
Vol.:(0123456789)1 3

Archives of Computational Methods in Engineering
https://doi.org/10.1007/s11831-023-09907-y

REVIEW ARTICLE

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure
Interaction Reviewed in the Generalized Broyden Framework

Nicolas Delaissé1 · Toon Demeester1 · Rob Haelterman3 · Joris Degroote1,2

Received: 17 November 2022 / Accepted: 26 February 2023
© The Author(s) 2023

Abstract
Fluid–structure interaction simulations can be performed in a partitioned way, by coupling a flow solver with a structural
solver. However, Gauss–Seidel iterations between these solvers without additional stabilization efforts will converge slowly
or not at all under common conditions such as an incompressible fluid and a high added mass. Quasi-Newton methods can
then stabilize and accelerate the coupling iterations, while still using the solvers as black boxes and only accessing data at the
fluid–structure interface. In this review, the IQN-ILS, IQN-MVJ, IBQN-LS, MVQN, IQN-IMVLS and IQN-ILSM methods
are reformulated in the generalized Broyden framework to illustrate their similarities and differences. Also related coupling
techniques are reviewed and a performance comparison is provided where available.

1 Introduction

Fluid–Structure Interaction (FSI) is the interaction of a fluid
with a moving or deforming structure and occurs in many
different branches of engineering. In mechanical engineer-
ing, the blades of a wind turbine deform due to their inter-
action with the wind [1, 2]. Also Flow-Induced Vibration
(FIV) can occur, for example in tube bundles with external
flow, leading to leakage or even rupture of the tubes [3]. In
civil engineering, there are interactions between wind flow
and bridges [4], silos [5], tents [6] and many other structures.
In the biomedical field, heart valves and arteries are flexible
structures that interact with the blood flow [7, 8].

As fluid–structure interaction is a multi-physics problem,
complex phenomena can occur and numerical simulations
are frequently used for the analysis. These numerical simu-
lations of FSI can be performed in a monolithic or parti-
tioned way. Monolithic codes solve the equations for the

fluid and for the structure simultaneously, for example with
a Newton–Raphson procedure [9] or multigrid method [10].
In this review, the focus is on the partitioned approach, as
it allows to reuse mature and optimized codes to solve the
subproblems.

Among the partitioned approaches, one can distinguish
between the weakly and strongly coupled techniques.
Weakly coupled techniques (also called explicit or loose
coupling) solve the flow equations and the structure equa-
tions only once per time step [11, 12]. Consequently, the
equilibrium between the fluid and the structure is not satis-
fied exactly. In this context, the term equilibrium refers to
the equality of velocities and forces on the fluid–structure
interface. These weakly coupled techniques are typically
suitable for aeroelastic simulations with light and compress-
ible fluids [13], but specific schemes can also be applied
with dense and incompressible fluids [14].

By contrast, strongly coupled techniques (or implicit cou-
pling) use coupling iterations between the flow solver and
structure solver to enforce the equilibrium at the fluid–struc-
ture interface up to a convergence tolerance in a steady simu-
lation or in each time step of an unsteady one [15–17]. As
a result, the flow problem and structure problem are solved
multiple times per (time) step. Obviously, these coupling
iterations increase the computational cost, but the cost per
coupling iteration normally decreases during the iterations
within a (time) step as the change per iteration decreases. In
the remainder of the paper an unsteady simulation will be

 * Joris Degroote
 Joris.Degroote@UGent.be

 Nicolas Delaissé
 Nicolas.Delaisse@UGent.be

1 Department of Electromechanical, Systems and Metal
Engineering, Ghent University, Sint-Pietersnieuwstraat 41,
9000 Ghent, Belgium

2 Flanders Make @ UGent – Core Lab MIRO, Ghent, Belgium
3 Department of Mathematics, Royal Military Academy,

Renaissancelaan 30, 1000 Brussels, Belgium

http://crossmark.crossref.org/dialog/?doi=10.1007/s11831-023-09907-y&domain=pdf
http://orcid.org/0000-0002-3241-6487
http://orcid.org/0000-0003-4893-7866
http://orcid.org/0000-0003-4225-1791

 N. Delaissé et al.

1 3

assumed; a steady simulation is then a special case with one
large time step.

An important parameter for the choice between weakly
and strongly coupled techniques, but also for the stability
of the coupling iterations in several strongly coupled tech-
niques, is the ratio of the added mass to the mass of the
structure [18]. The added mass is the apparent increase in
mass of the structure due to the fluid that is displaced by
the motion of this structure. Physically, it is influenced by
the shape of the fluid domain and the density of the fluid.
Numerically, also the time step size determines its effect,
but this effect depends on whether the fluid is compressible
or not. FSI problems with a compressible fluid can always
be stabilized as long as the time step is sufficiently small,
regardless of the ratio of the apparent added mass to the
structural mass. However, for an incompressible fluid, stabil-
ity cannot be obtained by decreasing the time step size [13,
15]. On the contrary, for incompressible flows in combina-
tion with flexible structures, decreasing the time step size
may even increase the instability [15, 19–21]. For example,
for the simulation of an elastic panel clamped at both ends
and adjacent to a semi-infinite fluid domain, the added mass
effect of a compressible fluid is proportional to the time step
size, while for incompressible fluids it approaches a constant
as the time step size decreases [13].

Especially for an incompressible fluid, many cases have a
high added mass, e.g., blood flow in a vascular system [22],
vibrations of tube bundles in lead-bismuth eutectic [23] or
flutter of a slender cylinder in axial flow [24]. For these
cases, the straightforward iteration between flow and struc-
ture solver within a time step will typically converge very
slowly, or not at all, if no additional stabilization efforts are
implemented. In this work, the focus is on techniques which
consider the solvers as black boxes, as this is typically the
case in a partitioned approach. Then, stabilization methods
that alter one of the solvers, e.g., including an approximate
added mass operator in the structural solver as in [25], are
not possible. To stabilize and accelerate the convergence of
coupling iterations with black box solvers, quasi-Newton
methods have been developed in the fluid–structure inter-
action community. These methods will be reviewed in this
work using the generalized Broyden framework.

The remainder of this review paper is structured as fol-
lows. First the FSI problem is posed and the necessary nota-
tion is introduced in Sect. 2. Then, the most basic solution
approach is discussed in Sect. 3, with focus on its short-
comings in terms of stability and convergence speed, and
how they can be overcome by introducing Jacobian infor-
mation. In Sect. 4, a general method to obtain these Jaco-
bians is discussed, called generalized Broyden. Thereafter,
in Sect. 5, different quasi-Newton techniques are discussed
in detail, including the Interface Quasi-Newton technique
with an approximation for the Inverse of the Jacobian from

a Least-Squares model (IQN-ILS), the Interface Quasi-
Newton technique with Multi-Vector Jacobian (IQN-MVJ),
the Interface Block Quasi-Newton technique with approxi-
mations from Least-Squares models (IBQN-LS), the Multi-
Vector update Quasi-Newton technique (MVQN), the Inter-
face Quasi-Newton Implicit Multi-Vector Least-Squares
(IQN-IMVLS) and the Interface Quasi-Newton algorithm
with an approximation for the Inverse of the Jacobian from a
Least-Squares model and additional Surrogate Model (IQN-
ILSM). This section ends with further notes and extensions
on these methods. Finally, some numerical results to com-
pare the different techniques are provided in Sect. 6, fol-
lowed by the conclusions in Sect. 7.

2 Formulation of the FSI Problem

An abstract fluid–structure interaction problem, as shown
in Fig. 1, consists of the subdomains Ωf and Ωs , with the
subscripts f and s denoting fluid and structure, respectively.
The boundaries of the subdomains are denoted as Γf = �Ωf
and Γs = �Ωs and the fluid–structure interface Γi = Γf ∩ Γs
is their common boundary.

Besides having to satisfy the flow and structure equations
in the respective subdomains while taking into account the
appropriate boundary conditions on Γf ⧵ Γi and on Γs ⧵ Γi ,
the solution of the FSI problem is also required to fulfill
the equilibrium conditions on the fluid–structure interface
Γi . The equilibrium conditions on a no-slip fluid–structure
interface are twofold. First, the equality of fluid and solid
velocity on Γi is needed (kinematic condition)

where v⃗ is the velocity vector in the fluid domain and u⃗ the
displacement vector in the structure domain. Remark that
this equality also implies equal accelerations on the inter-
face. Second, equal magnitude but opposite sense of traction
on Γi is required (dynamic condition)

(1)v⃗ =
Du⃗

Dt
,

Fig. 1 The fluid subdomain Ωf , the structure subdomain Ωs , their
boundaries Γf and Γs and the fluid–structure interface Γi

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

where �̄�f ,s is the stress tensor in Ωf ,s and n⃗f ,s the unit nor-
mal vector that points outwards from the corresponding
subdomain.

As this work discusses coupling techniques that con-
sider the solvers as black boxes, only the variables on the
fluid–structure interface Γi are of interest. However, the
discretization of this interface is often different in the flow
and structure subdomains. Given the focus of this review on
coupling techniques, it is assumed that an interpolation layer
is wrapped around or included in one (or both) of the solvers,
invisible to the implementation of the coupling technique.
As a consequence, the discretized displacement on either
side of the fluid–structure interface can be represented as
a column array x ∈ ℝ

nx×1 containing all components of the
displacement vector u⃗ in each of the np grid points on the
interface.

with the first subscript referring to the grid point (1 to np)
and the second one to the component (1 to d, with d the
dimension).

Similarly, the pressure p and all components of the vis-
cous traction vector t⃗ in each load point (1 to nl) on either
side of the fluid–structure interface are grouped in a column
array y ∈ ℝ

ny×1

also called load vector, with the same meaning of the sub-
scripts as above. Note that the nl load points do not need to
coincide with the discretization of the displacement. It is
important that the pressure load p ⋅ n⃗ and viscous traction t⃗
are not added, but included individually into y , because the
pressure is typically dominant and has to stay perpendicular
to the surface, also when interpolation is performed. If pres-
sure and viscous traction were added, the resulting interpo-
lated vector would have a pressure contribution that is not
necessarily perpendicular to the surface after interpolation,
resulting in an artificial shear component that can be much
larger than the physical shear component.

With the typical Dirichlet–Neumann decomposition of the
FSI problem, the displacement (linked to the velocity through
the time discretization in time-dependent problems) is imposed
at the interface in the flow solver and a pressure and viscous
traction distribution is applied on the interface in the structure
solver. A flow solver with a deforming grid using the Arbi-
trary Lagrangian–Eulerian (ALE) frame of reference will be
assumed for the explanation, but this can be replaced by other
techniques, for example the combination of the ALE approach
and the Chimera technique [26] to handle large body motions

(2)�̄�f ⋅ n⃗f = −�̄�s ⋅ n⃗s,

(3)x =

[
u1,1 … u1,d u2,1 … u2,d … unp,1 … unp,d

]T
,

(4)y =
[
p1 t1,1 … t1,d … pnl,1 tnl,1 … tnl,d

]T
,

or non-conforming alternatives, such as Immersed Bound-
ary Methods (IBM) [27] and Embedded Boundary Methods
(EBM) [28], which can handle large deformations and even
topology changes. The flow calculation in a coupling iteration
within a time step can be written as

This notation concisely represents several operations and
hides the dependence on previous time steps and the vari-
ables in the fluid domain next to the interface, while empha-
sizing the dependence on the discretized displacement x of
the fluid–structure interface. It represents the following
actions. First, the discretized displacement is given to the
flow solver and the fluid domain adjacent to the interface is
adapted accordingly. Then, the flow equations are solved in
the entire fluid domain, resulting in a new load distribution
y on the interface.

Similarly, the calculation of the structure is represented by
the function

As before, this expression hides the dependence on both the
previous time steps and the variables in the structure domain
next to the interface. It indicates that the fluid pressure and
viscous traction distribution on the interface y is given to
the structure code. Subsequently, that code calculates the
displacement of the entire structure and thus also the new
displacement x of the fluid–structure interface.

With these notations, the FSI problem is formulated as the
system

that has to be solved for x and y . This problem can be rewrit-
ten as the root-finding problem

with unknowns x and y.
Moreover, the system in Eq. (7) can be reduced by substi-

tuting one equation in the other. Commonly, the first line is
substituted in the second, but the other way around is equally
possible. In this way, the FSI problem is simplified to a smaller
system of equations

which has to be solved for x . The notation ◦ refers to func-
tion composition, so S ◦F(x) is equivalent with S(F(x)) .
This looks like a fixed-point equation for x , but can also be
written as a root-finding problem with unknown x

(5)y = F(x).

(6)x = S(y).

(7)
{

F(x) = y

S(y) = x

(8)
{

F(x) − y = 0

S(y) − x = 0

(9)S ◦F(x) = x,

 N. Delaissé et al.

1 3

To write this more compactly, the residual operator R(⋅) is
defined as

with output r = R(x) . The FSI problem thus reduces to find-
ing the x that fulfills

In this section, we have presented two formulations of the
FSI problem. The first is the complete system Eq. (7) with
nx + ny unknowns. The second is the reduced system Eq. (9),
which has the benefit of having only nx unknowns. This sys-
tem has been written more compactly using the residual
operator R resulting in Eq. (12). In the next sections, several
methods are discussed to solve the FSI problem presented
here, in one of both formulations.

Both the solver operators as well as the residual operator
are typically nonlinear. Therefore, the FSI problem exhibits
similarities with nonlinear root-finding problems. The main
difference is that an FSI problem usually involves time step-
ping (except for steady cases), which means that a nonlinear
system has to be solved in each time step. Therefore, within
each time step, coupling iterations are performed until the
solution is reached. The nonlinear systems in subsequent
time steps are somehow related to each other, because the
solver operators change only gradually in time. As the solu-
tion is typically continuous, the initial guess for x at the
start of each time step can be obtained by extrapolating the
solution from previous time steps [29].

3 Solving the FSI Problem

3.1 Gauss–Seidel Scheme

In order to solve the FSI problem, Eq. (8) has to be solved
in each time step. One of the basic methods to solve such
a system of nonlinear equations is the block Gauss–Seidel
scheme. In this block-iterate scheme, each of the nonlinear
equations is solved for one of the unknowns consecutively,
and each unknown is updated to its new value as soon as it
becomes available.

Because, further on, it will become necessary to make a
distinction between the output of one solver and the input of
the next, a tilde symbol is introduced to indicate the output
of a solver:

Using the superscript k + 1 to indicate the current iteration,
the block Gauss–Seidel scheme takes the following form

(10)S ◦F(x) − x = 0.

(11)R(x) = S ◦F(x) − x,

(12)R(x) = 0.

(13)ỹ = F(x) and x̃ = S(y).

 The lastly calculated displacement vector x̃k is used as xk+1 ,
the input of the flow solver in the following iteration. Sub-
sequently, this vector is used to calculate a new load vector
ỹk+1 which is thereafter used as input of the structure solver
yk+1 , to calculate a new displacement vector x̃k+1 . This itera-
tion scheme, in which the output of the flow and structure
solver is passed unchanged to the structure and flow solver,
respectively, is the most basic way to find an equilibrium and
is also called Gauss–Seidel scheme or fixed point iteration
scheme.

The final solution of the FSI problem Eq. (7) has to
fulfill the kinematic Eq. (1) and dynamic equilibrium con-
dition Eq. (2) up to a certain tolerance. This means that
x̃ and ỹ have to approach x and y , respectively, which is
expressed by the convergence conditions

 Because the output of each of the solvers is passed
unchanged to the other, this can also be written as

 which relates to the fixed point formulation in Eq. (9).
By eliminating the occurrence of the load vector y , the

procedure can be simplified to

Furthermore, with the use of the residual operator intro-
duced in Eq. (11), the iteration scheme becomes

 which is considered converged once

(14a)xk+1 = x̃k

(14b)ỹk+1 = F(xk+1)

(14c)yk+1 = ỹk+1

(14d)x̃k+1 = S(yk+1)

(15a)
‖‖‖
x̃k+1 − xk+1

‖‖‖2
≤ 𝜖x

(15b)
‖‖‖
ỹk+1 − yk

‖‖‖2
≤ 𝜖y.

(16a)
‖‖‖
x̃k+1 − x̃k

‖‖‖2
≤ 𝜖x

(16b)
‖‖‖
ỹk+1 − ỹk

‖‖
‖2

≤ 𝜖y,

(17a)xk+1 = x̃k

(17b)x̃k+1 = S ◦F(xk+1)

(18a)xk+1 = xk + rk

(18b)rk+1 = R(xk+1),

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

3.2 Motivation for Using Quasi‑Newton Methods

Unfortunately, the Gauss–Seidel scheme explained above
is not unconditionally stable due to among others the added
mass effect.

Many researchers have investigated the stability of
Gauss–Seidel iterations. For example, its convergence
behaviour has been studied based on a simple model prob-
lem with a single degree of freedom on the interface [30].
Some investigated the added-mass effect [31]. Many others
have explored the case of blood flow through a simplified
artery [15, 32, 33]. They observed that, besides an apparent
fluid mass of the similar order of magnitude as the actual
structural mass, also a decrease in the stiffness of the struc-
ture or increase in domain length has a destabilizing effect.
A first attempt to mathematically analyze the stability was
done through the determination of the maximum relaxation
factor to obtain convergence [15, 25].

Instead of looking at a single number, the stability of a
Gauss–Seidel scheme for a simplified flexible tube model
with Dirichlet–Neumann decomposition can be examined by
splitting the error on the interface into Fourier modes [34].
The mentioned error is the difference between the correct
interface displacement and the one in a Gauss–Seidel itera-
tion, based on linearized equations and without taking the
boundary conditions into account. In this way, the authors
were able to identify which frequency components become
unstable. The analysis was first performed for a tube wall
without inertia [34] and thereafter repeated including inertia
[35], which proved to stabilize the convergence behaviour.

From this analysis it can be deduced that only a limited
number of modes of the interface displacement are unstable

(19)
‖
‖
‖
rk+1

‖
‖
‖2

≤ �x.
and that the lowest wave numbers have the highest ampli-
fication factor and are hence the most unstable ones. This
observation is true for different combinations of parameter
values. In other words, the divergence or slow convergence
of Gauss–Seidel iterations are caused by a limited number
of unstable and slowly converging modes corresponding to
the lowest wave numbers.

The physical explanation for this observation is shown
in Fig. 2. The figure shows an axisymmetric tube, the wall
of which is perturbed with two different wave numbers,
while on the in- and outlet a zero pressure boundary con-
dition is imposed. Initially, its cross section is constant
and the incompressible fluid is at rest. In the upper part
of Fig. 2, a low wave number perturbation is applied and,
because the fluid is incompressible, it is accelerated glob-
ally resulting in large pressure variations. In the lower part,
a higher wave number perturbation is applied and the fluid
acceleration is confined to more local regions. As a conse-
quence, the pressure variations are much smaller for higher
wave numbers. The pressure variations in the lower part
of Fig. 2 are even barely visible, because the same scale is
used for both cases.

Although the above analysis was performed on a flex-
ible tube, the results are more widely applicable to incom-
pressible fluids with a fluid–structure density ratio around
one. For example, [37] arrived at the same conclusions
by examining the stability of Gauss–Seidel iterations for
a semi-infinite open fluid domain bounded by a string or
a beam.

In summary, Gauss–Seidel iterations are not suitable for
incompressible fluid cases with high added mass, because
there is a limited number of error modes that are unstable.
In order to obtain a solution for these cases, the unstable
modes have to be removed by another technique to (effi-
ciently) achieve convergence. Based on the results from
the Fourier decomposition, it follows that only the low

Fig. 2 The pressure contours (in Pa) in an axisymmetric tube due to
two displacements of the tube’s wall with the same amplitude but a
different wave number. Initially, the fluid is at rest and the tube has
a constant cross-section and zero pressure at both ends. A displace-

ment of the tube’s wall with a low wave number (top) creates much
larger pressure variations than a displacement with a high wave num-
ber (bottom). Only the difference between the two calculations and
not the values as such are important [36]

 N. Delaissé et al.

1 3

wave number modes have to be stabilized, while the oth-
ers can still be treated using Gauss–Seidel iteration. The
next section explains that the stabilization of these modes
is achieved by including derivative information, which is
the basic principle behind quasi-Newton techniques.

3.3 Quasi‑Newton Schemes

In order to overcome this limitation of the Gauss–Sei-
del iterations for problems with high added mass and an
incompressible fluid, the quasi-Newton iteration scheme is
adopted. To improve stability, one or both of the vectors x̃
and ỹ are modified before passing them to the other solver.
If only one solver output is adapted, it is usually the output
of the structural solver S as in Fig. 3b, but the opposite is
equally possible. Figure 3c shows a schematic representation
of adapting both solver outputs.

In the remainder of this section we will first introduce the
adaptation of one output where we will use the modification
of the structural output as example. This scheme will be
referred to as the residual formulation scheme. Thereafter,
the adaptation of both solver outputs will be introduced. The
corresponding scheme is called the block iteration scheme.

3.3.1 Residual Formulation Quasi‑Newton Scheme

In this scheme, the output x̃k of the structural solver is
modified to xk+1 which is subsequently used as input for
the flow solver. The output ỹk of the flow solver is passed
unchanged to the structural solver. Therefore, the load
vector y can be left out altogether, as was the case for
Gauss–Seidel iterations. With the use of the residual opera-
tor, defined in Eq. (11), the residual rk+1 in iteration k + 1
is written as

and as before convergence is reached when Eq. (19) is satis-
fied. The difference with the Gauss–Seidel scheme is that
xk+1 is no longer equal to x̃k . The adaption of the displace-
ment vector follows from the use of a Newton–Raphson
approach to solve the root-finding problem Eq. (12). This
method uses the Jacobian of the nonlinear equation, which

(20)rk = x̃k − xk = S ◦F(xk) − xk = R(xk)

is denoted here by R′ , to estimate the input xk+1 that will
direct the residual to 0 by solving

for xk+1 . Note that Gauss–Seidel iteration Eq. (18) is
retrieved if R�(xk) = −I . Likewise, relaxed Gauss–Seidel
iteration is obtained if the Jacobian is −�I.

Because both the flow and structure solvers are considered
black box solvers, the Jacobians of F and S are not acces-
sible and hence, neither is R′ . Therefore, the Jacobian of the
residual operator is approximated, resulting in a quasi-Newton
method

where R̂′(xk) is the approximated Jacobian.
As explained in the previous section, the instability

of Gauss–Seidel iterations is caused by a limited set of
modes, i.e., for the vectors x in a small subspace of ℝnx×1 .
Consequently, an approximation of the complete Jacobian
of the residual operator R is not required. An approxi-
mated Jacobian which takes care of these unstable modes
and leaves the other modes unchanged is sufficient. Leav-
ing some modes unchanged means that the quasi-Newton
method will actually perform Gauss–Seidel iterations for
those modes.

Solving the linear system in the equation above can be
avoided by approximating the inverse of the Jacobian directly
and calculating the update of the displacement vector as

To conclude this section, a new short-hand notation is intro-
duced for the approximate (inverse) Jacobians. For a nonlin-
ear function r = R(x) , the approximate Jacobian and inverse
Jacobian are written as

(21)R
�(xk)(xk+1 − xk) = 0 − rk

(22)R̂
�(xk)(xk+1 − xk) = 0 − rk,

(23)xk+1 = xk −
̂
R

�−1(xk) rk.

(24a)�k
x
r ≡ R̂

�(xk)

(24b)�k
r
x ≡

̂
R

�−1(xk).

Fig. 3 Schematic representation
of different iteration schemes

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

3.3.2 Block Iteration Quasi‑Newton Scheme

Instead of only adapting the output of one solver, it is also
possible to adapt the output of both the flow and structure
solver. Now both xk+1 and yk+1 are different from x̃k and ỹk+1 ,
and, because the load vector is no longer passed unchanged, it
is not possible to use the residual operator. The convergence
conditions are again given by Eq. (15).

The modification of the output of the solvers is determined
by applying block Newton–Raphson iterations to the root-
finding problem Eq. (8) with unknowns x and y

where Δx and Δy are the updates for the input x and y of
the flow and structure solvers, respectively. Further, I is the
identity matrix and F ′ and S′ are the Jacobians of the flow
and structure equations. Note that the two identity matrices
will have different dimensions if the size of x and y differ.

Starting from the displacement xk that was given as input
to the flow solver in the previous coupling iteration, the dis-
placement xk+1 = xk + Δxk is calculated by solving the system

for Δxk.
Using the updated value xk+1 and after calling the flow

solver to determine ỹk+1 = F(xk+1) , the pressure and viscous
traction distribution yk+1 = yk + Δyk is calculated by solving
the analogous system

for Δyk . Subsequently, the structure solver is called to deter-
mine x̃k+1 = S(yk+1).

Similar to the previous section, the Jacobians are not acces-
sible, because the solvers are considered black boxes. There-
fore, approximations denoted by F̂ ′ and Ŝ′ are used instead.
Note that here two normal Jacobians are required, one for each
solver, whereas in the previous section only one inverse Jaco-
bian was required, namely the inverse Jacobian of the residual
operator.

Adopting the same short-hand for the approximated Jacobi-
ans as in the previous section results in the following notations

(25)
[
F �(x) −I

−I S
�(y)

] [
Δx

Δy

]

=

[
0

0

]

−

[
F(x) − y

S(y) − x

]

,

(26)
(
I − S

�(yk)F �(xk)
)
Δxk = x̃

k − x
k + S

�(yk)(ỹk − y
k)

(27)
(
I −F

�(xk+1)S�(yk)
)
Δyk =ỹk+1 − y

k

+F
�(xk+1)(x̃k − x

k+1)

(28a)𝜕k
x
ỹ ≡ �F�(xk)

(28b)𝜕k
y
x̃ ≡

�S�(yk).

4 Approximating Jacobians

The previous section introduced quasi-Newton approaches to
stabilize and at the same time accelerate the convergence of
coupling iterations. These schemes adapt either one or both of
the solver outputs before passing them on, resulting in respec-
tively, a quasi-Newton system for the residual formulation of
the FSI problem, or a block iteration quasi-Newton system.
These systems each contain one or more approximate Jacobi-
ans. The residual formulation scheme requires an approxima-
tion for the inverse of the Jacobian R�(xk) , which is denoted
as �k

r
x . The block iteration quasi-Newton scheme requires

approximations for the Jacobians of the flow solver and struc-
ture solver, so 𝜕k

x
ỹ approximates F �(xk) and 𝜕k

y
x̃ approximates

S
�(yk) . In these notations the superscript k refers to the itera-

tion in which the Jacobian has been approximated.
All of these approximate Jacobians can be created using the

generalized Broyden method. In this section, we will explain
this method for the construction of an approximate Jacobian
of an arbitrary nonlinear function b = B(a) . For now, we
leave out the added complexity of FSI problems, for which an
approximate Jacobian has to be constructed in each time step.
This will be explained in the next section. Here, we just have
an iterative method, where in each iteration k the Jacobian
B

�(ak) is approximated by �k
a
b . The same technique can also

be used to approximate the inverse Jacobian B�(ak)
−1 by �k

b
a.

Instead of immediately presenting the rather complex gen-
eralized Broyden equation, it is introduced step by step, in a
way that better fits the quasi-Newton FSI explanations found
in literature.

4.1 Satisfying the Secant Conditions

The core idea of any quasi-Newton Jacobian approximation is
to use the nonlinear function input–output information from
previous iterations. Indeed, an input ai resulting in a certain
output bi is a piece of valuable information about the behavior
of the black box function B , which can be used to approximate
the Jacobian B�(ak) by �k

a
b . In the current iteration k + 1 , the

inputs of all previous iterations

are available, as well as the corresponding outputs

The input–output info is stored and used in the form of dif-
ferences between consecutive iterations, defined as

(29)a0, a1,… , ak−1, ak

(30)b0, b1,… , bk−1, bk.

(31a)�ai ≡ ai+1 − ai

(31b)�bi ≡ bi+1 − bi

 N. Delaissé et al.

1 3

 for 0 ≤ i ≤ k − 1 . The � notation refers to the difference
between previous iterations, in contrast to the Δ notation,
which refers to the desired change or update that needs to
be performed.

Each pair (�ai, �bi) is called the secant information at
iterations i and is related to a secant line to the nonlinear
function B . Therefore, it can be interpreted as a finite dif-
ference approximation for the Jacobian in the direction �ai.

Furthermore, each secant information pair has a corre-
sponding secant equation:

If the approximated Jacobian �k
a
b meets this secant condi-

tion, it uses a finite difference approximation for the actual
Jacobian in the direction of �ai , with the input–output infor-
mation of iterations i and i + 1 . This secant information is
relevant only if the Jacobian stays more or less the same
during the k iterations, which means that B(a) has to behave
close to linearly in the neighbourhood of ak.

The idea is to construct �k
a
b , so that it fulfills all the k

secant equations. To write this compactly, the differences
defined previously in Eq. (31) are stored in the matrices Ak
and Bk as follows

 Now, the k secant conditions can be collected in the matrix
equation

With na and nb being the length of the input and output
vectors, this is a system of nbk scalar equations for nbna
unknowns (the elements of the matrix �k

b
a). The system is

thus typically underdetermined (k < na). In order to find a
unique solution, the least-norm solution is sought, which
is in this case defined as the smallest matrix in the Frobe-
nius norm that satisfies all secant conditions. The solution
is given as

where Ak+ is the pseudo-inverse1 (or Moore–Penrose
inverse) of the rectangular matrix Ak , defined as

(32)�bi = �k
a
b �ai.

(33a)Ak
=
[
�ak−1 �ak−2 ⋯ �a1 �a0

]

(33b)Bk
=
[
�bk−1 �bk−2 ⋯ �b1 �b0

]
.

(34)Bk
= �k

a
b Ak.

(35)�k
a
b = BkAk+,

To calculate the pseudo-inverse, it is necessary that the
columns of Ak are linearly independent. For now, we will
assume this is always the case and the issue of linear depend-
ence of the secant information is addressed in detail in the
discussion on filtering in Sect. 5.1.

The expression for the approximate Jacobian presented
above is elegant and short, but not very intuitive. Therefore,
a different approach to obtain the same expression is given
below.

The purpose of the approximate Jacobian is to determine
an estimated change in output Δb that corresponds to an
arbitrary change in input Δa , by evaluating

For this purpose, the secant information from the previous
iterations is utilised in the following approach.

First, the arbitrary vector Δa is approximated as a linear
combination of vectors �ai , i.e.

with c ∈ ℝ
k×1 a coefficient vector.

It follows from the secant information that an input dif-
ference �ai corresponds to an output difference �bi , for
0 ≤ i ≤ k − 1 . Therefore, and under the assumption that the
linear behavior of B is locally dominant, it can be stated
that a linear combination of vectors �ai will correspond to
the same linear combination of vectors �bi . This principle
allows to determine Δb as

Finally, it remains to determine the coefficients c . The sys-
tem in Eq. (38) is typically overdetermined. Hence, the least-
squares solution for c will be used, which can be obtained by
solving the square system of normal equations

Therefore, the coefficient vector is given as

Using this to calculate Δb results in

Comparison with Eq. (37) reveals the same Jacobian as
determined before in Eq. (35).

Matrix-free implementation Some of the algorithms
explained in Sect. 5 require the explicit construction of the
Jacobian matrix, while for others only its product with a
vector, e.g., �k

a
b Δa , is required. This last set of algorithms

(36)Ak+
=

(
AkTAk

)−1

AkT.

(37)Δb = �k
a
b Δa.

(38)Δa ≈ Akc

(39)Δb = Bkc.

(40)AkT
Δa = AkTAkc.

(41)c = Ak+
Δa.

(42)Δb = Bkc = BkAk+
Δa.

1 Note that for Ak
∈ ℝ

na×k with na > k , Ak+
A
k is the identity matrix

of size k × k , while Ak
A
k+ is a na × na matrix of rank k if the columns

of Ak are linearly independent.

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

allows matrix-free implementation, for which the Jacobian
matrix Eq. (35) never has to be calculated explicitly in prac-
tice, nor is the explicit calculation of the pseudo-inverse
defined in Eq. (36) needed. How this is achieved is explained
here.

Equations (40) and (41) show that the product of the
pseudo-inverse with a vector is in fact the solution of the
normal equations, but solving the normal equations Eq. (40)
becomes unstable if the number of columns in the matrix
Ak is rather high. A more robust method to calculate the
pseudo-inverse uses the reduced or economy-size QR
decomposition [38] of Ak

where Qk
A
∈ ℝ

na×k is a matrix with orthonormal columns
and Rk

A
∈ ℝ

k×k is an upper triangular matrix.2 Applying this
to the normal equations Eq. (40) and using the fact that the
inverse of Rk

A
 exists because the columns of Ak are linearly

independent, results in

Symbolically, this means that the pseudo-inverse can be
written as Rk

A

−1
Qk

A

T , but it should never be constructed or
stored. Instead, the product of the pseudo-inverse with a
vector can be calculated by first evaluating the right hand
side of Eq. (44) and subsequently solving the system using
back-substitution, as Rk

A
 is an upper triangular matrix. The

complete procedure to efficiently determine Δb given Δa is
summarized in Algorithm 1.

In the following, the notation with the pseudo-inverse will
still be used. Nonetheless, it should be kept in mind that the
actual calculation has to be done using QR decomposition
and back-substitution, avoiding the calculation of the inverse
of matrices as well as the construction of large dense square
matrices.

(43)Ak
= Qk

A
Rk
A
,

(44)Rk
A
c = Qk

A

T
Δa.

4.2 Adding an Initial Estimate for the Jacobian

Assuming the columns Ak are linearly independent, the
above obtained approximated Jacobian BkAk+ is of rank k.
For the current discussion, it is assumed that k ≪ na . There-
fore, the matrix is a low-rank Jacobian approximation, and
has an image or range of dimension k and a nullspace of
dimension na − k . As a result, with regard to its product with
an arbitrary Δa , only the part of Δa ∈ range(Ak

) will have a
non-zero result. This becomes clear from the definition of
the pseudo inverse in Eq. (36). The part of Δa ⟂ range(Ak

)
falls in the nullspace of the approximated Jacobian and the
product of this part with the Jacobian is therefore zero. In
other words, the approximated Jacobian is zero in every
direction that is not a linear combination of the directions
�ai , for 0 ≤ i ≤ k − 1 , encountered in the previous iterations.

Nonetheless, a full rank approximation of the Jacobian
may be required, e.g., when it is used in a quasi-Newton
method according to the residual formulation scheme. If this
is the case, the current Jacobian approximation, using the
approximation based on secant conditions for the part of
Δa ∈ range(Ak

) , can be expanded with an initial estimate
of the approximate Jacobian �0

a
b for the remaining part

Δa ⟂ range(Ak
).

The splitting of Δa in these two parts is based on
orthogonal projection and visualized in Fig. 4. The orthog-
onal projection of a vector Δa onto the range of range(Ak

)
is given by

Fig. 4 The vector Δa is split into a part inside the range of Ak and
another part perpendicular to that range

2 Note that Q
k
A
Q

k
A

T

= A
k
A
k+

≠ I and that Q
k
A

T

Q
k
A
= A

k+
A
k
= I

equals the identity matrix of size k × k.

 N. Delaissé et al.

1 3

This is the part of Δa ∈ range(Ak
) . Using the complemen-

tary projector or just calculating the difference of Δa and its
orthogonal projection

gives the part of Δa ⟂ range(Ak
) . Refer to [39] for a more

complete discussion of projectors. Moreover, note that,
using the QR decomposition these two parts are given by
Qk

A
Qk

A

T
Δa and (I − Qk

A
Qk

A

T
)Δa.

Now, the Jacobian approximation based on secant infor-
mation can be extended with an initial Jacobian �0

a
b:

The questions why and how an initial Jacobian can be
added have been answered. What remains is the choice of
its value. Often, the identity matrix is used, scaled with a
factor, typically −1 or −� , which corresponds to (relaxed)
Gauss–Seidel iteration, as explained below Eq. (21). This
is the simplest approach to obtaining a full rank Jacobian
approximation and will also be used in Sect. 5. In the case a
low rank approximation suffices, e.g., the Jacobians for block
iteration quasi-Newton, �0

a
b = 0 can be used, which means

the second term disappears completely. In still other situa-
tions, a physics-based surrogate may be available to use as
initial Jacobian. This approach may accelerate convergence,
but is application-specific and will be discussed further in
Sect. 5.6.

4.3 Generalized Broyden Method

Up to now, the approximation of the Jacobian �k
a
b was deter-

mined such that it met all secant conditions. However, this
is not the only way to use the secant information. Another
often used method (although not in FSI) is to only require
the approximated Jacobian to fulfill the latest secant equa-
tion. Therefore, the matrices Ak and Bk only contain the
latest piece of secant information:

For all vectors Δa ⟂ range(Ak
) (i.e., Δa ⟂ �ak−1), we want

to use the previous Jacobian �k−1
a

b . In other words, the effect
of the approximated Jacobian remains unchanged in all

(45)Ak
(
AkTAk

)−1

AkT
Δa = AkAk+

Δa.

(46)Δa − AkAk+
Δa =

(
I − AkAk+

)
Δa,

(47)�k
a
b = BkAk+

+ �0
a
b
(
I − AkAk+

)

(48)Ak
=
[
�ak−1

]

(49)Bk
=
[
�bk−1

]
.

directions orthogonal to �ak−1 . This is called the no-change
condition, which can be written formally as

To obtain a Jacobian approximation with these specifica-
tions, �0

a
b is replaced by �k−1

a
b:

where Ak and Bk now contain only one column. This is a
recursive expression for the approximated Jacobian. In fact,
this is Broyden’s original method,3 to construct the approxi-
mate Jacobian [40]. It was developed in the sixties, to solve
systems of nonlinear equations.

Furthermore, Broyden’s method can be generalized.
Instead of using only one secant condition and the approxi-
mate Jacobian from the previous iteration, m secant condi-
tions can be used in combination with the approximate Jaco-
bian from m iterations ago. This gives rise to the generalized
Broyden method

with

This equation for the approximate Jacobian in generalized
Broyden, however, can also be obtained in a more formal
way, namely as the unique matrix that satisfies a number of
conditions. Two equivalent ways are described in [41].

First, the approximated Jacobian can be obtained as the
only matrix that simultaneously satisfies the m secant condi-
tions in Eq. (34) and the na − m no-change conditions

Secondly, it can be obtained as the unique matrix that sat-
isfies the m secant conditions Eq. (34) and minimizes the
difference with the approximate Jacobian from m iterations
ago, i.e.

where the subscript F denotes the Frobenius norm.

(50)�k
a
b Δa = �k−1

a
b Δa ∀Δa ⟂ range(Ak

).

(51)�k
a
b = BkAk+

+ �k−1
a

b
(
I − AkAk+

)

(52)�k
a
b = BkAk+

+ �k−m
a

b
(
I − AkAk+

)

(53a)Ak
=
[
�ak−1 �ak−2 ⋯ �ak−m

]

(53b)Bk
=
[
�bk−1 �bk−2 ⋯ �bk−m

]
.

(54)�k
a
b Δa = �k−m

a
b Δa ∀Δa ⟂ range(Ak

).

(55)
‖‖‖
�k
a
b − �k−m

a
b
‖‖‖F

,

3 Approximating the Jacobian, respectively the inverse Jacobian,
results in the good Broyden’s method respectively the bad Broyden’s
method.

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

Furthermore, previously discussed methods are retrieved
by choosing certain values for the parameter m in the gen-
eralized Broyden method. For m = 1 , Broyden’s original
method is recovered, while for m = k the pure secant method
from Sects. 4.1 and 4.2 is obtained.

The generalized Broyden method was established much
later than Broyden’s original method. The first extension
to the original one in the eighties led to a rather complex
modified Broyden method [42, 43]. In the nineties, Eyert
[44] simplified this method by removing some nonessential
parameters, resulting in the generalized Broyden method
presented here.

Around that same time, the connection between the gen-
eralized Broyden method and Anderson acceleration (or
Anderson mixing) was discovered. Anderson acceleration
[45] was introduced in the sixties to accelerate fixed-point
iterations. Based on the work by Van Leuken [46], Eyert
showed that Anderson acceleration is mathematically equiv-
alent to generalized Broyden with m = k , i.e., the pure secant
method introduced in Sects. 4.1 and 4.2. This is not imme-
diately apparent due to the very different ideas on which
Anderson and Broyden originally based their methods.

In partitioned FSI simulations, several variants of the gen-
eralized Broyden method are used to approximate Jacobians
in quasi-Newton iterations. These techniques were devel-
oped independently from the older methods (Anderson,
Broyden and generalized Broyden) and the correspondence
to those methods was only discovered recently [47, 48].

Because a nonlinear system of equations has to be solved
in every time step of an FSI simulation, there are some par-
ticularities with respect to Jacobian approximation, such as
the reuse of secant information from previous time steps, as
well as the removal of old and irrelevant secant information.
These topics are discussed in the next section.

Computational complexity and storage This section ends
with a first look into the computational complexity to obtain
and use these approximate Jacobians. For simplicity, it is
assumed that a and b are both vectors of length na . This is
usually not true for the block methods, but nb is typically
proportional to na . Further, it is assumed that na ≫ k , i.e.,
the length of the vectors are much larger than the number of
secant pairs available. More details will be provided later on
for the different FSI methods. No details about the number of
operations will be given, only the complexity of the leading-
order term will be discussed.

At the basis of the generalized Broyden method is the
economy-size QR decomposition of Ak , which is used for
determination of the pseudo-inverse of Ak . This QR decom-
position is typically done with Householder transformations,
resulting in a complexity of O(nam

2) , which is also the total
complexity of the evaluation of the product of this pseudo-
inverse with a vector. Already, it can be noted that, in the

case that m = k , the computational cost quickly rises relative
to a low fixed value for m.

If the approximate Jacobian is only needed to calculate
its product with a vector, its explicit construction can be
avoided. In some algorithms of the next section, however,
the approximate Jacobian is used explicitly. Then, the con-
struction of this na × na matrix has a complexity of O(n2

a
m) .

In addition, the na × na matrix requires a storage capac-
ity O(n2

a
) , which is a strong disadvantage of these select

algorithms.
In other algorithms, it is possible to avoid this expen-

sive construction and use a matrix-free method to multiply
the approximate Jacobian with a vector, i.e., without large
dense square matrices. In practice, this is done by evaluat-
ing the product using Eq. (47) and multiplying the factors
within each term from right to left. Then the complexity of
this evaluation is only O(nam

2) , which is the complexity of
performing the QR decomposition needed to evaluate the
product of the pseudo-inverse of Ak with a vector. Because
only the secant information has to be stored, the storage
requirements O(nam) are lower as well.

4.4 Difference Between the Anderson and Broyden
Approach

The previous part formulated the generalized Broyden
method, in which the parameter m determines how the secant
information from previous iterations is included. Setting
m = k corresponds to the Anderson method, in which the
approximated Jacobian is determined by imposing all secant
equations directly. For m = 1 , Broyden’s original method is
retrieved, here simply referred to as the Broyden method,
in which the approximated Jacobian only fulfills the latest
secant equation and the secant information from the previous
iterations is included indirectly by imposing no-change con-
ditions. In this section, the difference in behaviour between
these two extreme versions of the generalized Broyden
method will be clarified.

Consider for example the approximation of the Jacobian
B

�(ak) by �k
a
b , when previously three iterations have been

performed (k = 2). The matrices containing the differences
between consecutive iterations are

 Without loss of generality, it is stated that

(56a)A2
=
[
�a1 �a0

]

(56b)B2
=
[
�b1 �b0

]

(57a)�a1 = p

(57b)�a0 = xp + yq,

 N. Delaissé et al.

1 3

 where p and q are orthonormal vectors, and x and y real
scalars.

In the Anderson approach (m = k), the approximated
Jacobian is

The QR decomposition of A2 is given by

 With this decomposition, the pseudo-inverse is calculated

Finally, the approximate Jacobian is given by

In the Broyden approach (m = 1), the approximated Jaco-
bian is

Note that the pseudo-inverse of a single column equals its
transpose divided by its norm squared, such that

 The resulting approximated Jacobian is given by

(58)�2
a
b = B2A2+.

(59a)R2
A
=

[
1 x

0 y

]

(59b)Q2
A
=
[
p q

]
.

(60)A2+ =

(
A2TA2

)−1

A2T = R2
A

−1
Q2

A

T
=

1

y

[
ypT − xqT

qT

]

.

(61)�2
a
b =

[
�b1 �b0

]
[
pT −

x

y
qT

1

y
qT

]

.

(62)
�2
a
b = �b1�a1

+
+ �1

a
b
(
I − �a1�a1

+
)
with �1

a
b = �b0�a0

+
.

(63a)�a1
+
= pT

(63b)�a0
+
=

xpT + yqT

x2 + y2
.

Comparing Eq. (61) with Eq. (64), it is clear that the Jaco-
bian approximations are different. Their inequality is ana-
lyzed in Table 1 by looking at their product with particular
vectors Δa.

For a vector Δa equal to the lastly added difference �a1 ,
both approaches return the corresponding difference �b1 , as
expected. If the one before last vector �a0 is supplied, the
results are different. The Anderson method simply returns
�b0 , as this method attempts to approximate Δa as closely as
possible using the already available differences. In contrast,
the Broyden method does not and returns a linear combina-
tion of �b1 and �b0 . This approach gives priority to the lastly
determined difference �a1 and uses the corresponding �b1
for the orthogonal projection of Δa on that difference �a1 .
For a result of the Broyden approach that lies along �b0 , a
difference orthogonal to the last difference �a1 needs to be
supplied. Finally, the result for a general vector is given,
where u, v and w are arbitrary scalars and s a unit vector
orthogonal to p and q.

Both methods decompose Δa in components along
the previously determined vectors �ai , 0 < i < k − 1 , and

(64)�2
a
b =

[
�b1 �b0

]
[

pT
y

x2+y2
qT

]

.

Table 1 Multiplication of Anderson and Broyden Jacobian approxi-
mations corresponding to the example discussed in the text with a
vector Δa

Δa Δb = �2
a
b Δa

Anderson Broyden

�a1 = 1p + 0q 1�b1 + 0�b0 1�b1 + 0�b0

�a0 = xp + yq 0�b1 + 1�b0 x�b1 +
y2

x2+y2
�b0

0p + 1q −
x

y
�b1 + 1

y
�b0 0�b1 +

y

x2+y2
�b0

up + vq + ws
(
u −

vx

y

)
�b1 + v

y
�b0 u�b1 +

yv

x2+y2
�b0

Fig. 5 The vector Δa is decomposed along the directions of the previ-
ously determined differences. The decomposition is different for the
Anderson and Broyden approach. The green line is the direction of
the lastly determined difference vector �a1 , the red line corresponds
to the one before last �a0 . The red dotted vector is the remaining part
after decomposition. The addition of the parts along �a1 and �a0 and
the remaining part gives the original Δa . (Color figure online)

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

multiply the respective components with the correspond-
ing vectors �bi . This is shown graphically in Fig. 5.

The Anderson method projects Δa on all previously
determined differences. Therefore, the remaining part

is orthogonal to these differences. The Broyden method
projects Δa first on the lastly obtained difference, and the
leftover part on the one before last, and so on. Therefore,
the remaining part

is not necessarily orthogonal to these differences. It will,
however, always be orthogonal to the last difference onto
which the projection was made, i.e., the oldest difference.

The difference between the two methods is essential
to how nonlinearities in the secant information are dealt
with. In general B(ak) is nonlinear and its Jacobian is
not constant, therefore the secant information will also
contain nonlinear effects, especially when the step �ai
is large. Because the Broyden method prioritizes more
recent secant information, it effectively ignores these
nonlinearities, while the Anderson method does not, as
it wants to approximate Δa as closely as possible using
all available differences. This can lead to instabilities in
the Anderson method. However, the Broyden method will
also neglect small linear information, slowing down the
convergence speed. More details and a method to remove
nonlinearities from the secant information to stabilize
Anderson are found in [49].

In the FSI community, the Anderson method is referred
to as the least-squares approach and the Broyden method
can be linked to the multi-vector approach. However, in
FSI, fulfilling only the most recent secant equation as in
the original Broyden method is typically not done and the
multi-vector algorithms fulfill the secant equations in the
most recent time step, using no-change conditions for older
time steps. So in fact, the multi-vector approach is a general-
ized Broyden method, as will be explained in the following
section.

5 Quasi‑Newton Methods for FSI

In Sect. 3, different quasi-Newton schemes have been intro-
duced. They required approximate Jacobians, which could
be determined in different ways using information from

(65)

(
I − A2A2T

)
Δa =

(
I − Q2

A
Q2

A

T
)
Δa =

(
I − ppT − qqT

)
Δa

(66)

(
I − �a0�a0

+
)(

I − �a1�a1
+
)
Δa

=

(

I − ppT −

(
xp + yq

x2 + y2

)

qT
)

Δa

previous iterations, as explained in Sect. 4. Up to this point,
the focus was on solving the nonlinear equations in each
time step separately. From here on, the distinction between
different time steps will be necessary. Therefore, the super-
script n + 1 will be used to indicate the values from the cur-
rent time step, meaning that these are the values that are cur-
rently calculated. This notation is similar to the superscript
k + 1 , which indicates the current iteration.

In this section, the IQN-ILS, IBQN-LS, IQN-MVJ,
MVQN, IQN-IMVLS and IQN-ILSM techniques will be
derived and analyzed in the generalized Broyden framework.
These techniques for partitioned FSI simulation have several
differences, as summarized in Table 2.

The first difference is whether they use only the inter-
face displacement as variables (IQN-ILS, IQN-MVJ, IQN-
IMVLS, IQN-ILSM) or whether they are block iteration
quasi-Newton methods using both interface displacement
and load (IBQN-LS, MVQN). In the former case, they
solve Eq. (12), in the latter they use Eq. (8), as explained
in Sect. 3.

The second difference is related to how time stepping
is handled, as most FSI simulations are time-dependent to
capture a vibration or other dynamic behaviour. Assuming
the inputs and outputs of the q previous time steps are stored,
one can either impose the secant conditions from all time
steps (IQN-ILS, IBQN-LS) or only for the latest time step,

Table 2 Main differences between the quasi-Newton methods

Variables Conditions

Secant for all
time steps

Only secant for last
time step

Only interface displacement IQN-ILS IQN-MVJ,
IQN-IMVLS,
IQN-ILSM

Interface displacement and load IBQN-LS MVQN

Table 3 Overview of computational complexity and memory require-
ments for the different methods. Note that typically m ≪ nx.

† ̄k denotes the average number of coupling iterations per time step

Method Computational com-
plexity

Memory
require-
ments

IQN-ILS O(nxm
2) ∼ nx

IBQN-LS O(nxm
2) ∼ nx

MVQN O(n2
x
) ∼ n2

x

IQN-MVJ O(n2
x
) ∼ n2

x

IQN-IMVLS†
O(nxqk̄) ∼ nx

IQN-ILSM (reuse)†
O(nxqk̄) ∼ nx

 N. Delaissé et al.

1 3

combined with no-change conditions for previous time steps
(IQN-MVJ, MVQN, IQN-IMVLS, IQN-ILSM). This second
difference is thus related to the choice of the parameter m
of generalized Broyden, as explained in Sect. 4. On the one
hand, m can be set to ∞ (actually limited to q time steps),
so all the info from q previous time steps is used together,
without an old Jacobian, but only with an initial one to start
the procedure. In fact, this corresponds with the Anderson
approach and is typically termed least-squares approach in
FSI. On the other hand, only the secant info from the current
time step can be used, with an old approximate Jacobian
that is the final one from the previous time step. This cor-
responds to m = k , called multi-vector, and is really general-
ized Broyden, and not one of the limiting cases (Anderson
or Broyden).

The third difference is the amount of memory required
for the storage of the approximate Jacobian(s) and the com-
putational time required for the calculations related to the
quasi-Newton steps. This will be explained more in detail
for each method below and will be summarized in Table 3.

5.1 IQN‑ILS

IQN-ILS is the abbreviation for Interface Quasi-Newton
technique with an approximation for the Inverse of the
Jacobian from a Least-Squares model [50]. The IQN-ILS
technique performs an update of the input for the flow solver
in each coupling iteration, using an approximation for the
inverse of the Jacobian of the residual operator, so

and Δrk = 0 − rk . The approximation for the inverse Jaco-

bian ̂R�−1(xk) ≡ �k
r
x can be obtained directly by following

the method explained in Sect. 4.3 for �k
a
b , with a = r and

b = x . Because the approximation needs to be full rank
for a working quasi-Newton method, an initial Jacobian
�k−m
r

x = −I is used, which is the Jacobian of Gauss–Sei-
del iteration, as explained below Eq. (21). In the literature,
however, the approximation for the inverse of the Jacobian
̂
R

�−1(xk) is usually rewritten using the identity r = x̃ − x ,
giving

where the operator 𝜕k
r
x̃ is constructed as explained in

Sect. 4.3, with a = r and b = x̃ . In this way of explaining,
no initial Jacobian is used, so 𝜕k−m

r
x̃ = 0 . It is worth men-

tioning that if instead of the inverse, the Jacobian R�(xk) is
approximated, the Interface Quasi-Newton Least-Squares
method (IQN-LS) is retrieved [51].

(67)xk+1 = xk + Δxk with Δxk =
̂
R

�−1(xk)Δrk

(68)�
R

�−1(xk) ≡ 𝜕k
r
x = 𝜕k

r
(x̃ − r) = 𝜕k

r
x̃ − I,

For an FSI simulation with a single step (e.g., a steady
simulation), the generalized Broyden formula in Eq. (52) is
used with m = k and without initial guess 𝜕0

r
x̃ = 0 , so

with

 Note that 𝜕k
r
x̃ has at most rank k, while ̂R�−1(xk) ≡ �k

r
x is

full-rank.4
In a time-dependent simulation, the secant information

from the q previous time steps can be reused. As nota-
tion, the previous time steps are indicated with n, n − 1 , … ,
n + 1 − q , for the time step that is being calculated the super-
script n + 1 is omitted and only the superscript k is used. The
matrices R[k] and X̃

[k] are a concatenation of the matrices from
the different time steps, giving

In this way, the information from each time step is treated
equally, except when linear dependencies occur, because
these are then removed by filtering, as will be explained
below. The method thus satisfies all available secant condi-
tions, i.e., from time step n + 1 and the q previous time steps.
Consequently, m is equal to the number of columns in R[k]
and X̃

[k] , which is

if no filtering is applied. As no initial Jacobian 𝜕k−m
r

x̃ is used,
the information from earlier time steps n < n + 1 − q is not
considered. It is important to remark that the difference
between the first r or x̃ of a time step and the last one from
the previous time step is not used. Only differences between
vectors of the same time steps are taken into account. This
approach ensures that the secant information matches with
the meaning of the Jacobian that is being approximated,
which is the derivative within a time step, and not between
them.

The reuse parameter q has to be defined by the user. Reuse
typically improves the performance, but too old data is no
longer helping the convergence, and therefore an optimal
value exists. In the literature, the existence of this parameter

(69)𝜕k
r
x̃ = �X

k
Rk+

(70a)Rk
=
[
�rk−1 �rk−2 ⋯ �r0

]

(70b)�X
k
=
[
𝛿x̃k−1 𝛿x̃k−2 ⋯ 𝛿x̃0

]
.

(71a)R[k] =
[
Rk Rn

⋯Rn+1−q
]

(71b)X̃
[k]
=

[
X̃
k
X̃
n
⋯ X̃

n+1−q
]
.

(72)m = kn+1 + kn +⋯ + kn+1−q,

4 The term Jacobian is used for both �k
r
x and 𝜕k

r
x̃ , depending on

which is relevant in the section.

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

is often cited as a drawback of IQN-ILS, because the perfor-
mance of the method would be sensitive to this parameter.
However, by using filtering, the performance of the method
is rendered rather insensitive to this parameter around the
optimum, as is shown by numerical tests in Sect. 6 and in
other work [52, 53]. Moreover, the parameter q allows the
user to control how many time steps can be considered rel-
evant, which is important in cases with rapid changes from
one time step to the next, e.g., with multi-phase flows [54].

Matrix-free implementation Equation (69) is a symbolic
notation to write IQN-ILS in the generalized Broyden frame-
work, but this matrix should never be constructed or stored in
the computer’s memory. One of the main benefits of IQN-ILS
is its so-called matrix-free character, which means that no
large square matrices need to be constructed or stored. The
product of the approximation of the inverse of the Jacobian
with Δrk = −rk in Eq. (67) is symbolically calculated as

In practice, the product ck = R[k]
+
Δrk of the pseudo-inverse

of R[k] with Δrk is calculated using the economy-size QR
decomposition and back-substitution, resulting in

as explained in Algorithm 1. The vector Δrk is thus written
as a linear combination of the �ri , resulting in coefficients
ck . As each �ri has a corresponding 𝛿x̃i , the change in x̃ cor-
responding with Δrk can be obtained by calculating X̃

[k]
ck.

The complete procedure can be found in Algorithm 2,
with a relaxation step with factor � on line 7, for the case
in which R[k] and X̃

[k] do not have any columns, e.g., at the
beginning of the simulation.

Using R[k] = X̃
[k]
− X[k] , where X[k] is defined analogous to

Eq. (71), Eq. (73) can be rewritten as

 This shows that Δrk is split into a part R[k]R[k]+Δrk in the col-
umn span of R[k] and a part (I − R[k]R[k]

+
)Δrk perpendicular to

it. The secant-based approximate Jacobian X[k]R[k]
+ is applied

to the former, while Gauss–Seidel iteration with Jacobian
−I is used for the latter.

Filtering When columns of R[k] are linearly dependent up to a
tolerance �f , the diagonal elements of R[k]

R
 in Eq. (74) become

small and this system can no longer be solved accurately. Hence,
an essential component of IQN-ILS is filtering, especially when
data from previous time steps is reused [50]. Columns of R[k] that
are linearly dependent up to the tolerance �f need to be removed

(73)Δxk =
̂
R

�−1(xk) Δrk = (X̃
[k]
R[k]

+
− I) Δrk.

(74)R
[k]

R
ck = Q

[k]

R

T
Δrk.

(75a)Δxk = X[k]R[k]
+
Δrk − (I − R[k]R[k]

+
)Δrk

(75b)= X[k]R[k]
+
[
R[k]R[k]

+
Δrk

]
− I

[
(I − R[k]R[k]

+
)Δrk

]
.

together with the matching columns in X̃
[k] . As the newest infor-

mation is stored on the left-hand side in R[k] , a �ri that is a linear
combination of newer �rj (j > i) is removed. Columns can be
removed if ||

|
R
[k]

R,ii

|
|
|
< 𝜖f (QR0) or ||

|
R
[k]

R,ii

|
|
|
< 𝜖f

‖
‖
‖
R
[k]

R

‖
‖
‖2

 (QR1), with

R
[k]

R,ii
 referring to a diagonal element of R[k]

R
 [55]. The advantage of

the first approach is that the tolerance �f can be set by perturbing
x with smaller and smaller changes until the change in x̃ is no
longer smooth, but numerical noise. In this case, the tolerance �f
can be considered as a measure of how accurate the flow solver
and structural solver are calculating their solution. This filtering
procedure is shown step by step in Algorithm 3. Obviously, it will
be difficult to obtain convergence of the coupling iterations to a
level that is lower than �f .

Alternative filtering approaches are algebraic QR filtering
and POD filtering [55]. In the algebraic filtering method
(QR2), a column is removed if the diagonal element
||
|
R
[k]

R,ii

||
|
< 𝜖f

‖‖
‖
R
[k]

R,i

‖‖
‖2

 , with R[k]
R,i

 referring to column i of matrix

R
[k]

R
 . In the POD filtering, the eigenvalues of the autocorrela-

tion matrix of R[k] are used to truncate old data. The numerical
tests in [55] showed that algebraic QR filtering worked better
than POD filtering or filtering using ||

|
R
[k]

R,ii

||
|
< 𝜖f

‖‖
‖
R
[k]

R

‖‖
‖2

 . How-

ever, the comparison with ||
|
R
[k]

R,ii

||
|
< 𝜖f was not performed and

remains as an interesting future work. Because the latter is
directly related to the solver tolerances themselves, as
explained above, it has been chosen for this work.

Another reason to do filtering is to limit the number of
secant conditions in cases with few degrees of freedom on
the interface. Typically, m ≪ nx , but with only few degrees
of freedom on the interface, the oldest columns of R[k] and
X̃
[k] need to be removed such that there are at most nx col-

umns, to avoid an overdetermined Jacobian.
Computational complexity and storage The additional

storage required for the IQN-ILS method is the matrices
R[k] and X̃

[k] , both ∈ ℝ
nx×m . Temporary storage is neces-

sary for Q[k]

R
∈ ℝ

nx×m and R[k]
R
∈ ℝ

m×m , and the small vector
ck ∈ ℝ

m . The storage thus scales linearly with the number
of degrees of freedom in the interface’s discretization. Fur-
thermore, m can be reduced compared to Eq. (72) due to
filtering. A rule of thumb is that it is typically not benefi-
cial to include more than 50 columns.

The economy-size QR decomposition of R[k] has at most
a complexity of O(nxm

2) if the fast Givens method or the
Householder method is used [38]. The matrix–vector prod-
uct in the right-hand side of Eq. (74) has a computational
complexity of O(nxm) and solving the triangular system
a complexity of O(m2) . Consequently, also the computa-
tional complexity scales linearly with nx and is limited. In
numerical tests, the IQN-ILS algorithm normally accounts
for less than 1% of the total CPU time.

 N. Delaissé et al.

1 3

50

5.2 IBQN‑LS

IBQN-LS stands for Interface Block Quasi-Newton method with
approximation of the Jacobians using Least-Squares models (ini-
tially called reduced-order models) [21]. It uses the formulation in
Eq. (25) and solves Eq. (26) and Eq. (27) in turn for Δxk and Δyk .
Low-rank approximations for F�(xk) and S�(yk) are constructed
using the generalized Broyden method with m as in Eq. (72) and
without initial value for the Jacobian, so like in IQN-ILS. The reuse
of previous time steps and the filtering are also applied in the same
way as explained above. Consequently, this technique enforces all
secant conditions from the current and q previous time steps, for
both the flow solver and the structural solver.

For the approximate Jacobian of the flow solver F̂�(xk) ,
the generalized Broyden framework is applied using a = x
and b = ỹ . For m as in Eq. (72) and without initial value for
the Jacobian this can be written symbolically as

with

 where the secant information from the q previous time steps
is combined with that from the current time step

 A symbolic formulation of the approximation Ŝ′ in the gen-
eralized Broyden framework can be obtained in a similar
way, using a = y and b = x̃.

(76)�F�(xk) ≡ 𝜕k
x
ỹ = �Y

[k]
X[k]+

(77a)X[k]
=
[
Xk Xn

⋯Xn+1−q
]

(77b)Ỹ
[k]
=

[
Ỹ
k
Ỹ
n
⋯ Ỹ

n+1−q
]
,

(78a)Xk
=
[
�xk−1 �xk−2 ⋯ �x0

]

(78b)�Y
k
=
[
𝛿ỹk−1 𝛿ỹk−2 ⋯ 𝛿ỹ0

]
.

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

A disadvantage of this technique is that two linear systems
need to be solved in each coupling iteration. In the original
version, the nx × nx and ny × ny matrices corresponding with
these systems were explicitly constructed using the symbolic
notations as in Eq. (76) and they were solved with a direct lin-
ear solver [21]. However, by adopting an iterative linear solver
like GMRES, only a procedure to calculate the product of the
approximate Jacobians with a vector is required [56]. In prac-
tice, the number of iterations for the iterative solver is close to
the number of columns used for the approximate Jacobians.
Alternatively, the Woodbury matrix identity can be used to
obtain a closed expression for the update [57].

Matrix-free implementation This matrix-free procedure
will be explained here for the flow solver. When the product
of F̂�(xk) ≡ �k

x
y with a vector Δxk needs to be calculated

during the iterative solution of Eqs. (26) or (27), this can
symbolically be written as

For the practical implementation, Algorithm 1 is followed
and this computation is split in two parts by the introduction
of a coefficient vector ck , giving

with ck the solution of

(79)F̂
�(xk) Δxk = Ỹ

[k]
X[k]+

Δxk

(80a)F̂
�(xk) Δxk = Ỹ

[k]
ck

 The last part is the least-squares solution to an overdeter-
mined system that can be solved efficiently by calculating
the economy-size QR decomposition, followed by using
back-substitution.

To summarize this procedure, the Δxk is decomposed as a
linear combination of the columns in X[k] , then the observation
is made that columns in X[k] and Ỹ

[k] with the same index form a
secant pair, such that the result can be approximated as the same
linear combination of the columns in Ỹ

[k] , as shown in Eq. (80).
The complete procedure can be found in Algorithm 4.

Computational complexity and storage Compared to IQN-
ILS, IBQN-LS requires approximately twice the memory, as
the data for two approximate Jacobians needs to be stored.
Furthermore, even though the matrix-free procedure with the
iterative linear solver is faster than explicit matrix construction
and direct linear solver, the computing time is higher than for
IQN-ILS, where none of this is required. Nevertheless, the time
required for the coupling algorithm scales linearly with nx and
ny and thus remains small compared to that of the actual solvers.
The solution of the linear systems could be avoided by writing
the solution to Eqs. (26) and (27) symbolically, using matrix
inverses and applying the Woodbury matrix identity as in [57].
In this way, the size of the matrices that have to be inverted is
reduced from nx and ny to m.

(80b)R
[k]

X
ck = Q

[k]

X

T
Δxk.

21

 N. Delaissé et al.

1 3

5.3 MVQN

MVQN is the abbreviation for Multi-Vector update Quasi-Newton
[58]. This method is based on the IBQN-LS method and is even
identical to it in the first time step. However, the differences appear
when data from previous time steps is included. MVQN considers
the current Jacobian as the sum of the Jacobian from the previous
time step plus a rank-k update. This update is then determined by
enforcing the secant conditions from the current time step and
minimizing the Frobenius norm of the update. This coincides with
the generalized Broyden method with m = kn+1 and the initial
Jacobian equal to the one from the previous time step.

Considering again the approximate Jacobian of the flow solver
F̂

′ , the generalized Broyden framework is applied using a = x
and b = ỹ . The value m is now k = kn+1 and the initial value for
the Jacobian is the one for the previous time step, giving

Using the definition of the pseudo-inverse in Eq. (36), this
can be reformulated as

which corresponds with the original formulation in [58].
However, analyzing this method is most straightforward
when considering Eq. (81). If this approximate Jacobian is
multiplied with a vector Δx , then the secant information

(81)F̂
′(xk) ≡ 𝜕k

x
ỹ = �Y

k
Xk+

+ 𝜕n
x
ỹ
(
I − XkXk+

)
.

(82)�F�(xk) = 𝜕n
x
ỹ +

(
�Y
k
− 𝜕n

x
ỹXk

)(
XkTXk

)−1

XkT,

from the most recent time step is used for the part for which
it is available, i.e., within the column span of the matrix
Xk . The previous approximate Jacobian is only multiplied
with the leftover part of Δx , i.e., the part orthogonal to the
column span of Xk . So, even if secant information from pre-
vious time steps is available for the first part of Δx , it will
not be used. This relates to the difference between the least-
squares and multi-vector approach explained in Sect. 4.4.
The matrix Ŝ′ is constructed in a similar way

Computational complexity and storage The main benefits
of this method are that no parameter q is required and that
filtering with a tolerance �f is typically less essential as only
a relatively small number of secant conditions from the most
recent time step are considered. However, this comes at a
significant cost, as the matrices F̂′ and Ŝ′ are constructed
and stored in memory, such that the algorithm scales with
n2
x
 and n2

y
 , both in terms of memory use as in computational

complexity. Combined with the linear systems that have to
be solved in each coupling iteration, this becomes expensive
compared to the actual solver for a reasonably large num-
ber of degrees of freedom on the interface (e.g., more than
104). A linearly scaling adaptation is the RandomiZed Multi-
Vector Quasi-Newton method (MVQN-RZ) [57], which will
be explained in more detail with the other linearly scaling
multi-vector methods at the end of Sect. 5.4.

(83)�S�(yk) = 𝜕n
y
x̃ +

(
�X
k
− 𝜕n

y
x̃Yk

)(
YkTYk

)−1

YkT.

[58].

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

5.4 IQN‑MVJ

The IQN-MVJ method is an acronym for Interface Quasi-
Newton with Multi-Vector Jacobian [59]. This method
adopts the idea for reuse from previous time steps proposed
in MVQN and transfers it from the block iteration to the
residual formulation quasi-Newton scheme, i.e., with only
the interface displacement as variable. It is thus a general-
ized Broyden method which satisfies the secant conditions
from the current time step while using the Jacobian from the
previous time step as initial value. IQN-MVJ is linked with
IQN-ILS in the same way as MVQN is linked with IBQN-
LS. Except for the explicit construction of the approximate
Jacobian, this method is identical to IQN-ILS in the first
time step.

In IQN-MVJ, the approximation for the inverse of the
Jacobian5 is thus constructed as

with

Using the definition of the pseudo-inverse in Eq. (36), this
can be reformulated as

which corresponds with the original formulation in [59].
Computational complexity and storage The main draw-

back of IQN-MVJ is that the square matrix with the approxi-
mation for the inverse of the Jacobian is constructed and
stored in memory, such that computational cost and memory
requirement scale with n2

x
 . Consequently, like MVQN, this

approach becomes expensive compared to the solvers for
a reasonably large number of degrees of freedom on the
interface (e.g., more than 104).

To avoid this scaling and achieve linear complexity in
nx and at the same time attempt to avoid a reuse parameter
q, a matrix-free version of IQN-MVJ has been developed,
named IQN-MVJ-RS-SVD [60]. Thereto, the approximation
in Eq. (86) is reformulated as

with

(84)�
R

�−1(xk) ≡ 𝜕n+1,k
r

x̃ − I

(85)𝜕n+1,k
r

x̃ = �X
k
Rk+

+ 𝜕n
r
x̃
(
I − RkRk+

)
.

(86)𝜕n+1,k
r

x̃ = 𝜕n
r
x̃ +

(
�Xk − 𝜕n

r
x̃ Rk

)(
RkTRk

)−1

RkT,

(87)𝜕n+1,k
r

x̃ = 𝜕n
r
x̃ + �̄X

k

Rk+,

To avoid storage of a square matrix, this can be written using
a recursive formula

starting from 𝜕0
r
x̃ = 0 at time 0. Obviously, this requires stor-

age of matrices �̄X and R for each time step, which is benefi-
cial as long as the total number of columns is significantly
smaller than nx . However, after a high number of time steps,
this becomes prohibitively expensive and therefore three
strategies are proposed in which the simulation is split into
so-called chunks consisting of q′ time steps after which a
restart is performed [60]. The authors concluded that the
IQN-MVJ-RS-SVD algorithm with a Singular Value
Decomposition (SVD) restart strategy is the most promising.
The approximate inverse Jacobian at the end of a chunk is
then truncated by performing an SVD and truncating the
singular values below a tolerance �′

f
 . This truncated SVD is

then the initial Jacobian for the following chunk. Further-
more, the SVD is efficiently updated at the end of each
chunk. As opposed to the original IQN-MVJ, the IQN-MVJ-
RS-SVD method has linear complexity in nx , but the imple-
mentation is more elaborate than for IQN-MVJ. Compared
to IQN-ILS, which has a reuse parameter q and QR filter
tolerance �f and also has linear scaling in nx , this method
now requires a chunk size parameter q′ and SVD filter toler-
ance �′

f
 , but with the claim that the performance is less sensi-

tive to these parameters.
Another multi-vector method that achieves linear scaling

memory requirements is the algorithm MVQN-RZ [57], which
employs the randomized SVD not only to avoid the explicit
construction of large square matrices, but also to circumvent
the recursive reconstruction of the interface Jacobian. This
algorithm has been applied to both block iteration quasi-New-
ton techniques and residual formulation quasi-Newton tech-
niques. In every coupling iteration, the complexity of MVQN-
RZ is O(z2nx + k2nx) , where z is the number of decomposition
modes. This compares to IQN-MVJ-RS-SVD with a complex-
ity of O(z2nx + k2nx +Mknx + k4) in every coupling itera-
tion, with z referring to the number of eigenvalues left after
truncation and M the simulation chunk size. Additionally, this
method requires an SVD update after every M steps, which has
a complexity of O(Mz2nx) . In providing these complexities, it
is assumed that nx ≫ k, z,M.

(88)�̄X
k

= �Xk − 𝜕n
r
x̃ Rk.

(89)𝜕n+1,k
r

x̃ = �̄X
k

Rk+
+ �̄X

n

Rn+
+… + �̄X

1

R1+

5 Some authors rewrite the update x
k+1 = x

k −
̂
R

�−1(xk) rk as

x
k+1 = x̃

k − 𝜕k
r
x̃ r

k , since �R�−1(xk) ≡ 𝜕k
r
x̃ − I , and then 𝜕k

r
x̃ is called

the approximation of the inverse Jacobian, but this notation is not
used here to avoid confusion.

 N. Delaissé et al.

1 3

59

5.5 IQN‑IMVLS

To mitigate the quadratic scaling in nx of IQN-MVJ, the IQN-
IMVLS (Interface Quasi-Newton Implicit Multi-Vector Least-
Squares) method has been developed with linear complexity
in nx [53]. The first observation is that the factor �Xk − 𝜕n

r
x̃ Rk

in Eq. (86) can be updated by adding one additional column
in each coupling iteration, instead of recomputing it entirely

so only the product 𝜕n
r
x̃ 𝛿rk−1 needs to be evaluated.

Determining the product of 𝜕n
r
x̃ with a vector requires a

procedure to calculate a matrix–vector product. It is proven
in [53] that 𝜕n

r
x̃ in Eq. (86) can be reformulated as

if the initial Jacobian is assumed to be zero. This recursive
formulation can be truncated after q terms, giving

In IQN-IMVLS the reuse parameter q typically does not
exhibit an optimum in terms of performance. Instead, both

(90)�Xk − 𝜕n
r
x̃ Rk

= [𝛿x̃k−1 − 𝜕n
r
x̃ 𝛿rk−1, �Xk−1 − 𝜕n

r
x̃ Rk−1

],

(91)𝜕n
r
x̃ =

n∑

i=1

�XiRi+
n∏

j=i+1

(I − RjRj+)

(92)𝜕n
r
x̃ ≈

n∑

i=n+1−q

�XiRi+
n∏

j=i+1

(I − RjRj+).

performance and computational cost grow with increasing
values of q as the method converges towards the IQN-MVJ
approach.

Computational complexity and storage As can be
observed in Eq. (92), this procedure requires the storage of

Rj+ =

(
RjTRj

)−1

RjT for the q previous time steps. If the

inverse of RjTRj is calculated via the LU decomposition
using partial pivoting with row interchanges [38], then this
scales with nx , but has slightly less robustness to bad condi-
tioning than the Householder QR approach. As a result, the
complete procedure has linear complexity in nx , like IQN-
ILS. In addition, the QR decomposition is only applied on
the secant information from the most recent time step, as
opposed to the matrix with the secant information from all
time steps in IQN-ILS. As not all secant information is com-
bined into one matrix, the sensitivity to (almost) linear
dependencies is smaller. Furthermore, no restart is required,
but the implementation is a bit more involved than IQN-ILS
or IQN-MVJ. It was also observed in [53] that including the
secant information from the previous time step in X̃ and R
as well can accelerate the convergence, especially at the
beginning of a time step. The complete procedure can be
found in Algorithm 7.

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

53

5.6 IQN‑ILSM

All techniques mentioned above use the flow solver and
structural solver as black boxes, while sometimes the user
has additional insight into the behaviour of the problem.
This additional information can be incorporated to accel-
erate the convergence of the coupling iterations using the
Interface Quasi-Newton algorithm with an approximation
for the Inverse of the Jacobian from a Least-Squares model
and additional Surrogate Model method (IQN-ILSM) [61].
In this technique, the secant information is combined with
a so-called surrogate model, which behaves similarly to the
actual solvers but is significantly faster. The origins of this
technique can be found in the FreQ-LeSS algorithm for free-
surface calculation, where secant conditions from previous
flow solver iterations was combined with an analytical model
of the problem [62, 63].

The surrogate model is denoted as Rs and the subscript
s will be used to denote quantities related to the surrogate
model. The inverse Jacobian of Rs with respect to x̃ is
referred to as the surrogate Jacobian, which is assumed to
stay the same during the entire time step. A procedure to cal-
culate the product of this matrix with a vector is sufficient,
without requiring construction and storage. To emphasize
this matrix-free aspect, the surrogate Jacobian is represented
by a function 𝜕

r
x̃s(⋅) . Furthermore, this surrogate Jacobian

can be either full-rank or only a low-rank approximation,
with column space Rs . At the end of each time step, the
surrogate model is synchronized with the original model by
interpolating the solution from the latter to the former. This

approach avoids large discrepancies between the original
model and the surrogate model after some time steps.

To gain insight in the IQN-ILSM technique, Eq. (75b)
should first be revisited. This equation shows how IQN-ILS
splits Δrk in a part RkRk+

Δrk in the column span of Rk and
a part (I − RkRk+

)Δrk orthogonal to it, using secant condi-
tions for the former and Gauss–Seidel iteration for the latter.
The term (I − RkRk+

)Δrk for which no secant information is
known can now be split once more into a part
RsRs

+
(
I − RkRk+

)
Δrk for which the surrogate model has

information and the remainder
(
I − RsRs

+
)(

I − RkRk+
)
Δrk

for which Gauss–Seidel iteration is the best option. Obvi-
ously, the latter is zero if the surrogate Jacobian is full-rank.
The split of Δrk and the approximate Jacobian used for each
part can be written as

Note that this equation is written in terms of Xk rather than
X̃k and that �

r
xs(⋅) is used rather than 𝜕

r
x̃s(⋅) . Here �

r
xs refers

to 𝜕
r
x̃s − RsRs

+ and not to the full-rank Jacobian 𝜕
r
x̃s − I as

was the case in Eq. (68). Equation (93) shows that the secant
conditions have the highest priority, followed by the sur-
rogate Jacobian and then Gauss–Seidel iteration. In the first
coupling iteration, there are no secant conditions yet, so the

(93)

Δxk = XkRk+
[
RkRk+Δrk

]

+ �
r
xs

([
RsRs

+
(
I − RkRk+

)
Δrk

])

− I
[(
I − RsRs

+
)(

I − RkRk+
)
Δrk

]
.

 N. Delaissé et al.

1 3

surrogate Jacobian plays an important role. The contribution
of the secant conditions will then become more significant
during the coupling iterations as the column span of Rk grad-
ually increases. The expression in Eq. (93) can be simplified
by using Jacobians with respect to x̃ instead, giving

These expressions can be expanded by including multiple
surrogate models in a similar way.

Several types of surrogate models can be considered.
A first type is a coarse grid version of the original prob-
lem, using the same solvers. When using such a surrogate
model, it is important to note that the secant information
obtained on the original grid and on the coarse grid is
not combined. The surrogate Jacobian thus also uses the
coarse grid and interpolation is performed when it needs
to be multiplied with a vector from the original grid. A
second option is to use solvers with simplified physics,
such as solvers neglecting viscosity or nonlinearity. If the
simplified physics solvers have a known Jacobian, e.g.,
because they are analytical functions, then the surrogate
Jacobian will typically be constructed and stored but it will
be full-rank and only a relatively small matrix.

Another option for the surrogate is reuse from previous
time steps in a time-dependent simulation. As opposed to
the previously mentioned surrogate types, this surrogate
model does not require the solution of a separate problem
and no synchronization at the end of each time step, so it
is essentially free. The reuse of q previous time steps cor-
responds to q nested surrogate models, with decreasing
importance when for older time steps, giving

with X̃i and Ri containing the secant information from time
step i. This equation can be condensed to

(94)Δxk = �XkRk+
Δrk + 𝜕

r
x̃s

((
I − RkRk+

)
Δrk

)
− Δrk.

(95)

�n+1,k
r

x = X̃
k
R
k+ +

n∑

i=n+1−q

X̃
i
R
i+

(
n∏

j=i+1

(I − R
j
R
j+)

)

(I − R
k
R
k+) − I

(96)�n+1,k
r

x =

n+1∑

i=n+1−q

X̃iRi+
n+1∏

j=i+1

(
I − RjRj+

)
− I.

When calculating the product
∏n+1

i+1
(I − RjRj+

)Δrk for each
of the terms in the summation, the value in the previous
term is stored and updated with one factor for the next term.
Therefore the summation is in fact done in reverse order
(n + 1 �→ n + 1 − q). The IQN-ILSM algorithm can be found
in Algorithm 8 and an efficient calculation of Δxs = 𝜕

r
x̃s(⋅)

in the case of reuse from previous time steps in Algorithm 9.
Computational complexity and storage While in IQN-ILS

the QR decomposition is applied on the secant information
from all time steps combined in each coupling iteration, IQN-
ILSM with reuse as surrogate only applies the QR decomposi-
tion on the data from the current time step during the coupling
iterations. The QR decomposition of the data from previous
time steps is stored and does not need to be updated. This
difference is reflected in the computational cost, which scales
as O(nx(qk̄)

2) for IQN-ILS and O(nxk̄
2) for IQN-ILSM, with

k̄ the number of coupling iterations averaged over the time
steps. Moreover, as IQN-ILSM does not combine the secant
conditions from all time steps in a single matrix, it typically
does not require filtering, as opposed to IQN-ILS.

By comparing Eq. (96) with Eq. (92), it can be observed
that the IQN-ILSM method with reuse as surrogate is iden-
tical to the IQN-IMVLS method, except for some imple-
mentation aspects mentioned in Sect. 5.5. IQN-ILSM can
thus be considered as a generalization of IQN-IMVLS
such that not only reuse of secant information from pre-
vious time steps, but also physics-based surrogate mod-
els can be used, although it was not developed as such.
Furthermore, the IQN-ILSM method can be interpreted
as part of a larger class of methods which combine data-
driven relations with physics-based knowledge [64].

In addition to providing a surrogate Jacobian to acceler-
ate the convergence of the coupling iterations, the surrogate
can also provide an initial guess for the coupling iterations.
This prediction can be found in line 5 of Algorithm 8. When
reuse from previous time steps is the surrogate model, this
corresponds to linear extrapolation.

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

61

61

5.7 Other Algorithms

Besides the already mentioned techniques, there are many
other variants, a selection of which is touched upon below.6
This section ends with an outlook to the application of
quasi-Newton coupling techniques outside of the field of
fluid–structure interaction.

Jacobi iteration and high-performance computing The
algorithms mentioned above are all using a sequential solu-
tion of the flow problem and structural problem. So, they can
be considered related to Gauss–Seidel iteration, as opposed
to Jacobi iteration which is characterized by simultaneous

solution of both problems. For several of the quasi-Newton
coupling techniques mentioned in this review, similar tech-
niques are available based on Jacobi iteration [65]. For linear
systems, Gauss–Seidel iteration inherently converge faster
than Jacobi iteration, and this typically also holds for non-
linear systems, such as the FSI problem [66]. However, the
higher number of iterations in a Jacobi-based method may
be compensated by its better parallel scalability, although
this is not guaranteed. Therefore, the difference in parallel
scalability between both iterations types will be explained in
the following lines. For Gauss–Seidel iteration, the flow and
structure solvers are run sequentially, so both solvers can use
all available CPU cores. However, the work load and the par-
allel efficiency of both solvers is typically very different, and
often much higher for the flow solver. If the structure solver
does not scale up well to a large number of cores, this leads

6 A lot of work is being done on symmetric variants for optimization
[80], but those are not appropriate for FSI as the Jacobian that needs
to be approximated is not symmetric [81].

 N. Delaissé et al.

1 3

to a low parallel efficiency, or analogously a number of idle
cores. This problem is overcome by Jacobi iteration where
the flow and structure solvers are calculating simultaneously.
The cores are distributed over the two solvers such that both
solvers require the same amount of calculation time, i.e.,
they are perfectly balanced, but this load balancing may not
be trivial. Furthermore, specific variants of quasi-Newton
methods have been developed for High-Performance Com-
puting (HPC) such as the Compact Interface Quasi-Newton
method (CIQN) [67], which is a parallel adaptation of IQN-
ILS focused on efficiently combining partitions to realize a
scalable implementation.

Multi-solver variants Also Multi-Solver (MS) versions of
both IQN-ILS and IBQN-LS have been developed [68]. Once
an FSI simulation can no longer be accelerated by increasing
the number of cores per solver, the multi-solver algorithms
can be applied for an additional speed-up. These multi-solver

algorithms reduce the calculation time by running multiple
instances of the flow solver and structural solver, while keep-
ing the number of cores per solver constant and running each
instance on one or more cluster nodes. One instance of the
flow solver and of the structural solver perform coupling iter-
ations like in the normal IQN-ILS or IBQN-LS algorithm.
However, data from previous time steps is not reused directly
as explained in Sect. 5.1, because the relation between the
columns of Rn and X̃n is only approximate at tn+1 . The addi-
tional instances of the flow solver and structural solver first
recalculate the data from the previous time steps at the current
time level, before including that data in a least-squares model.
The columns of the matrix Xn contain specific combinations
of the degrees of freedom on the interface that accelerated the
convergence of the coupling iterations in the previous time
step. Hence, it is expected that knowing the difference of the
output at tn+1 due to the same difference of the input as used
at time level tn will improve the least-squares model for the
approximate Jacobian.

Multi-level variants Furthermore, there exist Multi-Level
(ML) versions of IQN-ILS and IBQN-LS [69]. Those could be
considered similar to IQN-ILSM with a coarse grid surrogate
model. However, the multi-level algorithms have important
disadvantages compared to IQN-ILSM and therefore the IQN-
ILSM algorithm is recommended. First, the multi-level algo-
rithms combine the secant conditions obtained on all grids,
which gives them all the same priority. By contrast, IQN-
ILSM gives the highest priority to the finest grid, with a dimin-
ishing contribution from the coarser grid(s) as the coupling
iterations on the finest grid converge. Furthermore, the multi-
level algorithms interpolate the secant conditions obtained on
the coarser grid(s) to the finest grid level and store it at the
highest resolution, while IQN-ILSM stores the secant condi-
tions with the resolution at which they have been calculated.

Aitken relaxation In addition to the quasi-Newton algo-
rithms, Aitken relaxation [70–72] is frequently used for
partitioned FSI simulations. This technique uses a dynami-
cally varying scalar relaxation factor �k for the Gauss–Seidel

Fig. 6 Schematic representation of the tube geometry

Table 4 Parameter values of the 1D flexible tube case

Parameter Value Parameter Value

� 0.05 m E 300,000 kg∕m s2

r
0

0.005 m � 0.3
h 0.001 m �f 1000 kg∕m3

Δt 0.0001 s �s 1200 kg∕m3

Table 5 Average number of
iterations required per time step
for the different methods (np =
100)

Method Number of itera-
tions

Time (s) Method Number of itera-
tions

Time (s)

Relaxation (� = 0.01) 820.98 241.40 Aitken relaxation 36.96 13.10
IQN-ILS (q = 0) 12.27 4.57 IBQN-LS (q = 0) 11.91 16.05
IQN-ILS (q = 1) 8.37 3.04 IBQN-LS (q = 1) 8.69 15.25
IQN-ILS (q = 5) 4.40 1.60 IBQN-LS (q = 5) 4.78 10.49
IQN-ILS (q = 8) 3.92 1.54 IBQN-LS (q = 8) 4.27 10.80
IQN-ILS (q = 10) 3.84 1.54 IBQN-LS (q = 10) 4.10 11.32
IQN-ILS (q = 12) 4.07 1.72 IBQN-LS (q = 12) 4.00 12.23
IQN-ILS (q = 20) 4.59 2.16 IBQN-LS (q = 20) 4.58 20.53
IQN-MVJ 4.19 1.62 MVQN 4.20 6.82
IQN-IMVLS 4.82 1.91
IQN-ILSM (reuse) 4.19 2.17
IQN-ILSM (coarse) 7.75 8.62

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

iterations within a time step. It can thus also be interpreted as
an interface quasi-Newton technique: if the inverse of the Jaco-
bian in Eq. (23) is approximated by −�kI , the Aitken relaxa-
tion method is retrieved.

The next input for R is thus a linear combination of the last
output and the previous input. Therefore, the update of the
interface’s displacement is in the direction of the residual
vector, as opposed to the update of the IQN-ILS method in
Eq. (73). The value of �k is calculated recursively as

which can be interpreted as the secant method for scalars
directly applied to vectors and projected on rk − rk−1 [70]. By
combining Eqs. (97) and (98), it can be seen that the update
of the interface’s displacement is given by

for k > 0 , which is similar to Eq. (73). If the Jacobian were
created explicitly in the IQN-ILS algorithm and if the matri-
ces Rk and X̃k were limited to their newest column, Eq. (73)
would yield

(97)
xk+1 = xk + 𝜔krk

= (1 − 𝜔k)xk + 𝜔kx̃k

(98)�k = −�k−1 (rk−1)T(rk − rk−1)

(rk − rk−1)T(rk − rk−1)

(99)
xk+1 = xk +

(xk − xk−1)T(rk − rk−1)

(rk − rk−1)T(rk − rk−1)
(−rk)

= xk +

[
(x̃k − x̃k−1)T(rk − rk−1)

(rk − rk−1)T(rk − rk−1)
− 1

]

(−rk)

Note the different location of the transpose sign in Eqs. (99)
and Eq. (100). They are thus not identical because the coef-
ficient of −rk is a scalar in the first equation and a matrix in
the second one. Consequently, Aitken relaxation is different
from IQN-ILS, even when the latter is restricted to one col-
umn in the matrices Rk and X̃k . While Aitken relaxation uses
a single relaxation factor for all interface degrees of free-
dom, IQN-ILS assigns a different value to each one based
on a combination of the previously determined modes, i.e.,
the columns of Rk and X̃k.

Prediction In all the quasi-Newton algorithms, the cou-
pling iterations begin from x0 , which is an extrapolation
or prediction. This can be a constant, linear or quadratic
extrapolation based on xn, xn−1,… . While there is an effect
of the order of this prediction on the convergence of the
coupling iterations, it is case dependent and it is thus dif-
ficult to state whether higher order is always faster [29]. In
the IQN-ILSM algorithm, the surrogate model can also be
used for a prediction, but this is also not always faster than
a linear extrapolation [61].

Quasi-Newton methods with Robin–Neumann decomposi-
tion Instead of the typical Dirichlet–Neumann decomposi-
tion of the FSI problem, a Robin–Neumann decomposition
can be used as well. This decomposition modifies the bound-
ary condition in the flow solver to also include the pressure
and traction forces. The effect is the introduction of Interface
Artificial Compressibility (IAC), which allows to solve FSI

(100)xk+1 = xk +

[
(x̃k − x̃k−1)(rk − rk−1)T

(rk − rk−1)T(rk − rk−1)
− I

]

(−rk).

Fig. 7 Comparison of memory requirements for the different methods Fig. 8 Comparison of coupling time for the different methods

 N. Delaissé et al.

1 3

problems with enclosed incompressible fluids. To combine
the idea of IAC with quasi-Newton methods a pressure cor-
rection has to be introduced to obtain corresponding inputs
and outputs for the quasi-Newton technique [73]. However,
by switching the order of the solvers and performing the
quasi-Newton update on the pressure and traction forces
instead of the displacements, this pressure correction can
be avoided [74].

Applications in other fields Finally, it should be remarked
that the quasi-Newton coupling techniques can also be used
for coupled problems other than FSI. The main requirement
for good results is significant interaction between both sub-
problems such that an approximate Jacobian stabilizes and
accelerates the convergence compared to Gauss–Seidel itera-
tions. The interaction should however not be so strong that
an exact Jacobian satisfying all possible secant conditions
is required to achieve convergence.

An example of a suitable problem is Conjugate Heat
Transfer (CHT), where the partitioned spatial regions are
each modelled by independent heat transfer codes and
linked by temperature and flux matching conditions at the
common boundaries [75]. A furnace radiation model can
be coupled with a melt crystal growth model to investigate
growth processes [76]. Another example is soil–structure
interaction problems. The effect of excavations on the
frame of a building can be studied by coupling a model
of the soil’s behaviour with a code for nonlinear struc-
tural dynamics [77]. In this case, the interaction between
the models occurs at a relatively small number of points.
Finally, they can even be used to calculate the combustion
in a fluidized bed reactor under pressure [78]. The calcula-
tion of the carbon and oxygen concentrations is performed
separately from the calculation of the temperature field.
In this last example, there is only one domain and data are
exchanged throughout the domain, as opposed to the other
examples, where the domains do not overlap and data are
only exchanged at the common boundary of the subdo-
mains. Therefore, the cost of the coupling is no longer neg-
ligible compared to the solution of the subproblems, which
necessitates coupling techniques with low computational
complexity and low memory requirements.

6 Numerical Tests

Several comparisons of quasi-Newton techniques can be
found in the literature [52, 56, 59]. This section aims at
providing an idea about the relative performance of the
described techniques using a test case that can be reproduced
in a straightforward way, but without claim of general appli-
cability. It focuses on the scaling with increasing number of
degrees of freedom on the interface.

6.1 Test Case

The six quasi-Newton techniques presented in Sect. 5 are
now evaluated on a one-dimensional (1D) flexible tube,
through which an incompressible fluid flows. This test case
runs quickly and still features the destabilizing added mass
phenomenon [35].

The straight tube has a length � , a circular cross-section
with nominal inner diameter r0 and wall thickness h. Its
geometry is sketched in Fig. 6.

The ratio of the fluid density �f to the structure density �s
is close to one, resulting in a large added mass. The structure
has a modulus of elasticity E and a Poisson’s ratio � . The
values of these parameters are reported in Table 4.

On the inlet, a pressure pulse of 1333.2 Pa is applied for
a duration of 0.003 s. Due to the flexible tube wall, the pulse
travels at a finite velocity, despite the incompressible fluid.
The pressure at the outlet of the tube is atmospheric pres-
sure, i.e., 0 Pa. The total simulation time is 0.01 s, divided
in 100 time steps.

The flow solver solves the nonlinear continuity and
momentum equation in which viscosity and gravity are
neglected. The deformation of the tube wall is calculated by
the structure solver, which only considers radial displace-
ments, so the length of the tube stays constant. The tube is
discretized in np equal intervals. For the details regarding the
governing equations and applied discretizations, the reader
is referred to [35].

The FSI problem is solved with the open-source code
CoCoNuT. This code allows to couple different software
packages, which are treated as black boxes. It has the advan-
tage of being modular and flexible in combining interpo-
lators, solvers and coupling algorithms. Moreover, due to
its comprehensive structure and implementation in Python,
the code can be adapted to the user’s own requirements, if
needed. The most recent code can be found on GitHub in
the repository https:// github. com/ pyfsi/ cocon ut/. The ver-
sion used in this paper as well as scripts and result data are
available for download on the Zenodo platform [79]. Both
a flow and structure solver were written for the 1D flexible
tube case described above and this code is equally available
online.

6.2 Results

As the solvers are typically very expensive in FSI calcula-
tions, the focus is on the number of solver executions per
time step. The term iteration will be used to denote a sub-
sequent flow and structure solver call. Table 5 shows the
number of iterations for the different quasi-Newton meth-
ods discussed above, as well as for a fixed relaxation factor
and Aitken relaxation. Time data is included for complete-
ness. A relative convergence tolerance is used, so that a

https://github.com/pyfsi/coconut/

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

time step is considered converged when ‖‖rk‖‖2 < 10−6‖‖r
0‖
‖2 ,

with r0 the residual at the start of the time step.
Dynamic Aitken relaxation improves the convergence

greatly compared to simple relaxation, but does not per-
form as well as the quasi-Newton methods. The block
iteration and residual formulation methods perform simi-
larly, whereas the least-squares techniques turn out to be
somewhat more efficient compared to the multi-vector
techniques for this test case. IQN-ILS (q = 0) corresponds
to the method without reuse from previous time steps, but
the IQN-ILS method performs best for q equal to 10. This
shows the importance of reusing information from previ-
ous time steps. Note that the average number of coupling
iterations per time step is not so sensitive to the value of q
around the optimum. The indications (reuse) and (coarse)
for the IQN-ILSM algorithm, refer respectively to the use
of the previous time steps, and the use of an identical prob-
lem with half as many discretization intervals (without
reuse) as surrogate model.

Next, Fig. 7 shows the memory requirements, for dif-
ferent number of discretization intervals np . The data
depict the peak memory usage as determined using the
Python module guppy3.7 The reported values are the total
memory use minus that of the solvers. The results clearly
show quadratically scaling memory requirements for the
multi-vector techniques with explicit Jacobian construc-
tion, in contrast to the linear scaling for the methods with
matrix-free implementation. Starting from 104 degrees of
freedom, the memory requirements of MVQN and IQN-
MVJ become much higher than those of the other cou-
pling techniques. Furthermore, the block iteration methods
require more memory compared to their corresponding
residual formulation techniques, as two Jacobian matrices
are approximated. Finally, IQN-IMVLS and IQN-ILSM
(reuse) require more memory compared to the other
matrix-free methods, because they retain information form
every time step (q = 100), instead of only from the last
few (q = 10). However, this could be reduced by applying
a truncation after q time steps in the recursive formulas.

Lastly, Fig. 8 reports the coupling time, for different num-
ber of discretization intervals np . The coupling time is cal-
culated as the run time, excluding initialization, minus the
time spent in both solvers and the interpolation routine. It
is important to note that the code generating these results is
not optimized for speed, such that care has to be taken when
interpreting the results. Nonetheless, some relevant conclu-
sions can be made. For example, remark that the quadrati-
cally scaling methods IQN-MVJ and MVQN require con-
siderably more time than their linearly scaling counterparts.
The same can be concluded for the block iterations methods,

which are implemented here with an iterative procedure to
obtain the quasi-Newton updates. Using the Woodbury
matrix identity instead is expected to reduce the compu-
tational cost, but not to the extent that they will become
cheaper than residual formulation techniques. Finally, the
coupling time for the linearly scaling residual formulation
techniques are in the order of 10 s for the investigated range
of discretization intervals. These values remain low com-
pared to the typical cost of solving the subproblems. There-
fore, the difference in computational cost of the coupling for
these methods is only moderately important.

7 Conclusion

The IQN-ILS, IBQN-LS, MVQN, IQN-MVJ, IQN-IMVLS
and IQN-ILSM can all be reformulated as quasi-Newton
techniques using generalized Broyden techniques for the
approximate (inverse of the) Jacobian. In a time-dependent
simulation with reuse from previous time steps, IQN-ILS
and IBQN-LS enforce the secant conditions from all time
steps in the same way, while MVQN, IQN-MVJ, IQN-
IMVLS and IQN-ILSM only enforce the secant conditions
from the latest time step directly. The block iteration quasi-
Newton techniques like IBQN-LS and MVQN achieve simi-
lar performance in terms of number of coupling iterations
per time step compared to the equivalent residual formula-
tion quasi-Newton techniques IQN-ILS and IQN-MVJ, but
the block iteration quasi-Newton techniques require more
memory, more computational time for the coupling and a
longer source code, entailing more involved implementation.
Hence, it can be stated that, in general terms, it is better to
use a residual formulation quasi-Newton method instead of
the block iteration quasi-Newton techniques. For real-scale
applications with a reasonable number of degrees of freedom
on the interface, linear scaling of the coupling technique is
essential, so MVQN and IQN-MVJ can only be used for
smaller problems. The IQN-ILS technique has a short imple-
mentation and linear scaling thanks to the matrix-free proce-
dure, but it requires filtering when reusing secant conditions
from previous time steps. Finally, IQN-ILSM can be seen
as a generalization of IQN-IMVLS, such that not only reuse
from previous time steps can be applied but also other prior
knowledge can be included to accelerate the convergence.

Acknowledgements The authors humbly acknowledge the contribution
of Jan Vierendeels (1968–2018) to the field of partitioned simulation
of fluid–structure interaction.

Funding N. Delaissé gratefully acknowledges the funding received
from the Research Foundation–Flanders (FWO) as part of the SBO
CONTACTLUB project (S006519N).

7 See GitHub repository https:// github. com/ zhuyi fei19 99/ guppy3/.

https://github.com/zhuyifei1999/guppy3/

 N. Delaissé et al.

1 3

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article's Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Bazilevs Y, Hsu MC, Kiendl J, Wuechner R, Bletzinger KU
(2010) 3D simulation of wind turbine rotors at full scale. Part II:
fluid–structure interaction modeling with composite blades. Int J
Numer Methods Fluids 65(1–3):236–253. https:// doi. org/ 10. 1002/
fld. 2454

 2. Santo G, Peeters M, Van Paepegem W, Degroote J (2019)
Dynamic load and stress analysis of a large horizontal axis wind
turbine using full scale fluid–structure interaction simulation.
Renew Energy 140:212–226. https:// doi. org/ 10. 1016/j. renene.
2019. 03. 053

 3. Paidoussis M (2016) Fluid–structure interactions: volume 2 slen-
der structures and axial flow, 2nd edn. Elsevier, Amsterdam

 4. Billah KY, Scanlan RH (1991) Resonance, Tacoma narrows
bridge failure, and undergraduate physics textbooks. Am J Phys
59(2):118–124. https:// doi. org/ 10. 1119/1. 16590

 5. Hillewaere J, Degroote J, Lombaert G, Vierendeels J, Degrande G
(2015) Wind–structure interaction simulations of ovalling vibra-
tions in silo groups. J Fluids Struct 59:328–350. https:// doi. org/
10. 1016/j. jflui dstru cts. 2015. 09. 013

 6. Narayanan NK, Wüchner R, Degroote J (2019) Coupling of
structural solver and volume-conserving solver for form-finding
of membrane structures subjected to ponding. In: 8th international
conference on computational methods for coupled problems in
science and engineering, Sitges. pp 1–12. http:// hdl. handle. net/
1854/ LU- 86392 51

 7. Kamensky D, Hsu MC, Schillinger D, Evans JA, Aggarwal A,
Bazilevs Y, Sacks MS, Hughes TJR (2015) An immersogeometric
variational framework for fluid–structure interaction: application
to bioprosthetic heart valves. Comput Methods Appl Mech Eng
284:1005–1053. https:// doi. org/ 10. 1016/j. cma. 2014. 10. 040

 8. Peskin CS, McQueen DM (1989) A three-dimensional computa-
tional method for blood flow in the heart I. Immersed elastic fibers
in a viscous incompressible fluid. J Comput Phys 81(2):372–405.
https:// doi. org/ 10. 1016/ 0021- 9991(89) 90213-1

 9. Schott B, Ager C, Wall WA (2019) A monolithic approach to
fluid–structure interaction based on a hybrid Eulerian-ALE fluid
domain decomposition involving cut elements. Int J Numer Meth-
ods Eng 119(3):208–237. https:// doi. org/ 10. 1002/ nme. 6047

 10. Ryzhakov PB, Marti J, Dialami N (2022) A unified arbitrary
Lagrangian–Eulerian model for fluid–structure interaction prob-
lems involving flows in flexible channels. J Sci Comput. https://
doi. org/ 10. 1007/ s10915- 021- 01748-w

 11. Farhat C, van der Zee KG, Geuzaine P (2006) Provably second-
order time-accurate loosely-coupled solution algorithms for

transient nonlinear computational aeroelasticity. Comput Methods
Appl Mech Eng 195(17–18):1973–2001. https:// doi. org/ 10. 1016/j.
cma. 2004. 11. 031

 12. Lesoinne M, Farhat C (1998) A higher-order subiteration free
staggered algorithm for non-linear transient aeroelastic problems.
Am Inst Aeronaut Astronaut J 36(9):1754–1756. https:// doi. org/
10. 2514/3. 14041

 13. van Brummelen EH (2009) Added mass effects of compressible
and incompressible flows in fluid–structure interaction. J Appl
Mech 76(2):021206. https:// doi. org/ 10. 1115/1. 30595 65

 14. Boilevin-Kayl L, Fernandez MA, Gerbeau JF (2019) A loosely
coupled scheme for fictitious domain approximations of fluid–
structure interaction problems with immersed thin-walled struc-
tures. SIAM J Sci Comput 41(2):351–374. https:// doi. org/ 10.
1137/ 18m11 92779

 15. Causin P, Gerbeau JF, Nobile F (2005) Added-mass effect in the
design of partitioned algorithms for fluid–structure problems.
Comput Methods Appl Mech Eng 194(42–44):4506–4527. https://
doi. org/ 10. 1016/j. cma. 2004. 12. 005

 16. Förster C, Wall WA, Ramm E (2007) Artificial added mass insta-
bilities in sequential staggered coupling of nonlinear structures and
incompressible viscous flows. Comput Methods Appl Mech Eng
196(7):1278–1293. https:// doi. org/ 10. 1016/j. cma. 2006. 09. 002

 17. Le Tallec P, Mouro J (2001) Fluid structure interaction with
large structural displacements. Comput Methods Appl Mech Eng
190(24–25):3039–3067. https:// doi. org/ 10. 1016/ s0045- 7825(00)
00381-9

 18. Gerbeau JF, Vidrascu M, Frey P (2005) Fluid–structure interaction
in blood flows on geometries based on medical imaging. Comput
Struct 83(2–3):155–165. https:// doi. org/ 10. 1016/j. comps truc.
2004. 03. 083

 19. Förster C, Wall WA, Ramm E (2006) The artificial added mass
effect in sequential staggered fluid–structure interaction algo-
rithms. In: Wesseling P, Oñate E, Périaux J (eds) 4th European
conference on computational fluid dynamics, Egmond aan Zee.
pp 1–20. http:// resol ver. tudel ft. nl/ uuid: f6316 ca6- b02a- 4a6f- b5ad-
4e2f6 744c7 de

 20. Riemslagh K, Vierendeels J, Dick E (2000) An efficient coupling
procedure for flexible wall fluid–structure interaction. In: 3th
European congress on computational methods in applied sciences
and engineering, Barcelona. pp 1–13. http:// hdl. handle. net/ 1854/
LU- 128926

 21. Vierendeels J, Lanoye L, Degroote J, Verdonck PR (2007)
Implicit coupling of partitioned fluid–structure interaction
problems with reduced order models. Comput Struct 85(11–
14):970–976. https:// doi. org/ 10. 1016/j. comps truc. 2006. 11. 006

 22. Taelman L, Bols J, Degroote J, Muthurangu V, Panzer J, Vier-
endeels J, Segers P (2015) Differential impact of local stiffening
and narrowing on hemodynamics in repaired aortic coarctation:
an FSI study. Med Biol Eng Comput 54(2–3):497–510. https://
doi. org/ 10. 1007/ s11517- 015- 1336-1

 23. Dolfen H, De Ridder J, Brockmeyer L, Merzari E, Kennedy
G, Van Tichelen K, Degroote J (2022) A multi-stage approach
of simulating turbulence-induced vibrations in a wire-wrapped
tube bundle for fretting wear prediction. J Fluids Struct
109:103460. https:// doi. org/ 10. 1016/j. jflui dstru cts. 2021. 103460

 24. Delcour L, Bral A, Van Langenhove L, Degroote J (2022) Inves-
tigating the influence of compressibility on the second mode
flutter instability of a clamped-free cylinder in axial flow using
fluid–structure interaction simulations with the Chimera tech-
nique. J Fluids Struct 109:103469. https:// doi. org/ 10. 1016/j. jflui
dstru cts. 2021. 103469

 25. Badia S, Nobile F, Vergara C (2008) Fluid–structure partitioned
procedures based on Robin transmission conditions. J Comput
Phys 227(14):7027–7051. https:// doi. org/ 10. 1016/j. jcp. 2008. 04.
006

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1002/fld.2454
https://doi.org/10.1002/fld.2454
https://doi.org/10.1016/j.renene.2019.03.053
https://doi.org/10.1016/j.renene.2019.03.053
https://doi.org/10.1119/1.16590
https://doi.org/10.1016/j.jfluidstructs.2015.09.013
https://doi.org/10.1016/j.jfluidstructs.2015.09.013
http://hdl.handle.net/1854/LU-8639251
http://hdl.handle.net/1854/LU-8639251
https://doi.org/10.1016/j.cma.2014.10.040
https://doi.org/10.1016/0021-9991(89)90213-1
https://doi.org/10.1002/nme.6047
https://doi.org/10.1007/s10915-021-01748-w
https://doi.org/10.1007/s10915-021-01748-w
https://doi.org/10.1016/j.cma.2004.11.031
https://doi.org/10.1016/j.cma.2004.11.031
https://doi.org/10.2514/3.14041
https://doi.org/10.2514/3.14041
https://doi.org/10.1115/1.3059565
https://doi.org/10.1137/18m1192779
https://doi.org/10.1137/18m1192779
https://doi.org/10.1016/j.cma.2004.12.005
https://doi.org/10.1016/j.cma.2004.12.005
https://doi.org/10.1016/j.cma.2006.09.002
https://doi.org/10.1016/s0045-7825(00)00381-9
https://doi.org/10.1016/s0045-7825(00)00381-9
https://doi.org/10.1016/j.compstruc.2004.03.083
https://doi.org/10.1016/j.compstruc.2004.03.083
http://resolver.tudelft.nl/uuid:f6316ca6-b02a-4a6f-b5ad-4e2f6744c7de
http://resolver.tudelft.nl/uuid:f6316ca6-b02a-4a6f-b5ad-4e2f6744c7de
http://hdl.handle.net/1854/LU-128926
http://hdl.handle.net/1854/LU-128926
https://doi.org/10.1016/j.compstruc.2006.11.006
https://doi.org/10.1007/s11517-015-1336-1
https://doi.org/10.1007/s11517-015-1336-1
https://doi.org/10.1016/j.jfluidstructs.2021.103460
https://doi.org/10.1016/j.jfluidstructs.2021.103469
https://doi.org/10.1016/j.jfluidstructs.2021.103469
https://doi.org/10.1016/j.jcp.2008.04.006
https://doi.org/10.1016/j.jcp.2008.04.006

Quasi‑Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed…

1 3

 26. Deuse M, Sandberg RD (2020) Implementation of a stable high-
order overset grid method for high-fidelity simulations. Comput
Fluids 211:104449. https:// doi. org/ 10. 1016/j. compfl uid. 2020.
104449

 27. Zhang ZQ, Liu GR, Khoo BC (2012) A three dimensional
immersed smoothed finite element method (3D IS-FEM) for
fluid–structure interaction problems. Comput Mech 51(2):129–
150. https:// doi. org/ 10. 1007/ s00466- 012- 0710-1

 28. Zorrilla R, Rossi R, Wüchner R, Oñate E (2020) An embedded
finite element framework for the resolution of strongly coupled
fluid–structure interaction problems. Application to volumetric
and membrane-like structures. Comput Methods Appl Mech
Eng 368:113179. https:// doi. org/ 10. 1016/j. cma. 2020. 113179

 29. Erbts P, Düster A (2012) Accelerated staggered coupling
schemes for problems of thermoelasticity at finite strains.
Comput Math Appl 64(8):2408–2430. https:// doi. org/ 10. 1016/j.
camwa. 2012. 05. 010

 30. Joosten MM, Dettmer WG, Perić D (2009) Analysis of the
block Gauss–Seidel solution procedure for a strongly coupled
model problem with reference to fluid–structure interaction. Int
J Numer Methods Eng 78(7):757–778. https:// doi. org/ 10. 1002/
nme. 2503

 31. Idelsohn SR, Del Pin F, Rossi R, Oñate E (2009) Fluid–structure
interaction problems with strong added-mass effect. Int J Numer
Methods Eng 80(10):1261–1294. https:// doi. org/ 10. 1002/ nme.
2659

 32. Formaggia L, Gerbeau JF, Nobile F, Quarteroni A (2001) On the
coupling of 3D and 1D Navier–Stokes equations for flow problems
in compliant vessels. Comput Methods Appl Mech Eng 191(6–
7):561–582. https:// doi. org/ 10. 1016/ s0045- 7825(01) 00302-4

 33. Vierendeels J, Dumont K, Dick E, Verdonck PR (2005) Analysis
and stabilization of fluid–structure interaction algorithm for rigid-
body motion. Am Inst Aeronaut Astronaut J 43(12):2549–2557.
https:// doi. org/ 10. 2514/1. 3660

 34. Degroote J, Bruggeman P, Haelterman R, Vierendeels J (2008)
Stability of a coupling technique for partitioned solvers in FSI
applications. Comput Struct 86(23–24):2224–2234. https:// doi.
org/ 10. 1016/j. comps truc. 2008. 05. 005

 35. Degroote J, Annerel S, Vierendeels J (2010) Stability analysis of
Gauss–Seidel iterations in a partitioned simulation of fluid–struc-
ture interaction. Comput Struct 88(5–6):263–271. https:// doi. org/
10. 1016/j. comps truc. 2009. 09. 003

 36. Degroote J (2013) Partitioned simulation of fluid–structure inter-
action: coupling black-box solvers with quasi-Newton techniques.
Arch Comput Methods Eng 20(3):185–238. https:// doi. org/ 10.
1007/ s11831- 013- 9085-5

 37. van Brummelen EH (2010) Partitioned iterative solution meth-
ods for fluid–structure interaction. Int J Numer Methods Fluids
65(1–3):3–27. https:// doi. org/ 10. 1002/ fld. 2465

 38. Golub GH, Van Loan CF (1996) Matrix computations, 3rd edn.
Johns Hopkins University Press, Baltimore https:// doi. org/ 10.
56021/ 97814 21407 944

 39. Trefethen LN, Bau DI (1997) Numerical linear algebra. Cam-
bridge. https:// doi. org/ 10. 1137/1. 97808 98719 574

 40. Broyden CG (1965) A class of methods for solving nonlinear
simultaneous equations. Math Comput 19(92):577–593. https://
doi. org/ 10. 1090/ s0025- 5718- 1965- 01986 70-6

 41. Fang HR, Saad Y (2009) Two classes of multisecant methods for
nonlinear acceleration. Numer Linear Algebr Appl 16(3):197–
221. https:// doi. org/ 10. 1002/ nla. 617

 42. Johnson DD (1988) Modified Broyden’s method for accelerat-
ing convergence in self-consistent calculations. Phys Rev B
38(18):12807–12813. https:// doi. org/ 10. 1103/ physr evb. 38. 12807

 43. Vanderbilt D, Louie SG (1984) Total energies of diamond (111)
surface reconstructions by a linear combination of atomic orbitals

method. Phys Rev B 30(10):6118–6130. https:// doi. org/ 10. 1103/
physr evb. 30. 6118

 44. Eyert V (1996) A comparative study on methods for conver-
gence acceleration of iterative vector sequences. J Comput Phys
124(2):271–285. https:// doi. org/ 10. 1006/ jcph. 1996. 0059

 45. Anderson DG (1965) Iterative procedures for nonlinear integral
equations. J ACM 12(4):547–560. https:// doi. org/ 10. 1145/ 321296.
321305

 46. van Leuken H (1991) Electronic structure of metallic multilayers.
PhD thesis, University of Amsterdam

 47. Scheufele K (2015) Robust quasi-Newton methods for partitioned
fluid–structure simulations. Master’s thesis, University of Stutt-
gart. https:// doi. org/ 10. 13140/ RG.2. 2. 28442. 08648

 48. Uekermann BW (2016) Partitioned fluid–structure interaction on
massively parallel systems. PhD thesis, Technische Universität
München. https:// doi. org/ 10. 14459/ 2016m d1320 661

 49. Demeester T, Delaissé N, van Brummelen EH, Haelterman R,
Degroote J (2022) On the effect of nonlinearity and Jacobian ini-
tialization on the convergence of the generalized Broyden quasi-
Newton method. Int J Numer Methods Eng 123(17):4054–4072.
https:// doi. org/ 10. 1002/ nme. 6998

 50. Degroote J, Bathe KJ, Vierendeels J (2009) Performance of a new
partitioned procedure versus a monolithic procedure in fluid–
structure interaction. Comput Struct 87(11–12):793–801. https://
doi. org/ 10. 1016/j. comps truc. 2008. 11. 013

 51. Haelterman R, Degroote J, Van Heule D, Vierendeels J (2009) The
quasi-Newton least squares method: a new and fast secant method
analyzed for linear systems. SIAM J Numer Anal 47(3):2347–
2368. https:// doi. org/ 10. 1137/ 07071 0469

 52. Gallinger T, Bletzinger KU (2010) Comparison of algorithms
for strongly coupled partitioned fluid–structure interaction—effi-
ciency versus simplicity. In: Pereira JCF, Sequeira A (eds) 5th
European conference on computational fluid dynamics, Lisbon.
pp 1–20

 53. Spenke T, Hosters N, Behr M (2020) A multi-vector interface
quasi-Newton method with linear complexity for partitioned
fluid–structure interaction. Comput Methods Appl Mech Eng
361:112810. https:// doi. org/ 10. 1016/j. cma. 2019. 112810

 54. Degroote J, Souto-Iglesias A, Van Paepegem W, Annerel S,
Bruggeman P, Vierendeels J (2010) Partitioned simulation of
the interaction between an elastic structure and free surface flow.
Comput Methods Appl Mech Eng 199(33–36):2085–2098. https://
doi. org/ 10. 1016/j. cma. 2010. 02. 019

 55. Haelterman R, Bogaers AEJ, Scheufele K, Uekermann B, Mehl
M (2016) Improving the performance of the partitioned QN-
ILS procedure for fluid–structure interaction problems: filtering.
Comput Struct 171:9–17. https:// doi. org/ 10. 1016/j. comps truc.
2016. 04. 001

 56. Degroote J, Haelterman R, Annerel S, Bruggeman P, Viere-
ndeels J (2010) Performance of partitioned procedures in fluid–
structure interaction. Comput Struct 88(7–8):446–457. https://
doi. org/ 10. 1016/j. comps truc. 2009. 12. 006

 57. Zorrilla R, Rossi R (2023) A memory-efficient multivector
quasi-Newton method for black-box fluid–structure interaction
coupling. Comput Struct 275:106934. https:// doi. org/ 10. 1016/j.
comps truc. 2022. 106934

 58. Bogaers AEJ, Kok S, Reddy BD, Franz T (2014) Quasi-Newton
methods for implicit black-box FSI coupling. Comput Methods
Appl Mech Eng 279:113–132. https:// doi. org/ 10. 1016/j. cma.
2014. 06. 033

 59. Lindner F, Mehl M, Scheufele K, Uekermann B (2015) A com-
parison of various quasi-Newton schemes for partitioned fluid–
structure interaction. In: Schrefler B, Oñate E, Papadrakakis M
(eds) 6th international conference on computational methods
for coupled problems in science and engineering. pp 477–488.
http:// hdl. handle. net/ 2117/ 191193

https://doi.org/10.1016/j.compfluid.2020.104449
https://doi.org/10.1016/j.compfluid.2020.104449
https://doi.org/10.1007/s00466-012-0710-1
https://doi.org/10.1016/j.cma.2020.113179
https://doi.org/10.1016/j.camwa.2012.05.010
https://doi.org/10.1016/j.camwa.2012.05.010
https://doi.org/10.1002/nme.2503
https://doi.org/10.1002/nme.2503
https://doi.org/10.1002/nme.2659
https://doi.org/10.1002/nme.2659
https://doi.org/10.1016/s0045-7825(01)00302-4
https://doi.org/10.2514/1.3660
https://doi.org/10.1016/j.compstruc.2008.05.005
https://doi.org/10.1016/j.compstruc.2008.05.005
https://doi.org/10.1016/j.compstruc.2009.09.003
https://doi.org/10.1016/j.compstruc.2009.09.003
https://doi.org/10.1007/s11831-013-9085-5
https://doi.org/10.1007/s11831-013-9085-5
https://doi.org/10.1002/fld.2465
https://doi.org/10.56021/9781421407944
https://doi.org/10.56021/9781421407944
https://doi.org/10.1137/1.9780898719574
https://doi.org/10.1090/s0025-5718-1965-0198670-6
https://doi.org/10.1090/s0025-5718-1965-0198670-6
https://doi.org/10.1002/nla.617
https://doi.org/10.1103/physrevb.38.12807
https://doi.org/10.1103/physrevb.30.6118
https://doi.org/10.1103/physrevb.30.6118
https://doi.org/10.1006/jcph.1996.0059
https://doi.org/10.1145/321296.321305
https://doi.org/10.1145/321296.321305
https://doi.org/10.13140/RG.2.2.28442.08648
https://doi.org/10.14459/2016md1320661
https://doi.org/10.1002/nme.6998
https://doi.org/10.1016/j.compstruc.2008.11.013
https://doi.org/10.1016/j.compstruc.2008.11.013
https://doi.org/10.1137/070710469
https://doi.org/10.1016/j.cma.2019.112810
https://doi.org/10.1016/j.cma.2010.02.019
https://doi.org/10.1016/j.cma.2010.02.019
https://doi.org/10.1016/j.compstruc.2016.04.001
https://doi.org/10.1016/j.compstruc.2016.04.001
https://doi.org/10.1016/j.compstruc.2009.12.006
https://doi.org/10.1016/j.compstruc.2009.12.006
https://doi.org/10.1016/j.compstruc.2022.106934
https://doi.org/10.1016/j.compstruc.2022.106934
https://doi.org/10.1016/j.cma.2014.06.033
https://doi.org/10.1016/j.cma.2014.06.033
http://hdl.handle.net/2117/191193

 N. Delaissé et al.

1 3

 60. Scheufele K, Mehl M (2017) Robust multisecant quasi-Newton
variants for parallel fluid–structure simulations and other mul-
tiphysics applications. SIAM J Sci Comput 39(5):404–433.
https:// doi. org/ 10. 1137/ 16m10 82020

 61. Delaissé N, Demeester T, Fauconnier D, Degroote J (2022) Sur-
rogate-based acceleration of quasi-Newton techniques for fluid–
structure interaction simulations. Comput Struct 260:106720.
https:// doi. org/ 10. 1016/j. comps truc. 2021. 106720

 62. Demeester T, Brummelen EH, Degroote J (2020) An efficient
quasi-Newton method for two-dimensional steady free surface
flow. Int J Numer Methods Fluids 92(7):785–801. https:// doi.
org/ 10. 1002/ fld. 4806

 63. Demeester T, van Brummelen EH, Degroote J (2021) An effi-
cient quasi-Newton method for three-dimensional steady free
surface flow. Int J Numer Methods Fluids 93(8):2581–2610.
https:// doi. org/ 10. 1002/ fld. 4989

 64. De Groote W, Kikken E, Hostens E, Van Hoecke S, Crevecoeur
G (2022) Neural network augmented physics models for systems
with partially unknown dynamics: application to slider-crank
mechanism. IEEE/ASME Trans Mechatron 27(1):1–11. https://
doi. org/ 10. 1109/ tmech. 2021. 30585 36

 65. Mehl M, Uekermann B, Bijl H, Blom D, Gatzhammer B, van
Zuijlen AH (2016) Parallel coupling numerics for partitioned
fluid–structure interaction simulations. Comput Math Appl
71(4):869–891. https:// doi. org/ 10. 1016/j. camwa. 2015. 12. 025

 66. Cervera M, Codina R, Galindo M (1996) On the computational
efficiency and implementation of block-iterative algorithms for
nonlinear coupled problems. Eng Comput 13(6):4–30. https://
doi. org/ 10. 1108/ 02644 40961 01283 82

 67. Santiago A, Zavala-Aké M, Borrell R, Houzeaux G, Vázquez
M (2020) HPC compact quasi-Newton algorithm for interface
problems. J Fluids Struct 96:103009. https:// doi. org/ 10. 1016/j.
jflui dstru cts. 2020. 103009

 68. Degroote J, Vierendeels J (2011) Multi-solver algorithms for the
partitioned simulation of fluid–structure interaction. Comput
Methods Appl Mech Eng 200(25–28):2195–2210. https:// doi.
org/ 10. 1016/j. cma. 2011. 03. 015

 69. Degroote J, Vierendeels J (2012) Multi-level quasi-Newton cou-
pling algorithms for the partitioned simulation of fluid–structure
interaction. Comput Methods Appl Mech Eng 225–228:14–27.
https:// doi. org/ 10. 1016/j. cma. 2012. 03. 010

 70. Küttler U, Wall WA (2008) Fixed-point fluid–structure interac-
tion solvers with dynamic relaxation. Comput Mech 43(1):61–
72. https:// doi. org/ 10. 1007/ s00466- 008- 0255-5

 71. Mok DP, Wall WA (2001) Partitioned analysis schemes for the
transient interaction of incompressible flows and nonlinear flex-
ible structures. In: Schweizerhof K, Wall WA, Bletzinger KU

(eds) Trends in computational structural mechanics, Barcelona.
pp 688–698

 72. Mok DP, Wall WA, Ramm E (2001) Accelerated iterative sub-
structuring schemes for instationary fluid–structure interaction. In:
Bathe KJ (ed) Computational fluid and solid mechanics. Elsevier,
Amsterdam, pp 1325–1328. https:// doi. org/ 10. 1016/ b978- 00804
3944-0/ 50907-0

 73. Bogaers AEJ, Kok S, Reddy BD, Franz T (2015) Extending the
robustness and efficiency of artificial compressibility for parti-
tioned fluid–structure interactions. Comput Methods Appl Mech
Eng 283:1278–1295. https:// doi. org/ 10. 1016/j. cma. 2014. 08. 021

 74. Spenke T, Make M, Hosters N (2022) A Robin–Neumann scheme
with quasi-Newton acceleration for partitioned fluid–structure
interaction. Int J Numer Methods Eng 124(4):979–997. https://
doi. org/ 10. 1002/ nme. 7151

 75. Rüth B, Uekermann B, Mehl M, Birken P, Monge A, Bungartz HJ
(2020) Quasi-Newton waveform iteration for partitioned surface-
coupled multiphysics applications. Int J Numer Methods Eng
122(19):5236–5257. https:// doi. org/ 10. 1002/ nme. 6443

 76. Yeckel A, Lun L, Derby JJ (2009) An approximate block New-
ton method for coupled iterations of nonlinear solvers: the-
ory and conjugate heat transfer applications. J Comput Phys
228(23):8566–8588. https:// doi. org/ 10. 1016/j. jcp. 2009. 08. 003

 77. Jahromi HZ, Izzuddin BA, Zdravkovic L (2009) A domain
decomposition approach for coupled modelling of nonlinear
soil–structure interaction. Comput Methods Appl Mech Eng
198(33–36):2738–2749. https:// doi. org/ 10. 1016/j. cma. 2009. 03.
018

 78. Artlich S, Mackens W (1995) Newton-coupling of fixed point iter-
ations. In: Hackbusch W, Wittum G (eds) 11th GAMM-seminar:
numerical treatment of coupled systems. Notes on numerical fluid
mechanics, vol 51. Vieweg, Braunschweig, Kiel, pp 1–10. https://
doi. org/ 10. 1007/ 978-3- 322- 86859-6_1

 79. Delaissé N, Demeester T, Haelterman R, Degroote J (2023)
Quasi-Newton methods for partitioned simulation of fluid–struc-
ture interaction reviewed in the generalized Broyden framework:
code and data. https:// doi. org/ 10. 5281/ zenodo. 75656 80

 80. Boutet N, Haelterman R, Degroote J (2021) Secant update gen-
eralized version of PSB: a new approach. Comput Optim Appl
78(3):953–982. https:// doi. org/ 10. 1007/ s10589- 020- 00256-1

 81. Matthies HG, Niekamp R, Steindorf J (2006) Algorithms for
strong coupling procedures. Comput Methods Appl Mech Eng
195(17–18):2028–2049. https:// doi. org/ 10. 1016/j. cma. 2004. 11.
032

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1137/16m1082020
https://doi.org/10.1016/j.compstruc.2021.106720
https://doi.org/10.1002/fld.4806
https://doi.org/10.1002/fld.4806
https://doi.org/10.1002/fld.4989
https://doi.org/10.1109/tmech.2021.3058536
https://doi.org/10.1109/tmech.2021.3058536
https://doi.org/10.1016/j.camwa.2015.12.025
https://doi.org/10.1108/02644409610128382
https://doi.org/10.1108/02644409610128382
https://doi.org/10.1016/j.jfluidstructs.2020.103009
https://doi.org/10.1016/j.jfluidstructs.2020.103009
https://doi.org/10.1016/j.cma.2011.03.015
https://doi.org/10.1016/j.cma.2011.03.015
https://doi.org/10.1016/j.cma.2012.03.010
https://doi.org/10.1007/s00466-008-0255-5
https://doi.org/10.1016/b978-008043944-0/50907-0
https://doi.org/10.1016/b978-008043944-0/50907-0
https://doi.org/10.1016/j.cma.2014.08.021
https://doi.org/10.1002/nme.7151
https://doi.org/10.1002/nme.7151
https://doi.org/10.1002/nme.6443
https://doi.org/10.1016/j.jcp.2009.08.003
https://doi.org/10.1016/j.cma.2009.03.018
https://doi.org/10.1016/j.cma.2009.03.018
https://doi.org/10.1007/978-3-322-86859-6_1
https://doi.org/10.1007/978-3-322-86859-6_1
https://doi.org/10.5281/zenodo.7565680
https://doi.org/10.1007/s10589-020-00256-1
https://doi.org/10.1016/j.cma.2004.11.032
https://doi.org/10.1016/j.cma.2004.11.032

	Quasi-Newton Methods for Partitioned Simulation of Fluid–Structure Interaction Reviewed in the Generalized Broyden Framework
	Abstract
	1 Introduction
	2 Formulation of the FSI Problem
	3 Solving the FSI Problem
	3.1 Gauss–Seidel Scheme
	3.2 Motivation for Using Quasi-Newton Methods
	3.3 Quasi-Newton Schemes
	3.3.1 Residual Formulation Quasi-Newton Scheme
	3.3.2 Block Iteration Quasi-Newton Scheme

	4 Approximating Jacobians
	4.1 Satisfying the Secant Conditions
	4.2 Adding an Initial Estimate for the Jacobian
	4.3 Generalized Broyden Method
	4.4 Difference Between the Anderson and Broyden Approach

	5 Quasi-Newton Methods for FSI
	5.1 IQN-ILS
	5.2 IBQN-LS
	5.3 MVQN
	5.4 IQN-MVJ
	5.5 IQN-IMVLS
	5.6 IQN-ILSM
	5.7 Other Algorithms

	6 Numerical Tests
	6.1 Test Case
	6.2 Results

	7 Conclusion
	Acknowledgements
	References

