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Abstract
Fluid–structure interaction simulations can be performed in a partitioned way, by coupling a flow solver with a structural 
solver. However, Gauss–Seidel iterations between these solvers without additional stabilization efforts will converge slowly 
or not at all under common conditions such as an incompressible fluid and a high added mass. Quasi-Newton methods can 
then stabilize and accelerate the coupling iterations, while still using the solvers as black boxes and only accessing data at the 
fluid–structure interface. In this review, the IQN-ILS, IQN-MVJ, IBQN-LS, MVQN, IQN-IMVLS and IQN-ILSM methods 
are reformulated in the generalized Broyden framework to illustrate their similarities and differences. Also related coupling 
techniques are reviewed and a performance comparison is provided where available.

1 Introduction

Fluid–Structure Interaction (FSI) is the interaction of a fluid 
with a moving or deforming structure and occurs in many 
different branches of engineering. In mechanical engineer-
ing, the blades of a wind turbine deform due to their inter-
action with the wind [1, 2]. Also Flow-Induced Vibration 
(FIV) can occur, for example in tube bundles with external 
flow, leading to leakage or even rupture of the tubes [3]. In 
civil engineering, there are interactions between wind flow 
and bridges [4], silos [5], tents [6] and many other structures. 
In the biomedical field, heart valves and arteries are flexible 
structures that interact with the blood flow [7, 8].

As fluid–structure interaction is a multi-physics problem, 
complex phenomena can occur and numerical simulations 
are frequently used for the analysis. These numerical simu-
lations of FSI can be performed in a monolithic or parti-
tioned way. Monolithic codes solve the equations for the 

fluid and for the structure simultaneously, for example with 
a Newton–Raphson procedure [9] or multigrid method [10]. 
In this review, the focus is on the partitioned approach, as 
it allows to reuse mature and optimized codes to solve the 
subproblems.

Among the partitioned approaches, one can distinguish 
between the weakly and strongly coupled techniques. 
Weakly coupled techniques (also called explicit or loose 
coupling) solve the flow equations and the structure equa-
tions only once per time step [11, 12]. Consequently, the 
equilibrium between the fluid and the structure is not satis-
fied exactly. In this context, the term equilibrium refers to 
the equality of velocities and forces on the fluid–structure 
interface. These weakly coupled techniques are typically 
suitable for aeroelastic simulations with light and compress-
ible fluids [13], but specific schemes can also be applied 
with dense and incompressible fluids [14].

By contrast, strongly coupled techniques (or implicit cou-
pling) use coupling iterations between the flow solver and 
structure solver to enforce the equilibrium at the fluid–struc-
ture interface up to a convergence tolerance in a steady simu-
lation or in each time step of an unsteady one [15–17]. As 
a result, the flow problem and structure problem are solved 
multiple times per (time) step. Obviously, these coupling 
iterations increase the computational cost, but the cost per 
coupling iteration normally decreases during the iterations 
within a (time) step as the change per iteration decreases. In 
the remainder of the paper an unsteady simulation will be 
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assumed; a steady simulation is then a special case with one 
large time step.

An important parameter for the choice between weakly 
and strongly coupled techniques, but also for the stability 
of the coupling iterations in several strongly coupled tech-
niques, is the ratio of the added mass to the mass of the 
structure [18]. The added mass is the apparent increase in 
mass of the structure due to the fluid that is displaced by 
the motion of this structure. Physically, it is influenced by 
the shape of the fluid domain and the density of the fluid. 
Numerically, also the time step size determines its effect, 
but this effect depends on whether the fluid is compressible 
or not. FSI problems with a compressible fluid can always 
be stabilized as long as the time step is sufficiently small, 
regardless of the ratio of the apparent added mass to the 
structural mass. However, for an incompressible fluid, stabil-
ity cannot be obtained by decreasing the time step size [13, 
15]. On the contrary, for incompressible flows in combina-
tion with flexible structures, decreasing the time step size 
may even increase the instability [15, 19–21]. For example, 
for the simulation of an elastic panel clamped at both ends 
and adjacent to a semi-infinite fluid domain, the added mass 
effect of a compressible fluid is proportional to the time step 
size, while for incompressible fluids it approaches a constant 
as the time step size decreases [13].

Especially for an incompressible fluid, many cases have a 
high added mass, e.g., blood flow in a vascular system [22], 
vibrations of tube bundles in lead-bismuth eutectic [23] or 
flutter of a slender cylinder in axial flow [24]. For these 
cases, the straightforward iteration between flow and struc-
ture solver within a time step will typically converge very 
slowly, or not at all, if no additional stabilization efforts are 
implemented. In this work, the focus is on techniques which 
consider the solvers as black boxes, as this is typically the 
case in a partitioned approach. Then, stabilization methods 
that alter one of the solvers, e.g., including an approximate 
added mass operator in the structural solver as in [25], are 
not possible. To stabilize and accelerate the convergence of 
coupling iterations with black box solvers, quasi-Newton 
methods have been developed in the fluid–structure inter-
action community. These methods will be reviewed in this 
work using the generalized Broyden framework.

The remainder of this review paper is structured as fol-
lows. First the FSI problem is posed and the necessary nota-
tion is introduced in Sect. 2. Then, the most basic solution 
approach is discussed in Sect. 3, with focus on its short-
comings in terms of stability and convergence speed, and 
how they can be overcome by introducing Jacobian infor-
mation. In Sect. 4, a general method to obtain these Jaco-
bians is discussed, called generalized Broyden. Thereafter, 
in Sect. 5, different quasi-Newton techniques are discussed 
in detail, including the Interface Quasi-Newton technique 
with an approximation for the Inverse of the Jacobian from 

a Least-Squares model (IQN-ILS), the Interface Quasi-
Newton technique with Multi-Vector Jacobian (IQN-MVJ), 
the Interface Block Quasi-Newton technique with approxi-
mations from Least-Squares models (IBQN-LS), the Multi-
Vector update Quasi-Newton technique (MVQN), the Inter-
face Quasi-Newton Implicit Multi-Vector Least-Squares 
(IQN-IMVLS) and the Interface Quasi-Newton algorithm 
with an approximation for the Inverse of the Jacobian from a 
Least-Squares model and additional Surrogate Model (IQN-
ILSM). This section ends with further notes and extensions 
on these methods. Finally, some numerical results to com-
pare the different techniques are provided in Sect. 6, fol-
lowed by the conclusions in Sect. 7.

2  Formulation of the FSI Problem

An abstract fluid–structure interaction problem, as shown 
in Fig. 1, consists of the subdomains Ωf  and Ωs , with the 
subscripts f and s denoting fluid and structure, respectively. 
The boundaries of the subdomains are denoted as Γf = �Ωf  
and Γs = �Ωs and the fluid–structure interface Γi = Γf ∩ Γs 
is their common boundary.

Besides having to satisfy the flow and structure equations 
in the respective subdomains while taking into account the 
appropriate boundary conditions on Γf ⧵ Γi and on Γs ⧵ Γi , 
the solution of the FSI problem is also required to fulfill 
the equilibrium conditions on the fluid–structure interface 
Γi . The equilibrium conditions on a no-slip fluid–structure 
interface are twofold. First, the equality of fluid and solid 
velocity on Γi is needed (kinematic condition)

where v⃗ is the velocity vector in the fluid domain and u⃗ the 
displacement vector in the structure domain. Remark that 
this equality also implies equal accelerations on the inter-
face. Second, equal magnitude but opposite sense of traction 
on Γi is required (dynamic condition)

(1)v⃗ =
Du⃗

Dt
,

Fig. 1  The fluid subdomain Ωf  , the structure subdomain Ωs , their 
boundaries Γf  and Γs and the fluid–structure interface Γi
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where �̄�f ,s is the stress tensor in Ωf ,s and n⃗f ,s the unit nor-
mal vector that points outwards from the corresponding 
subdomain.

As this work discusses coupling techniques that con-
sider the solvers as black boxes, only the variables on the 
fluid–structure interface Γi are of interest. However, the 
discretization of this interface is often different in the flow 
and structure subdomains. Given the focus of this review on 
coupling techniques, it is assumed that an interpolation layer 
is wrapped around or included in one (or both) of the solvers, 
invisible to the implementation of the coupling technique. 
As a consequence, the discretized displacement on either 
side of the fluid–structure interface can be represented as 
a column array x ∈ ℝ

nx×1 containing all components of the 
displacement vector u⃗ in each of the np grid points on the 
interface.

with the first subscript referring to the grid point (1 to np ) 
and the second one to the component (1 to d, with d the 
dimension).

Similarly, the pressure p and all components of the vis-
cous traction vector t⃗  in each load point (1 to nl ) on either 
side of the fluid–structure interface are grouped in a column 
array y ∈ ℝ

ny×1

also called load vector, with the same meaning of the sub-
scripts as above. Note that the nl load points do not need to 
coincide with the discretization of the displacement. It is 
important that the pressure load p ⋅ n⃗ and viscous traction t⃗  
are not added, but included individually into y , because the 
pressure is typically dominant and has to stay perpendicular 
to the surface, also when interpolation is performed. If pres-
sure and viscous traction were added, the resulting interpo-
lated vector would have a pressure contribution that is not 
necessarily perpendicular to the surface after interpolation, 
resulting in an artificial shear component that can be much 
larger than the physical shear component.

With the typical Dirichlet–Neumann decomposition of the 
FSI problem, the displacement (linked to the velocity through 
the time discretization in time-dependent problems) is imposed 
at the interface in the flow solver and a pressure and viscous 
traction distribution is applied on the interface in the structure 
solver. A flow solver with a deforming grid using the Arbi-
trary Lagrangian–Eulerian (ALE) frame of reference will be 
assumed for the explanation, but this can be replaced by other 
techniques, for example the combination of the ALE approach 
and the Chimera technique [26] to handle large body motions 

(2)�̄�f ⋅ n⃗f = −�̄�s ⋅ n⃗s,

(3)x =

[
u1,1 … u1,d u2,1 … u2,d … unp,1 … unp,d

]T
,

(4)y =
[
p1 t1,1 … t1,d … pnl,1 tnl,1 … tnl,d

]T
,

or non-conforming alternatives, such as Immersed Bound-
ary Methods (IBM) [27] and Embedded Boundary Methods 
(EBM) [28], which can handle large deformations and even 
topology changes. The flow calculation in a coupling iteration 
within a time step can be written as

This notation concisely represents several operations and 
hides the dependence on previous time steps and the vari-
ables in the fluid domain next to the interface, while empha-
sizing the dependence on the discretized displacement x of 
the fluid–structure interface. It represents the following 
actions. First, the discretized displacement is given to the 
flow solver and the fluid domain adjacent to the interface is 
adapted accordingly. Then, the flow equations are solved in 
the entire fluid domain, resulting in a new load distribution 
y on the interface.

Similarly, the calculation of the structure is represented by 
the function

As before, this expression hides the dependence on both the 
previous time steps and the variables in the structure domain 
next to the interface. It indicates that the fluid pressure and 
viscous traction distribution on the interface y is given to 
the structure code. Subsequently, that code calculates the 
displacement of the entire structure and thus also the new 
displacement x of the fluid–structure interface.

With these notations, the FSI problem is formulated as the 
system

that has to be solved for x and y . This problem can be rewrit-
ten as the root-finding problem

with unknowns x and y.
Moreover, the system in Eq. (7) can be reduced by substi-

tuting one equation in the other. Commonly, the first line is 
substituted in the second, but the other way around is equally 
possible. In this way, the FSI problem is simplified to a smaller 
system of equations

which has to be solved for x . The notation ◦ refers to func-
tion composition, so S ◦F(x) is equivalent with S(F(x)) . 
This looks like a fixed-point equation for x , but can also be 
written as a root-finding problem with unknown x

(5)y = F(x).

(6)x = S(y).

(7)
{

F(x) = y

S(y) = x

(8)
{

F(x) − y = 0

S(y) − x = 0

(9)S ◦F(x) = x,
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To write this more compactly, the residual operator R(⋅) is 
defined as

with output r = R(x) . The FSI problem thus reduces to find-
ing the x that fulfills

In this section, we have presented two formulations of the 
FSI problem. The first is the complete system Eq. (7) with 
nx + ny unknowns. The second is the reduced system Eq. (9), 
which has the benefit of having only nx unknowns. This sys-
tem has been written more compactly using the residual 
operator R resulting in Eq. (12). In the next sections, several 
methods are discussed to solve the FSI problem presented 
here, in one of both formulations.

Both the solver operators as well as the residual operator 
are typically nonlinear. Therefore, the FSI problem exhibits 
similarities with nonlinear root-finding problems. The main 
difference is that an FSI problem usually involves time step-
ping (except for steady cases), which means that a nonlinear 
system has to be solved in each time step. Therefore, within 
each time step, coupling iterations are performed until the 
solution is reached. The nonlinear systems in subsequent 
time steps are somehow related to each other, because the 
solver operators change only gradually in time. As the solu-
tion is typically continuous, the initial guess for x at the 
start of each time step can be obtained by extrapolating the 
solution from previous time steps [29].

3  Solving the FSI Problem

3.1  Gauss–Seidel Scheme

In order to solve the FSI problem, Eq. (8) has to be solved 
in each time step. One of the basic methods to solve such 
a system of nonlinear equations is the block Gauss–Seidel 
scheme. In this block-iterate scheme, each of the nonlinear 
equations is solved for one of the unknowns consecutively, 
and each unknown is updated to its new value as soon as it 
becomes available.

Because, further on, it will become necessary to make a 
distinction between the output of one solver and the input of 
the next, a tilde symbol is introduced to indicate the output 
of a solver:

Using the superscript k + 1 to indicate the current iteration, 
the block Gauss–Seidel scheme takes the following form 

(10)S ◦F(x) − x = 0.

(11)R(x) = S ◦F(x) − x,

(12)R(x) = 0.

(13)ỹ = F(x) and x̃ = S(y).

 The lastly calculated displacement vector x̃k is used as xk+1 , 
the input of the flow solver in the following iteration. Sub-
sequently, this vector is used to calculate a new load vector 
ỹk+1 which is thereafter used as input of the structure solver 
yk+1 , to calculate a new displacement vector x̃k+1 . This itera-
tion scheme, in which the output of the flow and structure 
solver is passed unchanged to the structure and flow solver, 
respectively, is the most basic way to find an equilibrium and 
is also called Gauss–Seidel scheme or fixed point iteration 
scheme.

The final solution of the FSI problem Eq. (7) has to 
fulfill the kinematic Eq. (1) and dynamic equilibrium con-
dition Eq. (2) up to a certain tolerance. This means that 
x̃ and ỹ have to approach x and y , respectively, which is 
expressed by the convergence conditions 

 Because the output of each of the solvers is passed 
unchanged to the other, this can also be written as 

 which relates to the fixed point formulation in Eq. (9).
By eliminating the occurrence of the load vector y , the 

procedure can be simplified to 

Furthermore, with the use of the residual operator intro-
duced in Eq. (11), the iteration scheme becomes 

 which is considered converged once

(14a)xk+1 = x̃k

(14b)ỹk+1 = F(xk+1)

(14c)yk+1 = ỹk+1

(14d)x̃k+1 = S(yk+1)

(15a)
‖‖‖
x̃k+1 − xk+1

‖‖‖2
≤ 𝜖x

(15b)
‖‖‖
ỹk+1 − yk

‖‖‖2
≤ 𝜖y.

(16a)
‖‖‖
x̃k+1 − x̃k

‖‖‖2
≤ 𝜖x

(16b)
‖‖‖
ỹk+1 − ỹk

‖‖
‖2

≤ 𝜖y,

(17a)xk+1 = x̃k

(17b)x̃k+1 = S ◦F(xk+1)

(18a)xk+1 = xk + rk

(18b)rk+1 = R(xk+1),
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3.2  Motivation for Using Quasi‑Newton Methods

Unfortunately, the Gauss–Seidel scheme explained above 
is not unconditionally stable due to among others the added 
mass effect.

Many researchers have investigated the stability of 
Gauss–Seidel iterations. For example, its convergence 
behaviour has been studied based on a simple model prob-
lem with a single degree of freedom on the interface [30]. 
Some investigated the added-mass effect [31]. Many others 
have explored the case of blood flow through a simplified 
artery [15, 32, 33]. They observed that, besides an apparent 
fluid mass of the similar order of magnitude as the actual 
structural mass, also a decrease in the stiffness of the struc-
ture or increase in domain length has a destabilizing effect. 
A first attempt to mathematically analyze the stability was 
done through the determination of the maximum relaxation 
factor to obtain convergence [15, 25].

Instead of looking at a single number, the stability of a 
Gauss–Seidel scheme for a simplified flexible tube model 
with Dirichlet–Neumann decomposition can be examined by 
splitting the error on the interface into Fourier modes [34]. 
The mentioned error is the difference between the correct 
interface displacement and the one in a Gauss–Seidel itera-
tion, based on linearized equations and without taking the 
boundary conditions into account. In this way, the authors 
were able to identify which frequency components become 
unstable. The analysis was first performed for a tube wall 
without inertia [34] and thereafter repeated including inertia 
[35], which proved to stabilize the convergence behaviour.

From this analysis it can be deduced that only a limited 
number of modes of the interface displacement are unstable 

(19)
‖
‖
‖
rk+1

‖
‖
‖2

≤ �x.
and that the lowest wave numbers have the highest ampli-
fication factor and are hence the most unstable ones. This 
observation is true for different combinations of parameter 
values. In other words, the divergence or slow convergence 
of Gauss–Seidel iterations are caused by a limited number 
of unstable and slowly converging modes corresponding to 
the lowest wave numbers.

The physical explanation for this observation is shown 
in Fig. 2. The figure shows an axisymmetric tube, the wall 
of which is perturbed with two different wave numbers, 
while on the in- and outlet a zero pressure boundary con-
dition is imposed. Initially, its cross section is constant 
and the incompressible fluid is at rest. In the upper part 
of Fig. 2, a low wave number perturbation is applied and, 
because the fluid is incompressible, it is accelerated glob-
ally resulting in large pressure variations. In the lower part, 
a higher wave number perturbation is applied and the fluid 
acceleration is confined to more local regions. As a conse-
quence, the pressure variations are much smaller for higher 
wave numbers. The pressure variations in the lower part 
of Fig. 2 are even barely visible, because the same scale is 
used for both cases.

Although the above analysis was performed on a flex-
ible tube, the results are more widely applicable to incom-
pressible fluids with a fluid–structure density ratio around 
one. For example, [37] arrived at the same conclusions 
by examining the stability of Gauss–Seidel iterations for 
a semi-infinite open fluid domain bounded by a string or 
a beam.

In summary, Gauss–Seidel iterations are not suitable for 
incompressible fluid cases with high added mass, because 
there is a limited number of error modes that are unstable. 
In order to obtain a solution for these cases, the unstable 
modes have to be removed by another technique to (effi-
ciently) achieve convergence. Based on the results from 
the Fourier decomposition, it follows that only the low 

Fig. 2  The pressure contours (in Pa) in an axisymmetric tube due to 
two displacements of the tube’s wall with the same amplitude but a 
different wave number. Initially, the fluid is at rest and the tube has 
a constant cross-section and zero pressure at both ends. A displace-

ment of the tube’s wall with a low wave number (top) creates much 
larger pressure variations than a displacement with a high wave num-
ber (bottom). Only the difference between the two calculations and 
not the values as such are important [36]
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wave number modes have to be stabilized, while the oth-
ers can still be treated using Gauss–Seidel iteration. The 
next section explains that the stabilization of these modes 
is achieved by including derivative information, which is 
the basic principle behind quasi-Newton techniques.

3.3  Quasi‑Newton Schemes

In order to overcome this limitation of the Gauss–Sei-
del iterations for problems with high added mass and an 
incompressible fluid, the quasi-Newton iteration scheme is 
adopted. To improve stability, one or both of the vectors x̃ 
and ỹ are modified before passing them to the other solver. 
If only one solver output is adapted, it is usually the output 
of the structural solver S as in Fig. 3b, but the opposite is 
equally possible. Figure 3c shows a schematic representation 
of adapting both solver outputs.

In the remainder of this section we will first introduce the 
adaptation of one output where we will use the modification 
of the structural output as example. This scheme will be 
referred to as the residual formulation scheme. Thereafter, 
the adaptation of both solver outputs will be introduced. The 
corresponding scheme is called the block iteration scheme.

3.3.1  Residual Formulation Quasi‑Newton Scheme

In this scheme, the output x̃k of the structural solver is 
modified to xk+1 which is subsequently used as input for 
the flow solver. The output ỹk of the flow solver is passed 
unchanged to the structural solver. Therefore, the load 
vector y can be left out altogether, as was the case for 
Gauss–Seidel iterations. With the use of the residual opera-
tor, defined in Eq. (11), the residual rk+1 in iteration k + 1 
is written as

and as before convergence is reached when Eq. (19) is satis-
fied. The difference with the Gauss–Seidel scheme is that 
xk+1 is no longer equal to x̃k . The adaption of the displace-
ment vector follows from the use of a Newton–Raphson 
approach to solve the root-finding problem Eq. (12). This 
method uses the Jacobian of the nonlinear equation, which 

(20)rk = x̃k − xk = S ◦F(xk) − xk = R(xk)

is denoted here by R′ , to estimate the input xk+1 that will 
direct the residual to 0 by solving

for xk+1 . Note that Gauss–Seidel iteration Eq.  (18) is 
retrieved if R�(xk) = −I . Likewise, relaxed Gauss–Seidel 
iteration is obtained if the Jacobian is −�I.

Because both the flow and structure solvers are considered 
black box solvers, the Jacobians of F  and S are not acces-
sible and hence, neither is R′ . Therefore, the Jacobian of the 
residual operator is approximated, resulting in a quasi-Newton 
method

where R̂′(xk) is the approximated Jacobian.
As explained in the previous section, the instability 

of Gauss–Seidel iterations is caused by a limited set of 
modes, i.e., for the vectors x in a small subspace of ℝnx×1 . 
Consequently, an approximation of the complete Jacobian 
of the residual operator R is not required. An approxi-
mated Jacobian which takes care of these unstable modes 
and leaves the other modes unchanged is sufficient. Leav-
ing some modes unchanged means that the quasi-Newton 
method will actually perform Gauss–Seidel iterations for 
those modes.

Solving the linear system in the equation above can be 
avoided by approximating the inverse of the Jacobian directly 
and calculating the update of the displacement vector as

To conclude this section, a new short-hand notation is intro-
duced for the approximate (inverse) Jacobians. For a nonlin-
ear function r = R(x) , the approximate Jacobian and inverse 
Jacobian are written as 

(21)R
�(xk)(xk+1 − xk) = 0 − rk

(22)R̂
�(xk)(xk+1 − xk) = 0 − rk,

(23)xk+1 = xk −
̂
R

�−1(xk) rk.

(24a)�k
x
r ≡ R̂

�(xk)

(24b)�k
r
x ≡

̂
R

�−1(xk).

Fig. 3  Schematic representation 
of different iteration schemes
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3.3.2  Block Iteration Quasi‑Newton Scheme

Instead of only adapting the output of one solver, it is also 
possible to adapt the output of both the flow and structure 
solver. Now both xk+1 and yk+1 are different from x̃k and ỹk+1 , 
and, because the load vector is no longer passed unchanged, it 
is not possible to use the residual operator. The convergence 
conditions are again given by Eq. (15).

The modification of the output of the solvers is determined 
by applying block Newton–Raphson iterations to the root-
finding problem Eq. (8) with unknowns x and y

where Δx and Δy are the updates for the input x and y of 
the flow and structure solvers, respectively. Further, I is the 
identity matrix and F ′ and S′ are the Jacobians of the flow 
and structure equations. Note that the two identity matrices 
will have different dimensions if the size of x and y differ.

Starting from the displacement xk that was given as input 
to the flow solver in the previous coupling iteration, the dis-
placement xk+1 = xk + Δxk is calculated by solving the system

for Δxk.
Using the updated value xk+1 and after calling the flow 

solver to determine ỹk+1 = F(xk+1) , the pressure and viscous 
traction distribution yk+1 = yk + Δyk is calculated by solving 
the analogous system

for Δyk . Subsequently, the structure solver is called to deter-
mine x̃k+1 = S(yk+1).

Similar to the previous section, the Jacobians are not acces-
sible, because the solvers are considered black boxes. There-
fore, approximations denoted by F̂ ′ and Ŝ′ are used instead. 
Note that here two normal Jacobians are required, one for each 
solver, whereas in the previous section only one inverse Jaco-
bian was required, namely the inverse Jacobian of the residual 
operator.

Adopting the same short-hand for the approximated Jacobi-
ans as in the previous section results in the following notations 

(25)
[
F �(x) −I

−I S
�(y)

] [
Δx

Δy

]

=

[
0

0

]

−

[
F(x) − y

S(y) − x

]

,

(26)
(
I − S

�(yk)F �(xk)
)
Δxk = x̃

k − x
k + S

�(yk)(ỹk − y
k)

(27)
(
I −F

�(xk+1)S�(yk)
)
Δyk =ỹk+1 − y

k

+F
�(xk+1)(x̃k − x

k+1)

(28a)𝜕k
x
ỹ ≡ �F�(xk)

(28b)𝜕k
y
x̃ ≡

�S�(yk).

4  Approximating Jacobians

The previous section introduced quasi-Newton approaches to 
stabilize and at the same time accelerate the convergence of 
coupling iterations. These schemes adapt either one or both of 
the solver outputs before passing them on, resulting in respec-
tively, a quasi-Newton system for the residual formulation of 
the FSI problem, or a block iteration quasi-Newton system. 
These systems each contain one or more approximate Jacobi-
ans. The residual formulation scheme requires an approxima-
tion for the inverse of the Jacobian R�(xk) , which is denoted 
as �k

r
x . The block iteration quasi-Newton scheme requires 

approximations for the Jacobians of the flow solver and struc-
ture solver, so 𝜕k

x
ỹ approximates F �(xk) and 𝜕k

y
x̃ approximates 

S
�(yk) . In these notations the superscript k refers to the itera-

tion in which the Jacobian has been approximated.
All of these approximate Jacobians can be created using the 

generalized Broyden method. In this section, we will explain 
this method for the construction of an approximate Jacobian 
of an arbitrary nonlinear function b = B(a) . For now, we 
leave out the added complexity of FSI problems, for which an 
approximate Jacobian has to be constructed in each time step. 
This will be explained in the next section. Here, we just have 
an iterative method, where in each iteration k the Jacobian 
B

�(ak) is approximated by �k
a
b . The same technique can also 

be used to approximate the inverse Jacobian B�(ak)
−1 by �k

b
a.

Instead of immediately presenting the rather complex gen-
eralized Broyden equation, it is introduced step by step, in a 
way that better fits the quasi-Newton FSI explanations found 
in literature.

4.1  Satisfying the Secant Conditions

The core idea of any quasi-Newton Jacobian approximation is 
to use the nonlinear function input–output information from 
previous iterations. Indeed, an input ai resulting in a certain 
output bi is a piece of valuable information about the behavior 
of the black box function B , which can be used to approximate 
the Jacobian B�(ak) by �k

a
b . In the current iteration k + 1 , the 

inputs of all previous iterations

are available, as well as the corresponding outputs

The input–output info is stored and used in the form of dif-
ferences between consecutive iterations, defined as 

(29)a0, a1,… , ak−1, ak

(30)b0, b1,… , bk−1, bk.

(31a)�ai ≡ ai+1 − ai

(31b)�bi ≡ bi+1 − bi
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 for 0 ≤ i ≤ k − 1 . The � notation refers to the difference 
between previous iterations, in contrast to the Δ notation, 
which refers to the desired change or update that needs to 
be performed.

Each pair (�ai, �bi) is called the secant information at 
iterations i and is related to a secant line to the nonlinear 
function B . Therefore, it can be interpreted as a finite dif-
ference approximation for the Jacobian in the direction �ai.

Furthermore, each secant information pair has a corre-
sponding secant equation:

If the approximated Jacobian �k
a
b meets this secant condi-

tion, it uses a finite difference approximation for the actual 
Jacobian in the direction of �ai , with the input–output infor-
mation of iterations i and i + 1 . This secant information is 
relevant only if the Jacobian stays more or less the same 
during the k iterations, which means that B(a) has to behave 
close to linearly in the neighbourhood of ak.

The idea is to construct �k
a
b , so that it fulfills all the k 

secant equations. To write this compactly, the differences 
defined previously in Eq. (31) are stored in the matrices Ak 
and Bk as follows 

 Now, the k secant conditions can be collected in the matrix 
equation

With na and nb being the length of the input and output 
vectors, this is a system of nbk scalar equations for nbna 
unknowns (the elements of the matrix �k

b
a ). The system is 

thus typically underdetermined ( k < na ). In order to find a 
unique solution, the least-norm solution is sought, which 
is in this case defined as the smallest matrix in the Frobe-
nius norm that satisfies all secant conditions. The solution 
is given as

where Ak+ is the pseudo-inverse1 (or Moore–Penrose 
inverse) of the rectangular matrix Ak , defined as

(32)�bi = �k
a
b �ai.

(33a)Ak
=
[
�ak−1 �ak−2 ⋯ �a1 �a0

]

(33b)Bk
=
[
�bk−1 �bk−2 ⋯ �b1 �b0

]
.

(34)Bk
= �k

a
b Ak.

(35)�k
a
b = BkAk+,

To calculate the pseudo-inverse, it is necessary that the 
columns of Ak are linearly independent. For now, we will 
assume this is always the case and the issue of linear depend-
ence of the secant information is addressed in detail in the 
discussion on filtering in Sect. 5.1.

The expression for the approximate Jacobian presented 
above is elegant and short, but not very intuitive. Therefore, 
a different approach to obtain the same expression is given 
below.

The purpose of the approximate Jacobian is to determine 
an estimated change in output Δb that corresponds to an 
arbitrary change in input Δa , by evaluating

For this purpose, the secant information from the previous 
iterations is utilised in the following approach.

First, the arbitrary vector Δa is approximated as a linear 
combination of vectors �ai , i.e.

with c ∈ ℝ
k×1 a coefficient vector.

It follows from the secant information that an input dif-
ference �ai corresponds to an output difference �bi , for 
0 ≤ i ≤ k − 1 . Therefore, and under the assumption that the 
linear behavior of B is locally dominant, it can be stated 
that a linear combination of vectors �ai will correspond to 
the same linear combination of vectors �bi . This principle 
allows to determine Δb as

Finally, it remains to determine the coefficients c . The sys-
tem in Eq. (38) is typically overdetermined. Hence, the least-
squares solution for c will be used, which can be obtained by 
solving the square system of normal equations

Therefore, the coefficient vector is given as

Using this to calculate Δb results in

Comparison with Eq. (37) reveals the same Jacobian as 
determined before in Eq. (35).

Matrix-free implementation Some of the algorithms 
explained in Sect. 5 require the explicit construction of the 
Jacobian matrix, while for others only its product with a 
vector, e.g., �k

a
b Δa , is required. This last set of algorithms 

(36)Ak+
=

(
AkTAk

)−1

AkT.

(37)Δb = �k
a
b Δa.

(38)Δa ≈ Akc

(39)Δb = Bkc.

(40)AkT
Δa = AkTAkc.

(41)c = Ak+
Δa.

(42)Δb = Bkc = BkAk+
Δa.

1 Note that for Ak
∈ ℝ

na×k with na > k , Ak+
A
k is the identity matrix 

of size k × k , while Ak
A
k+ is a na × na matrix of rank k if the columns 

of Ak are linearly independent.
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allows matrix-free implementation, for which the Jacobian 
matrix Eq. (35) never has to be calculated explicitly in prac-
tice, nor is the explicit calculation of the pseudo-inverse 
defined in Eq. (36) needed. How this is achieved is explained 
here.

Equations (40) and (41) show that the product of the 
pseudo-inverse with a vector is in fact the solution of the 
normal equations, but solving the normal equations Eq. (40) 
becomes unstable if the number of columns in the matrix 
Ak is rather high. A more robust method to calculate the 
pseudo-inverse uses the reduced or economy-size QR 
decomposition [38] of Ak

where Qk
A
∈ ℝ

na×k is a matrix with orthonormal columns 
and Rk

A
∈ ℝ

k×k is an upper triangular matrix.2 Applying this 
to the normal equations Eq. (40) and using the fact that the 
inverse of Rk

A
 exists because the columns of Ak are linearly 

independent, results in

Symbolically, this means that the pseudo-inverse can be 
written as Rk

A

−1
Qk

A

T , but it should never be constructed or 
stored. Instead, the product of the pseudo-inverse with a 
vector can be calculated by first evaluating the right hand 
side of Eq. (44) and subsequently solving the system using 
back-substitution, as Rk

A
 is an upper triangular matrix. The 

complete procedure to efficiently determine Δb given Δa is 
summarized in Algorithm 1.

In the following, the notation with the pseudo-inverse will 
still be used. Nonetheless, it should be kept in mind that the 
actual calculation has to be done using QR decomposition 
and back-substitution, avoiding the calculation of the inverse 
of matrices as well as the construction of large dense square 
matrices.

(43)Ak
= Qk

A
Rk
A
,

(44)Rk
A
c = Qk

A

T
Δa.

4.2  Adding an Initial Estimate for the Jacobian

Assuming the columns Ak are linearly independent, the 
above obtained approximated Jacobian BkAk+ is of rank k. 
For the current discussion, it is assumed that k ≪ na . There-
fore, the matrix is a low-rank Jacobian approximation, and 
has an image or range of dimension k and a nullspace of 
dimension na − k . As a result, with regard to its product with 
an arbitrary Δa , only the part of Δa ∈ range(Ak

) will have a 
non-zero result. This becomes clear from the definition of 
the pseudo inverse in Eq. (36). The part of Δa ⟂ range(Ak

) 
falls in the nullspace of the approximated Jacobian and the 
product of this part with the Jacobian is therefore zero. In 
other words, the approximated Jacobian is zero in every 
direction that is not a linear combination of the directions 
�ai , for 0 ≤ i ≤ k − 1 , encountered in the previous iterations.

Nonetheless, a full rank approximation of the Jacobian 
may be required, e.g., when it is used in a quasi-Newton 
method according to the residual formulation scheme. If this 
is the case, the current Jacobian approximation, using the 
approximation based on secant conditions for the part of 
Δa ∈ range(Ak

) , can be expanded with an initial estimate 
of the approximate Jacobian �0

a
b for the remaining part 

Δa ⟂ range(Ak
).

The splitting of Δa in these two parts is based on 
orthogonal projection and visualized in Fig. 4. The orthog-
onal projection of a vector Δa onto the range of range(Ak

) 
is given by

Fig. 4  The vector Δa is split into a part inside the range of Ak and 
another part perpendicular to that range

2 Note that Q
k
A
Q

k
A

T

= A
k
A
k+

≠ I and that Q
k
A

T

Q
k
A
= A

k+
A
k
= I 

equals the identity matrix of size k × k.
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This is the part of Δa ∈ range(Ak
) . Using the complemen-

tary projector or just calculating the difference of Δa and its 
orthogonal projection

gives the part of Δa ⟂ range(Ak
) . Refer to [39] for a more 

complete discussion of projectors. Moreover, note that, 
using the QR decomposition these two parts are given by 
Qk

A
Qk

A

T
Δa and (I − Qk

A
Qk

A

T
)Δa.

Now, the Jacobian approximation based on secant infor-
mation can be extended with an initial Jacobian �0

a
b:

The questions why and how an initial Jacobian can be 
added have been answered. What remains is the choice of 
its value. Often, the identity matrix is used, scaled with a 
factor, typically −1 or −� , which corresponds to (relaxed) 
Gauss–Seidel iteration, as explained below Eq. (21). This 
is the simplest approach to obtaining a full rank Jacobian 
approximation and will also be used in Sect. 5. In the case a 
low rank approximation suffices, e.g., the Jacobians for block 
iteration quasi-Newton, �0

a
b = 0 can be used, which means 

the second term disappears completely. In still other situa-
tions, a physics-based surrogate may be available to use as 
initial Jacobian. This approach may accelerate convergence, 
but is application-specific and will be discussed further in 
Sect. 5.6.

4.3  Generalized Broyden Method

Up to now, the approximation of the Jacobian �k
a
b was deter-

mined such that it met all secant conditions. However, this 
is not the only way to use the secant information. Another 
often used method (although not in FSI) is to only require 
the approximated Jacobian to fulfill the latest secant equa-
tion. Therefore, the matrices Ak and Bk only contain the 
latest piece of secant information:

For all vectors Δa ⟂ range(Ak
) (i.e., Δa ⟂ �ak−1 ), we want 

to use the previous Jacobian �k−1
a

b . In other words, the effect 
of the approximated Jacobian remains unchanged in all 

(45)Ak
(
AkTAk

)−1

AkT
Δa = AkAk+

Δa.

(46)Δa − AkAk+
Δa =

(
I − AkAk+

)
Δa,

(47)�k
a
b = BkAk+

+ �0
a
b
(
I − AkAk+

)

(48)Ak
=
[
�ak−1

]

(49)Bk
=
[
�bk−1

]
.

directions orthogonal to �ak−1 . This is called the no-change 
condition, which can be written formally as

To obtain a Jacobian approximation with these specifica-
tions, �0

a
b is replaced by �k−1

a
b:

where Ak and Bk now contain only one column. This is a 
recursive expression for the approximated Jacobian. In fact, 
this is Broyden’s original method,3 to construct the approxi-
mate Jacobian [40]. It was developed in the sixties, to solve 
systems of nonlinear equations.

Furthermore, Broyden’s method can be generalized. 
Instead of using only one secant condition and the approxi-
mate Jacobian from the previous iteration, m secant condi-
tions can be used in combination with the approximate Jaco-
bian from m iterations ago. This gives rise to the generalized 
Broyden method

with 

This equation for the approximate Jacobian in generalized 
Broyden, however, can also be obtained in a more formal 
way, namely as the unique matrix that satisfies a number of 
conditions. Two equivalent ways are described in [41].

First, the approximated Jacobian can be obtained as the 
only matrix that simultaneously satisfies the m secant condi-
tions in Eq. (34) and the na − m no-change conditions

Secondly, it can be obtained as the unique matrix that sat-
isfies the m secant conditions Eq. (34) and minimizes the 
difference with the approximate Jacobian from m iterations 
ago, i.e.

where the subscript F denotes the Frobenius norm.

(50)�k
a
b Δa = �k−1

a
b Δa ∀Δa ⟂ range(Ak

).

(51)�k
a
b = BkAk+

+ �k−1
a

b
(
I − AkAk+

)

(52)�k
a
b = BkAk+

+ �k−m
a

b
(
I − AkAk+

)

(53a)Ak
=
[
�ak−1 �ak−2 ⋯ �ak−m

]

(53b)Bk
=
[
�bk−1 �bk−2 ⋯ �bk−m

]
.

(54)�k
a
b Δa = �k−m

a
b Δa ∀Δa ⟂ range(Ak

).

(55)
‖‖‖
�k
a
b − �k−m

a
b
‖‖‖F

,

3 Approximating the Jacobian, respectively the inverse Jacobian, 
results in the good Broyden’s method respectively the bad Broyden’s 
method.
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Furthermore, previously discussed methods are retrieved 
by choosing certain values for the parameter m in the gen-
eralized Broyden method. For m = 1 , Broyden’s original 
method is recovered, while for m = k the pure secant method 
from Sects. 4.1 and 4.2 is obtained.

The generalized Broyden method was established much 
later than Broyden’s original method. The first extension 
to the original one in the eighties led to a rather complex 
modified Broyden method [42, 43]. In the nineties, Eyert 
[44] simplified this method by removing some nonessential 
parameters, resulting in the generalized Broyden method 
presented here.

Around that same time, the connection between the gen-
eralized Broyden method and Anderson acceleration (or 
Anderson mixing) was discovered. Anderson acceleration 
[45] was introduced in the sixties to accelerate fixed-point 
iterations. Based on the work by Van Leuken [46], Eyert 
showed that Anderson acceleration is mathematically equiv-
alent to generalized Broyden with m = k , i.e., the pure secant 
method introduced in Sects. 4.1 and 4.2. This is not imme-
diately apparent due to the very different ideas on which 
Anderson and Broyden originally based their methods.

In partitioned FSI simulations, several variants of the gen-
eralized Broyden method are used to approximate Jacobians 
in quasi-Newton iterations. These techniques were devel-
oped independently from the older methods (Anderson, 
Broyden and generalized Broyden) and the correspondence 
to those methods was only discovered recently [47, 48].

Because a nonlinear system of equations has to be solved 
in every time step of an FSI simulation, there are some par-
ticularities with respect to Jacobian approximation, such as 
the reuse of secant information from previous time steps, as 
well as the removal of old and irrelevant secant information. 
These topics are discussed in the next section.

Computational complexity and storage This section ends 
with a first look into the computational complexity to obtain 
and use these approximate Jacobians. For simplicity, it is 
assumed that a and b are both vectors of length na . This is 
usually not true for the block methods, but nb is typically 
proportional to na . Further, it is assumed that na ≫ k , i.e., 
the length of the vectors are much larger than the number of 
secant pairs available. More details will be provided later on 
for the different FSI methods. No details about the number of 
operations will be given, only the complexity of the leading-
order term will be discussed.

At the basis of the generalized Broyden method is the 
economy-size QR decomposition of Ak , which is used for 
determination of the pseudo-inverse of Ak . This QR decom-
position is typically done with Householder transformations, 
resulting in a complexity of O(nam

2) , which is also the total 
complexity of the evaluation of the product of this pseudo-
inverse with a vector. Already, it can be noted that, in the 

case that m = k , the computational cost quickly rises relative 
to a low fixed value for m.

If the approximate Jacobian is only needed to calculate 
its product with a vector, its explicit construction can be 
avoided. In some algorithms of the next section, however, 
the approximate Jacobian is used explicitly. Then, the con-
struction of this na × na matrix has a complexity of O(n2

a
m) . 

In addition, the na × na matrix requires a storage capac-
ity O(n2

a
) , which is a strong disadvantage of these select 

algorithms.
In other algorithms, it is possible to avoid this expen-

sive construction and use a matrix-free method to multiply 
the approximate Jacobian with a vector, i.e., without large 
dense square matrices. In practice, this is done by evaluat-
ing the product using Eq. (47) and multiplying the factors 
within each term from right to left. Then the complexity of 
this evaluation is only O(nam

2) , which is the complexity of 
performing the QR decomposition needed to evaluate the 
product of the pseudo-inverse of Ak with a vector. Because 
only the secant information has to be stored, the storage 
requirements O(nam) are lower as well.

4.4  Difference Between the Anderson and Broyden 
Approach

The previous part formulated the generalized Broyden 
method, in which the parameter m determines how the secant 
information from previous iterations is included. Setting 
m = k corresponds to the Anderson method, in which the 
approximated Jacobian is determined by imposing all secant 
equations directly. For m = 1 , Broyden’s original method is 
retrieved, here simply referred to as the Broyden method, 
in which the approximated Jacobian only fulfills the latest 
secant equation and the secant information from the previous 
iterations is included indirectly by imposing no-change con-
ditions. In this section, the difference in behaviour between 
these two extreme versions of the generalized Broyden 
method will be clarified.

Consider for example the approximation of the Jacobian 
B

�(ak) by �k
a
b , when previously three iterations have been 

performed ( k = 2 ). The matrices containing the differences 
between consecutive iterations are 

 Without loss of generality, it is stated that 

(56a)A2
=
[
�a1 �a0

]

(56b)B2
=
[
�b1 �b0

]

(57a)�a1 = p

(57b)�a0 = xp + yq,
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 where p and q are orthonormal vectors, and x and y real 
scalars.

In the Anderson approach ( m = k ), the approximated 
Jacobian is

The QR decomposition of A2 is given by 

 With this decomposition, the pseudo-inverse is calculated

Finally, the approximate Jacobian is given by

In the Broyden approach ( m = 1 ), the approximated Jaco-
bian is

Note that the pseudo-inverse of a single column equals its 
transpose divided by its norm squared, such that 

 The resulting approximated Jacobian is given by

(58)�2
a
b = B2A2+.

(59a)R2
A
=

[
1 x

0 y

]

(59b)Q2
A
=
[
p q

]
.

(60)A2+ =

(
A2TA2

)−1

A2T = R2
A

−1
Q2

A

T
=

1

y

[
ypT − xqT

qT

]

.

(61)�2
a
b =

[
�b1 �b0

]
[
pT −

x

y
qT

1

y
qT

]

.

(62)
�2
a
b = �b1�a1

+
+ �1

a
b
(
I − �a1�a1

+
)
with �1

a
b = �b0�a0

+
.

(63a)�a1
+
= pT

(63b)�a0
+
=

xpT + yqT

x2 + y2
.

Comparing Eq. (61) with Eq. (64), it is clear that the Jaco-
bian approximations are different. Their inequality is ana-
lyzed in Table 1 by looking at their product with particular 
vectors Δa.

For a vector Δa equal to the lastly added difference �a1 , 
both approaches return the corresponding difference �b1 , as 
expected. If the one before last vector �a0 is supplied, the 
results are different. The Anderson method simply returns 
�b0 , as this method attempts to approximate Δa as closely as 
possible using the already available differences. In contrast, 
the Broyden method does not and returns a linear combina-
tion of �b1 and �b0 . This approach gives priority to the lastly 
determined difference �a1 and uses the corresponding �b1 
for the orthogonal projection of Δa on that difference �a1 . 
For a result of the Broyden approach that lies along �b0 , a 
difference orthogonal to the last difference �a1 needs to be 
supplied. Finally, the result for a general vector is given, 
where u, v and w are arbitrary scalars and s a unit vector 
orthogonal to p and q.

Both methods decompose Δa in components along 
the previously determined vectors �ai , 0 < i < k − 1 , and 

(64)�2
a
b =

[
�b1 �b0

]
[

pT
y

x2+y2
qT

]

.

Table 1  Multiplication of Anderson and Broyden Jacobian approxi-
mations corresponding to the example discussed in the text with a 
vector Δa

Δa Δb = �2
a
b Δa

Anderson Broyden

�a1 = 1p + 0q 1�b1 + 0�b0 1�b1 + 0�b0

�a0 = xp + yq 0�b1 + 1�b0 x�b1 +
y2

x2+y2
�b0

0p + 1q −
x

y
�b1 + 1

y
�b0 0�b1 +

y

x2+y2
�b0

up + vq + ws
(
u −

vx

y

)
�b1 + v

y
�b0 u�b1 +

yv

x2+y2
�b0

Fig. 5  The vector Δa is decomposed along the directions of the previ-
ously determined differences. The decomposition is different for the 
Anderson and Broyden approach. The green line is the direction of 
the lastly determined difference vector �a1 , the red line corresponds 
to the one before last �a0 . The red dotted vector is the remaining part 
after decomposition. The addition of the parts along �a1 and �a0 and 
the remaining part gives the original Δa . (Color figure online)
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multiply the respective components with the correspond-
ing vectors �bi . This is shown graphically in Fig. 5.

The Anderson method projects Δa on all previously 
determined differences. Therefore, the remaining part

is orthogonal to these differences. The Broyden method 
projects Δa first on the lastly obtained difference, and the 
leftover part on the one before last, and so on. Therefore, 
the remaining part

is not necessarily orthogonal to these differences. It will, 
however, always be orthogonal to the last difference onto 
which the projection was made, i.e., the oldest difference.

The difference between the two methods is essential 
to how nonlinearities in the secant information are dealt 
with. In general B(ak) is nonlinear and its Jacobian is 
not constant, therefore the secant information will also 
contain nonlinear effects, especially when the step �ai 
is large. Because the Broyden method prioritizes more 
recent secant information, it effectively ignores these 
nonlinearities, while the Anderson method does not, as 
it wants to approximate Δa as closely as possible using 
all available differences. This can lead to instabilities in 
the Anderson method. However, the Broyden method will 
also neglect small linear information, slowing down the 
convergence speed. More details and a method to remove 
nonlinearities from the secant information to stabilize 
Anderson are found in [49].

In the FSI community, the Anderson method is referred 
to as the least-squares approach and the Broyden method 
can be linked to the multi-vector approach. However, in 
FSI, fulfilling only the most recent secant equation as in 
the original Broyden method is typically not done and the 
multi-vector algorithms fulfill the secant equations in the 
most recent time step, using no-change conditions for older 
time steps. So in fact, the multi-vector approach is a general-
ized Broyden method, as will be explained in the following 
section.

5  Quasi‑Newton Methods for FSI

In Sect. 3, different quasi-Newton schemes have been intro-
duced. They required approximate Jacobians, which could 
be determined in different ways using information from 

(65)

(
I − A2A2T

)
Δa =

(
I − Q2

A
Q2

A

T
)
Δa =

(
I − ppT − qqT

)
Δa

(66)

(
I − �a0�a0

+
)(

I − �a1�a1
+
)
Δa

=

(

I − ppT −

(
xp + yq

x2 + y2

)

qT
)

Δa

previous iterations, as explained in Sect. 4. Up to this point, 
the focus was on solving the nonlinear equations in each 
time step separately. From here on, the distinction between 
different time steps will be necessary. Therefore, the super-
script n + 1 will be used to indicate the values from the cur-
rent time step, meaning that these are the values that are cur-
rently calculated. This notation is similar to the superscript 
k + 1 , which indicates the current iteration.

In this section, the IQN-ILS, IBQN-LS, IQN-MVJ, 
MVQN, IQN-IMVLS and IQN-ILSM techniques will be 
derived and analyzed in the generalized Broyden framework. 
These techniques for partitioned FSI simulation have several 
differences, as summarized in Table 2.

The first difference is whether they use only the inter-
face displacement as variables (IQN-ILS, IQN-MVJ, IQN-
IMVLS, IQN-ILSM) or whether they are block iteration 
quasi-Newton methods using both interface displacement 
and load (IBQN-LS, MVQN). In the former case, they 
solve Eq. (12), in the latter they use Eq. (8), as explained 
in Sect. 3.

The second difference is related to how time stepping 
is handled, as most FSI simulations are time-dependent to 
capture a vibration or other dynamic behaviour. Assuming 
the inputs and outputs of the q previous time steps are stored, 
one can either impose the secant conditions from all time 
steps (IQN-ILS, IBQN-LS) or only for the latest time step, 

Table 2  Main differences between the quasi-Newton methods

Variables Conditions

Secant for all 
time steps

Only secant for last 
time step

Only interface displacement IQN-ILS IQN-MVJ,  
IQN-IMVLS,  
IQN-ILSM

Interface displacement and load IBQN-LS MVQN

Table 3  Overview of computational complexity and memory require-
ments for the different methods. Note that typically m ≪ nx.

† ̄k denotes the average number of coupling iterations per time step

Method Computational com-
plexity

Memory 
require-
ments

IQN-ILS O(nxm
2) ∼ nx

IBQN-LS O(nxm
2) ∼ nx

MVQN O(n2
x
) ∼ n2

x

IQN-MVJ O(n2
x
) ∼ n2

x

IQN-IMVLS†
O(nxqk̄) ∼ nx

IQN-ILSM (reuse)†
O(nxqk̄) ∼ nx
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combined with no-change conditions for previous time steps 
(IQN-MVJ, MVQN, IQN-IMVLS, IQN-ILSM). This second 
difference is thus related to the choice of the parameter m 
of generalized Broyden, as explained in Sect. 4. On the one 
hand, m can be set to ∞ (actually limited to q time steps), 
so all the info from q previous time steps is used together, 
without an old Jacobian, but only with an initial one to start 
the procedure. In fact, this corresponds with the Anderson 
approach and is typically termed least-squares approach in 
FSI. On the other hand, only the secant info from the current 
time step can be used, with an old approximate Jacobian 
that is the final one from the previous time step. This cor-
responds to m = k , called multi-vector, and is really general-
ized Broyden, and not one of the limiting cases (Anderson 
or Broyden).

The third difference is the amount of memory required 
for the storage of the approximate Jacobian(s) and the com-
putational time required for the calculations related to the 
quasi-Newton steps. This will be explained more in detail 
for each method below and will be summarized in Table 3.

5.1  IQN‑ILS

IQN-ILS is the abbreviation for Interface Quasi-Newton 
technique with an approximation for the Inverse of the 
Jacobian from a Least-Squares model [50]. The IQN-ILS 
technique performs an update of the input for the flow solver 
in each coupling iteration, using an approximation for the 
inverse of the Jacobian of the residual operator, so

and Δrk = 0 − rk . The approximation for the inverse Jaco-

bian ̂R�−1(xk) ≡ �k
r
x can be obtained directly by following 

the method explained in Sect. 4.3 for �k
a
b , with a = r and 

b = x . Because the approximation needs to be full rank 
for a working quasi-Newton method, an initial Jacobian 
�k−m
r

x = −I is used, which is the Jacobian of Gauss–Sei-
del iteration, as explained below Eq. (21). In the literature, 
however, the approximation for the inverse of the Jacobian 
̂
R

�−1(xk) is usually rewritten using the identity r = x̃ − x , 
giving

where the operator 𝜕k
r
x̃ is constructed as explained in 

Sect. 4.3, with a = r and b = x̃ . In this way of explaining, 
no initial Jacobian is used, so 𝜕k−m

r
x̃ = 0 . It is worth men-

tioning that if instead of the inverse, the Jacobian R�(xk) is 
approximated, the Interface Quasi-Newton Least-Squares 
method (IQN-LS) is retrieved [51].

(67)xk+1 = xk + Δxk with Δxk =
̂
R

�−1(xk)Δrk

(68)�
R

�−1(xk) ≡ 𝜕k
r
x = 𝜕k

r
(x̃ − r) = 𝜕k

r
x̃ − I,

For an FSI simulation with a single step (e.g., a steady 
simulation), the generalized Broyden formula in Eq. (52) is 
used with m = k and without initial guess 𝜕0

r
x̃ = 0 , so

with 

 Note that 𝜕k
r
x̃ has at most rank k, while ̂R�−1(xk) ≡ �k

r
x is 

full-rank.4
In a time-dependent simulation, the secant information 

from the q previous time steps can be reused. As nota-
tion, the previous time steps are indicated with n, n − 1 , … , 
n + 1 − q , for the time step that is being calculated the super-
script n + 1 is omitted and only the superscript k is used. The 
matrices R[k] and X̃

[k] are a concatenation of the matrices from 
the different time steps, giving 

In this way, the information from each time step is treated 
equally, except when linear dependencies occur, because 
these are then removed by filtering, as will be explained 
below. The method thus satisfies all available secant condi-
tions, i.e., from time step n + 1 and the q previous time steps. 
Consequently, m is equal to the number of columns in R[k] 
and X̃

[k] , which is

if no filtering is applied. As no initial Jacobian 𝜕k−m
r

x̃ is used, 
the information from earlier time steps n < n + 1 − q is not 
considered. It is important to remark that the difference 
between the first r or x̃ of a time step and the last one from 
the previous time step is not used. Only differences between 
vectors of the same time steps are taken into account. This 
approach ensures that the secant information matches with 
the meaning of the Jacobian that is being approximated, 
which is the derivative within a time step, and not between 
them.

The reuse parameter q has to be defined by the user. Reuse 
typically improves the performance, but too old data is no 
longer helping the convergence, and therefore an optimal 
value exists. In the literature, the existence of this parameter 

(69)𝜕k
r
x̃ = �X

k
Rk+

(70a)Rk
=
[
�rk−1 �rk−2 ⋯ �r0

]

(70b)�X
k
=
[
𝛿x̃k−1 𝛿x̃k−2 ⋯ 𝛿x̃0

]
.

(71a)R[k] =
[
Rk Rn

⋯Rn+1−q
]

(71b)X̃
[k]
=

[
X̃
k
X̃
n
⋯ X̃

n+1−q
]
.

(72)m = kn+1 + kn +⋯ + kn+1−q,

4 The term Jacobian is used for both �k
r
x and 𝜕k

r
x̃ , depending on 

which is relevant in the section.
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is often cited as a drawback of IQN-ILS, because the perfor-
mance of the method would be sensitive to this parameter. 
However, by using filtering, the performance of the method 
is rendered rather insensitive to this parameter around the 
optimum, as is shown by numerical tests in Sect. 6 and in 
other work [52, 53]. Moreover, the parameter q allows the 
user to control how many time steps can be considered rel-
evant, which is important in cases with rapid changes from 
one time step to the next, e.g., with multi-phase flows [54].

Matrix-free implementation Equation (69) is a symbolic 
notation to write IQN-ILS in the generalized Broyden frame-
work, but this matrix should never be constructed or stored in 
the computer’s memory. One of the main benefits of IQN-ILS 
is its so-called matrix-free character, which means that no 
large square matrices need to be constructed or stored. The 
product of the approximation of the inverse of the Jacobian 
with Δrk = −rk in Eq. (67) is symbolically calculated as

In practice, the product ck = R[k]
+
Δrk of the pseudo-inverse 

of R[k] with Δrk is calculated using the economy-size QR 
decomposition and back-substitution, resulting in

as explained in Algorithm 1. The vector Δrk is thus written 
as a linear combination of the �ri , resulting in coefficients 
ck . As each �ri has a corresponding 𝛿x̃i , the change in x̃ cor-
responding with Δrk can be obtained by calculating X̃

[k]
ck.

The complete procedure can be found in Algorithm 2, 
with a relaxation step with factor � on line 7, for the case 
in which R[k] and X̃

[k] do not have any columns, e.g., at the 
beginning of the simulation.

Using R[k] = X̃
[k]
− X[k] , where X[k] is defined analogous to 

Eq. (71), Eq. (73) can be rewritten as 

 This shows that Δrk is split into a part R[k]R[k]+Δrk in the col-
umn span of R[k] and a part (I − R[k]R[k]

+
)Δrk perpendicular to 

it. The secant-based approximate Jacobian X[k]R[k]
+ is applied 

to the former, while Gauss–Seidel iteration with Jacobian 
−I is used for the latter.

Filtering When columns of R[k] are linearly dependent up to a 
tolerance �f  , the diagonal elements of R[k]

R
 in Eq. (74) become 

small and this system can no longer be solved accurately. Hence, 
an essential component of IQN-ILS is filtering, especially when 
data from previous time steps is reused [50]. Columns of R[k] that 
are linearly dependent up to the tolerance �f  need to be removed 

(73)Δxk =
̂
R

�−1(xk) Δrk = (X̃
[k]
R[k]

+
− I) Δrk.

(74)R
[k]

R
ck = Q

[k]

R

T
Δrk.

(75a)Δxk = X[k]R[k]
+
Δrk − (I − R[k]R[k]

+
)Δrk

(75b)= X[k]R[k]
+
[
R[k]R[k]

+
Δrk

]
− I

[
(I − R[k]R[k]

+
)Δrk

]
.

together with the matching columns in X̃
[k] . As the newest infor-

mation is stored on the left-hand side in R[k] , a �ri that is a linear 
combination of newer �rj (j > i) is removed. Columns can be 
removed if ||

|
R
[k]

R,ii

|
|
|
< 𝜖f  (QR0) or ||

|
R
[k]

R,ii

|
|
|
< 𝜖f

‖
‖
‖
R
[k]

R

‖
‖
‖2

 (QR1), with 

R
[k]

R,ii
 referring to a diagonal element of R[k]

R
 [55]. The advantage of 

the first approach is that the tolerance �f  can be set by perturbing 
x with smaller and smaller changes until the change in x̃ is no 
longer smooth, but numerical noise. In this case, the tolerance �f  
can be considered as a measure of how accurate the flow solver 
and structural solver are calculating their solution. This filtering 
procedure is shown step by step in Algorithm 3. Obviously, it will 
be difficult to obtain convergence of the coupling iterations to a 
level that is lower than �f .

Alternative filtering approaches are algebraic QR filtering 
and POD filtering [55]. In the algebraic filtering method 
(QR2), a column is removed if the diagonal element 
||
|
R
[k]

R,ii

||
|
< 𝜖f

‖‖
‖
R
[k]

R,i

‖‖
‖2

 , with R[k]
R,i

 referring to column i of matrix 

R
[k]

R
 . In the POD filtering, the eigenvalues of the autocorrela-

tion matrix of R[k] are used to truncate old data. The numerical 
tests in [55] showed that algebraic QR filtering worked better 
than POD filtering or filtering using ||

|
R
[k]

R,ii

||
|
< 𝜖f

‖‖
‖
R
[k]

R

‖‖
‖2

 . How-

ever, the comparison with ||
|
R
[k]

R,ii

||
|
< 𝜖f  was not performed and 

remains as an interesting future work. Because the latter is 
directly related to the solver tolerances themselves, as 
explained above, it has been chosen for this work.

Another reason to do filtering is to limit the number of 
secant conditions in cases with few degrees of freedom on 
the interface. Typically, m ≪ nx , but with only few degrees 
of freedom on the interface, the oldest columns of R[k] and 
X̃
[k] need to be removed such that there are at most nx col-

umns, to avoid an overdetermined Jacobian.
Computational complexity and storage The additional 

storage required for the IQN-ILS method is the matrices 
R[k] and X̃

[k] , both ∈ ℝ
nx×m . Temporary storage is neces-

sary for Q[k]

R
∈ ℝ

nx×m and R[k]
R
∈ ℝ

m×m , and the small vector 
ck ∈ ℝ

m . The storage thus scales linearly with the number 
of degrees of freedom in the interface’s discretization. Fur-
thermore, m can be reduced compared to Eq. (72) due to 
filtering. A rule of thumb is that it is typically not benefi-
cial to include more than 50 columns.

The economy-size QR decomposition of R[k] has at most 
a complexity of O(nxm

2) if the fast Givens method or the 
Householder method is used [38]. The matrix–vector prod-
uct in the right-hand side of Eq. (74) has a computational 
complexity of O(nxm) and solving the triangular system 
a complexity of O(m2) . Consequently, also the computa-
tional complexity scales linearly with nx and is limited. In 
numerical tests, the IQN-ILS algorithm normally accounts 
for less than 1% of the total CPU time.
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5.2  IBQN‑LS

IBQN-LS stands for Interface Block Quasi-Newton method with 
approximation of the Jacobians using Least-Squares models (ini-
tially called reduced-order models) [21]. It uses the formulation in 
Eq. (25) and solves Eq. (26) and Eq. (27) in turn for Δxk and Δyk . 
Low-rank approximations for F�(xk) and S�(yk) are constructed 
using the generalized Broyden method with m as in Eq. (72) and 
without initial value for the Jacobian, so like in IQN-ILS. The reuse 
of previous time steps and the filtering are also applied in the same 
way as explained above. Consequently, this technique enforces all 
secant conditions from the current and q previous time steps, for 
both the flow solver and the structural solver.

For the approximate Jacobian of the flow solver F̂�(xk) , 
the generalized Broyden framework is applied using a = x 
and b = ỹ . For m as in Eq. (72) and without initial value for 
the Jacobian this can be written symbolically as

with 

 where the secant information from the q previous time steps 
is combined with that from the current time step 

 A symbolic formulation of the approximation Ŝ′ in the gen-
eralized Broyden framework can be obtained in a similar 
way, using a = y and b = x̃.

(76)�F�(xk) ≡ 𝜕k
x
ỹ = �Y

[k]
X[k]+

(77a)X[k]
=
[
Xk Xn

⋯Xn+1−q
]

(77b)Ỹ
[k]
=

[
Ỹ
k
Ỹ
n
⋯ Ỹ

n+1−q
]
,

(78a)Xk
=
[
�xk−1 �xk−2 ⋯ �x0

]

(78b)�Y
k
=
[
𝛿ỹk−1 𝛿ỹk−2 ⋯ 𝛿ỹ0

]
.



Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

A disadvantage of this technique is that two linear systems 
need to be solved in each coupling iteration. In the original 
version, the nx × nx and ny × ny matrices corresponding with 
these systems were explicitly constructed using the symbolic 
notations as in Eq. (76) and they were solved with a direct lin-
ear solver [21]. However, by adopting an iterative linear solver 
like GMRES, only a procedure to calculate the product of the 
approximate Jacobians with a vector is required [56]. In prac-
tice, the number of iterations for the iterative solver is close to 
the number of columns used for the approximate Jacobians. 
Alternatively, the Woodbury matrix identity can be used to 
obtain a closed expression for the update [57].

Matrix-free implementation This matrix-free procedure 
will be explained here for the flow solver. When the product 
of F̂�(xk) ≡ �k

x
y with a vector Δxk needs to be calculated 

during the iterative solution of Eqs. (26) or (27), this can 
symbolically be written as

For the practical implementation, Algorithm 1 is followed 
and this computation is split in two parts by the introduction 
of a coefficient vector ck , giving 

with ck the solution of

(79)F̂
�(xk) Δxk = Ỹ

[k]
X[k]+

Δxk

(80a)F̂
�(xk) Δxk = Ỹ

[k]
ck

 The last part is the least-squares solution to an overdeter-
mined system that can be solved efficiently by calculating 
the economy-size QR decomposition, followed by using 
back-substitution.

To summarize this procedure, the Δxk is decomposed as a 
linear combination of the columns in X[k] , then the observation 
is made that columns in X[k] and Ỹ

[k] with the same index form a 
secant pair, such that the result can be approximated as the same 
linear combination of the columns in Ỹ

[k] , as shown in Eq. (80). 
The complete procedure can be found in Algorithm 4.

Computational complexity and storage Compared to IQN-
ILS, IBQN-LS requires approximately twice the memory, as 
the data for two approximate Jacobians needs to be stored. 
Furthermore, even though the matrix-free procedure with the 
iterative linear solver is faster than explicit matrix construction 
and direct linear solver, the computing time is higher than for 
IQN-ILS, where none of this is required. Nevertheless, the time 
required for the coupling algorithm scales linearly with nx and 
ny and thus remains small compared to that of the actual solvers. 
The solution of the linear systems could be avoided by writing 
the solution to Eqs. (26) and (27) symbolically, using matrix 
inverses and applying the Woodbury matrix identity as in [57]. 
In this way, the size of the matrices that have to be inverted is 
reduced from nx and ny to m.

(80b)R
[k]

X
ck = Q

[k]

X

T
Δxk.

21
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5.3  MVQN

MVQN is the abbreviation for Multi-Vector update Quasi-Newton 
[58]. This method is based on the IBQN-LS method and is even 
identical to it in the first time step. However, the differences appear 
when data from previous time steps is included. MVQN considers 
the current Jacobian as the sum of the Jacobian from the previous 
time step plus a rank-k update. This update is then determined by 
enforcing the secant conditions from the current time step and 
minimizing the Frobenius norm of the update. This coincides with 
the generalized Broyden method with m = kn+1 and the initial 
Jacobian equal to the one from the previous time step.

Considering again the approximate Jacobian of the flow solver 
F̂

′ , the generalized Broyden framework is applied using a = x 
and b = ỹ . The value m is now k = kn+1 and the initial value for 
the Jacobian is the one for the previous time step, giving

Using the definition of the pseudo-inverse in Eq. (36), this 
can be reformulated as

which corresponds with the original formulation in [58]. 
However, analyzing this method is most straightforward 
when considering Eq. (81). If this approximate Jacobian is 
multiplied with a vector Δx , then the secant information 

(81)F̂
′(xk) ≡ 𝜕k

x
ỹ = �Y

k
Xk+

+ 𝜕n
x
ỹ
(
I − XkXk+

)
.

(82)�F�(xk) = 𝜕n
x
ỹ +

(
�Y
k
− 𝜕n

x
ỹXk

)(
XkTXk

)−1

XkT,

from the most recent time step is used for the part for which 
it is available, i.e., within the column span of the matrix 
Xk . The previous approximate Jacobian is only multiplied 
with the leftover part of Δx , i.e., the part orthogonal to the 
column span of Xk . So, even if secant information from pre-
vious time steps is available for the first part of Δx , it will 
not be used. This relates to the difference between the least-
squares and multi-vector approach explained in Sect. 4.4. 
The matrix Ŝ′ is constructed in a similar way

Computational complexity and storage The main benefits 
of this method are that no parameter q is required and that 
filtering with a tolerance �f  is typically less essential as only 
a relatively small number of secant conditions from the most 
recent time step are considered. However, this comes at a 
significant cost, as the matrices F̂′ and Ŝ′ are constructed 
and stored in memory, such that the algorithm scales with 
n2
x
 and n2

y
 , both in terms of memory use as in computational 

complexity. Combined with the linear systems that have to 
be solved in each coupling iteration, this becomes expensive 
compared to the actual solver for a reasonably large num-
ber of degrees of freedom on the interface (e.g., more than 
104 ). A linearly scaling adaptation is the RandomiZed Multi-
Vector Quasi-Newton method (MVQN-RZ) [57], which will 
be explained in more detail with the other linearly scaling 
multi-vector methods at the end of Sect. 5.4.

(83)�S�(yk) = 𝜕n
y
x̃ +

(
�X
k
− 𝜕n

y
x̃Yk

)(
YkTYk

)−1

YkT.

[58].
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5.4  IQN‑MVJ

The IQN-MVJ method is an acronym for Interface Quasi-
Newton with Multi-Vector Jacobian [59]. This method 
adopts the idea for reuse from previous time steps proposed 
in MVQN and transfers it from the block iteration to the 
residual formulation quasi-Newton scheme, i.e., with only 
the interface displacement as variable. It is thus a general-
ized Broyden method which satisfies the secant conditions 
from the current time step while using the Jacobian from the 
previous time step as initial value. IQN-MVJ is linked with 
IQN-ILS in the same way as MVQN is linked with IBQN-
LS. Except for the explicit construction of the approximate 
Jacobian, this method is identical to IQN-ILS in the first 
time step.

In IQN-MVJ, the approximation for the inverse of the 
Jacobian5 is thus constructed as

with

Using the definition of the pseudo-inverse in Eq. (36), this 
can be reformulated as

which corresponds with the original formulation in [59].
Computational complexity and storage The main draw-

back of IQN-MVJ is that the square matrix with the approxi-
mation for the inverse of the Jacobian is constructed and 
stored in memory, such that computational cost and memory 
requirement scale with n2

x
 . Consequently, like MVQN, this 

approach becomes expensive compared to the solvers for 
a reasonably large number of degrees of freedom on the 
interface (e.g., more than 104).

To avoid this scaling and achieve linear complexity in 
nx and at the same time attempt to avoid a reuse parameter 
q, a matrix-free version of IQN-MVJ has been developed, 
named IQN-MVJ-RS-SVD [60]. Thereto, the approximation 
in Eq. (86) is reformulated as

with

(84)�
R

�−1(xk) ≡ 𝜕n+1,k
r

x̃ − I

(85)𝜕n+1,k
r

x̃ = �X
k
Rk+

+ 𝜕n
r
x̃
(
I − RkRk+

)
.

(86)𝜕n+1,k
r

x̃ = 𝜕n
r
x̃ +

(
�Xk − 𝜕n

r
x̃ Rk

)(
RkTRk

)−1

RkT,

(87)𝜕n+1,k
r

x̃ = 𝜕n
r
x̃ + �̄X

k

Rk+,

To avoid storage of a square matrix, this can be written using 
a recursive formula

starting from 𝜕0
r
x̃ = 0 at time 0. Obviously, this requires stor-

age of matrices �̄X and R for each time step, which is benefi-
cial as long as the total number of columns is significantly 
smaller than nx . However, after a high number of time steps, 
this becomes prohibitively expensive and therefore three 
strategies are proposed in which the simulation is split into 
so-called chunks consisting of q′ time steps after which a 
restart is performed [60]. The authors concluded that the 
IQN-MVJ-RS-SVD algorithm with a Singular Value 
Decomposition (SVD) restart strategy is the most promising. 
The approximate inverse Jacobian at the end of a chunk is 
then truncated by performing an SVD and truncating the 
singular values below a tolerance �′

f
 . This truncated SVD is 

then the initial Jacobian for the following chunk. Further-
more, the SVD is efficiently updated at the end of each 
chunk. As opposed to the original IQN-MVJ, the IQN-MVJ-
RS-SVD method has linear complexity in nx , but the imple-
mentation is more elaborate than for IQN-MVJ. Compared 
to IQN-ILS, which has a reuse parameter q and QR filter 
tolerance �f  and also has linear scaling in nx , this method 
now requires a chunk size parameter q′ and SVD filter toler-
ance �′

f
 , but with the claim that the performance is less sensi-

tive to these parameters.
Another multi-vector method that achieves linear scaling 

memory requirements is the algorithm MVQN-RZ [57], which 
employs the randomized SVD not only to avoid the explicit 
construction of large square matrices, but also to circumvent 
the recursive reconstruction of the interface Jacobian. This 
algorithm has been applied to both block iteration quasi-New-
ton techniques and residual formulation quasi-Newton tech-
niques. In every coupling iteration, the complexity of MVQN-
RZ is O(z2nx + k2nx) , where z is the number of decomposition 
modes. This compares to IQN-MVJ-RS-SVD with a complex-
ity of O(z2nx + k2nx +Mknx + k4) in every coupling itera-
tion, with z referring to the number of eigenvalues left after 
truncation and M the simulation chunk size. Additionally, this 
method requires an SVD update after every M steps, which has 
a complexity of O(Mz2nx) . In providing these complexities, it 
is assumed that nx ≫ k, z,M.

(88)�̄X
k

= �Xk − 𝜕n
r
x̃ Rk.

(89)𝜕n+1,k
r

x̃ = �̄X
k

Rk+
+ �̄X

n

Rn+
+… + �̄X

1

R1+

5 Some authors rewrite the update x
k+1 = x

k −
̂
R

�−1(xk) rk as 

x
k+1 = x̃

k − 𝜕k
r
x̃ r

k , since �R�−1(xk) ≡ 𝜕k
r
x̃ − I , and then 𝜕k

r
x̃ is called 

the approximation of the inverse Jacobian, but this notation is not 
used here to avoid confusion.
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5.5  IQN‑IMVLS

To mitigate the quadratic scaling in nx of IQN-MVJ, the IQN-
IMVLS (Interface Quasi-Newton Implicit Multi-Vector Least-
Squares) method has been developed with linear complexity 
in nx [53]. The first observation is that the factor �Xk − 𝜕n

r
x̃ Rk 

in Eq. (86) can be updated by adding one additional column 
in each coupling iteration, instead of recomputing it entirely

so only the product 𝜕n
r
x̃ 𝛿rk−1 needs to be evaluated.

Determining the product of 𝜕n
r
x̃ with a vector requires a 

procedure to calculate a matrix–vector product. It is proven 
in [53] that 𝜕n

r
x̃ in Eq. (86) can be reformulated as

if the initial Jacobian is assumed to be zero. This recursive 
formulation can be truncated after q terms, giving

In IQN-IMVLS the reuse parameter q typically does not 
exhibit an optimum in terms of performance. Instead, both 

(90)�Xk − 𝜕n
r
x̃ Rk

= [𝛿x̃k−1 − 𝜕n
r
x̃ 𝛿rk−1, �Xk−1 − 𝜕n

r
x̃ Rk−1

],

(91)𝜕n
r
x̃ =

n∑

i=1

�XiRi+
n∏

j=i+1

(I − RjRj+)

(92)𝜕n
r
x̃ ≈

n∑

i=n+1−q

�XiRi+
n∏

j=i+1

(I − RjRj+).

performance and computational cost grow with increasing 
values of q as the method converges towards the IQN-MVJ 
approach.

Computational complexity and storage As can be 
observed in Eq. (92), this procedure requires the storage of 

Rj+ =

(
RjTRj

)−1

RjT for the q previous time steps. If the 

inverse of RjTRj is calculated via the LU decomposition 
using partial pivoting with row interchanges [38], then this 
scales with nx , but has slightly less robustness to bad condi-
tioning than the Householder QR approach. As a result, the 
complete procedure has linear complexity in nx , like IQN-
ILS. In addition, the QR decomposition is only applied on 
the secant information from the most recent time step, as 
opposed to the matrix with the secant information from all 
time steps in IQN-ILS. As not all secant information is com-
bined into one matrix, the sensitivity to (almost) linear 
dependencies is smaller. Furthermore, no restart is required, 
but the implementation is a bit more involved than IQN-ILS 
or IQN-MVJ. It was also observed in [53] that including the 
secant information from the previous time step in X̃ and R 
as well can accelerate the convergence, especially at the 
beginning of a time step. The complete procedure can be 
found in Algorithm 7.
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5.6  IQN‑ILSM

All techniques mentioned above use the flow solver and 
structural solver as black boxes, while sometimes the user 
has additional insight into the behaviour of the problem. 
This additional information can be incorporated to accel-
erate the convergence of the coupling iterations using the 
Interface Quasi-Newton algorithm with an approximation 
for the Inverse of the Jacobian from a Least-Squares model 
and additional Surrogate Model method (IQN-ILSM) [61]. 
In this technique, the secant information is combined with 
a so-called surrogate model, which behaves similarly to the 
actual solvers but is significantly faster. The origins of this 
technique can be found in the FreQ-LeSS algorithm for free-
surface calculation, where secant conditions from previous 
flow solver iterations was combined with an analytical model 
of the problem [62, 63].

The surrogate model is denoted as Rs and the subscript 
s will be used to denote quantities related to the surrogate 
model. The inverse Jacobian of Rs with respect to x̃ is 
referred to as the surrogate Jacobian, which is assumed to 
stay the same during the entire time step. A procedure to cal-
culate the product of this matrix with a vector is sufficient, 
without requiring construction and storage. To emphasize 
this matrix-free aspect, the surrogate Jacobian is represented 
by a function 𝜕

r
x̃s(⋅) . Furthermore, this surrogate Jacobian 

can be either full-rank or only a low-rank approximation, 
with column space Rs . At the end of each time step, the 
surrogate model is synchronized with the original model by 
interpolating the solution from the latter to the former. This 

approach avoids large discrepancies between the original 
model and the surrogate model after some time steps.

To gain insight in the IQN-ILSM technique, Eq. (75b) 
should first be revisited. This equation shows how IQN-ILS 
splits Δrk in a part RkRk+

Δrk in the column span of Rk and 
a part (I − RkRk+

)Δrk orthogonal to it, using secant condi-
tions for the former and Gauss–Seidel iteration for the latter. 
The term (I − RkRk+

)Δrk for which no secant information is 
known can now be split once more into a part 
RsRs

+
(
I − RkRk+

)
Δrk for which the surrogate model has 

information and the remainder 
(
I − RsRs

+
)(

I − RkRk+
)
Δrk 

for which Gauss–Seidel iteration is the best option. Obvi-
ously, the latter is zero if the surrogate Jacobian is full-rank. 
The split of Δrk and the approximate Jacobian used for each 
part can be written as

Note that this equation is written in terms of Xk rather than 
X̃k and that �

r
xs(⋅) is used rather than 𝜕

r
x̃s(⋅) . Here �

r
xs refers 

to 𝜕
r
x̃s − RsRs

+ and not to the full-rank Jacobian 𝜕
r
x̃s − I as 

was the case in Eq. (68). Equation (93) shows that the secant 
conditions have the highest priority, followed by the sur-
rogate Jacobian and then Gauss–Seidel iteration. In the first 
coupling iteration, there are no secant conditions yet, so the 

(93)

Δxk = XkRk+
[
RkRk+Δrk

]

+ �
r
xs

([
RsRs

+
(
I − RkRk+

)
Δrk

])

− I
[(
I − RsRs

+
)(

I − RkRk+
)
Δrk

]
.
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surrogate Jacobian plays an important role. The contribution 
of the secant conditions will then become more significant 
during the coupling iterations as the column span of Rk grad-
ually increases. The expression in Eq. (93) can be simplified 
by using Jacobians with respect to x̃ instead, giving

These expressions can be expanded by including multiple 
surrogate models in a similar way.

Several types of surrogate models can be considered. 
A first type is a coarse grid version of the original prob-
lem, using the same solvers. When using such a surrogate 
model, it is important to note that the secant information 
obtained on the original grid and on the coarse grid is 
not combined. The surrogate Jacobian thus also uses the 
coarse grid and interpolation is performed when it needs 
to be multiplied with a vector from the original grid. A 
second option is to use solvers with simplified physics, 
such as solvers neglecting viscosity or nonlinearity. If the 
simplified physics solvers have a known Jacobian, e.g., 
because they are analytical functions, then the surrogate 
Jacobian will typically be constructed and stored but it will 
be full-rank and only a relatively small matrix.

Another option for the surrogate is reuse from previous 
time steps in a time-dependent simulation. As opposed to 
the previously mentioned surrogate types, this surrogate 
model does not require the solution of a separate problem 
and no synchronization at the end of each time step, so it 
is essentially free. The reuse of q previous time steps cor-
responds to q nested surrogate models, with decreasing 
importance when for older time steps, giving

with X̃i and Ri containing the secant information from time 
step i. This equation can be condensed to

(94)Δxk = �XkRk+
Δrk + 𝜕

r
x̃s

((
I − RkRk+

)
Δrk

)
− Δrk.

(95)

�n+1,k
r

x = X̃
k
R
k+ +

n∑

i=n+1−q

X̃
i
R
i+

(
n∏

j=i+1

(I − R
j
R
j+)

)

(I − R
k
R
k+) − I

(96)�n+1,k
r

x =

n+1∑

i=n+1−q

X̃iRi+
n+1∏

j=i+1

(
I − RjRj+

)
− I.

When calculating the product 
∏n+1

i+1
(I − RjRj+

)Δrk for each 
of the terms in the summation, the value in the previous 
term is stored and updated with one factor for the next term. 
Therefore the summation is in fact done in reverse order 
( n + 1 �→ n + 1 − q ). The IQN-ILSM algorithm can be found 
in Algorithm 8 and an efficient calculation of Δxs = 𝜕

r
x̃s(⋅) 

in the case of reuse from previous time steps in Algorithm 9.
Computational complexity and storage While in IQN-ILS 

the QR decomposition is applied on the secant information 
from all time steps combined in each coupling iteration, IQN-
ILSM with reuse as surrogate only applies the QR decomposi-
tion on the data from the current time step during the coupling 
iterations. The QR decomposition of the data from previous 
time steps is stored and does not need to be updated. This 
difference is reflected in the computational cost, which scales 
as O(nx(qk̄)

2) for IQN-ILS and O(nxk̄
2) for IQN-ILSM, with 

k̄ the number of coupling iterations averaged over the time 
steps. Moreover, as IQN-ILSM does not combine the secant 
conditions from all time steps in a single matrix, it typically 
does not require filtering, as opposed to IQN-ILS.

By comparing Eq. (96) with Eq. (92), it can be observed 
that the IQN-ILSM method with reuse as surrogate is iden-
tical to the IQN-IMVLS method, except for some imple-
mentation aspects mentioned in Sect. 5.5. IQN-ILSM can 
thus be considered as a generalization of IQN-IMVLS 
such that not only reuse of secant information from pre-
vious time steps, but also physics-based surrogate mod-
els can be used, although it was not developed as such. 
Furthermore, the IQN-ILSM method can be interpreted 
as part of a larger class of methods which combine data-
driven relations with physics-based knowledge [64].

In addition to providing a surrogate Jacobian to acceler-
ate the convergence of the coupling iterations, the surrogate 
can also provide an initial guess for the coupling iterations. 
This prediction can be found in line 5 of Algorithm 8. When 
reuse from previous time steps is the surrogate model, this 
corresponds to linear extrapolation.
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5.7  Other Algorithms

Besides the already mentioned techniques, there are many 
other variants, a selection of which is touched upon below.6 
This section ends with an outlook to the application of 
quasi-Newton coupling techniques outside of the field of 
fluid–structure interaction.

Jacobi iteration and high-performance computing The 
algorithms mentioned above are all using a sequential solu-
tion of the flow problem and structural problem. So, they can 
be considered related to Gauss–Seidel iteration, as opposed 
to Jacobi iteration which is characterized by simultaneous 

solution of both problems. For several of the quasi-Newton 
coupling techniques mentioned in this review, similar tech-
niques are available based on Jacobi iteration [65]. For linear 
systems, Gauss–Seidel iteration inherently converge faster 
than Jacobi iteration, and this typically also holds for non-
linear systems, such as the FSI problem [66]. However, the 
higher number of iterations in a Jacobi-based method may 
be compensated by its better parallel scalability, although 
this is not guaranteed. Therefore, the difference in parallel 
scalability between both iterations types will be explained in 
the following lines. For Gauss–Seidel iteration, the flow and 
structure solvers are run sequentially, so both solvers can use 
all available CPU cores. However, the work load and the par-
allel efficiency of both solvers is typically very different, and 
often much higher for the flow solver. If the structure solver 
does not scale up well to a large number of cores, this leads 

6 A lot of work is being done on symmetric variants for optimization 
[80], but those are not appropriate for FSI as the Jacobian that needs 
to be approximated is not symmetric [81].
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to a low parallel efficiency, or analogously a number of idle 
cores. This problem is overcome by Jacobi iteration where 
the flow and structure solvers are calculating simultaneously. 
The cores are distributed over the two solvers such that both 
solvers require the same amount of calculation time, i.e., 
they are perfectly balanced, but this load balancing may not 
be trivial. Furthermore, specific variants of quasi-Newton 
methods have been developed for High-Performance Com-
puting (HPC) such as the Compact Interface Quasi-Newton 
method (CIQN) [67], which is a parallel adaptation of IQN-
ILS focused on efficiently combining partitions to realize a 
scalable implementation.

Multi-solver variants Also Multi-Solver (MS) versions of 
both IQN-ILS and IBQN-LS have been developed [68]. Once 
an FSI simulation can no longer be accelerated by increasing 
the number of cores per solver, the multi-solver algorithms 
can be applied for an additional speed-up. These multi-solver 

algorithms reduce the calculation time by running multiple 
instances of the flow solver and structural solver, while keep-
ing the number of cores per solver constant and running each 
instance on one or more cluster nodes. One instance of the 
flow solver and of the structural solver perform coupling iter-
ations like in the normal IQN-ILS or IBQN-LS algorithm. 
However, data from previous time steps is not reused directly 
as explained in Sect. 5.1, because the relation between the 
columns of Rn and X̃n is only approximate at tn+1 . The addi-
tional instances of the flow solver and structural solver first 
recalculate the data from the previous time steps at the current 
time level, before including that data in a least-squares model. 
The columns of the matrix Xn contain specific combinations 
of the degrees of freedom on the interface that accelerated the 
convergence of the coupling iterations in the previous time 
step. Hence, it is expected that knowing the difference of the 
output at tn+1 due to the same difference of the input as used 
at time level tn will improve the least-squares model for the 
approximate Jacobian.

Multi-level variants Furthermore, there exist Multi-Level 
(ML) versions of IQN-ILS and IBQN-LS [69]. Those could be 
considered similar to IQN-ILSM with a coarse grid surrogate 
model. However, the multi-level algorithms have important 
disadvantages compared to IQN-ILSM and therefore the IQN-
ILSM algorithm is recommended. First, the multi-level algo-
rithms combine the secant conditions obtained on all grids, 
which gives them all the same priority. By contrast, IQN-
ILSM gives the highest priority to the finest grid, with a dimin-
ishing contribution from the coarser grid(s) as the coupling 
iterations on the finest grid converge. Furthermore, the multi-
level algorithms interpolate the secant conditions obtained on 
the coarser grid(s) to the finest grid level and store it at the 
highest resolution, while IQN-ILSM stores the secant condi-
tions with the resolution at which they have been calculated.

Aitken relaxation In addition to the quasi-Newton algo-
rithms, Aitken relaxation [70–72] is frequently used for 
partitioned FSI simulations. This technique uses a dynami-
cally varying scalar relaxation factor �k for the Gauss–Seidel 

Fig. 6  Schematic representation of the tube geometry

Table 4  Parameter values of the 1D flexible tube case

Parameter Value Parameter Value

� 0.05 m E 300,000 kg∕m s2

r
0

0.005 m � 0.3
h 0.001 m �f 1000 kg∕m3

Δt 0.0001 s �s 1200 kg∕m3

Table 5  Average number of 
iterations required per time step 
for the different methods ( np = 
100)

Method Number of itera-
tions

Time (s) Method Number of itera-
tions

Time (s)

Relaxation ( � = 0.01) 820.98 241.40 Aitken relaxation 36.96 13.10
IQN-ILS (q = 0) 12.27 4.57 IBQN-LS (q = 0) 11.91 16.05
IQN-ILS (q = 1) 8.37 3.04 IBQN-LS (q = 1) 8.69 15.25
IQN-ILS (q = 5) 4.40 1.60 IBQN-LS (q = 5) 4.78 10.49
IQN-ILS (q = 8) 3.92 1.54 IBQN-LS (q = 8) 4.27 10.80
IQN-ILS (q = 10) 3.84 1.54 IBQN-LS (q = 10) 4.10 11.32
IQN-ILS (q = 12) 4.07 1.72 IBQN-LS (q = 12) 4.00 12.23
IQN-ILS (q = 20) 4.59 2.16 IBQN-LS (q = 20) 4.58 20.53
IQN-MVJ 4.19 1.62 MVQN 4.20 6.82
IQN-IMVLS 4.82 1.91
IQN-ILSM (reuse) 4.19 2.17
IQN-ILSM (coarse) 7.75 8.62
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iterations within a time step. It can thus also be interpreted as 
an interface quasi-Newton technique: if the inverse of the Jaco-
bian in Eq. (23) is approximated by −�kI , the Aitken relaxa-
tion method is retrieved.

The next input for R is thus a linear combination of the last 
output and the previous input. Therefore, the update of the 
interface’s displacement is in the direction of the residual 
vector, as opposed to the update of the IQN-ILS method in 
Eq. (73). The value of �k is calculated recursively as

which can be interpreted as the secant method for scalars 
directly applied to vectors and projected on rk − rk−1 [70]. By 
combining Eqs. (97) and (98), it can be seen that the update 
of the interface’s displacement is given by

for k > 0 , which is similar to Eq. (73). If the Jacobian were 
created explicitly in the IQN-ILS algorithm and if the matri-
ces Rk and X̃k were limited to their newest column, Eq. (73) 
would yield

(97)
xk+1 = xk + 𝜔krk

= (1 − 𝜔k)xk + 𝜔kx̃k

(98)�k = −�k−1 (rk−1)T(rk − rk−1)

(rk − rk−1)T(rk − rk−1)

(99)
xk+1 = xk +

(xk − xk−1)T(rk − rk−1)

(rk − rk−1)T(rk − rk−1)
(−rk)

= xk +

[
(x̃k − x̃k−1)T(rk − rk−1)

(rk − rk−1)T(rk − rk−1)
− 1

]

(−rk)

Note the different location of the transpose sign in Eqs. (99) 
and Eq. (100). They are thus not identical because the coef-
ficient of −rk is a scalar in the first equation and a matrix in 
the second one. Consequently, Aitken relaxation is different 
from IQN-ILS, even when the latter is restricted to one col-
umn in the matrices Rk and X̃k . While Aitken relaxation uses 
a single relaxation factor for all interface degrees of free-
dom, IQN-ILS assigns a different value to each one based 
on a combination of the previously determined modes, i.e., 
the columns of Rk and X̃k.

Prediction In all the quasi-Newton algorithms, the cou-
pling iterations begin from x0 , which is an extrapolation 
or prediction. This can be a constant, linear or quadratic 
extrapolation based on xn, xn−1,… . While there is an effect 
of the order of this prediction on the convergence of the 
coupling iterations, it is case dependent and it is thus dif-
ficult to state whether higher order is always faster [29]. In 
the IQN-ILSM algorithm, the surrogate model can also be 
used for a prediction, but this is also not always faster than 
a linear extrapolation [61].

Quasi-Newton methods with Robin–Neumann decomposi-
tion Instead of the typical Dirichlet–Neumann decomposi-
tion of the FSI problem, a Robin–Neumann decomposition 
can be used as well. This decomposition modifies the bound-
ary condition in the flow solver to also include the pressure 
and traction forces. The effect is the introduction of Interface 
Artificial Compressibility (IAC), which allows to solve FSI 

(100)xk+1 = xk +

[
(x̃k − x̃k−1)(rk − rk−1)T

(rk − rk−1)T(rk − rk−1)
− I

]

(−rk).

Fig. 7  Comparison of memory requirements for the different methods Fig. 8  Comparison of coupling time for the different methods
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problems with enclosed incompressible fluids. To combine 
the idea of IAC with quasi-Newton methods a pressure cor-
rection has to be introduced to obtain corresponding inputs 
and outputs for the quasi-Newton technique [73]. However, 
by switching the order of the solvers and performing the 
quasi-Newton update on the pressure and traction forces 
instead of the displacements, this pressure correction can 
be avoided [74].

Applications in other fields Finally, it should be remarked 
that the quasi-Newton coupling techniques can also be used 
for coupled problems other than FSI. The main requirement 
for good results is significant interaction between both sub-
problems such that an approximate Jacobian stabilizes and 
accelerates the convergence compared to Gauss–Seidel itera-
tions. The interaction should however not be so strong that 
an exact Jacobian satisfying all possible secant conditions 
is required to achieve convergence.

An example of a suitable problem is Conjugate Heat 
Transfer (CHT), where the partitioned spatial regions are 
each modelled by independent heat transfer codes and 
linked by temperature and flux matching conditions at the 
common boundaries [75]. A furnace radiation model can 
be coupled with a melt crystal growth model to investigate 
growth processes [76]. Another example is soil–structure 
interaction problems. The effect of excavations on the 
frame of a building can be studied by coupling a model 
of the soil’s behaviour with a code for nonlinear struc-
tural dynamics [77]. In this case, the interaction between 
the models occurs at a relatively small number of points. 
Finally, they can even be used to calculate the combustion 
in a fluidized bed reactor under pressure [78]. The calcula-
tion of the carbon and oxygen concentrations is performed 
separately from the calculation of the temperature field. 
In this last example, there is only one domain and data are 
exchanged throughout the domain, as opposed to the other 
examples, where the domains do not overlap and data are 
only exchanged at the common boundary of the subdo-
mains. Therefore, the cost of the coupling is no longer neg-
ligible compared to the solution of the subproblems, which 
necessitates coupling techniques with low computational 
complexity and low memory requirements.

6  Numerical Tests

Several comparisons of quasi-Newton techniques can be 
found in the literature [52, 56, 59]. This section aims at 
providing an idea about the relative performance of the 
described techniques using a test case that can be reproduced 
in a straightforward way, but without claim of general appli-
cability. It focuses on the scaling with increasing number of 
degrees of freedom on the interface.

6.1  Test Case

The six quasi-Newton techniques presented in Sect. 5 are 
now evaluated on a one-dimensional (1D) flexible tube, 
through which an incompressible fluid flows. This test case 
runs quickly and still features the destabilizing added mass 
phenomenon [35].

The straight tube has a length � , a circular cross-section 
with nominal inner diameter r0 and wall thickness h. Its 
geometry is sketched in Fig. 6.

The ratio of the fluid density �f  to the structure density �s 
is close to one, resulting in a large added mass. The structure 
has a modulus of elasticity E and a Poisson’s ratio � . The 
values of these parameters are reported in Table 4.

On the inlet, a pressure pulse of 1333.2 Pa is applied for 
a duration of 0.003 s. Due to the flexible tube wall, the pulse 
travels at a finite velocity, despite the incompressible fluid. 
The pressure at the outlet of the tube is atmospheric pres-
sure, i.e., 0 Pa. The total simulation time is 0.01 s, divided 
in 100 time steps.

The flow solver solves the nonlinear continuity and 
momentum equation in which viscosity and gravity are 
neglected. The deformation of the tube wall is calculated by 
the structure solver, which only considers radial displace-
ments, so the length of the tube stays constant. The tube is 
discretized in np equal intervals. For the details regarding the 
governing equations and applied discretizations, the reader 
is referred to [35].

The FSI problem is solved with the open-source code 
CoCoNuT. This code allows to couple different software 
packages, which are treated as black boxes. It has the advan-
tage of being modular and flexible in combining interpo-
lators, solvers and coupling algorithms. Moreover, due to 
its comprehensive structure and implementation in Python, 
the code can be adapted to the user’s own requirements, if 
needed. The most recent code can be found on GitHub in 
the repository https:// github. com/ pyfsi/ cocon ut/. The ver-
sion used in this paper as well as scripts and result data are 
available for download on the Zenodo platform [79]. Both 
a flow and structure solver were written for the 1D flexible 
tube case described above and this code is equally available 
online.

6.2  Results

As the solvers are typically very expensive in FSI calcula-
tions, the focus is on the number of solver executions per 
time step. The term iteration will be used to denote a sub-
sequent flow and structure solver call. Table 5 shows the 
number of iterations for the different quasi-Newton meth-
ods discussed above, as well as for a fixed relaxation factor 
and Aitken relaxation. Time data is included for complete-
ness. A relative convergence tolerance is used, so that a 

https://github.com/pyfsi/coconut/
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time step is considered converged when ‖‖rk‖‖2 < 10−6‖‖r
0‖
‖2 , 

with r0 the residual at the start of the time step.
Dynamic Aitken relaxation improves the convergence 

greatly compared to simple relaxation, but does not per-
form as well as the quasi-Newton methods. The block 
iteration and residual formulation methods perform simi-
larly, whereas the least-squares techniques turn out to be 
somewhat more efficient compared to the multi-vector 
techniques for this test case. IQN-ILS (q = 0) corresponds 
to the method without reuse from previous time steps, but 
the IQN-ILS method performs best for q equal to 10. This 
shows the importance of reusing information from previ-
ous time steps. Note that the average number of coupling 
iterations per time step is not so sensitive to the value of q 
around the optimum. The indications (reuse) and (coarse) 
for the IQN-ILSM algorithm, refer respectively to the use 
of the previous time steps, and the use of an identical prob-
lem with half as many discretization intervals (without 
reuse) as surrogate model.

Next, Fig. 7 shows the memory requirements, for dif-
ferent number of discretization intervals np . The data 
depict the peak memory usage as determined using the 
Python module guppy3.7 The reported values are the total 
memory use minus that of the solvers. The results clearly 
show quadratically scaling memory requirements for the 
multi-vector techniques with explicit Jacobian construc-
tion, in contrast to the linear scaling for the methods with 
matrix-free implementation. Starting from 104 degrees of 
freedom, the memory requirements of MVQN and IQN-
MVJ become much higher than those of the other cou-
pling techniques. Furthermore, the block iteration methods 
require more memory compared to their corresponding 
residual formulation techniques, as two Jacobian matrices 
are approximated. Finally, IQN-IMVLS and IQN-ILSM 
(reuse) require more memory compared to the other 
matrix-free methods, because they retain information form 
every time step ( q = 100 ), instead of only from the last 
few ( q = 10 ). However, this could be reduced by applying 
a truncation after q time steps in the recursive formulas.

Lastly, Fig. 8 reports the coupling time, for different num-
ber of discretization intervals np . The coupling time is cal-
culated as the run time, excluding initialization, minus the 
time spent in both solvers and the interpolation routine. It 
is important to note that the code generating these results is 
not optimized for speed, such that care has to be taken when 
interpreting the results. Nonetheless, some relevant conclu-
sions can be made. For example, remark that the quadrati-
cally scaling methods IQN-MVJ and MVQN require con-
siderably more time than their linearly scaling counterparts. 
The same can be concluded for the block iterations methods, 

which are implemented here with an iterative procedure to 
obtain the quasi-Newton updates. Using the Woodbury 
matrix identity instead is expected to reduce the compu-
tational cost, but not to the extent that they will become 
cheaper than residual formulation techniques. Finally, the 
coupling time for the linearly scaling residual formulation 
techniques are in the order of 10 s for the investigated range 
of discretization intervals. These values remain low com-
pared to the typical cost of solving the subproblems. There-
fore, the difference in computational cost of the coupling for 
these methods is only moderately important.

7  Conclusion

The IQN-ILS, IBQN-LS, MVQN, IQN-MVJ, IQN-IMVLS 
and IQN-ILSM can all be reformulated as quasi-Newton 
techniques using generalized Broyden techniques for the 
approximate (inverse of the) Jacobian. In a time-dependent 
simulation with reuse from previous time steps, IQN-ILS 
and IBQN-LS enforce the secant conditions from all time 
steps in the same way, while MVQN, IQN-MVJ, IQN-
IMVLS and IQN-ILSM only enforce the secant conditions 
from the latest time step directly. The block iteration quasi-
Newton techniques like IBQN-LS and MVQN achieve simi-
lar performance in terms of number of coupling iterations 
per time step compared to the equivalent residual formula-
tion quasi-Newton techniques IQN-ILS and IQN-MVJ, but 
the block iteration quasi-Newton techniques require more 
memory, more computational time for the coupling and a 
longer source code, entailing more involved implementation. 
Hence, it can be stated that, in general terms, it is better to 
use a residual formulation quasi-Newton method instead of 
the block iteration quasi-Newton techniques. For real-scale 
applications with a reasonable number of degrees of freedom 
on the interface, linear scaling of the coupling technique is 
essential, so MVQN and IQN-MVJ can only be used for 
smaller problems. The IQN-ILS technique has a short imple-
mentation and linear scaling thanks to the matrix-free proce-
dure, but it requires filtering when reusing secant conditions 
from previous time steps. Finally, IQN-ILSM can be seen 
as a generalization of IQN-IMVLS, such that not only reuse 
from previous time steps can be applied but also other prior 
knowledge can be included to accelerate the convergence.
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