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Abstract

In this paper we propose a new algorithm, named NICE, to generate counterfactual expla-

nations for tabular data that specifically takes into account algorithmic requirements that often

emerge in real-life deployments: (1) the ability to provide an explanation for all predictions, (2)

being able to handle any classification model (also non-differentiable ones), (3) being efficient in

run time, and (4) providing multiple counterfactual explanations with different characteristics.

More specifically, our approach exploits information from a nearest unlike neighbor to speed up

the search process, by iteratively introducing feature values from this neighbor in the instance

to be explained. We propose four versions of NICE, one without optimization and, three which

optimize the explanations for one of the following properties: sparsity, proximity or plausibility.

An extensive empirical comparison on 40 datasets shows that our algorithm outperforms the

current state-of-the-art in terms of these criteria. Our analyses show a trade-off between on the

one hand plausibility and on the other hand proximity or sparsity, with our different optimiza-

tion methods offering users the choice to select the types of counterfactuals that they prefer. An

open-source implementation of NICE can be found at https://github.com/ADMAntwerp/NICE.

Keywords: XAI, Counterfactual Explanations, Machine Learning

1 Introduction

1.1 The need for explainability

In the past decade, machine learning (ML) models have been successfully deployed in many high-

stakes decision making domains such as credit scoring (Lessmann et al., 2015), fraud detection (Ngai

et al., 2011; Whitrow et al., 2009; Callahan and Shah, 2017), and clinical healthcare (Callahan

and Shah, 2017; Huang et al., 2015). However, due to the complexity of the models or high-

dimensionality of the underlying data, for many models high performance has come at a cost

of explainability (Martens and Provost, 2014; Wachter et al., 2018; Ramon et al., 2020). The
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inability to explain automated decisions that impact individuals undermines the trust between

data subject and data controllers (Wachter et al., 2018). Post-hoc explanation methods such as

counterfactual explanations aim to reinstall this trust while keeping the performance of the decision

mechanism (Wachter et al., 2018). Several types of legislation have also pushed on providing

explanations for algorithmic decision-making. One example is the Fair Credit Reporting Act in

the United States (United States Congress, 1970). It requires data controllers to provide specific

reasons that negatively influence a data subject’s credit score. Counterfactual explanations are a

great fit here as they provide a set of minimum features required to change the predicted outcome.

Another example comes from the General Data Protection Regulation (GDPR) in the European

Union. Article 14 states that data subjects have the right to obtain meaningful information about

the logic involved in automated decision making (European Parliament, 2016).

Current classification models have a high complexity and many parameters. Consequently, explain-

ing the inner working of such a model will not be meaningful to a data subject. Counterfactual

explanations, on the contrary, highlight a set of input features that, when changed, alter the pre-

dicted decision (Martens and Provost, 2014). These input features are a lot more understandable

to humans as the form of counterfactual explanations has deep foundations in philosophy (Kment,

2006; Lewis, 2013; Ruben, 2015) and social sciences (Miller, 2019); for it is similar to how a person

thinks about a decision by asking the question: what could I have changed to achieve a differ-

ent outcome? Additionally, counterfactual explanations allow data controllers to explain instances

without disclosing any trade secrets or private data (Barocas et al., 2020).

It is clear that, in theory, counterfactual explanations fit the legislative requirements and have the

ability to make black-box ML models transparent and accountable. Spurred by these benefits,

in recent years many counterfactual algorithms have been developed for tabular data (see e.g.

the overviews by Verma et al. (2020); Karimi et al. (2020b)). However, most of them focus on

generating counterfactuals without taking into account the algorithmic requirements in deployment.

Consider for example custom fraud detection. In a country such as Belgium, custom administration

processes around 9.5 declarations every second (Vanhoeyveld et al., 2020). Each of these cases

have the potential for different forms of fraud such as illegal drug traffic, importation of counterfeit

goods, valuation fraud, smuggling, product misclassification and the manipulation of the origin of

goods. Predictive algorithms are used in this context to identify high-risk targets which are further

investigated by custom officers (Vanhoeyveld et al., 2020; Digiampietri et al., 2008). Counterfactual

explanations can be of great value here to improve collaboration. The set of features in this

explanation can clarify which form of fraud might be committed, or what the main reasons for

predicted fraud are (e.g. country risk, article code, weight and so on), thereby speeding up further

investigations. Custom officers check many high-risk cases each minute, so explanation algorithms

will have to match this speed to make them useful. This computational efficiency requirement also

guarantees that these algorithms can be easily scaled without the need of excessive infrastructure.

An additional requirement is that all observations can be explained in this domain. The absence

of an explanation might give the (potentially wrong) impression that the predictive model is not

certain about its prediction, undermining the trust in the predictive model and making it difficult

for custom officers to act upon the output.

If we return to the example of credit scoring in the US, we notice the same requirements. In this
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Figure 1: Example of counterfactual explanations for loan approval.

case explanations for negative decisions are required by law, rendering counterfactual algorithms

that cannot explain all of these credit rejection predictions, useless. Also computational inefficiency

is costly here. In credit scoring, the data subjects are potential customers. Imagine a consumer

applying for a loan at a bank. A number of variables are asked, such as income, profession, etc. to

assess the credit risk. The classification model, which is efficient by design as well, as not to have

the consumer wait for minutes or hours to get a decision, will provide a decision swiftly. In case the

application is rejected, it is just as important to have an efficient explanation algorithm to come

up with a motivation for the rejection. Having the consumer just sit there and wait is arguably

unacceptable or at least bad business practice.

In Figure 1, we show a simplified example of a counterfactual explanation in the domain of credit

scoring. In this example the loans of individuals will be approved or denied based on their income

and age. The graph shows a two-dimensional feature space. The black line represents a classification

model that splits the feature space into two areas: the loans of individuals who land on the right will

be approved, while the individuals who land on the left will be denied. As an example, consider

a person, 39 years old and with an income of $32,000, who applies for a loan. This person is

represented by the black dot and the classification model denies the loan. If this person receives a

raise, increasing her income by $8,000, she would land on white dot number 1 in the feature space

where her loan would be approved. This $8,000 increase in income is an example of a counterfactual

explanation. It is the change that has to be made to an observation in order to change its predicted
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class. This raise would result in the person being 39 years old and earning $40,000, which is called

the counterfactual instance.

1.2 Research objectives

ML in general is a fast evolving field where models vary over applications and time. Current state-of-

the-art classification models, might be outperformed in a few years. To ensure that counterfactual

algorithms remain useful when classification models change, and to give data controllers full freedom

over the choice of these models, there is a preference for model-agnostic explanation algorithms.

This implies that the classification model is used simply as an output generating machine, based

on provided input. We have identified four important algorithmic requirements:

� Perfect coverage, which means we want the counterfactual algorithm to be able to provide an

explanation for each prediction.

� Required model access, which preferably limits itself to the inputs and outputs of the models,

making the algorithm model-agnostic.

� Computational efficiency.

� Versatility, which allows to optimize the explanation based on user-provided preferences, such

as for short, near or realistic explanations.

In this paper, we propose Nearest Instance Counterfactual Explanations (NICE), a new algorithm

to find counterfactual explanations for tabular data with both numerical and categorical variables.

This type of data is widely used in ML applications where individuals are impacted, such as credit

scoring, clinical healthcare, recruitment or fraud detection. Explanations are extremely important

in this context as a wrong decision can have dire consequences (Doshi-Velez and Kim, 2017).

Our contribution to the XAI literature, and more specifically to the counterfactual literature,

amounts to the introduction of a new algorithm, which allows for simultaneously achieving the

following:

1. 100% coverage: NICE always finds a counterfactual and hence can always find an explana-

tion for a given instance and a given classification model.

2. Model-agnostic: NICE works for any kind of classification model and does not require any

kind of information regarding the internal workings of the classification model.

3. Fast counterfactual generation: NICE is fast, especially in light of the required 100%

coverage (see Section 4 for the computational experiments).

4. Versatility: NICE has the ability to optimize for multiple counterfactual properties. Re-

search has shown that the preference for counterfactual properties is context-dependant (Ra-

mon et al., 2021; Fürnkranz et al., 2020). An algorithm that can provide multiple coun-

terfactual explanations with different characteristics allows for personalized explanations per

user.

Whereas other algorithms permit one or two of the above (see Section 2.2), NICE guarantees
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all of these simultaneously (see Section 3). NICE furthermore employs existing counterfactual

properties (i.e., sparsity, proximity and plausibility), and is built in such a way that properties can

be integrated as objectives in a modular way, depending on the users’ requirements.

The remainder of this paper is structured as follows. We discuss related work in Section 2 and

explicitly consider potential benchmark algorithms for NICE. We formally introduce NICE itself in

Section 3 and show detailed computational results in Section 4. Finally, we present our conclusions

along with future research avenues in Section 5.

2 Related work

Explainable AI (XAI), of which the goal is to explain model predictions resulting from black-

box models, has seen tremendous growth over the past decade. Established and recent explanation

algorithms include LIME (Ribeiro et al., 2016), SHAP (Lundberg and Lee, 2017), CAVs (Kim et al.,

2018), Anchors (Ribeiro et al., 2018), ProtoPNet (Chen et al., 2019) and SpRAy (Lapuschkin et al.,

2019). Since in this research we focus on counterfactuals as a technique for explainability, we mainly

restrict ourselves to counterfactual research in the following subsections. For in-depth overviews on

XAI and its existing algorithms, we refer to Molnar (2019) and to Barredo Arrieta et al. (2020).

In Section 2.1 we give an overview of the recent and relevant counterfactual literature in general,

whereas in Section 2.2 we go into detail about possible benchmark algorithms. In Section 2.3 we

discuss properties of counterfactuals, and finally we touch upon user interpretability in Section 2.4.

2.1 Counterfactual explanation

Martens and Provost (2014) have been argued to be the first to formally introduce a counterfactual

evidence method (see overview by Karimi et al. (2020b)), which they call SEDC1. Martens and

Provost (2014) applied SEDC to textual data, while in subsequent work it has been employed

for behavioral data (Ramon et al., 2020), image data (Vermeire et al., 2022) and finally tabular

data (Fernández-Loŕıa et al., 2020) as well. Other interesting forerunners of counterfactuals are the

case-based reasoning approaches by Nugent and Cunningham (2005) and by Nugent et al. (2009),

which provide insight into the impact of feature value changes on model predictions, although they

focus on actual past cases while counterfactuals discuss required changes in the current situation.

Given the similarities between case-based reasoning and counterfactuals as explanation methods,

we discuss the case-based reasoning approach by Keane and Smyth (2020), specifically applied to

counterfactuals, in more detail below, and also compare our results with theirs (see Section 4).

Wachter et al. (2018) stated the problem as a loss function to be optimized. With this approach

it is easy to impose desired properties on the explanations by adding extra terms to this loss

function. Mothilal et al. (2020) added a diversity parameter to generate multiple counterfactual

explanations for each observation. Others implemented an auto-encoder (AE) (Van Looveren and

Klaise, 2021; Dhurandhar et al., 2018) or prototype (Van Looveren and Klaise, 2021) loss, resulting

in explanations closer to the data manifold. However, for tabular data, these loss functions face

some challenges. First of all, they have difficulties handling nominal variables. Some solve this

1Pronounced as “Set See”.
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problem by one-hot encoding the variables and adding an extra loss term to enforce a correct

encoding (Mothilal et al., 2020; Joshi et al., 2019). Others map the features into an ordinal vector

space (Dhurandhar et al., 2019; Van Looveren and Klaise, 2021). A more substantial problem

is that these loss functions can only be solved efficiently when gradients are available, which is

only the case for differentiable models. To date, the best performing models for tabular data often

include tree-based ensembles (Olson et al., 2017; Lessmann et al., 2015). For these non-differentiable

models, the gradients have to be calculated numerically which causes a computational bottleneck.

Van Looveren and Klaise (2021) claim to have reduced this bottleneck by adding the distance to

the training data to the loss function, causing the optimization to converge faster.

Delaney et al. (2020) discuss counterfactuals in case of time series data and develop Native Guide

as solution approach, which adapts existing counterfactual instances. The authors provide details

of characteristics of good counterfactuals, and use these in their algorithm. The results show the

superiority of Native Guide compared to existing techniques for time series data.

Multi-objective counterfactual explanations are for the first time discussed by Dandl et al. (2020),

whose approach allows for a better trade-off between different objectives and is based on the

multi-objective optimization literature. An adjusted version of the non-dominated sorting genetic

algorithm (NSGA-II) is used to solve the multi-objective problem.

Finally, Mothilal et al. (2021) seek to combine feature importance analysis with counterfactual

generation, since both types of approaches may highlight different features. The authors study the

necessity and sufficiency of features and find that not only the top features reported by feature

importance methods can prove to be meaningful for explanations.

2.2 Potential benchmark algorithms

We provide an overview of counterfactual algorithms worth considering to benchmark NICE (ex-

periments discussed in detail in Section 4) in Table 1. For a recent overview on and classification

of the counterfactual literature in general, we refer to Karimi et al. (2020b), whereas de Oliveira

and Martens (2021) explicitly perform a benchmarking study for ten counterfactual algorithms on

tabular data.

As we focus on a new optimization approach, the algorithms in Table 1 have been grouped into

“families” according to the type of algorithm used, that is, gradient descent, neighbor-based, genetic

algorithm and SAT solver. Combined with the more general survey on counterfactual algorithms

by Karimi et al. (2020b), we can conclude that gradient descent and neighbor-based heuristics are

the most prevalent types of algorithms currently used. The overview in Table 1 furthermore takes

three properties from the literature used by NICE into account as objectives (sparsity, proximity

and plausibility, see Sections 2.3 and 3.2), along with custom specifications 100% coverage guarantee

and compatibility with tabular data (numerical and categorical features). For algorithm specifics,

aside from the type of algorithm, we include the model-agnosticism of the algorithm and whether

it requires access to the classification model. Finally, we show whether Python (compatible) code

is publicly available or not. In the following paragraphs, we briefly discuss each of the articles in

Table 1. Note that some of these articles have already been touched upon in earlier paragraphs, in

order to better situate our own work.
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Algorithm
Name Spars. Prox. Plaus. Cover. Mixed Type Model- Code

data agn.

DiCE x x GD Y* Y
CFproto x x x x GD Y* Y
GS x x NB Y Y
WIT x x x NB Y N*
CBR x x x NB Y N*
SEDC x x NB Y Y
NICE x x x x x NB Y Y
GeCo x x x x GA Y Y

MACE x x x x x SAT Y Y†

Table 1: Overview of the counterfactual algorithms for tabular data potentially relevant for
comparison. The following algorithms are considered: DiCE (Mothilal et al., 2020), GS (Laugel
et al., 2017), WIT (Wexler et al., 2019), CBR (Keane and Smyth, 2020), CBR (Keane and Smyth,
2020), GeCo (Schleich et al., 2021), and MACE (Karimi et al., 2020a). Objectives present in
a paper are marked with an “x” in the corresponding column for sparsity (Spars.), proximity
(Prox.) and plausibility (Plaus.), as are the coverage guarantee (Cover.) and the use of tabular
data consisting of both discrete and continuous features (mixed data). Related to the algorithms
themselves, the type (GD for gradient descent, NB for neighbor-based, GA for genetic algorithm
and SAT for SAT solver) is included, along with whether it is model-agnostic (yes or no, an asterisk
means model access is an optional feature) and whether the code is publicly available and usable in
Python without further assumptions (yes or no, an asterisk * means we implemented the algorithm
ourselves, a dagger † means specific code assumptions are made).

In terms of gradient descent algorithms, DiCE (Diverse Counterfactual Explanations) by Mothilal

et al. (2020) allows for the generation of diverse counterfactuals for the same instance by combining

multiple objectives into a single loss function. The approach returns multiple counterfactuals for

a given instance, in order to present a user with several diverse counterfactuals. Another gradient

descent algorithm is CFproto2 by Van Looveren and Klaise (2021). Unlike some of its gradient-

based peers, it has found a way to work with categorical data in the loss function and claims to

be faster in optimizing it. The purpose of this algorithm is very similar to that of NICE (plaus).

It tries to find a balance between close and plausible explanations and uses the training data to

achieve this (Van Looveren and Klaise, 2021).

The following algorithms all fall under the neighbor-based family. Growing Spheres (GS) (Laugel

et al., 2017) focuses on finding the minimal required changes to an instance in order to obtain a

counterfactual, without relying on existing data. Growing Spheres, however, is only compatible with

numerical features and does not take categorical features into account (de Oliveira and Martens,

2021). The What-if Tool (WIT) (Wexler et al., 2019) is an interactive tool which selects the nearest

instance from the training set that is classified in a different class. Besides two small differences, this

method is exactly the same as NICE (none), a basic version of NICE (see Section 3.1). First, WIT

selects a counterfactual instance from the complete training set and not only the correctly classified

ones. Second, the distance metric is slightly different: for numerical features it standardizes the

2This name comes from the GitHub repository of Van Looveren and Klaise (2021), in which CFproto is the name
used for the .py file which contains their algorithm.
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differences with the standard deviation and not the range of the feature values in the training set.

In spite of these two small differences, WIT would make a good benchmark for NICE. Just like

NICE and WIT, the Case-Based Reasoning system (CBR) for counterfactual explanations (Keane

and Smyth, 2020) use nearest instances to find counterfactuals. The difference is the optimization

method, which limits the search to explanations that have a maximum sparsity of two features.

Furthermore, this method also does not guarantee that an explanation will be found (coverage), but

it could still be worthwhile as a point of comparison. The next algorithm is SEDC for tabular data

(Fernández-Loŕıa et al., 2020). The optimization method is very similar to NICE under sparsity.

The difference between both algorithms is their search space. Whereas NICE replaces feature values

with those of the nearest instance, SEDC replaces them with the respective mean or mode of each

feature.

A genetic algorithm for counterfactual generation (GeCo), which focuses on finding counterfactu-

als with minimal changes, is proposed by Schleich et al. (2021). The algorithm prefers explanations

with as few as possible changes in feature values, and furthermore allows for the comparatively fast

generation of counterfactuals.

Karimi et al. (2020a) build on formal logic and solve a sequence of satisfiability problems

(SAT), as part of their counterfactual approach called Model-Agnostic Counterfactual Explana-

tions (MACE). Their results show that MACE has 100% coverage, i.e., the algorithm can always

find a counterfactual, though its computation times are negatively affected by the use of an SAT

solver. The open-source Python implementation of MACE3 also sets some specific constraints on

the encoding of categorical variables, which are not compatible with other models in our experi-

ments. For these reasons, we decided not to employ MACE as a benchmark algorithm.

Algorithm
Name Spars. Prox. Plaus. Cover. Type

DiCE x GD
CFproto x x x GD
WIT x x NB
CBR x x NB
SEDC x NB
NICE x x x x NB
GeCo x x x GA

Table 2: Overview of the following counterfactual algorithms for tabular data used for compari-
son: DiCE (Mothilal et al., 2020), CFproto (Van Looveren and Klaise, 2021), WIT (Wexler et al.,
2019), CBR (Keane and Smyth, 2020), SEDC (Fernández-Loŕıa et al., 2020), NICE, and GeCo
(Schleich et al., 2021). Objectives present in a paper are marked with an “x” in the corresponding
column for sparsity (Spars.), proximity (Prox.) and plausibility (Plaus.), as is the coverage guar-
antee (Cover.). Related to the algorithms themselves, the type (GD for gradient descent, NB for
neighbor-based, GA for genetic algorithm) is included.

In order to allow for a proper and fair comparison with NICE, in the sense that benchmarks

should have similar characteristics as our approach, we focus on algorithms with the following

characteristics: (1) model-agnostic and no model access, (2) compatibility with mixed tabular

3https://github.com/amirhk/mace
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data, and (3) code available and usable without further assumptions. Though both WIT and

CBR, two algorithms very similar to NICE, have no Python code publicly available, we decided to

implement both algorithms ourselves (code available online in our GitHub repository). Both CBR

and WIT are quite similar to our approach, which warrants a comparison, and are furthermore

straightforward enough to implement them ourselves. Combined with the three conditions above,

the remaining algorithms are those in Table 2, which means that we have six benchmark algorithms

for NICE. From the table, we conclude that in the selected benchmark algorithms there is variation

in both the objectives and the algorithm type, while NICE and WIT are the only ones that have

100% coverage.

2.3 Counterfactual properties

Previous research has pointed out several important properties of counterfactual explanations

(Karimi et al., 2020b; Verma et al., 2020). In this work, we focus on sparsity, proximity and

plausibility.

A commonly used property is sparsity (Karimi et al., 2020a; Dandl et al., 2020; Laugel et al.,

2018) which refers to the number of features in an explanation. It is often claimed that sparser

explanations are better as they are less complex. This statement stems from psychological research

which finds that people can only process five to nine pieces of information at once (Miller, 1956;

Medin et al., 1987; Edwards et al., 2019; Förster et al., 2020, 2021). Especially when working

with high dimensional features spaces, a sparsity constraint is useful to ensure explanations remain

comprehensible for humans. In Figure 1, counterfactual 1 is sparser than counterfactual 2. If

loan applicants only want to change their income and do not want to wait until they get older,

counterfactual 1 is probably a better explanation for them. Furthermore, consider that sparsity is

actually equal to the L0 distance between the instance to explain and the counterfactual instance.

A critique of sparsity is that it is a very rough measure of distance. For example, when providing

explanations in a credit approval context, it is straightforward to get an explanation that suggests

a $200 raise is better than one which suggests a $10,000 one. However, in terms of sparsity, both

explanations are equal. To counter this, previous research has used alternative distance metrics such

as L1 distance (Wexler et al., 2019), L2 distance (Mothilal et al., 2020) or ABDM (Van Looveren

and Klaise, 2021). In this paper, we use proximity as an overlapping term for all these distance

metrics. Therefore, sparsity can actually be seen as a specific example of proximity. However, we

keep them as separate properties in this article because much of the previous literature specifically

focuses on sparsity.

Pawelczyk et al. (2020) pointed out that spars or near counterfactual explanations may be vul-

nerable to classification model changes over time. The counterfactual instance possibly ends up in

an area far from the data manifold, where these models predict with high uncertainty. When a

different classification model is trained on the same data, the previous explanation might no longer

be valid. In our loan approval example, this would correspond to a case where applicants are told

to raise their income by $8,000. However, when they return to the bank, another model has been

put into production and their loan request is again rejected. Such occurrences would diminish con-

fidence in counterfactual explanations. In the rest of this paper, we call this concept cross-model

robustness.
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One property of counterfactual explanations that can avoid the problem of cross-model robustness

is plausibility (Pawelczyk et al., 2020). It measures the closeness of the counterfactual instance

to the data manifold. If an explanation in the loan approval example, such as counterfactual 3,

suggests that applicants wait until they are 140 years old, this explanation is clearly not plausible,

as it lies far outside of the data manifold. Compared to the previous two properties, plausibility

is more conceptual and cannot be measured directly. Proxies that have been used to measure

plausibility are: the distance to the k-nearest neighbors from the training data Dandl et al. (2020),

the local outlier factor (Kanamori et al., 2020), IM1 and IM2 (Van Looveren and Klaise, 2021),

uncertainty estimation Delaney et al. (2021), and the reconstruction error of an AE trained on the

training data (Mahajan et al., 2019; Van Looveren and Klaise, 2021). Some studies have shown that

there is an inherent trade-off between sparsity and plausibility (Dandl et al., 2020; Van Looveren

and Klaise, 2021).

2.4 User interpretability

We should not ignore the often context-dependent user preferences related to XAI methods. Whereas

we mainly discuss user interpretability here, overviews of general and often cross-disciplinary XAI

requirements can be found in Miller (2019) and in Langer et al. (2021). As stated by among others

Keane et al. (2021), a major deficit of counterfactual research is the small number of user studies,

in order to gain insights into the type of counterfactuals (or explanations in general) users may

prefer. As discussed before, the claimed preference for sparse explanations stems from psychological

research (Miller, 1956; Medin et al., 1987; Edwards et al., 2019; Förster et al., 2020, 2021).

In spite of the above, studies related to XAI have shown that user preferences on interpretability are

context and requirements dependent, and that users may even prefer more complex explanations

(Ramon et al., 2021; Fürnkranz et al., 2020). Other recent examples of user studies are Byrne

(2019) and Dodge et al. (2019), with the latter explicitly concluding that there is no one-size-fits-

all approach to explaining, but that the usefulness of explanations depends on user profiles and

expertise. Alternatively, Weld and Bansal (2019) argue in favor of interactive explanation systems,

as users may have follow-up questions and more detailed concerns once an (initial) explanation has

been provided.

Fernández-Loŕıa et al. (2020) develop an algorithm to detect the most useful counterfactual expla-

nations based on context and compare their approach with feature importance techniques in three

case studies. The authors take adjustable feature weights into account, allowing their approach

to suggest different kinds of counterfactuals depending on user requirements, and conclude that

features with a large impact on model prediction may not necessarily be good for explaining indi-

vidual decisions. In this way, their method can be seen as a necessary middle ground between the

development of the algorithm on the one hand and user studies on the other.

It is clear that there is no consensus on which properties are most preferred by users. The context-

dependent user preferences might even imply that there will never be a consensus and that coun-

terfactual explanations should be personalized towards each user. Therefore, we argue that a good

counterfactual algorithm should be able to provide multiple explanations with varying characteris-

tics.
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3 Methodology

In this section, we propose NICE: a nearest unlike neighbor-based approach to generate counterfac-

tual explanations. NICE applies a depth-first heuristic approach that guarantees to always find a

counterfactual, which is a hybrid between the nearest unlike neighbor and the instance to explain.

Consider that this nearest unlike neighbor is not only a counterfactual due to the class change, but

also an existing instance from the dataset used.

In the remainder of this section, we first explain the search process of our algorithm step by step.

Afterward, we provide more information on the different reward functions used to guide this process.

3.1 NICE overview

Assume an m-dimensional feature space X ⊂ Rm consisting of both categorical and numerical

features, a feature vector x ∈ X with a corresponding label denoted as y ∈ Y = {−1, 1} and a

trained classification model f which maps Rm in the class score vector such that f(x) ∈ [−1, 1]
which leads to a predicted class ŷ. A counterfactual instance xc for x0 minimizes the distance

d(x0, xc) under the condition that ŷ0 ̸= ŷc.

Our algorithm is very flexible in its distance metric as it does not need the categorical variables to

be mapped in an ordinal vector. In this paper, we choose the Heterogeneous Euclidean Overlap

Method (HEOM) as a distance metric (Wilson and Martinez, 1997). For each feature (F), the

distance between two features values, a and b, is calculated according to Formula (1), while the

total distance is simply the L1-norm of all feature distances. Furthermore,this metric guarantees

that the contribution of each feature to the total distance is between 0 and 1.

dF (a, b) =


1 if a ̸= b for categorical F

0 if a = b for categorical F
|a−b|

range(F ) for numerical F

(1)

Algorithm 1 gives an overview of NICE and its constituting steps. The input of NICE is an

instance x0 for which we want to find a counterfactual instance, whereas the output xc is such

a counterfactual instance. Consider that upon termination of NICE, xc will always remain a

combination of x0 and xn, which substantially reduces our search space and consequently the run

time of NICE. In Step 1 (lines 4-6), a current hybrid instance xc is created between x0 and xn to

keep track of the changes made to x0 as the algorithm progresses, and a counter i is initialized

for Step 3. In Step 2 (lines 8-9), NICE finds the nearest unlike neighbor xn for x0, for which

ŷ0 ̸= ŷn and yn = ŷn, and subsequently identifies the non-overlapping features. This results in a

list of features (featureList), which can be changed to make xc more similar to xn. This approach

is similar to that of Delaney et al. (2020), with the major difference that the latter uses time series

instead of tabular data.

Before moving on with step 3, note that xn from Algorithm 1 can already be used as a counterfactual

instance and has some desirable properties. First, it is an actual instance, which makes it by

definition plausible. In addition, the second condition (yn = ŷn) implies that the observation is
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correctly classified by f . Therefore, xn corresponds to an area in Rm where the predictions of f

are arguably more justified. If the classification model f is replaced by a different one h, trained

on the same data, there would be a higher probability that xn is also a counterfactual instance

(Pawelczyk et al., 2020). We will refer to this version without further optimization as NICE(none)

in the remainder of this work.

Step 3 of Algorithm 1 is part of a loop, which is repeated until the current xc is classified differently

as x0 (line 18), in which case xc is a valid counterfactual for x0. In step 3 (lines 12-17), NICE

identifies the best hybrid instance xi,b in iteration i, in which exactly one feature j from featureList

changes its value from that in xc to that in xn. Once the value of feature j has been changed, the

reward function is calculated (see Section 3.2 for details), and the instance xi,b with the highest

reward function is retained as xc. Finally, NICE checks whether the new instance xc results in a

class change compared to x0, in which case the algorithm terminates and returns xc as a valid

counterfactual. Otherwise, NICE starts a new iteration of step 3 with the updated xc, after

removing the currently best feature b from featureList. The beauty of this approach is that we

will always end up with an explanation, since after the last iteration there is only one candidate

left, which is xn, for which we know that it is a counterfactual instance.

Finally, we want to point out that NICE offers an anytime counterfactual solution, since it can at

any time return an actual counterfactual, and hence does not need to run to completion to provide

a counterfactual, as required by e.g., gradient descent approaches such as DiCE.

Algorithm 1 NICE (Nearest Instance Counterfactual Explanations)

NICE(x0)

1: Input: x0: instance for which to find counterfactual
2: Output: xc: counterfactual instance for x0

3: Step 1: Initialization
4: x0,b ← x0 //x0,b is the best instance from iteration 0
5: xc ← x0 //xc is the current hybrid instance between x0 and xn

6: i← 1 //i keeps track of the current iteration of step 3
7: Step 2: Find nearest unlike neighbor
8: xn ← FIND-NEAREST-UNLIKE- neighbor(x0)
9: featureList ← IDENTIFY-NON-OVERLAPPING-FEATURES(x0, xn)

10: do
11: Step 3: Determine best hybrid instance
12: xi,b ← ∅, R(xi,b)← −∞, b← ∅ //Keep track of best hybrid instance per iteration i
13: for j in featureList :
14: xj ← xc, xj [j]← xn[j]
15: if R(xj) > R(xi,b) then xi,b ← xj , R(xi,b)← R(xj), b← j
16: xc ← xi,b //Update current hybrid instance
17: featureList ← featureList\{b} //Remove feature b
18: while ŷc = ŷ0 //Predicted class is still the same for xc and x0

19: return xc

To give the reader some idea of NICE’s worst case asymptotic running time, we use O (big O)

notation to signify the worst case behaviour. For an in-depth introduction to asymptotic running

times and algorithm complexity, we refer to Cormen et al. (2009).
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� Lines 4-6 take O(1) time since these are variable assignments. neighbors

� Line 9: to identify non-overlapping features between two instances, we need to compare the

values of each feature, which leads to O(m) complexity.

� Lines 10-18 are part of a loop that is executed at worst O(m) times, since in the worst case

we need to consider O(m) hybrid instances between x0 and xn. Note that since xn is a

nearest unlike neighbor of x0, the actual number of features with a different value is likely

(considerably) smaller than m, e.g., m−10, but from an asymptotic worst case point of view,

this amounts to O(m) iterations of the loop.

– Line 12 takes O(1) time since these are variable assignments.

– Lines 13-15 constitute another loop which is repeated O(m) times in the worst case,

since the number of features with different values is again considered just like in the

outer loop.

* Line 14 takes O(1) time since these are variable assignments.

* Line 15 involves the calculation of R(xj) (R(xi,b) has been calculated in a previous

iteration), along with two variable assignments, which leads to O(R(x)) complexity.

* The overall time complexity of the inner loop amounts to O(m · (1 + R(x))) =

O(m ·R(x)).

– Line 16 takes O(1) time since this is a variable assignment.

– The same applies for line 17.

– The overall time complexity of the outer loop amounts to O(m · (1+m ·R(x)+1+1)) =

O(m2 ·R(x)).

� The overall worst case asymptotic running time of NICE then constitutes O(1 + k ·m+m+

m2 ·R(x)) = O(R(x) ·m2 + k ·m).

An example of how NICE works on instances with six features is shown in Figure 2. We start

by selecting the nearest unlike neighbor xn from the training set, for which holds: ŷ0 ̸= ŷn and

yn = ŷn. The top two rows of Figure 2 show two data instances x0 and xn, each with six features.

The black squares represent the feature values for which both instances overlap. The white and

gray squares respectively represent the feature values of x0 and xn for the remaining features.

Next, iteration 1 shows the three hybrid instances that can be created with the first application of

steps 2 and 3 from Algorithm 1, in which exactly one non-overlapping feature is replaced with the

corresponding value from xn. x2 uses the value of the second feature of xn, x3 uses the value of

the third feature, and x5 uses the value of the fifth feature. For each of these new hybrid instances

we calculate the outcome of a reward function R(x), which will be discussed in Section 3.2. The

instance with the highest value for R(x), in this case x5, has the most desirable properties. We

then check if this instance is predicted as the opposite class of x0. If so, we have our counterfactual

explanation and stop the search. In our example, this is not the case and we continue our search

with x5 as the new xc.
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In the next iteration, we check the non-overlapping features of the new xc and xn. Again, we create

all possible new combinations where one feature of xc is replaced by the feature value of xn. At

this point, the candidate with the highest reward function (x2) is predicted as a different class, so

now we have found a counterfactual explanation.

3.2 Reward Functions

We use three reward functions, each of which measures the effect of a perturbation on the score per

unit of sparsity, proximity, or plausibility. These three reward functions amount to three different

objectives for NICE and can hence be used to accommodate different user requirements. Users can

then e.g., choose which of these three types of counterfactuals they prefer based on the outcomes

of the three versions of NICE. In the remainder of the paper, we will call these three algorithm

versions: NICE(spars), NICE(prox) and NICE(plaus). The worst case time complexity of each

of these three versions of NICE is displayed in Table 3, and discussed in more detail below.

3.2.1 Sparsity

Sparsity happens to be the most straightforward property to optimize with our approach. By simply

selecting the perturbation that has the highest prediction score at each iteration, we effectively

optimize for sparsity, as shown in reward function (2).

R(x) = ŷ ·
f(xi−1,b)− f(x)

sparsity(xi−1,b, x)
= ŷ · (f(xi−1,b)− f(x)) (2)

This function compares the score and sparsity of each candidate x with that of the best candidate

xi−1,Rmax from the previous iteration with a factor ŷ added to ensure a correct sign of our reward

function for both classes. The sparsity difference between these instances is by definition one

because we exactly add one extra feature to the explanation candidate each iteration. This allows

us to remove the denominator from the formula. We then end up with a reward function which

measures this score difference. This results in a theoretical range of [-2,2 ]for the sparsity reward

function. Note that this is exactly the same as the one implicitly used by SEDC (Fernández-Loŕıa

et al., 2020). The difference is that we replace the feature values with those of xn, while SEDC

uses the mean or mode of these features.

The time complexity of function (2) depends on f(x), which determines the classification of instance

x based on the classification model f used. It is crucial to consider that any classification model

is trained offline and that when f(x) is calculated as part of NICE, we only classify an instance x

according to the trained model f , but we do not retrain the model itself. This also means that the

time complexity of the sparsity function (2) is O(f(x)). The resulting worst-case time complexity

for NICE as a whole is shown in Table 3.

3.2.2 Proximity

Proximity refers to the distance from the original data point x0 to xc. In the reward function below,

we have replaced the sparsity measure of function (2) with a proximity measure.
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Figure 2: Example of counterfactual explanations for loan approval.

Reward function Worst case time complexity NICE
Sparsity O(f(x) ·m2 + k ·m)
Proximity O(m3 + f(x) ·m2 + k ·m)
Plausibility O((f(x) + g(x)) ·m2 + k ·m)

Table 3: Overview of NICE’s worst case time complexity for each reward function. k is the number
of instances, m the number of features, f(x) is the classification of an instance x by the employed
classification model, and g(x) is the use of the AE for an instance x. The expressions have been
rewritten such that each expression can be seen as a polynomial function in terms of m.
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R(x) = ŷ ·
f(xi−1,b)− f(x)

d(x0, x)− d(x0, xi−1,b)
(3)

This function effectively calculates the decrease in prediction score per unit of distance. Sparsity

and proximity often go hand in hand and (as our results show) both optimization methods often

lead to the same explanation. Each iteration we move further from x0, which makes the theoretical

bounds of denominator ]0,+∞[. Furthermore, we know from reward function 2 that the bounds

of our nominator are [−2, 2], which results in a theoretical bound of ] −∞,∞[ for the proximity

reward function.

The time complexity of function (3) depends on f(x) and on the distance function d. Whereas the

former once again depends on the classification model used, the latter is O(m) since we have to

loop over all features to compute the distance between two instances. As a result, the worst case

time complexity of the proximity function is O(m + f(x)). The total worst-case time complexity

for NICE with proximity, after some rearranging of terms, is shown in Table 3.

3.2.3 Plausibility

We use the AE reconstruction error as a proxy for plausibility, which makes the employed plausibil-

ity function very similar to the metrics IM1 and IM2 used for interpretability by Van Looveren and

Klaise (2021). An AE uses a neural network to project an instance onto a latent space and then

tries to reconstruct this instance (Kramer, 1991). The error represents how successful the instance

is reconstructed. When we train an AE on our training data, we can use the reconstruction error

of an instance to measure how similar it is to this data. A higher (lower) error represents a data

point farther from (closer to) the data manifold.

R(x) = ŷ ·
f(xi−1,b)− f(x)

(AEerror(xi−1,b)−AEerror(x))−1
(4)

This reward function behaves differently from the two previous ones. First, unlike the sparsity

and proximity difference, the AE error difference can be negative and has theoretical bounds of

]−∞,∞[. This is because it is possible that the hybrid instance has an AE error that is larger than

the AE error of any of the two real observations x0 and xn. Most likely, the AE error is even larger

for both those instances because it is not a real observation from the dataset. As a result, reward

function 4 has theoretical bounds of ]−∞,∞[. Second, the plausibility function depends on the AE

in terms of complexity. However, the AE is trained offline and as part of the plausibility function

we only compute the trained AE output given an instance x. To avoid an in-depth discussion of

Artificial Neural Networks, of which an AE is a type, we limit ourselves to stating the AE time

complexity as O(g(x)), with g(x) referring to the AE. This results in a worst-case time complexity

of O(f(x) + g(x)) for the plausibility reward function. Table 3 contains the total worst-case time

complexity of NICE with plausibility.

Despite these downsides, the results show that it is still a valid optimization strategy. Also note

that reward function (2) for sparsity is part of the plausibility reward function (4). Therefore we
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are also optimizing for sparsity and the resulting explanation will be a balance between these two

properties.

4 Experiments

4.1 Test design

We test NICE on datasets retrieved from the Penn Machine Learning Benchmark (PMLB) (Olson

et al., 2017), from which we make a selection based on three criteria. First, the dataset must

contain at least 500 instances. Second, the dataset must be a binary classification task and finally,

one of our classifiers must get an AUC of at least 0.6 on the test set. This results in the 40

datasets which are shown in Table 4. Specifically, the columns of the table contain the name of

the dataset, the number of instances included, and the number of features for each instance. The

latter is furthermore split into two additional columns, which show the number of categorical and

numerical features respectively. Consider that there is variation between the different datasets

both in the number of types of features, and in the proportion of both feature types (e.g., mostly

categorical, only numerical). Furthermore, for each dataset the class imbalance, i.e., the ratio of

the positively and negatively classified instances, is also included.

For each dataset we start by creating a test set which contains 20% (with a minimum of 200

instances) of the data. The rest of the dataset is used as a training set to train both a Random

Forest classifier (RF) and an Artificial Neural Network (ANN). The AUC values obtained for

both classifiers are shown in the final two columns of Table 4. The hyperparameters of both

models are trained using a five-fold cross-validation4. Finally, counterfactual explanations are

generated with all algorithms for a random sample of 200 instances from the test set. In total

200 counterfactual explanations are generated with 10 counterfactual algorithms for 2 classifiers on

40 datasets, resulting in a sample of 160,000 explanations. For each counterfactual, we calculate

diverse metrics to assess their quality.

The distribution of our results is not normal, so we need a non-parametric test for our statistical

analysis. We follow Demšar (2006) by using a Friedman-rank test (Friedman, 1937, 1940). We

do this by ranking all algorithms for each observation, giving a rank of 1 to the best performing

explanation algorithm and a rank of 10 to the worst. If no counterfactual is available, we give

this algorithm the worst rank for this observation. If there is a tie, we use the lowest rank for all

tied algorithms. We then report the averages over all datasets of these ranks and submit them to

the Friedman test. If this test rejects the null hypothesis of indifferent rank means, we calculate

the critical difference using a Nemenyi test (Nemenyi, 1962). If the difference in average ranks

between two algorithms is greater than this critical difference, we conclude that they are significantly

different. In Tables 5, 6, 7 and 8 (discussed in the following subsections), the best values are marked

in bold, as are values not significantly different from the best ones (5% confidence level)5. This

use of ranks solves two problems. First, it makes the comparison possible over observations from

4See Appendix A.2 for more details about the hyperparameter tuning.
5All metrics are compared over the same number of observations and algorithms, causing the critical difference to

always be 0.151.
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different datasets and second, it allows us to work with data points for which not all algorithms

are able to generate a counterfactual explanation.

All experiments are run on an Amazon EC2 C4.8xlarge instance where each counterfactual expla-

nation is generated on a single 2.9 GHz Intel Xeon E5-2666 v3 Processor.

4.2 Algorithmic requirements

First, we check if all reviewed algorithms meet the algorithmic requirements of Sokol and Flach

(2020). These properties are often overlooked, but are actually very important, as they determine

whether algorithms can be implemented in real-world applications. The three main properties are

access, coverage and computation time (Sokol and Flach, 2020). We go over each of them in the

following paragraphs based on the results from Tables 5 and 66.

The required access of all these algorithms is the same. Each needs access to the training data

and the scoring output of the classification model.

Coverage refers to the percentage of instances for which a valid counterfactual explanation is found.

The reported coverages in Tables 5 and 6 show the strength of NICE’s design. By construction,

all versions of NICE have 100% coverage. In reality, anything less than perfect coverage is often

not accepted. However, of the other algorithms, only WIT, which is very similar to NICE(none),

has a perfect coverage. For both the ANN and RF, GeCo is the worst algorithm with an average

coverage of only 49.4% and 39.4% respectively, while the other benchmark algorithms have a

coverage between 62.7% (CBR) and 78.4% (SEDC) for the ANN, and between 48.3% (CBR) and

72.0% (SEDC) for the RF. Consider that SEDC always has perfect coverage on one of both classes

(recall that we are working with binary datasets). SEDC replaces feature values with their mean or

mode, and after the maximum number of replacements it ends with an instance consisting of only

means or modes. If we are looking for a counterfactual instance that belongs to the predicted class

of this instance, it will therefore always be found. In some applications such as fraud detection,

credit scoring and clinical healthcare, we are mostly interested in explanations for one class. If

this matches the class with perfect coverage for SEDC, it is a valid option. The other algorithms

with imperfect coverage are unpredictable in the instances for which no explanation can be created,

which makes them unusable in many real-world applications where the algorithm should be able

to generate an explanation for all predictions.

Tables 5 and 6 also show the computation time required to generate a counterfactual explanation.

We show both the average time in milliseconds (CPU time) and the average rank. First, we notice

that there is a big difference in CPU times between explanations generated for an ANN and an RF.

As seen in Table 4, making a prediction with an RF is much more computationally expensive than

with an ANN. When comparing the different algorithms we notice that WIT and NICE(none), the

two algorithms that use a nearest unlike neighbor without further optimization as a counterfactual

explanation, are the fastest. The three versions of NICE with further optimization have reasonable

optimization times which are all below 2.09 seconds on average. As expected, NICE(spars) is the

6Whereas these and other tables contain a summary of our results across the different datasets
of Table 4, a detailed overview of all results per dataset can be found in the online appendix
(https://github.com/ADMAntwerp/NICE experiments).
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Name #Inst. #Feat. #Cat. #Num. Class AUC AUC
feat. feat. imbalance (ANN) (RF)

adult 48,842 14 5 9 0.761 0.903 0.913
agaricus lepiota 8154 22 21 1 0.481 1.000 1.000
australian 690 14 7 7 0.445 0.905 0.940
breast w 699 9 8 1 0.345 0.991 0.997
buggyCrx 690 15 8 7 0.555 0.921 0.949
chess 3196 36 36 0 0.522 1.000 0.999
churn 5000 20 4 16 0.142 0.872 0.919
clean2 6598 168 0 168 0.154 1.000 1.000
coil2000 9822 85 84 1 0.060 0.691 0.745
credit a 690 15 8 7 0.555 0.902 0.910
credit g 1000 20 17 3 0.700 0.663 0.731
crx 690 15 8 7 0.445 0.859 0.941
diabetes 768 8 0 8 0.349 0.823 0.851
dis 3772 29 23 6 0.985 0.895 0.989
GAMETES1 1600 20 20 0 0.500 0.636 0.648
GAMETES2 1600 20 20 0 0.500 0.746 0.780
GAMETES3 1600 20 20 0 0.500 0.664 0.722
GAMETES4 1600 20 20 0 0.500 0.690 0.705
german 1000 20 17 3 0.700 0.718 0.758
Hill Valley 1212 100 0 100 0.505 0.993 0.557
hypothyroid 3163 25 18 7 0.952 0.975 0.988
kr vs kp 3196 36 36 0 0.522 1.000 0.999
magic 19,020 10 0 10 0.352 0.922 0.937
mofn 3 7 10 1324 10 10 0 0.779 1.000 1.000
monk1 556 6 6 0 0.500 1.000 1.000
monk2 601 6 6 0 0.342 1.000 0.896
monk3 554 6 6 0 0.520 0.992 0.986
mushroom 8124 22 21 1 0.482 1.000 1.000
parity5+5 1124 10 10 0 0.504 1.000 0.674
phoneme 5404 5 0 5 0.294 0.906 0.970
pima 768 8 0 8 0.349 0.867 0.819
profb 672 9 3 6 0.333 0.633 0.676
ring 7400 20 0 20 0.505 0.990 0.992
spambase 4601 57 0 57 0.394 0.974 0.988
threeOf9 512 9 9 0 0.465 0.972 0.999
tic tac toe 958 9 9 0 0.653 0.997 1.000
tokyo1 959 44 2 42 0.639 0.962 0.983
twonorm 7400 20 0 20 0.500 0.996 0.997
wdbc 569 30 0 30 0.371 0.973 0.981
xd6 973 9 9 0 0.331 1.000 1.000

Table 4: Descriptive statistics and performance metrics of all binary datasets.
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Coverage
(%)

CPU time
(ms)

CPU Time
(rank)

Spars.
(rank)

Prox.
(rank)

Plaus.
(rank)

NICE (none) 100 3.7 1.26 5.17 5.1 3.1
NICE (spars) 100 14.8 4.32 1.42 1.86 4.07
NICE (prox) 100 20 5.31 1.67 1.72 4.15
NICE (plaus) 100 81.3 6.6 3.33 3.48 3.27
WIT 100 6.1 2.42 5.33 5.34 3.11
CBR 62.7 26.2 4.49 4.39 5.34 6.66
SEDC 78.4 45.7 3.65 3.16 4.1 5.31
DiCE 70.1 13,0783 8.27 3.67 4.85 6.61
CFproto 76.7 19,315.8 9.88 5.35 4.08 5.86
GeCo 49.4 1606.5 8.8 7.43 7.95 6.09

Table 5: Comparison of four versions of NICE and six benchmarks from the literature based on
an ANN classifier (best values marked in bold). For all ranked metrics the null-hypothesis of
indifferent rank means is rejected at a 5% significance level and the critical difference equals 0.151.

fastest followed by NICE(prox) and NICE(plaus). This is due to NICE(prox) (NICE(plaus))

needing to compute the distance (AE error) at each iteration. Of the other benchmark algorithms,

CBR, SEDC and GeCo also have reasonable CPU times. On the contrary, DiCE and CFproto take

on average several minutes to generate an explanation7. As a result, we conclude that except for

CFproto and DiCE, all of these algorithms are fast enough to be used in real-time applications.

With respect to NICE, recall that the worst case time complexity (Table 3 in Section 3.2) is related

to both the k and m values of the treated dataset. To demonstrate the impact of different values

on CPU time and argue that even for larger values this does not lead to excessive CPU times, we

analyze the time complexity of two datasets from Table 4 as examples in Appendix A.1.

Based on these findings, we can conclude that all versions of NICE and WIT have the most desirable

algorithmic properties. Perfect coverage ensures that these algorithms can be used in applications

where explanations are required by law, such as under the Fair Credit Reporting Act United

States Congress (1970). All versions of NICE also have an efficient run time. This is a must for

high-stakes decision making under time pressure like fraud detection, credit scoring and clinical

healthcare. The detailed results8 show that all versions of NICE scale well with the number of

features. Even for the largest dataset with over 162 features, the slowest version (NICE(plaus))

has an average run time of 17.4 seconds and a maximum of 23.5 seconds. This makes NICE useful

in domains where predictions are made at high frequency and scalability is a priority. Taking into

account all algorithmic requirements, we conclude that NICE and WIT are the best options for

any generic classification model. The other algorithms are useful in specific situations.

7The speed of CFproto and DiCE could be improved if access was given to the gradients of the ANN and RF
(Van Looveren and Klaise, 2021). But to level the playing field we used the model-agnostic version of both these
algorithms in all our experiments, since all other algorithms are model-agnostic.

8See online appendix on GitHub: https://github.com/ADMAntwerp/NICE experiments
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Coverage
(%)

CPU time
(ms)

CPU Time
(rank)

Spars.
(rank)

Prox.
(rank)

Plaus.
(rank)

NICE (none) 100 61.8 1.01 4.73 4.56 2.91
NICE (spars) 100 573.4 4.5 1.31 1.63 4.1
NICE (prox) 100 925.8 5.79 1.87 1.63 4.13
NICE (plaus) 100 2090.6 6.8 3.15 3.16 2.88
WIT 100 95.2 2.04 4.87 4.88 2.93
CBR 48.3 320.6 4.09 5.1 5.85 6.67
SEDC 72 1499.6 4.5 3.34 4.24 5.16
DiCE 63.3 2,016,937 7.81 4.11 5.5 6.43
CFproto 68.2 799,339.6 9.71 5.51 4.52 5.97
GeCo 39.4 6478.1 8.73 7.65 7.89 6.5

Table 6: Comparison of four versions of NICE and six benchmarks from the literature based on an
RF classifier (best values marked in bold). For all ranked metrics the null-hypothesis of indifferent
rank means is rejected at a 5% significance level and the critical difference equals 0.151.

4.3 Explanation requirements

4.3.1 Overview results

We compare the four versions of NICE with the six selected benchmark algorithms on three coun-

terfactual properties: sparsity, proximity and plausibility (shown as “Spars. (rank)”, “Prox. (rank)”

and “Plaus. (rank)” respectively in both Tables 5 and 6).

First, we look at sparsity. The main aim of SEDC, CBR and NICE(spars) is to generate the

most sparse counterfactual possible. The latter clearly appears to be the winner here, since for

both classification models it has by far the lowest average rank (1.42 for ANN and 1.31 for RF).

GeCo, CFproto and CBR are the algorithms that perform the worst, while DiCE, SEDC, WIT and

NICE(plaus) have an intermediate performance. Consider that NICE(prox) also obtains excellent

sparsity results, something which we come back to in Section 4.3.3 and which we already hinted at

in Section 3.2.3.

Next, we consider proximity. All algorithms have some sort of proximity constraint, be it in direct

form or induced by a sparsity constraint. The best performing algorithms in terms of proximity are

NICE(prox) and NICE(spars) for both classification models. NICE(prox) performs slightly better

but the difference is not significant. However, both algorithms are significantly better in terms of

proximity compared to all other algorithms. NICE(plaus) also performs significantly better than

the six benchmark algorithms. NICE(none) does considerably worse, and is also outperformed by

SEDC, DiCE and CFproto, which shows how challenging it is to find an explanation with low

proximity in the instances of the training set. Related to the benchmark algorithms, it is worth

noting that CFproto performs considerably better for proximity than it did for sparsity, whereas

the opposite holds for DiCE.

Finally, we examine the plausibility of all counterfactual explanations. Recall that both NICE(plaus)’s

and CFproto’s main goal is to generate explanations which lie close to the data manifold. For an
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ANN, NICE(none) and WIT are better than the other algorithms, but there is no significant

difference between them, whereas for an RF both are additionally tied with NICE(plaus). The

comparatively good plausibility results for both NICE(none) and WIT are due to both techniques

resulting in an actual instance, a nearest unlike neighbor, whereas for the other algorithms there

is no such guarantee. Furthermore, NICE(none) only looks for counterfactual instances among

correctly classified observations of the training set, which avoids areas of uncertainty in the feature

space. As we have seen before, this comes with a cost of proximity and a benefit in computing

time, while also allowing for a good plausibility score.

4.3.2 Impact performance metrics

We previously compared all algorithms on three main requirements for the explanations: sparsity,

proximity and plausibility. Whereas sparsity is well defined, there are alternatives for proximity

and plausibility.

For proximity we compare four different distance metrics. The L1 distance with standardization for

each feature (L1(stand.)) which is used in NICE, the L1 distance with normalization (L1 norm.)

used in WIT, the L2 distance with standardization (L2 stand.) used in DiCE and GeCo and the

L2 distance with normalization (L2 norm.).

Plausibility is less straightforward to measure. The AE error is a good proxy but will bias the

comparison in favor of NICE(plaus), as it is the only algorithm that optimizes for this metric.

Therefore we have added four more metrics to measure plausibility: the average distance to the 5

nearest neighbors (5NN), IM1 and IM2 (Van Looveren and Klaise, 2021) and a measure taken from

Pawelczyk et al. (2020) which we call cross-model robustness. It is argued that if counterfactual

instances respect the data manifold, they are less vulnerable to classification model uncertainty

or changes over time (Pawelczyk et al., 2020). We can measure this by checking the percentage

of instances for which an explanation is also valid for another classification model trained on the

same data. We use two classification models in our experiments, so we can easily check whether an

explanation for one model is also an explanation for the other.

The results for all 10 algorithms given these alternative proximity and plausibility metrics are

shown in Tables 7 and 8. The metrics previously used in Section 4.3.1 are marked with an asterisk

(*). In general, the results of both tables are in line with those of Section 4.3.1: NICE(spars) and

NICE(prox) have the best results irrespective of the proximity metric used, while NICE(none) and

WIT have the best results for plausibility, though NICE(plaus) is again a close third, especially

for the RF classifier. Notice that a small difference occurs between the two L1 distances for

NICE(none) and WIT where each scores significantly better in their own proximity metric. For

plausibility the difference between NICE(none) and NICE(plaus) becomes more pronounced, since

for all alternative plausibility measurements, NICE(none) is significantly better than NICE(plaus).

This again emphasizes that using actual instances from the dataset (i.e., nearest unlike neighbors)

is a valid solution when only plausibility is preferred.

To gain more insight into how similar these different metrics are, we also calculate the correlations

of the ranks over all algorithms and for both classifiers. Table 9 contains the correlation values

for sparsity and the different proximity metrics, whereas Table 10 holds the correlation values for
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the different plausibility metrics. Once again, the proximity and plausibility metrics that NICE

optimizes have been marked with an asterisk.

From Table 9 we conclude that the different proximity metrics are highly correlated (all values >

0.900), which implies that our choice for a specific proximity metric (L1(stand.)) did not have a large

impact. Furthermore, also sparsity appears to be (highly) correlated with the proximity metrics,

which means that optimizing for either sparsity or proximity is beneficial for both. However, note

that the correlations with sparsity are somewhat lower than those between the different proximity

metrics.

In Table 10 we see a positive correlation between the different plausibility metrics as well, though

it is smaller than between the proximity metrics. From this we conclude that for plausibility it may

still be worth to consider multiple metrics, to at least have an idea of the differences in performance,

even though there is a medium positive correlation between the metrics.

L1
norm.*

L1
stand.

L2
norm.

L2
stand.

AE
Loss*

IM1 IM2 5NN
CMR
(%)

NICE(none) 5.1 5.37 4.83 5.1 3.1 3.49 2.46 1.92 94.3
NICE(spars) 1.86 1.87 1.89 1.96 4.07 4.31 5.28 3.86 68.3
NICE(prox) 1.72 1.8 1.76 1.88 4.15 4.38 5.41 3.92 68.7
NICE(plaus) 3.48 3.63 3.3 3.48 3.27 3.89 3.75 2.76 81.3
WIT 5.34 4.96 5.09 4.63 3.11 3.57 2.54 1.96 85.6
CBR 5.34 5.19 5.7 5.57 6.66 6.06 6.4 6.45 43.4
SEDC 4.1 3.88 4.28 4.01 5.31 5.69 6 5.82 45.6
DiCE 4.85 5.21 5.34 5.78 6.61 4.62 4.55 6.92 54.9
CFproto 4.08 4 3.83 3.71 5.86 6.49 6.56 6.02 43.5
GeCo 7.95 7.9 7.79 7.7 6.09 5.76 5.39 5.76 47.6

Table 7: Average ranks of four versions of NICE and six benchmarks from the literature for different
proximity and plausibility metrics based on an ANN classifier. CMR stands for Cross-Model
robustness. Standardized (stand.) and normalized (norm.) refers to how the numerical features are
scaled before calculating the respective distance metric. For all ranked metrics the null-hypothesis
of indifferent rank means is rejected at a 5% significance level and the critical difference equals
0.151. Best ranks and those that are not significant different from it are marked in bold. For CM
robustness, the best value is marked in bold.
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L1
norm.*

L1
stand.

L2
norm.

L2
stand.

AE
Loss*

IM1 IM2 5NN
CMR
(%)

NICE(none) 4.56 4.85 4.39 4.65 2.91 3.49 2.39 1.77 80.9
NICE(spars) 1.63 1.69 1.70 1.81 4.10 4.15 5.17 3.90 64.4
NICE(prox) 1.63 1.76 1.66 1.82 4.13 4.21 5.20 3.88 62.8
NICE(plaus) 3.16 3.35 3.06 3.27 2.88 3.94 3.55 2.54 69.6
WIT 4.88 4.48 4.69 4.25 2.93 3.51 2.43 1.81 78.7
CBR 5.85 5.75 6.01 5.91 6.67 6.33 6.55 6.49 40.4
SEDC 4.24 4.08 4.39 4.24 5.16 5.44 5.84 5.60 50.3
DiCE 5.50 5.57 5.80 5.91 6.43 4.14 4.31 6.76 76.0
CFproto 4.52 4.47 4.36 4.28 5.97 6.18 6.38 6.10 44.7
GeCo 7.89 7.85 7.80 7.71 6.50 6.33 5.94 6.22 42.2

Table 8: Experimental results for four versions of NICE and six benchmarks from the literature
for different proximity and plausibility metrics based on an RF classifier. CMR stands for Cross-
Model robustness and is expressed in percentage. For all other metrics, the average rank is shown.
Standardized (stand.) and normalized (norm.) refers to how the numerical features are scaled before
calculating the respective distance metric. For all ranked metrics the null-hypothesis of indifferent
rank means is rejected at a 5% significance level and the critical difference equals 0.151. Best ranks
and those that are not significant different from it are marked in bold. For CM robustness, the
best value is marked in bold.

Spars. L1 norm. L1 stand.* L2 norm. L2 stand.

Spars. 0.851 0.850 0.819 0.807
L1 norm. 0.832 0.969 0.975 0.943
L1 stand.* 0.826 0.953 0.946 0.968
L2 norm. 0.782 0.955 0.909 0.955
L2 stand. 0.764 0.904 0.949 0.929

Table 9: Correlations of ranks between sparsity and different proximity metrics over all algorithms.
Values below (above) the main diagonal are for the ANN (RF).

AE loss* IM1 IM2 5NN

AE loss* 0.510 0.587 0.748
IM1 0.452 0.596 0.523
IM2 0.527 0.555 0.660
5NN 0.715 0.497 0.600

Table 10: Correlations of ranks between different plausibility metrics over all algorithms. Values
below (above) the main diagonal are for the ANN (RF).

4.3.3 Trade-offs between counterfactual properties

In Figures 3-5 we compare all variants of NICE with the benchmarks by showing the average ranks

of each algorithm for each pairwise combination of the counterfactual properties, and this for both

classifiers. In this way, we determine whether some algorithms are dominated by others for a specific

pair of counterfactual properties or not. Consider that an algorithm is dominated if its average
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rank is higher than or equal to the average rank of another for the two properties displayed.

� Sparsity-proximity (Figure 3): NICE(spars) and NICE(prox) dominate all others, as they

have a lower average rank for sparsity and proximity than all other algorithms. Graphically

this means all others are situated “to the right of” and “higher than” NICE(spars) and

NICE(prox). Of the latter two, neither dominates the other since NICE(spars) does better

for sparsity and NICE(prox) better for proximity, though the difference in proximity rank

is very small, especially for the RF classifier, and is furthermore not significant at a 5%

confidence level (see Tables 5 and 6).

� Sparsity-plausibility (Figure 4): NICE(spars), NICE(plaus) and WIT are not dominated

by any other, hence, out of the 10 algorithms under study these three constitute an efficient

frontier, in which case any of these are valid options depending on a user’s preference for

either better sparsity or plausibility. All other algorithms are dominated by at least one of

these three.

� Proximity-plausibility (Figure 5): the four variants of NICE dominate all other algorithms,

although we should distinguish between, on the one hand NICE(spars) and NICE(prox),

which have very good results for proximity but less good for plausibility, and on the other

hand NICE(plaus) and NICE(none), for which the opposite holds. Although the differences

between NICE(spars) and NICE(prox) are again small, the four versions of NICE constitute

an efficient frontier.

In general, we can conclude that Figures 3-5 demonstrate the edge NICE has over existing ap-

proaches from the literature, though which version of NICE performs best depends on the com-

bination of counterfactual properties. We notice that between the versions of NICE there is a

clear trade-off between plausibility on the one hand and proximity or sparsity on the other hand.

NICE(none) generates very plausible explanations at the cost of proximity and sparsity, while this

is the other way around for NICE(prox) and NICE(spars). NICE(plaus) seems to offer a middle

ground.

In Table 11 we show an example of how the counterfactual explanations differ for each version of

NICE. The example uses the adult dataset, where we want to predict if a person’s income is above

or below $50,000 a year based on demographic properties. In our example, the instance to explain

(x0) is classified as having an income below this threshold. Both NICE(spars) and NICE(prox)

provide the same counterfactual explanation with a sparsity of 1 by suggesting to only increase

capital-gains with $5,178. NICE(plaus) suggests an additional increase in age with two years. It

is very likely that people with higher capital-gains are also older in the adult dataset, and therefore

NICE(plaus) suggests an additional change that brings the counterfactual instance closer to the

data-manifold. Finally, the result of NICE(none) represents a real instance from the dataset and

suggests an additional reduction of the number of working-hours per week of 10.
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(a) ANN classifier. (b) RF classifier.

Figure 3: Comparison of algorithms for both proximity and sparsity average rankings (lower is
better).

(a) ANN classifier. (b) RF classifier.

Figure 4: Comparison of algorithms for both sparsity and plausibility average rankings (lower is
better).
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(a) ANN classifier. (b) F classifier

.

Figure 5: Comparison of algorithms for both proximity and plausibility average rankings (lower is
better).

x0 NICE(none) NICE(spars) NICE(prox) NICE(plaus)
capital-gain ($) 0 5178 5178 5178 5178
age 52 54 52 52 54
hours-per-week 60 50 60 60 60
workclass Private Private Private Private Private
marital-status Divorced Divorced Divorced Divorced Divorced
relationship Unmarried Unmarried Unmarried Unmarried Unmarried
race White White White White White
sex Female Female Female Female Female
education Bachelors Bachelors Bachelors Bachelors Bachelors
education-num 9 9 9 9 9
occupation Sales Sales Sales Sales Sales
capital-loss ($) 0 0 0 0 0
native-country US US US US US

Table 11: Example of a counterfactual instances for each version of NICE for one instance x0 of
the adult dataset. The suggested changes for each counterfactual instance are marked in bold.

5 Conclusions & future research avenues

5.1 Conclusions

In this paper, we have introduced NICE, a new state-of-the-art algorithm for generating coun-

terfactual explanations for tabular data. NICE is able to simultaneously achieve 100% coverage,

model-agnosticism and fast counterfactual generation for different types of classification models,

thereby making it suitable for real-world applications, where these algorithmic properties are ex-

pected. Specifically, NICE starts from a nearest unlike neighbor, an existing instance correctly

classified as belonging to the opposite class and subsequently includes feature values from this
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instance in the instance to be explained, one feature at a time, until a class change occurs.

In the extensive computational experiments, we have shown that NICE outperforms existing coun-

terfactual algorithms from the literature for sparsity, proximity and plausibility objectives. Fur-

thermore, when we consider alternative proximity and plausibility metrics from the literature, to

determine how (un)similar these are, NICE still obtains the best results. We also looked into trade-

offs between the counterfactual properties (sparsity, proximity and plausibility) and conclude that

the version of NICE which performs best depends on the combination of counterfactual properties

under consideration. That being said, our results show that a strong correlation exists between

sparsity and proximity, which means that the most important trade-off occurs between sparsity and

proximity on the one hand and plausibility on the other hand. Based on the explanations provided,

users can choose which of these three types of counterfactuals they prefer.

5.2 Future research avenues

Though the goal of our paper is to propose a new algorithm, we should not ignore the importance

of user expectations. Although some studies argue in favor of sparse explanations, others conclude

that user expertise is paramount in determining what explanations should look like (Section 2.4).

More specifically, future research should test algorithms such as NICE in real-world settings, and

use feedback from all stakeholders in the predictive decision making process. A multidisciplinary

approach with data scientists, domain experts and end users is needed to further improve the

properties of counterfactual explanations, and see for which applications they are most valuable.

The results of such user studies can subsequently help to decide which version of NICE (or other

algorithm, or even which type of explanation) would be the most suited for which application.

Another future research avenue concerns the data types used, since it would be interesting to test

if NICE’s approach could be extended to different data types such as behavioral, textual or image

data. However, different data types bring about different levels of interpretability for a person

(Guidotti et al., 2018), different data properties, different types of AI techniques to be used, and

due to this, also different treatment in the generation and evaluation of counterfactual methods.

For example, image data is typically highly dimensional, which implies that these cannot be iterated

over in a reasonable time (step 3 of Algorithm 1). One way around this could be to group pixels

from images into meaningful sections (Vermeire et al., 2022). For textual and behavioral data,

adding features is often a more radical change than removing features. To make NICE compatible

with this data, perturbations should arguably only be limited to features which are already present

in the instance to explain.

Regarding the type of datasets, we have restricted ourselves to binary ones, in which the class

prediction only has two options, i.e., belonging to the class we are interested in or not. However, our

approach can be generalized to multi-class classification with a small change to the reward functions,

which we discuss in Appendix A.3. This approach would also result in a perfect coverage, however

further experiments have to be done to check if these explanations also have desirable counterfactual

properties.

Finally, in our experiments we only compare with other counterfactual algorithms, though one

could argue that a broader comparison with other XAI methods is warranted. However, as shown
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by Fernández-Loŕıa et al. (2020) in their comparison of counterfactuals with feature importance

explanations, features with a large impact on prediction may not necessarily be relevant for the

explanation of specific decisions. Therefore, the results of feature importance methods may be

misleading. Despite the above, it would be worthwhile to compare counterfactual algorithms with

other XAI methods, including feature importance methods, if only to become aware of pitfalls.
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K. (2021). What do we want from explainable artificial intelligence (xai)? – a stakeholder

perspective on xai and a conceptual model guiding interdisciplinary xai research. Artificial

Intelligence, 296:103473.
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A Appendix

A.1 Examples time complexity

With respect to NICE, recall that the worst case time complexity (Table 3 in Section 3.2) is related

to both the k and m values of the treated dataset. More specifically, let us consider two datasets

from Table 4, namely “adult” where k = 0.8 · 48, 842 = 39, 073 and m = 14 and “clean2” where

k = 6598 · 0.8 = 5278 and m = 168. in Tables 12 & 13. In both tables, we repeat the worst case

time complexity of each of the four variations of NICE, along with the CPU times obtained for

both the ANN and RF classifiers. Furthermore, we “fill in” the complexity functions based on the

specific k and m values of the two datasets, which results in an Order of #“operations”.

In both tables we observe that the Order of #“operations” can become quite large (we intentionally

chose two datasets with some of the largest k and m values), but that the impact on the CPU times

remains limited. E.g., for “adult” with the ANN, the CPU times remain below 100 milliseconds.

Even with a higher value for m (ANN for “clean2”) the CPU times are still quite small. The

only noticeable increase comes from NICE(plaus), which can be attributed to the AE. For the RF

classifier, we notice the CPU times are in general larger than those for the ANN, but are still below

2 seconds, with NICE(plaus) being the only real exception.

In summary, the CPU times remain small, even for some of these larger (in terms of k and m

values) datasets. However, the frequent use of an AE for NICE(plaus) can have a negative impact,

as can be seen in particular for “clean2” in Table 13 (the constant by which g(x) is multiplied is

much larger than for “adult”). Combined with the RF classifier requiring considerable more CPU

time than the ANN classifier9, we conclude that the largest CPU times occur for NICE(plaus)

with the RF classifier, which can also be observed from Tables 5 & 6, but that NICE’s CPU times

remain within reasonable bounds.

A.2 Hyperparameters classification models

For both classifiers we used the scikit-learn Pedregosa et al. (2011) implementation which is

sklearn.ensemble.RandomForestClassifier for an RF and sklearn.neural network.MLPclassifier for

an ANN. A five-fold cross-validation grid search is performed with the values of Table 14 where the

best performing model is selected based on the ROC AUC score. For the RF the hyperparameter

class weight is set to “balanced” and all other hyperparameters are set to default. The ANN always

consists of one hidden layer for which the number of neurons in the grid is relative to the size of

the input layer (k) with a minimum of 2 neurons. For example for dataset clean2, the number of

9Recall that as part of NICE we only classify an instance x according to the trained model f but do not retrain
the model itself. The latter happens offline.
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input neurons is 168, which results in the following grid for the hyperparameter hidden layer sizes:

2, 25, 50, 76, 101, 126, 151, 176, 202, 227 and 252.
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Parameter name Hyperparameter Values

RF n estimators 50, 100, 250, 500, 1000
max depth 1, 2, 5, 10, 25, None

ANN hidden layer sizes 2 to 1.5k, step=0.15k

Table 14: Hyperparameter grid used in both cross-validations.

A.3 Multi-class Reward Functions

To apply NICE to multi-class, our reward functions need a more general definition. For binary

classification we assumed two classes (-1 and 1) for which a classifier f maps Rm in the class score

vector such that f(x) ∈ [−1, 1]. For multi-class classification, it is no longer possible to project

the scores of our model in such a one-dimensional vector. Therefore, we assume a m-dimensional

feature space X ⊂ Rm consisting of both categorical and numerical features, a feature vector x ∈ X

with a corresponding label denoted as y ∈ Y = {0, n} and a trained classification model h that

maps Rm in an n-dimensional class probability vector where hi(x) corresponds to the probability

of x belonging to class i.

There are two options to generate multi-class counterfactual explanations Vermeire et al. (2022).

First, one might be interested in a counterfactual explanation from a specific class and second,

one might be interested in a counterfactual explanation from any class. We propose the following

general reward function for both cases.

R(x) =
(hc(xi−1,b)− ho(xi−1,b))− ((hc(x)− ho(x))

sparsity(xi−1,b, x)
(5)

Equation (5) can be simplified as follows because the sparsity increase in every step is equal to 1.

R(x) = hc(xi−1,b)− h0(xi−1,b)− hc(x) + h0(x) (6)

The definition of hc and ho is different depending on the type of counterfactual we are looking

for. To find a valid counterfactual from a specific class, the probability of this class has to be

higher than the probability of all other classes. In this case the counterfactual probability hc is

equal to the probability of this specific class c, and ho is the maximum probability of all other class

probabilities:

ho(x) = max{hi(x) : i ∈ [0, n] ∼ c} (7)

For the second case, where we look for a counterfactual from any class, we want any class probability

to be higher than the probability of the original class. In this case we define ho as the probability

of the class for which the original instance to explain had the highest probability and hc as the

maximum probability of all other classes.
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hc(x) = max{hi(x) : i ∈ [0, n] ∼ o} (8)

The proposed reward function in Equation (6) can be reduced to our reward function (2) for binary

classification. To do this we have to project the probabilities of both classes into the one dimensional

score vector [-1,1 ]by taking the following assumptions:

h0(x) = ŷ · −f(x)− 1

2
and hc(x) = ŷ · f(x) + 1

2
(9)

Replacing these in Equation 6 results in:

R(x) = ŷ · (
f(xi−1,b) + 1

2
−
−f(xi−1,b)− 1

2
− f(x) + 1

2
+
−f(x)− 1

2
) (10)

R(x) = ŷ · (f(xi−1,b)− f(x)) (11)

which is equal to our sparsity reward function (2).
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