of the similar recrossing rate between the forward and
backwardbarriers. Ingeneral,O1 andO3 are themost populated sites at
any temperature, followed by O2 and O4. In the classical case, O3 has
the largest population up to 373K, while at higher temperatures its
population becomes nearly identical to O1. Significantly different
results are obtained when the quantum kinetic constants (kq

BC, Fig. 6c)
are considered, where θ3 remains significantly larger than θ1 at all
temperatures. A similar trend is obtained for the PIMD simulations
with deuterium (Supplementary Fig. 19). When the proton is on O3, it
finds itself oriented towards the center of the 6 T atoms ring (Fig. 6d)
and can, therefore, interact with the oxygens on the opposite side. To
understand more profoundly the impact of these intra-framework
interactions, we performed a 273 K classical MD and PIMD simulations
of the zeolite with the proton located on O3. We then analyzed the
radial distribution functions (RDFs) of the proton with the 6 oxygens
sharing the Si and Al with O3 (‘adjacent’ in Fig. 6e) and all the other
oxygens in the unit cell (‘others’). We found that—as expected— the
BAS lieswithin 2–3 Å from theoxygenson theother sideof the6-Si ring
and will therefore interact with them. By comparing the classical and
quantum RDFs (Fig. 6e), it can be seen how the maximum in the RDF
H-O (others) occurs at slightly shorter distances in the quantum case
and, moreover, shorter distances—in the order of ~2 Å—are explored
more often. Based on thesefindings, it appears that when the quantum
nature of the hydrogen nucleus is considered the weak interaction
between the non-adjacent framework oxygens and the proton
becomes stronger and, as a result, O3 becomes further stabilized with
an increase inθ3. No other site interactswith other frameworkoxygens
within 3 Å (Supplementary Fig. 18). Previous reports in the literature,
based on geometrical considerations concerning the crystallographic
zeolite unit cell, suggested that none of the four BAS locations are
suited to formH-bondswith other oxygens in the framework38. This no
longer seems to be the case when temperature effects and NQEs are
explicitly taken into account. The number of zeolite frameworks pre-
senting this type of intra-framework interaction could thus be higher
than previously thought38 at realistic operando conditions.

Once all the equilibrium coverages as a function of temperature
are known, the overall hopping rate can be computed using the

Fig. 5 | The use of PIMD leads to a significant spread in the proton location.
These two snapshots, arbitrarily extracted from the transition state umbrella of the
2–3 hopping, highlight how the system beads in PIMD (b) can be spread quite
significantly in space with respect to the classical case (a). For the sake of clarity,

only the H-SSZ-13 atoms up to the second coordination sphere around the Al site
are shown and in b a superposition of all beads is only present for the proton. Si is
depicted in yellow, O in red, Al in blue and H in white.
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formula:

r =
X4

i = 1

X4

j≠i

kijθi, ð1Þ

where kij is the kinetic constant of the hopping fromOi to Oj and θi the
coverage of Oi. From this, an Arrhenius plot for the hopping rate as a
function of the temperature is computed (Fig. 7a), whose activation
energy should be comparable with experiment. First, we analyzed in
how far each of the hoppings is contributing to the overall rate. In all
cases, only two hopping paths dominate the rate kinetics (Fig. 7b),
namely the 1↔ 4 and 2↔ 3 paths, as one could expect based on their
low free energy barriers. Note that the forward and backward rates
have similar contributions, as a higher free energy of the minimum
corresponds to both a lower coverage and a lower free energy barrier
to hop towards a stabler minimum. These two factors tend to cancel
eachotherwhen computing kijθi. Minor contributions are given by the
1↔ 2 and 2↔ 4 paths, while the remaining two paths (1↔ 3 and 3↔ 4)
only have noticeable contributions at the highest temperatures. In the
deuterium case, the 2↔ 3 path becomes even more dominant at the
expenses of 1↔ 4 as it appears that the transition state energy is not
shifted consistently by the isotope substitution (Supplemen-
tary Fig. 18).

By considering the slope of the best fit lines in the Arrhenius plots
(Fig. 7a) it is possible to retrieve an effective activation energy for the
proton hopping reaction. The kc

TST results yield an activation energy of
67.1 kJmol−1. Going beyond the TST approximation and explicitly

including recrossing (kc
BC) does not significantly change the results,

with a consistent—but almost negligible—decrease in the rate across
the whole temperature range. When NQEs are included (kq

BC), in con-
trast, the activation energy decreases with about 11 kJmol−1 due to the
possibility of the proton to tunnel through the potential energy bar-
riers. When analyzing the rates related to a specific hopping (Supple-
mentary Fig. 17), it was noticed that this effect is not constant, and
becomes more prominent in the hopping paths with a more sharply
peaked FES around the transition state region (Supplementary Figs. 15
and 16). This is because a narrower barrier increases the probability of
tunneling, which in practice means that the beads of the ring polymer
are easily located on both sides of the potential energy barrier
experiencing on average a lower free energy. These results show that
the impact of NQEs is not systematic in nature and can therefore be
challenging to capture with ad hoc corrections. Indeed, previous
investigations which included NQEs through an a posteriori tunneling
correction suggested that above room temperature no significant
effect should be observed12. Our results, on the other hand, show that
the reactionproceeds 65 times faster at 273 K if NQEs are included and,
even at 373K, a 16-fold increase in the computed rate is still present
(Fig. 7c). At 473 K, the reaction remains 7 times faster while the
speedup, as expected, tends to become negligible at higher tempera-
tures. It appears therefore that for zeolite-catalyzed processes con-
ducted atmilder conditions, amongwhich the ones related to biomass
conversion are a predominant example2, NQEsmight benon-negligible
when computing the kinetics of proton-transfer steps. A few examples
where these effects might be important are the aqueous cyclohexanol
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dehydration inH-Beta zeolite at temperatures of about 400K39 and the
oxidation of methane to methanol in copper-loaded zeolites carried
out at ~473K40. These two cases serve as examples of the relevant
application area and conditions influenced by NQEs in zeolites. How-
ever, it is clear thatmanymore cases couldbe affected by the inclusion
of NQEs.

When protium is substituted by deuterium (kq
BC(

2H)) the activa-
tion energy becomes 58.4 kJmol−1, yielding a small increase of 2.6 kJ
mol−1. This is in line with the modest magnitude of the predicted KIE
(given by the ratio between the total rate with protium and with deu-
terium, Fig. 7d), which equals 3.1 at 273 K and decreases to 1.4 at 873 K,
in line with standard Bigeleisen-Mayer KIE theory41,42. It can be noted
how the deuterium rates remain significantly larger than the classical
kc
BC ones, indicating that the increase in mass is not sufficient to fully

suppress the quantumbehavior. Unfortunately, there has not been any
experimental attempt so far to measure the KIE for proton hopping in
zeolites. Theoretically, an early investigation based on static cluster
calculations was performed by Fermann and Auerbach43. According to
their semiclassical TST model, the differences between 1H and 2H are
limited above room temperature, in line with our results.

So far, the study focused on H-CHA, which has a single indis-
tinguishable T-site and a small unit cell. To broaden our scope, it is
important to assess the MLP capability of describing other zeolite
frameworks on which the MLP was not trained. To this end, the
transferability of theMLP to other zeolite topologies was investigated.
More specifically, we selected five all-silica frameworks from the
international zeolite (IZA) database44 that are of interest for catalytic
applications3 (AFX, CHA, FER, MFI and MOR) and performed a 100ps

NVT DFT MD simulation using the crystallographic unit cell para-
meters reported in the IZA database (see Supplementary Note 9). The
CHA topologywas included as a control system, to ensure that theMLP
is robust with respect to changes in the unit cell volume. None of the
MLP simulations presented obvious instabilities and the error on the
forces is not excessive, even for frameworks that do not share any
secondary building unit with CHA, varying between 196meVÅ−1 for
MOR and 258meVÅ−1 for MFI. The quality of the zeolite trajectories,
monitored through the Si–O and Si–Si RDFs, remains reasonably good
with only small long-range differences forMFI (Supplementary Fig. 19).
Testing the proton hopping reactivity in a systematic way for more
frameworks would require a further set of expensive ab initio US
simulations and, therefore, is outside the scope of this work. The
results obtained on the all-silica frameworks, nonetheless, still indicate
that the MLP can capture to a large extent the chemistry of Si–O–Si
bonds and, therefore, we expect that not many additional DFT simu-
lations would be needed to retrain it and extend its accuracy to new
zeolite frameworks, for instance building on the transferable MLP for
siliceous frameworks byErlebachet al.45 towards aluminum-containing
zeolites of catalytic interest.

Discussion
Proton-transfer reactions are of primordial importance within zeolite
catalysis. Thus far, it was unclear in how far NQEs affect the barriers
and rates of proton hopping processes at realistic operating condi-
tions, as their explicit inclusion through PIMD was prohibitively
expensive if the underlying classical PES is evaluated at a DFT level of
theory. Herein, we showed that a reactiveMLP can be trained based on
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underlying high-temperature (873K) US simulations at the DFT level,
that provides kinetic results with a similar accuracy as the underlying
DFT data. However, thanks to the enormous computational speedup
gained by describing the PES based on the MLP compared to the ori-
ginal DFT energy and force calculations, the MLP can be used to per-
form virtually any type of simulation that relies on the classical PES of
the considered reaction(s) over a broad range of temperatures. The
proposed methodology thus not only succeeds in reproducing the
underlying DFT simulations but comes with a series of advantages that
were so far unreachable due to the prohibitively excessive
computational cost.

First, the convergence of the free energy surfaces obtained from
enhanced-sampling techniques can be improved by using many more
umbrellas and by simulating for a longer time. Secondly, PIMD can be
employed to explicitly account for the quantumnature of the nuclei in
the system. While the inclusion of NQEs through MLPs has already
been proposed in the literature22,46,47, the application of PIMD/MLP to
an activated event in heterogenous catalysis was still unexplored. We
remark that for simulations at cryogenic temperatures the number of
beads required to achieve converged results could become very large
even for the MLP. This problem can be mitigated by coupling the MLP
simulations with path integral acceleration techniques20. Thirdly, it
also becomes possible to go beyond the TST approximation and
explicitly include barrier recrossing via the reactive flux formalism,
thereby obtaining the true kinetic constant of the reaction. Because of
the thousands of short MD trajectories that have to be initialized atop
the transition state, this type of calculationwas so far too expensive to
beperformed at aDFT level of theory. Themore efficientmethodology
for describing the forces and energies may also open the window to
use methods like transition path sampling within the field of zeolite
catalysis, which were thus far not truly accessible due to the large
number of paths that needs to be sampled at the DFT level48. Finally,
KIEs can be explicitly computed if the PIMD simulations are performed
with different nuclear masses, as this does not affect the underlying
PES learned by the MLP.

Our results show that the expected Arrhenius activation energy
for the hopping process, considering all six hoppings and the cov-
erages of the four oxygen sites, is 67.1 kJ mol−1 in the absence of
NQEs, whereas including the quantum nature of the proton brings
the activation energy down to 55.8 kJ mol−1. When quantitively
comparing this activation energy to experimental results, it is
important to note that this study makes use of the revPBE-D3 level
of theory, which is known to underestimate the activation energies
of chemical reactions16,49,50. In this sense, our barriers will present a
lower boundary for the chemically accurate activation energy.
Because of the large improvement in data efficiency of newer MLP
architectures (Section S10 of the Supplementary Information), we
believe that training an accurate model based on a more expensive
albeit more reliable exchange-correlation functionals should
become feasible. The computed activation energy remains rela-
tively higher than the experimentally available ones. Themost likely
source of discrepancy lies in the perfect crystalline nature of the
adopted zeolite model. The presence of residual water molecules,
defects (EFAL species, for instance) and an heterogeneous alumi-
num distribution are basically unavoidable at the macroscale and all
these factors are known to potentially affect the behavior of pro-
tons in zeolites17,19,51. According to the simulations, a primary KIE of
about 3 is expected at 273 K but no experimental evidence is
available thus far to corroborate this result.

This proof-of-concept study presents a general scheme to obtain
MLP models that can simulate proton hoppings and activated pro-
cesses in zeolite catalysis with improved realism. The proposed
methodology is, in principle, extendible to additional reactions and
reactive environments, making it a valuable tool for studying a wide
range of catalytic phenomena52.

Methods
Umbrella sampling simulations
The hopping of the H-CHA BAS between the oxygens in the first
coordination sphere of the Al defectwas studied bymeans of umbrella
sampling simulations53,54. In this approach, quadratic bias potentials
(the ‘umbrellas’) are placed along a certain collective variable (q) which
should smoothly vary between reactants and products. The bias has
the form Vi qð Þ= 1=2Ki q� q0,i

� �2, where Ki is the force constant of the
ith umbrella and q0,i its center. An MD simulation is then performed
within each umbrella. To study the proton hopping, the chosen col-
lective variable is a difference of coordination numbers (CNs) between
the BAS and the two oxygens involved in the hopping:

q=CN Oi; H
� �� CN Oj; H

� �
=

1� rOiH

r0

� �N

1� rOiH

r0

� �2N �
1� rOjH

r0

� �N

1� rOjH

r0

� �2N ð2Þ

The specific values of theN and r0 parameterswere adaptedbased
on the reaction conditions, more information can be found in Sup-
plementary Note 5.2. The bias potential was applied using PLUMED55,56

and the final statistical analysis of the data was performed with our in-
house developed ThermoLIB library57. For some of the hoppings,
additional wall potentials were required to prevent undesired side
reactions; further details are reported in Supplementary Note 3.1.4

DFT molecular dynamics
To perform the DFT MD simulations, the CP2K software package
(version 7.1)58,59 was employed to compute energies and forces at a
revPBE-D3/TZVP60–62 level of theory. Because of themixed plane waves
—atom-centered orbitals approach63 used by CP2K, the plane waves
energy cutoff was set to 350 Ry andGTHpseudopotentials64 were used
to smooth the electron density in the proximity of the nuclei. A sig-
nificant dependencyof the forces on the planewaves cutoffwas found,
but this was shown to have a negligible impact on the final FESs when
much higher settings are used (Supplementary Note 3.1.5). The time
step for the integration of the equations of motion was set to 0.5 fs.
After equilibration of the unit cell (Supplementary Note 3.3.1), pro-
duction runs were performed in the NVT ensemble using a Nosé-
Hoover thermostat with a chain consisting of five beads65,66 to control
the temperature and a time constant of 334 fs (100 cm−1).

MLP training and usage
A SchNet MLP was trained with the SchNetPack package on the DFT
energies and forces which were extracted every 5 fs from the DFT US
simulations at 873 K28,29. First, the energies and forces were unbiased
by subtracting the bias potential applied in the US simulations with
PLUMED55,56. The unbiased DFT datapoints were randomly divided in a
training and validation set with a 80:20 ratio. Subsequently, the MLP
was trained with a cutoff of 6 Å, 128 features, 50 gaussians and
6 interaction blocks. The resulting MAE on the validation set is
41.9meV/Å. More details on the training are provided in Supplemen-
tary Note 5.1. Classical unbiased and US simulations with the trained
MLP were performed with our in-house code YAFF67 using a time step
of 0.5 fs and a Nosé-Hoover thermostat with three beads for tem-
perature control65,66. PIMD simulations were performed with the i-PI
driver68 using a time step of 0.25 fs and a PILE thermostat69 with a time
constant of 100 fs for temperature control. Because of the harmonic
repulsion between the beads, some of them might explore regions of
the phase space that are not necessarily well-sampled in classical DFT
US. Therefore, we also performed an extra DFT PIMDUS simulation for
the 2–3hopping (SupplementaryNote 7.2) and the resulting FES shows
an excellent agreement with the MLP one. It is important to remark
that this agreement is very likely not generalizable to other systems or
reactions and should always be tested appropriately70. In both the
classical and PIMDUS simulations, PLUMEDwasused to apply the bias.
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Kinetic rate constant calculation
The plain activation free energy obtained from a FES is largely
dependent on the choice of collective variable31,32. To remove such
dependency, it is necessary to move towards a more general macro-
scopic property of the process under study, namely the kinetic rate
constant. In the Bennett-Chandler approach to transition state
theory34,35, the rate constant of a reaction can be written as71:

kBC tð Þ= _q 0ð Þθ q tð Þ � q*� �� �
q 0ð Þ=q*

e�βF q*ð Þ
R q*

�1e�βF qð Þdq
, ð3Þ

where thefirst term is the ensemble averageof the timederivatives ofq
for trajectories that, starting atop the transition state (q 0ð Þ=q*), end
up in the product basin (as imposed by the Heavyside function
θ q tð Þ � q*
� �

). With theMLP, it is possible to explicitly compute the first
termby performing a large number of unbiasedMD simulations (5000
in this case) starting on the transition state and monitor how many of
themeffectively end up in the product basin27,33. The true rate constant
is, in principle, given by kBC = lim

t!+1
kBC tð Þ. Luckily, its value quickly

reaches a plateau and 50 fs of simulationwere sufficient to obtain well-
converged results (Supplementary Note 6.2). The rate constant
calculated in this manner is referred to as the Bennett-Chandler
one (kBC).

In general, this approach is too expensive, especially for the DFT
case, so that only the approximate transition state theory constant
(kTST = lim

t!0+
kBC tð Þ) can be computed from the US trajectories, thereby

avoiding the need for additional simulations. While kTST represents an
upper limit of the true kinetic constant, assuming a recrossing prob-
ability equal to zero, it canbe used to compare theDFT andMLP results.
Further details are reported in SupplementaryNote 3.3. To calculate the
quantum rate constants, taking NQEs into account, the approximate
technique of RPMDwas used (see Supplementary Note 7.4)72. Although
this approximation can only capture short-time quantum effects, it has
been shown to yield good quantum rates in comparison with other
approximations73 or quantum mechanical calculations74.

As the kinetic constant values can span several orders of magni-
tude, we often make use of Eyring’s equation to convert them into
phenomenological barriers, which encode the same information while
being – in our opinion – more tangible than a reaction rate.

4Fz
phen = � 1

β
ln βhkð Þ ð4Þ

Data availability
The complete training set, examples of input files, processing scripts
and the trained MLP have been deposited in the Zenodo database
(https://zenodo.org/record/7267913#.Y2U8tHbMK3A). Any additional
data is available from the authors upon request. An extended discus-
sion of the results can be found in the Supplementary Informa-
tion. Source data are provided with this paper.

Code availability
CP2K (https://github.com/cp2k/cp2k), PLUMED (https://github.com/
plumed/plumed2), SchNetPack (https://github.com/atomistic-
machine-learning/schnetpack) and YAFF (https://github.com/
molmod/yaff) are all open source and freely available at the pro-
vided links. ThermoLIB is available upon request at https://molmod.
ugent.be/software/thermolib.
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