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ABSTRACT: In recent years machine learning has made extensive
progress in modeling many aspects of mass spectrometry data. We brought
together proteomics data generators, repository managers, and machine
learning experts in a workshop with the goals to evaluate and explore
machine learning applications for realistic modeling of data from
multidimensional mass spectrometry-based proteomics analysis of any
sample or organism. Following this sample-to-data roadmap helped identify
knowledge gaps and define needs. Being able to generate bespoke and
realistic synthetic data has legitimate and important uses in system
suitability, method development, and algorithm benchmarking, while also
posing critical ethical questions. The interdisciplinary nature of the
workshop informed discussions of what is currently possible and future
opportunities and challenges. In the following perspective we summarize
these discussions in the hope of conveying our excitement about the
potential of machine learning in proteomics and to inspire future research.
KEYWORDS: machine learning, deep learning, artificial intelligence, synthetic data, enzymatic digestion, liquid chromatography,
ion mobility, tandem mass spectrometry, research integrity

■ INTRODUCTION
Analytical workflows in proteomics frequently rely on
analyzing proteins or peptides by liquid chromatography
(LC) and tandem mass spectrometry (MS/MS). Machine
learning has been applied to predicting peptide retention times
and fragmentation spectra, but recent advances in deep
learning have dramatically improved these predictions,1−3 as
well as modeling other experimental steps, such as enzymatic
digestion4,5 and ion mobility.6 Common to all steps is that the
behavior of the proteins, peptides or ions can be predicted
from amino acid sequences. However, no model exists that can
make realistic predictions of data from a multidimensional
separation and analysis of any sample or organism.
Machine learning is set to revolutionize the generation of

realistic multidimensional data from arbitrary samples. There
are several general application areas of such generative models.
For example, when acquiring LC-MS/MS data, acquisition
parameters are usually chosen from heuristics and past
experience. A machine-learned model predicting LC-MS/MS
data for diverse sample types in proteomics could replace
guesswork and enable optimal experimental design, including
for single cell analysis and other precious biological or clinical

samples. Another application of such a generative model is that
synthetic data could provide a benchmark for nearly any
sample by creating synthetic data specific to sample processing,
multidimensional separation, and data acquisition, regardless of
whether the sample had been run before. Currently, system
suitability and in-run quality control rely on measuring known
samples to evaluate LC-MS/MS performance. If machine
learning could be used to predict the expected results of
different samples, gradients, and data acquisition, researchers
would have a direct measure of the quality of any data set,
independent of prior data from experimental reference
samples. In turn, this would greatly improve the quality and
reusability of nearly any acquired experimental data. Finally,
generating an experimentally relevant synthetic ground-truth
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data set, i.e., known sequences, modifications, or differential
abundances, will allow for benchmarking and identifying best
performing search algorithms and statistical workflows.
These are three possible applications of such an integrated

generative model, but there are countless areas of open
scientific questions on future applications of machine learning
in proteomics, ranging from data acquisition to biological
interpretation. Although machine learning has been applied to
individual phases of a proteomics experiment, efforts in
combining these into one model have been limited, and
there is no comprehensive model that can predict the data for
any given sample type, sample preparation, or analysis method
required for quality assessment, experimental optimization, or
algorithm development. This is unsurprising as no individual
researcher or research group has the necessary expertise in all
aspects of a proteomics experiment. To foster collaboration
between groups and across disciplines, including biology,
biochemistry, analytical chemistry, physics, and computer
science, we invited experts in these domains to a workshop
on proteomics and machine learning held 14 to 18 March,
2022 in Leiden, The Netherlands.
The workshop was designed in early 2021 with an overall

goal to discuss and deliver a conceptual design of an integrated
machine-learned model of a proteomics experiment, covering
all experimental steps from the sampling of the biological
system to tandem mass spectrometry (Figure 1). This was
accomplished by bringing together researchers who apply
machine learning to individual steps of proteomics experi-
ments, such as enzymatic digestion, chromatography, ion
mobility, and tandem mass spectrometry, with experts on data
repositories and open data formats, as well as practitioners of
proteomics representing the end users of machine learned
models. The general areas defined above provided a concrete
framework for the discussions, including potential misuse of
such models, i.e., in data fabrication, and possible social and
engineering solutions to mitigate these risks. This summary of
our workshop is not meant to be an exhaustive review of
machine learning in proteomics, and specialties such as spatial
proteomics or mass spectrometry imaging are not covered. We
begin our summary of the workshop discussions by looking at
trending topics in machine learning generally, and then ask
how the proteomes themselves can be predicted.

■ TRENDING TOPICS IN MACHINE LEARNING
Machine learning, especially deep learning,7,8 has made
remarkable progress in the past decade. Classically, machine
learning could be roughly divided into supervised and
unsupervised approaches, while current deep learning advance-
ments have blurred these lines considerably and instead are
easier to understand by delineating by use-case (i.e., generating
data) and underlying model architecture (i.e., convolutional
neural network). During the workshop, discussions were
focused on current and future possibilities related to proteomic
applications. This section consequently details some of the
current machine learning trends that have the greatest
potential for impact in proteomics.
Perhaps the most well-known machine learning application

in modern day proteomics involves dimensionality reduction
techniques such as t-SNE9 and UMAP,10 akin to classically
defined unsupervised learning. Both approaches rely on an
autoencoder architecture to reduce data noise and ambiguity of
high-dimensional data. Notable uses of these approaches
includes exploring relevant clusters in single cell proteomics

data as well as inferring protein−protein interaction networks
from high-dimensional combined RNA-Seq and proteomics
data.11 In addition to dimensionality reduction techniques,

Figure 1. Some common steps in proteomics workflows correspond-
ing to the workshop discussion topics and sections herein. Some icons
made using BioRender.com.
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multimodel representation learning12 is well suited for
proteomics due to its ability to integrate features from different
modalities and identify attributes that are shared and different.
Successful applications, such as Contrastive Language−Image
Pretraining (CLIP13), can integrate image and text data into a
shared embedding by using a contrastive loss function that
trains a model with pairs of positive and negative examples
from the two modalities (image and text). Specific applications
to mass spectrometry data include SpeCollate,14 GLEAMS,15

and yHydra,16 which are models that learn to jointly embed
spectra and peptide sequence information into a shared latent
representation. These techniques are pushing the boundaries
of what is possible in data prediction and analysis in emerging
proteomic techniques.
In addition to interrogating existing data, maybe the most

interesting deep machine learning applications, and much of
the focus of this paper, involve data generation. Generative
approaches, such as generative adversarial networks (GANs17)
and diffusion models,18−20 have shown impressive results
mainly for image generation but also potential applications in
data generation.21,22 Broadly, a GAN approach works by
having a generator model play a game where it tries to fool its
adversary, a classification model that tries to distinguish the
fake data by the generator from genuine, real-world data. But
training GAN networks are notoriously difficult because the
competition between the two models can become unstable and
training stops before reaching a satisfying optimum. Recently,
GANs have been outpaced by a new class of generative models
called diffusion or score-based models18 that learn a denoising
function by applying it multiple times to a signal that is
distorted on purpose, similar to denoising autoencoders. With
ongoing optimization of speed and more resources, it is likely
diffusion-based models will become ubiquitous for countless
applications, including proteomics, in the coming years.
Until recently, each data type had a specific neural network

layer architecture that it worked best with [i.e., convolutional
neural networks (CNNs) were used mostly for images, while
recurrent neural networks (RNNs) were used mostly for
natural language text sequences], but a new universal layer
architecture, the transformer, can work with any input and
output data modality. Briefly, this is accomplished by using an
attention-based architecture of stacked dense layers. First
introduced in 2017,23 transformers have unified deep learning
architectures to become the universal building block for
various deep learning approaches. Many modern proteomics
models already utilize transformers, including prediction of
fragmentation spectra (e.g., Prosit Transformer24) or protein
folding (e.g., AlphaFold25), and all of the approaches described
above can or already use a transformer. Transformer-based
models have captured the public’s attention with the ability to
generate text (BERT,26 GPT-327) or images (DALL-E-228 and
DreamStudio/Stable Diffusion19) from text prompts, and it is
exciting to think of similar capabilities with respect to
proteomic data generation. In addition to replicating sequential
processes in a generative manner, transformers have also been
used to successfully predict steps leading to an end point.
Retrosynthesis29 is a relevant example, which seeks to
determine reaction steps to reach a desired compound.
Notably, state-of-the-art models often almost exclusively use
transformers and do not rely on other concepts such as
convolutional or recurrent layers.
While deep learning is currently the dominant technology in

machine learning, it may be excessive for certain prediction

tasks. There is a tendency to value solutions based on these
complex algorithms currently in vogue more than simpler
models that perform equally well, even if the simplest solution
is recommended.30 There is likewise an issue of marginal gains
when making very small, incremental improvements in
prediction accuracy and/or sensitivity, without being able to
show that these improvements have actual value in real life
application, demonstrated by improved generalization and
improved end result. The Benchmark Data Sets for Machine
Learning in Proteomics section below describes tools and data
sets that may help evaluate machine learning models. Finally,
as these trending techniques are now applied in proteomics,
new methods for machine learning are developed so rapidly
that even the most visionary outlook on such topics is likely to
quickly be outpaced.

■ PROTEOMES AND HOW TO PREDICT THEM
The ability to predict data from biology, and vice versa, is a
primary focus of the topics discussed herein. Specifically, the
ability to define the proteome of any species, sample type, and
health status a priori is necessary for any downstream data
prediction steps. Therefore, it is essential to reiterate concepts
and highlight current resources of annotated genomes and
tissue/biofluid/cell-specific proteome predictions (or empirical
data). A proteome is broadly defined as the identity and
abundance of proteoforms, which includes isoforms and post-
translationally modified forms of each protein, in a given
sample. The simplest representation of the protein sequences
comprising the unmodified proteome may be derived from an
annotated genome of a species, in humans encompassing
approximately 20 000 canonical sequences.31,32 Recently, there
is a greater appreciation for individual variation within a
species, emphasizing the need for pan-genomes or study-
specific genomes to accurately define the sequence space of the
proteome. Beyond humans and common model systems such
as mouse, zebrafish, and Arabidopsis, there is an explosion of
genome annotations available from NCBI RefSeq,33 Uni-
ProtKB,34 and Ensembl,35 and third-party entities like DNA
Zoo36 and the EarthBioGenome Project.37 Together, these
resources provide the requisite search space for proteomic
analysis in nearly any species or environmental sample.
Beyond the catalog of possible proteins in a species’

proteome, each tissue, biofluid, and cell-type contains a unique
repertoire of proteins at varying abundance,38,39 which is also
affected by health status (or organism level phenotype). Even
so-called “housekeeping proteins” that are detectable in most
cell types may vary in abundance.38 While there are various cell
atlases and biofluid projects based on experimental proteomic
data (Expression Atlas,40,41 Genotype-Tissue Expression
(GTEx) proteome map,42 Human Plasma Proteome,43

Human Protein Atlas,44 Human Secretome,45 Immunological
Proteome Resource,46 PeptideAtlas,47 and ProteomicsDB48),
easily accessible lists of tissue/biofluid/cell-specific proteomes
with abundance information are rare. Still, it is possible to
reprocess proteomic data from public data sets, such as the
Wang et al. 29 human tissue data set,38 Geiger et al. 28 mouse
tissue data set,39 or the NCI Proteomics Data Commons
cancer-centric data sets,49 to derive empirical lists of protein
abundances by tissue/biofluid/cell-type and predict what
proteins or proteoforms may be present in a given sample.
Also, it is important to note that there are tissue/cell-specific
databases of transcript abundance (such as ARCHS4,50 HPA
Single Cell Type Atlas,51 and Tabula Sapiens52), which could
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be used as a proxy for protein abundance, albeit with the caveat
that transcript and protein abundance is not directly correlated
in tissues,53 while in biofluids transcript levels and secreted
protein abundance therein are fundamentally disconnected
since the source of the secretome is not cells in the biofluid
itself.45 Although resources like these are largely focused on
model organisms, with assumptions, caveats, and caution,
tissue/biofluid/cell-type proteomes may be extrapolated
between related species. Though all mammals are not primates
or rodents, nor all plants are Arabadopsis or rice, this can
provide an estimation of a proteome when prior knowledge is
limited beyond an annotated genome of a related species.
Though these described resources provide confident

predictions and thorough evidence of species- and tissue-
specific proteomes, the proteomic data itself (i.e., instrumen-
tally measurable signal) will not be a complete measurement of
a predicted proteome, since protein extraction, protein
digestion, peptide separation techniques, alternatively spliced
isoforms, and post-translational modifications (PTMs) will
affect the observability of the peptides and the inferred
proteoforms. All of these hurdles may be overcome by
combining annotated genomes and data repositories with
current and future machine learning techniques. This will allow
for accurate in silico predictions of proteomic data of a given
sample type, identification of data from an unknown sample
type, and describing experimental and technical artifacts in
proteomic data.
A complex remaining task is the prediction of tissue- or

organism level changes in protein abundance or post-
translational modification, which are intrinsically linked to
protein function. Machine learning may complement databases
and ontologies to improve functional annotation of proteins,
predicting function based on similarity to proteins with known
functions in protein families,54 inferring function from
coregulation of proteins found in large-scale proteomics
studies55 or integrating protein and RNA-Seq data.11 Machine
learning has already been used to predict functional relevance
of phosphorylation by combining multiple databases and
repositories.56 The proteome scale availability of three-
dimensional protein structures from AlphaFold enables
systematically investigating PTMs in their structural context
to further improve our understanding of their functional
relevance, and hence our ability to predict their changes.57

■ ENZYMATIC DIGESTION
When students first learn about proteases or restriction
enzymes, they are invariably told about their specificity as
rules or discrete motifs. This is both a necessary and useful
simplification. However, in practice, especially in proteomics,
the reality is that not all cleavage sites are equal, and that
proteolytic digestion is affected by residues outside the
canonical motif, as well as PTMs and protein structure. Even
if the proteins present in a sample are known, there is still a
need to predict the resulting enzymatic peptides.
Predicting cleavage sites of proteins has already a long

history, as B. Keil summarized in his analysis of tryptic cleavage
in 1992,58 stating that trypsin would cleave after arginine (R)
or lysine (K) except if it is followed by a proline (P), which is
since known as the Keil rule. However, in the last two decades
several groups have proven this assumption not always valid, as
it has been found that the Keil rule is wrong in about 10% of all
cases,59 that up to 40% of all tryptic peptides contain missed
cleavages,60 that cleavage before proline is as common as

cleavage before tryptophan, and even more frequent than
cleavage before cysteine.61 Accurate prediction of cleavage sites
has an impact on both types of proteomic analyses,
identification, and quantification,62 though the impact on
protein quantification is much higher. In identification,
accurate cleavage prediction can reduce the search space and
remove incorrect peptide candidates; however, in quantifica-
tion, false cleavage estimations can strongly influence the
calculated (relative) abundance of inferred proteins.63,64

Recent enzymatic prediction approaches make use of
different machine learning techniques, such as random
forests62,65 and deep learning.4,5 In all these approaches,
various methods of training data curation are utilized and an
amino acid window of size n around a known cleavage site is
used as input for the learning algorithm. Most approaches,
however, still rely on trypsin as a digestion enzyme,
DeepDigest5 being one exception. Several other helpful tools
have also been developed in the context of enzymatic digestion
prediction, one of them being SPACEPro,66 a tool that
analyzes cleavage efficiency using search results, which could
potentially be used to curate training data for cleavage
prediction algorithms.
With the recent success of models such as AlphaFold, which

has been able to predict, at least to some accuracy, the
structures of hundreds of millions of proteins,25 one could
imagine including three-dimensional structure and kinetics as
input features for machine learning algorithms to predict
proteolytic cleavage on a given time scale, down to
milliseconds,67 in different solvents,68 or even predicting
structures of fragments and partially denatured proteins.
Although attempts have been made in this direction already,
there is still a need to develop more models for more enzymes,
taking advantage of recent developments and factoring in
tertiary structure and PTMs.

■ PROTEIN/PEPTIDE FRACTIONATION
Prediction of how proteins and peptides behave in electro-
phoretic or chromatographic separations is important in both
analytical and preparative contexts, including when analyzing
proteomics data from experimental workflows including
multiple dimensions of separations or when optimizing
preparative methods used to purify recombinant proteins,
synthetic peptides, and other products.69 Such predictive
models can also be used to optimize chromatographic
fractionation in proteomics workflows, even if the optimization
target is very different than when purifying a single component,
for example adjusting chromatographic conditions to distribute
the proteins or peptides evenly between fractions with minimal
overlap.70,71

Electrophoresis has also been used both preparatively and
analytically, and to fractionate proteomes for further analysis
by liquid chromatography and mass spectrometry. The
predicted electrophoretic migration can be compared to
measurements using label-free quantitation, e.g., protein-level
SDS-PAGE and peptide-level isoelectric focusing (IEF).72

Subsequently, this comparison can flag false positive
identifications and covalent complexes (in SDS-PAGE). With
increasing speed and sensitivity of mass spectrometers, there is
now less perceived need for prefractionation methods in
proteomics. However, IEF is still used in a variety of studies
where additional separation or targeting of peptides is
necessary. It is unknown to what extent machine learning
would improve classical predictions, especially since the
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isoelectric point (pI) and molecular weight of a protein can be
significantly affected by PTMs such as phosphorylation
(affecting pI) or glycosylation (affecting both). Unfortunately,
current pI calculators are not capable of predicting values for
modified peptides. As IEF is still used for separation of
modified peptides there is a potential to develop models that
can predict the pI of modified peptides. For protein-level IEF
under native conditions, a methodology similar to that recently
used to calculate protein pKa values

73 using AlphaFold may be
adopted.
In any continuous separation method, predicting distribu-

tions of analytes in discrete collected fractions is trivial given a
prediction of the continuous retention or migration time,
though special attention to peak widths and tailing may be
warranted to accurately capture the overlap between fractions.
A special case of protein and peptide separation methods is
-the binary fractionation or enrichment of a subproteome or
modification of interest, e.g., phosphorylation using titanium
dioxide, immobilized metal affinity chromatography, affinity
chromatography, or strong cation exchange, or glycosylation
using hydrophilic interaction chromatography. Modern
machine learning methods have not been applied to predict
protein or peptide distribution in such fractionation
approaches. Regardless, the direct benefits of accurately
modeling protein and peptide behavior in chromatographic
or electrophoretic fractionation methods warrants a need for
such models, however crude, in our toolbox to enable data
simulation of a wide range of proteomics experiments.

■ LIQUID CHROMATOGRAPHY
Whereas the above dimensions of protein and peptide
separation are increasingly used in special cases, such as
enriching a part of the proteome, reversed-phase liquid
chromatography is ubiquitously hyphenated with mass
spectrometry in proteomics. Most commonly, the liquid
chromatograph is physically coupled inline and online with
the mass spectrometer through an electrospray interface,
although fraction collection and off-line mass spectrometry via
electrospray or MALDI is also possible. Online hyphenations
treat time as a continuous variable, whereas in off-line methods
time is discretized in intervals and typically not used in the
further analyses. For a review on models and molecular
simulation studies of reversed-phase liquid chromatography,
see Lindsey et al.74

Models for retention time predictions have become
increasingly complex since the seminal work by Meek
published in 1980,75 driven by increasing availability and
quality of training data with the advent of mass spectrometry-
based proteomics. Peptide retention time predictions were first
used to assist mass-spectrometry based identification in
2002.76 Artificial neural networks trained on amino acid
compositions were introduced in 200377 and later extended to
take the actual sequence into account.78 Other contemporary
models used sequence-derived features rather than raw
sequences as input, such SSRCalc79 and ELUDE.80 More
recently, deep neural networks have been trained on large,
high-quality, data sets, resulting in even more accurate
predictions.2,81 Recent implementations of these models have
even been shown to even be able to predict previously unseen
modifications.3,82

None of these methods attempt to predict elution profiles of
peptides, though Afkham et al.83 compared experimental
elution profiles with estimated uncertainties in retention time

prediction in their GPTime model. Accurate modeling of
elution profiles is critical in generating realistic synthetic data
for optimizing proteomics experiments. Examples of the
characteristics that should be modeled are the slope and
length of the programmed gradient, the length of dynamic
exclusion windows in data-dependent acquisition, and the
window size/scan speed in data-independent experiments.
Elution simulation here complements actual experiments and,
when trained on data on the same chromatographic system
and column, could be expected to produce very accurate
predictions of retention times as well as chromatographic peak
shapes. In targeted proteomics, elution profile prediction
would be useful for minimizing interference when selecting
peptides and transitions, as well as assist extracted ion
chromatogram peak integration for robust quantitation.
Elution profile predictions are also required to accurately
model chimeric spectra (spectra containing product ions from
multiple peptides) in synthetic LC-MS/MS data. These
predicted chimeric spectra are useful for scoring identifications
in the spectrum. Furthermore, data independent acquisition
(DIA) specifically greatly benefits from knowing exactly what
peptides contributed to a fragmentation spectrum.84,85

Chromatograms can be aligned using shared features, i.e.,
common peptides.86,87 Internal retention time standards88

have become popular in recent years. Although these add little
information on the chromatographic separation to the
thousands of peptides already in the sample, they simplify
comparing data sets and automating data processing by
allowing extrapolation to an indexed retention time (iRT)
space. Accurate retention time and elution profile models can
not only replace these internal standards for chromatographic
alignment and system checks, but if the models are
interpretable, they can also assist in troubleshooting, e.g.,
suggest if the mobile phase pH,89 temperature, or flow rate is
wrong. Whether the goal is to optimize the chromatographic
separation or other steps of a proteomics experiment, aligning
chromatograms, or rescoring peptide-spectrum matches,
realistic LC-MS/MS data simulation will benefit from realistic
modeling of the chromatographic behavior of peptides,
including elution profiles, and dependence on mobile phase
and gradients. This also applies to modified peptides and other
modes of chromatography that can be interfaced with mass
spectrometry.

■ ION MOBILITY
Ion mobility is increasingly being used in proteomics as a fast
separation or trapping method between the ion source and
mass analyzer. Most, if not all, major mass spectrometry
vendors now integrate ion mobility in their high-end
instruments, although the technical implementations work
along different principles (e.g., FAIMS, SLIM, TIMS, and
TWIMS).90 The resolution of the different methods varies
substantially,91 and higher resolution measurements are likely
to require more complex algorithms to fit the data. These high-
resolution ion mobility measurements are able to differentiate
between isomeric structures92 that are unlikely to be correctly
predicted by simpler models. This means that each ion
mobility technique may require a different model, where
simplicity while modeling most of the information should be
preferred.
If used as a separation device, the ion mobility or arrival

times can be calibrated into collisional cross sections (CCSs).
Machine learning has already been used to predict CCS values
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for different classes of analytes6,93,94 and integrated in software
for identifying unknown compounds.92 As both experimental
resolution of ion mobility devices and accuracy of machine-
learned models increase, the value of CCS prediction also
increases. In cross-linking experiments, CCS values can be
used to distinguish cross-linked peptides from unlinked
peptides of similar mass-to-charge ratio.95 Comparing
measured and predicted CCS values has also been used to
interrogate protein structure and dynamics, including protein
complexes.96,97

For some classes of molecules, CCS is highly correlated with
the mass-to-charge ratio, limiting the usefulness of CCS
prediction for the identification of unknowns or distinguishing
between closely related species. Such lack of orthogonality
should always be considered when evaluating the added value
of applying machine learning in data analysis workflows.
However, to generate realistic synthetic data from experiments
including ion mobility separations requires at least some model
of analyte behavior.
Ion mobility is becoming increasingly popular in bottom-up

proteomics specifically. While the benefits to data acquisition
are clear and significant by generating cleaner and more
interpretable tandem mass spectra, the impact of predictions of
ion mobility behavior or CCS values for peptide identification
in untargeted experiments is currently limited, even if machine
learned models are quite accurate.6 In large search spaces, such
as variable PTMs, open modifications, or metaproteomics,
CCS predictions could be valuable additions in analysis
pipelines to reduce the number of possible candidates for
peptide-spectrum matching. For the application of predicted
CCS values in open searches, models should be developed that
can accurately predict CCS for modified peptides.

■ MASS SPECTROMETRY
There are many choices in mass spectrometry-based
proteomics. Top-down or bottom-up? With MS1 or MS2?
Using CID or ETD? Low- or high-energy? Data-dependent or
data-independent acquisition? Each combination is a different
type of experiment, generating different information and
requiring a different model to be trained.
The first stage of mass spectrometry, MS1, is acquired to

provide accurate mass measurement of intact peptide ions,
trigger data-dependent events, and generate quantitative
information in experiments such as SILAC. Monoisotopic
masses of intact peptide ions and the fragments thereof are
easily calculated with sufficient precision based on atomic
mass. However, monoisotopic mass is one of few properties of
mass spectra that can be so easily calculated. Other isotopic
peaks have contributions from multiple isotopologues, the
relative abundance of which depend on sample origin, e.g., the
fraction 13C in plants varies measurably with photosynthetic
pathway.98 However, for most intents and purposes, isotopic
distributions can be calculated from the elemental composition
of the peptides and convolved by a theoretical or
experimentally sampled peak shape that only depends on the
mass-to-charge ratio.
The second stage, tandem mass spectrometry or MS2, is

considerably more challenging to predict, and has been the
topic of intense research going back at least to 1964 with the
DENDRAL software for reconstructing molecular structures
from fragment spectra.99 This was one of the first “expert
systems” and therefore has a special place in the history of
artificial intelligence. Tryptic peptide fragmentation patterns

have been gradually refined from uniform predicted intensities
for all b- and y-ions100 to separate intensities for b- and y-ions
to intensities dependent on the neighboring residues. More
recently, machine learning models such as MS2PIP,1 Prosit2

and others101,102 have been shown to produce even more
accurate fragmentation pattern predictions. After calibrating
the actual collision energy (versus instrument readback), Prosit
is able to predict the intensities of b- and y-ions very close to
experimental data.
Prediction of tandem mass spectra has many applications in

proteomics. Accurate intensity predictions can replace flat
intensities or simple models in peptide-spectrum matching
algorithms. It is also possible to predict the peptide sequence
directly from the spectra, rather than the other way around
(i.e., de novo sequencing). Models that take collision energy
into account can be used to optimize in silico collision energies
for every targeted peptide in selected-reaction monitoring
(SRM; and MRM/PRM), something which is extremely
laborious to do experimentally. Simulation of tandem mass
spectrometry of peptides is also a key component when
simulating realistic proteomics data. This requires modeling
the variability in fragmentation, which varies from peptide to
peptide and depends on collision energies. In the future,
models incorporating PTM prediction, coisolation, nontryptic,
and semitryptic digestion, etc. will help identify possible
peptides to clearly define and optimize model output.

■ PEPTIDE OBSERVABILITY AND PROTEOTYPICITY
When combined, models for all experimental steps described
above may be used to predict whether a peptide in a given
sample will be detected by the mass spectrometer and
“observed”. Different but related concepts and terms exist in
this context, e.g., peptide observability or detectability, peptide
quantifiability, or proteotypicity. There are different inter-
pretations of these concepts, but key terms are defined as used
in the context of this paper below. Peptide observability is the
probability that a certain peptide can be identified in a certain
sample given that the protein is present (at some level). Often,
this probability is seen as binary classification, with the two
classes of peptides termed “flyers” and “non-flyers”.103

Contrastingly, proteotypicity can be defined as the number
of samples with a certain peptide divided by the number of
samples with the protein containing that peptide.2

A peptide from a protein present in the biological sample
may not be observable at all, for reasons such as poor protein
extraction and solubilization, digestion efficiency, PTMs,
peptide or protein degradation, suppression by coeluting
peptides, stochastic sampling for fragmentation, and biases in
the search algorithm. Even when a peptide is detected in a
sample, it does not necessarily mean it is quantifiable.104

Modeling peptide observability requires modeling all the
steps from the sample to the mass spectrometer, including
peptide or protein fractionation, and enzymatic digestion.
However, most proteomics data in repositories either lack
these dimensions or the machine-readable metadata to use this
information for machine learning, such as standardized and
complete sample preparation protocols or the conditions and
duration of proteolytic digestion. In general, a prediction
model for peptide observability should be able to distinguish
between a biological (i.e., nonrandom) missingness of a
peptide and a technical (i.e., random) missingness. Proteins
that are commonly seen in experiments where protein
properties and sample preparation protocols are well-known
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and which yield an appropriate peptide distribution could be
used as conditional input for such a peptide observability
model. Ideal data sets for training models of peptide
observability would be instrument-specific repetitive acquis-
itions from different institutes, different tissues, and different
preprocessing methods, e.g., duration of proteolytic digestion.
In addition, data sets of synthetic proteins including proteo-
forms and real-negative samples are helpful.
Several research groups have already addressed the problem

of modeling peptide observability.103,105−107 Pino and co-
workers created a model that combines observability with
peptide ionization properties.104 In 2016, Edfors et al.
determined gene-specific coefficients correlating mRNA and
protein levels across 20 human tissues and cell lines as
measured by RNA-Seq and SRM.53 Recently, Dincer et al.
used a deep neural network model, Pepper, to derive sequence-
specific coefficients describing the quantitative relationship (or
bias) between the observed and measured peptide abundance,
finding that the adjusted measurements correlate better than
the unadjusted measurements with the RNA-Seq data in
quantitative mass spectrometry data.108

To the best of our knowledge, no models currently predict
the proteotypicity in samples enriched for subsets of peptides,
e.g., phosphopeptides. Such prediction is challenging, in part
due to the large experimental variability of the enrichment step.
Prior knowledge of verified modification sites could be helpful
in this case.
However, several applications can already take advantage of

peptide observability prediction models. In intensity-based
quantitation such as iBAQ,109 the number of observable
peptides of a protein can be used to adjust the derived protein
abundance. These methods would directly benefit from better
estimates on peptide observability. The absence of peptides
with high observability is more significant than the absence of
those with low observability and may warrant further
investigation. Conversely, and although unlikely to be
identified as such, peptides with low predicted observability
are likely problematic as candidate biomarkers, and high or
consistent observability could be used to prioritize candidates.
In peptide identification by spectral libraries and database

search engines, information on observability can be used as
prior probabilities in peptide-spectrum matching, or to reduce
the search space to peptides that are observable under the
conditions of the experiment. During protein inference,
proteins that cannot be unambiguously identified due to low
observability of unique peptides can be excluded.
Although some work has already been performed in this

context, there is still much work to be done. As always in
machine learning, a variety of training data will be necessary to
generate valid models, accompanied by proper, machine
readable metadata, which is equally important. Efforts to
collect appropriate training data sets has been ongoing for
several decades (see Benchmark Data Sets for Machine
Learning in Proteomics), and finally first steps have been
taken to enhance the availability of the much-needed
corresponding metadata.110

■ MODEL UNCERTAINTY
Typically, machine learning models in proteomics are
evaluated on their accuracy rather than the uncertainty, error
probability distributions, or confidence intervals that are
important when incorporating the models in computational
workflows.111−114 Software such as Triqler115 and MSe-

QUiP116 model error probability distributions for all steps
from peptide-spectrum matching to protein quantification.
This alleviates some of the systematic problems with sequential
filters and as a consequence improves quantification of low
abundance proteins. Other applications for modeling un-
certainty can be found in peptide property prediction (e.g.,
retention time, ion mobility, charge, observability, and
fragmentation or spectrum prediction). For retention time
prediction, uncertainty estimates can improve the decision of
which peptides to include during search.83 Modeling
uncertainty of ion intensities is more complex as the combined
intensity of one MS2 spectrum represents a joint fragmenta-
tion distribution for its isolated precursors. Interestingly,
differentiating independent sources of uncertainty can be
utilized to improve analyses. For example, there are methods
that combine uncertainty estimates to align chromatograms
and transfer identifications from one analysis to another.117−119

The same principle should be possible to apply to more
complex predictions.
Bayesian techniques to model uncertainty in deep neural

models include variational inference and Monte Carlo
methods. Variational Inference methods learn the posterior
distributions over the model’s weights, whereas Monte Carlo
methods utilize random sampling instead. For example, Monte
Carlo dropout120 makes several predictions for the same input
while randomly ignoring a portion of the model’s weights. The
resulting predictions are an approximation of the posterior
distribution. Repeatedly sampling from different portions of a
model is essentially mimicking an ensemble of models with a
similar architecture. Such ensemble methods are their own
theoretical framework to model uncertainty. Gaussian
processes offer a framework for modeling uncertainty without
the need for deep architectures. Particularly Gaussian process
regression has been successfully used for estimating un-
certainty of retention time predictions.83 A more comprehen-
sive overview including other approaches can be found in the
review by Abdar et al.114

Knowledge about the uncertainty of predictors could
accelerate development of machine learning-driven proteo-
mics. For instance, in training set generation, uncertainty
estimates could be utilized to identify which subsets of data
need more examples. During targeted proteomics assay
development, these measures could be used to improve the
exactness of peak prediction and retention time, thereby
improving the assays. Confidence could also be transferred
from spectral libraries to the peptide-centric analysis of DIA
data. In general, computing confidence in single machine
learning model predictions of LC-MS/MS peptide behavior,
and generation of confidence intervals from peptide spectral
matches (re)scoring models (e.g., using SVMs) will benefit
protein identification and quantification.

■ SIMULATING LC-MS/MS DATA
Modeling arbitrary proteomics experiments requires models
for all steps in Figure 1. Up to this point, the discussion has
focused on what is needed to predict the observable peptides
from any sample, and the last step is predicting tandem mass
spectrometry data. Combined models can produce very
realistic simulated data, which has numerous positive use
cases, including experimental optimization, quality control
using any sample, and benchmarking algorithms and
bioinformatic workflows. Generating synthetic LC-MS/MS
data in the mzML format is by no means novel. For example,
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the OpenMS infrastructure includes MSSimulator121 for
simulating LC-MS/MS data and generating synthetic mzML
files from FASTA files. More recently, the SMITER Python
library122 and Synthedia123 have been used for simulating LC-
MS/MS experiments and generate synthetic mzML files. The
MaSS-Simulator124 and PhosFake (https://github.com/
veitveit/PhosFake) have also been used to generate synthetic
quantitative data or phosphopeptide features, respectively, in
other file formats, for the explicit purpose of benchmarking
algorithms.
However, recent developments in machine learning, such as

GANs and diffusion models, and the specific efforts described
above are likely to, when combined, generate far more realistic
mzML files. As described herein, by taking into account
predicted protein abundances, protein extraction, fractionation,
digestion, chromatographic elution profiles of peptides,
ionization, ion mobility, precursor selection and chimeric
spectra, MS1 and MS2 spectra with all fragment ions,
background, systematic and random mass measurement errors,
and instrument drift, the synthetic data may be very close to
data from real instruments. Such realistic, synthetic data would
enable many new applications as discussed, but will also make
it far easier to fabricate proteomics data that will be
indistinguishable from real data. This inherent risk and
possible mitigation were extensively discussed in a dedicated
workshop session summarized in the following section.
Existing softwares for synthetic data generation, such as

MSSimulator, are highly parametrized and include quite a few
instrument aspects, making their realistic settings cumbersome
at best. Still, these parameters could be trained using machine
learning or dynamic programming methods to produce more
realistic tandem mass spectra or any other output from an MS
experiment. Software like MSSimulator and SMITER could
easily be supplied with state-of-the-art (deep) learning models
for predicting tandem mass spectra, e.g., Prosit or MS2PIP, as
already done by Synthedia.123

One critical need resulting from this is that simulated LC-
MS/MS data in the mzML format should be annotated as
such, and the HUPO PSI controlled vocabulary, PSI-MS,
extended with suitable terms to describe how the data was
simulated, as opposed to generated by a real instrument, or at
the very least that the mzML is simulated and the software or
model used. Additional considerations for ensuring the
integrity and veracity of mzML files are discussed in the
section on Research Integrity.
A major new application of synthetic LC-MS/MS data is the

in silico design and optimization of experiments. Instead of
relying on instrument time or precious samples, methods and
parameters can be simulated and optimized to yield the
maximum amount of information possible, or sufficient
information in the shortest possible time to answer a particular
research question in an optimization of statistical power.
Theoretically, this could reduce development time, improve
the offerings in proteomics cores, and increase resulting data
richness.
By simulating both samples and experimental configurations,

researchers can also estimate what is reasonable data quality for
a given sample, system, and method. This is a new dimension
to quality control that does not compare data with a previously
measured reference or standard but allows quality control
metrics to be calculated on a single data set based on what is
known about the data set, e.g., the organism, tissue, and
experimental method, and comparing the resulting data with

those predicted by machine learning from thousands or even
millions of data sets from different organisms, tissues, and
experiments. In other words, instead of relying on a specific
standard or material to evaluate system suitability or
experimental performance, any given sample can provide the
same actionable information.
Lastly, realistic, synthetic LC-MS/MS data can be used to

test, improve, and benchmark machine learning and classical
algorithms and software. This can be accomplished by
improving the output from database search engines using
simulated spectra, generating ground-truth protein inference
data to challenge protein inference algorithms, and generating
ground-truth quantitative data to evaluate quantitative
proteomics software. Unlike real ground-truth data, synthetic
data sets would not have any systematic experimental errors
from protein extraction or pipetting and could be created with
the click of a button, instead of years of often tedious work
preparing samples and curating spectra. Though it may seem
that synthetic data may never “look” exactly like real data, it
should be noted how advanced deep learning techniques have
become at generating text and images that are nearly
indistinguishable from those created by humans. We expect
that crossing this uncanny valley is closer than it appears.
Bridging it will create countless applications, including those
listed above, and pose a formidable ethical dilemma.

■ RESEARCH INTEGRITY
Although the workshop focused on legitimate uses of realistic
synthetic data, there is a possibility such data is passed off as
real. This topic was discussed in detail, including mitigating
social and engineering solutions. As most technologies,
machine learning is amoral and can be used for beneficial or
nefarious purposes alike. We hope that this pre-emptive
discussion helps raise awareness and spur the development of
safeguards.
Fraud is a problem of increasing concern in science, as

various social and personal pressures entice individuals to make
up data and attempt to publish it as legitimate research. In an
extensive review of over 20 000 peer-reviewed publications
containing images of Western blots, nearly 4% contained
inappropriate manipulation.125 As this study was limited to
Western blots, it only shows the “tip of the iceberg” of data
fabrication in the biomedical literature. Unlike images, data
fabrication in numerical tables can be subtle and hard to
detect. In 2020, Bradshaw and Payne examined methods to
detect fabricated numerical omics data,126 concluding that
methods originally developed to detect fraud in banking and
insurance would be applicable to scientific data.
There are already known examples of mass spectrometry

data fabrication. In 2020, the University of Liverpool
investigated a case of alleged research misconduct, finding
falsification of key mass spectrometry data,127,128 including in
the now-removed Figure 2 in a corrected paper.127,129 In this
case, the misconduct was confirmed by extrinsic evidence such
as equipment logs and financial records revealing the
measurements were never performed. It would be naiv̈e to
think this is an isolated case, given the number of Western
blots found to be manipulated, when these were systematically
investigated.
The workshop session focused on data fabrication and

falsification using generative machine learning.22 Data
fabrication could happen at different stages of proteomics
experiments: experimental data acquisition, manipulation of
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existing raw data, and downstream data analyses. We will not
here provide details on how this can be done, but the
workshop demonstrated that it is currently possible to fabricate
proteomics data in ways that are not all trivial to detect.
However, there are also several engineering and social
solutions to mitigate risks of realistically simulated data being
passed off as real.
Manipulated or fabricated data can be detected by a variety

of algorithms leveraging number theory metrics unrelated to
study design, such as Benford’s Law130 used by Bradshaw and
Payne,126 and Zipf’s Law.131 The workshop demonstrated that
some existing models for predicting mass spectra violate some
of these laws. Beyond number theory, detection algorithms can
be strengthened by domain knowledge and look for expected
patterns in different data layers and comparing measured
masses, peak shapes and isotopic distributions with the limits
imposed by the instrument settings. It is possible to calculate
these metrics from public data in repositories to obtain the
limits and expected values of these metrics, assuming that this
data is in fact real. One can also check for expected correlations
in quantitative data, based protein-peptide stoichiometry or
coexpression. If data is generated by spiking synthesized
peptides of interest into the sample, and then measuring it
using an actual mass spectrometer, one may be able to find
remnants of the peptide synthesis in the data.
In addition to algorithmic fraud detection, it would be

advantageous for the community to support a limited set of
tools that generate synthetic data, which are built with data
integrity in mind. There are at least two important features of
such tools. First, they should target the open standard mzML
file format, rather than vendor formats. The latter could be
made more immutable by encoding timestamps, location and
instrument serial numbers, file hashes, and theoretically even
using technologies such as blockchain that prove a particular
data set was acquired on a particular instrument in a particular
location at a particular time. One drawback is that it then
becomes impossible to fully anonymize data. Data anonymiza-
tion may be preferred when publishing certain raw data, for
example from interlaboratory comparisons or ring trials.
Fortunately, with many vendors moving into clinical trials,
many of their formats are already relatively immutable.
A second safeguard are digital watermarks in synthetic data.

This can be accomplished by inserting patterns in the signal
noise or features that do not match any known protein
sequence (e.g., “FAKEPEPTIDE” amino acid sequence).
These watermarks should be cumbersome to remove but not
interfere with any data analysis. This safeguard requires that at
least some components of the generating software are not
provided as open source. As with security features in
banknotes, some watermarks can be publicly known and easy
to detect, while others would be confidently shared with
journals and repositories, and some known only by the tool
developers. Overall, this would allow synthetic data to be used
without risking them being mistaken for real.
Beyond engineering solutions, there are also necessary social

solutions. Given that data fabrication or duplication can
happen at different levels, it is crucial to have access to the data
provenance from raw data to reported results, requiring that all
data, including raw data in closed vendor formats, and code are
made available before publication. Such solutions already exist
in the form of the ProteomeXchange repositories132 and ability
to provide data analysis scripts or notebooks as Supporting
Information or on a public server such as OSF (https://osf.io/

) or GitHub (https://github.com), containing all steps from
the raw data in the repository to the figures and tables in the
publication. Ensuring this information is actually provided
requires social solutions such as journal policies requiring raw
data in vendor formats to be deposited and educating reviewers
and editors about these topics.
In summary, it is important the proteomics community is

aware of the increasing ease with which realistic synthetic
proteomics data can be generated using machine learning. The
prevalence of problematic Western blots in the literature
should be a cause for reflection, as these are far cheaper to
perform or repeat than state-of-the-art proteomics experiments
requiring million-dollar instruments and reagents for thousands
of dollars. At the same time, there are many legitimate use
cases for simulating proteomics data, as outlined in the
Introduction, and with a combination of engineering and social
solutions, the risks that such realistic simulated data is being
passed off as real undetected can be reduced.

■ BENCHMARK DATA SETS FOR MACHINE
LEARNING IN PROTEOMICS

The workshop discussed the steps needed to develop a unified
model to generate synthetic proteomic data, discussed possible
applications of this capability, and touched on ethical concerns
therein. However, to effectively catalyze this research topic,
suitable proteomics data sets must be accessible to machine
learning practitioners, as well as machine learning methods to
data generators. Accessible and fit-for-purpose benchmark data
sets are essential in domains such as machine learning for
education and calibration across the field. For instance, the
infamous Anderson’s Iris data set133 continues to be used in
most beginner tutorials to demonstrate supervised and
unsupervised machine learning based on petal and sepal
length and width. More advanced machine learning modelers
typically move on to the Titanic data set134 with more
attributes and larger sample size. These two example data sets
are accessible to newcomers and experts alike because of their
small size, fit for purpose due to their straightforward
attributes, and their frequent use. Together this results in an
abundance of available tutorials across different software,
languages, and algorithms, all based on the same underlying
data set. Having benchmark data sets like these creates a point
of entry with a low threshold, easy for beginners and education,
but more importantly, these data sets can be used to explore
and benchmark current and new machine learning techniques,
irrespective of domain knowledge of the data set itself.
Specific to proteomics applications of machine learning,

there is a need for similarly accessible and fit for purpose
benchmark data sets. Although many machine learning
endeavors such as DeepLC3 and Prosit2 validate against
external data sets from laboratories that were not used during
model training, the community has not agreed on specific
benchmark data sets. Such benchmark data sets would make
comparisons of different models more informative. Many of
these deep learning models are also trained on samples from
the same data sets, for example the data sets of synthetic
peptides from ProteomeTools,135 and while these are a great
resource for homogenized training, it can be hard to compare
across tools without any collectively acknowledged inference
source. Additionally, tools have recently been released that
make it easier for researchers to extract machine learning-ready
data from raw files, such as MS2AI,136 but even this is limited
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due to the complexity and variety of instruments and software
used in proteomics.
In the months following the workshop, participants

developed a resource to address this need.137 ProteomicsM-
L.org provides an online repository of easily ingested data sets
with attributes spanning peptide properties and mass
spectrometry data types, as well as companion tutorials on
training deep learning models. This dynamic resource of
proteomics benchmark data sets will be curated similar to the
UCI Machine Learning Repository138 or MoleculeNet,139 and
is mirrored on a GitHub repository to enable programmatic
access (https://github.com/ProteomicsML/ProteomicsML).
The benchmark data sets in ProteomicsML.org are optimally
sized data matrices, with data import ease and handling as the
goal. The specific search settings and filtering used to create
each data set is described so that users can also reprocess from
source raw mass spectrometry files (as PRIDE140 or
MassIVE141 identifiers), but importantly, this is not required
for using the data sets in machine learning applications. As
described in prior sections, there are numerous machine
learning applications in proteomics, and the data sets at
ProteomicsML.org are also organized by application (i.e.,
retention time, spectrum prediction, ion mobility cross-section,
enzymatic digestion, peptide observability/proteotypic pep-
tides, peptide fractionation). The ProteomicsML.org resource
will grow with community involvement, including both
training and testing data sets by application, and larger data
sets to expand alongside computational and instrument
advances, helping machine learning experts experiment with
proteomics data, and proteomics experts learn about machine
learning applications.

■ CONCLUSIONS
Taken together, the concepts and issues presented here
provide a relevant, and hopefully exciting overview of the
status of machine learning in proteomics today, and a few
possible paths forward. It is clear that machine learning in
proteomics has not just exploded in recent years, but is in fact
here to stay. The breakthroughs in peptide identification
performance alone have been quite impressive, and still new
work continues to improve upon the previous state-of-the-art.
Perhaps most notably, the individual models that have been

built so far could be assembled into a larger, end-to-end model,
which could then predict realistic, synthetic data, which in turn
could have many positive uses, as outlined in detail above, but
that could also pass for real data if a nefarious person offered
such synthetic data up as actual acquired data. Appreciating
this capability, albeit theoretical, creates novel issues in
proteomics that are deserving of attention. Concrete steps
can be taken to safeguard against the potential issues raised by
realistic synthetic data, while ensuring that positive uses may
be pursued without issue. Rather than wait for the problem to
occur (or be noticed), it would be prudent if the field began
preemptively setting up appropriate safeguards, especially
concerning the low-hanging fruit of adapting standard mass
spectrometry file formats to accommodate well-annotated and
clearly flagged synthetic data, while also ensuring that
instrument raw files are fingerprinted or marked in a way
that would allow their provenance to be traced to the actual
instrument if needed. The latter comes with its own issues
regarding data generator anonymity, and should therefore
likely be engineered in such a way as to only be possible upon
specific request.

However, before building such comprehensive and believ-
able mass spectrometry data generators, more sophisticated
models will likely be necessary. These models in turn will
require ever better training data and adequate benchmarking
data. Here too, there are several key issues to address moving
forward, notably with regard to metadata provisioning.
Currently, metadata provisioning in proteomics is scarce at
best, and can frequently be found to be incorrect upon a
posteriori verification.142 A more diligent annotation of data
deposited in the public domain would provide much-needed
leverage for a variety of downstream uses, which include
building better machine learning models.
The power of machine learning as a nearly universal tool has

created a modern-day Maslow’s (jack)hammer,143 and likewise
machine learning is not always the best tool for the job. Many
prediction tasks in proteomics do not require machine
learning. As a trivial example, theoretical fragment ion masses
can be easily calculated by summing the monoisotopic masses
of the corresponding amino acid residues and applying the ion-
specific mass loss correction. Though machine learning is
making bold strides in modeling nearly every aspect of a mass
spectrometry-based proteomics experiment from the biological
system to interpretation of the results, the gains offered by
machine learning should be critically evaluated. The curated
data sets of ProteomicsML.org are useful for both beginners
and experienced practitioners of machine learning, and for
benchmarking and quantifying the gains of new models. With
the accelerating growth in size and complexity of proteomics
data, machine learning will become increasingly indispensable
and fundamentally change the way proteomic data is acquired
and interpreted.

■ AUTHOR INFORMATION
Corresponding Authors

Benjamin A. Neely − National Institute of Standards and
Technology, Charleston, South Carolina 29412, United
States; orcid.org/0000-0001-6120-7695;
Email: benjamin.neely@nist.gov

Viktoria Dorfer − Bioinformatics Research Group, University
of Applied Sciences Upper Austria, 4232 Hagenberg, Austria;
orcid.org/0000-0002-5332-5701;

Email: viktoria.dorfer@fh-hagenberg.at
Lennart Martens − VIB-UGent Center for Medical
Biotechnology, VIB, 9000 Ghent, Belgium; Department of
Biomolecular Medicine, Faculty of Health Sciences and
Medicine, Ghent University, 9000 Ghent, Belgium;
orcid.org/0000-0003-4277-658X;

Email: lennart.martens@ugent.be
Magnus Palmblad − Leiden University Medical Center, 2300
RC Leiden, The Netherlands; orcid.org/0000-0002-
5865-8994; Email: n.m.palmblad@lumc.nl

Authors
Isabell Bludau − Department of Proteomics and Signal
Transduction, Max Planck Institute of Biochemistry, 82152
Martinsried, Germany

Robbin Bouwmeester − VIB-UGent Center for Medical
Biotechnology, VIB, 9000 Ghent, Belgium; Department of
Biomolecular Medicine, Faculty of Health Sciences and
Medicine, Ghent University, 9000 Ghent, Belgium;
orcid.org/0000-0001-6807-7029

Sven Degroeve − VIB-UGent Center for Medical
Biotechnology, VIB, 9000 Ghent, Belgium; Department of

Journal of Proteome Research pubs.acs.org/jpr Perspective

https://doi.org/10.1021/acs.jproteome.2c00711
J. Proteome Res. 2023, 22, 681−696

690

https://proteomicsml.org/
https://proteomicsml.org/
https://github.com/ProteomicsML/ProteomicsML
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Benjamin+A.+Neely"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6120-7695
mailto:benjamin.neely@nist.gov
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Viktoria+Dorfer"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5332-5701
https://orcid.org/0000-0002-5332-5701
mailto:viktoria.dorfer@fh-hagenberg.at
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Lennart+Martens"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-4277-658X
https://orcid.org/0000-0003-4277-658X
mailto:lennart.martens@ugent.be
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Magnus+Palmblad"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5865-8994
https://orcid.org/0000-0002-5865-8994
mailto:n.m.palmblad@lumc.nl
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Isabell+Bludau"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robbin+Bouwmeester"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6807-7029
https://orcid.org/0000-0001-6807-7029
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sven+Degroeve"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00711?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Biomolecular Medicine, Faculty of Health Sciences and
Medicine, Ghent University, 9000 Ghent, Belgium;
orcid.org/0000-0001-8349-3370

Eric W. Deutsch − Institute for Systems Biology, Seattle,
Washington 98109, United States; orcid.org/0000-0001-
8732-0928

Siegfried Gessulat − MSAID GmbH, 10559 Berlin, Germany
Lukas Käll − Science for Life Laboratory, KTH - Royal
Institute of Technology, 171 21 Solna, Sweden; orcid.org/
0000-0001-5689-9797

Pawel Palczynski − Department of Biochemistry and
Molecular Biology, University of Southern Denmark, 5230
Odense, Denmark

Samuel H. Payne − Department of Biology, Brigham Young
University, Provo, Utah 84602, United States; orcid.org/
0000-0002-8351-1994

Tobias Greisager Rehfeldt − Institute for Mathematics and
Computer Science, University of Southern Denmark, 5230
Odense, Denmark; orcid.org/0000-0002-1190-9485

Tobias Schmidt − MSAID GmbH, 85748 Garching,
Germany; orcid.org/0000-0002-1883-6514

Veit Schwämmle − Department of Biochemistry and
Molecular Biology, University of Southern Denmark, 5230
Odense, Denmark; orcid.org/0000-0002-9708-6722

Julian Uszkoreit − Medical Proteome Analysis, Center for
Protein Diagnostics (ProDi), Ruhr University Bochum,
44801 Bochum, Germany; Medizinisches Proteom-Center,
Medical Faculty, Ruhr University Bochum, 44801 Bochum,
Germany; orcid.org/0000-0001-7522-4007

Juan Antonio Vizcaíno − European Molecular Biology
Laboratory, European Bioinformatics Institute (EMBL-EBI),
Wellcome Trust Genome Campus, Hinxton, Cambridge
CB10 1SD, United Kingdom; orcid.org/0000-0002-
3905-4335

Mathias Wilhelm − Computational Mass Spectrometry,
Technical University of Munich (TUM), 85354 Freising,
Germany; orcid.org/0000-0002-9224-3258

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jproteome.2c00711

Notes

The authors declare the following competing financial
interest(s): S.G. and T.S. are co-founders, shareholders and
employees of MSAID GmbH, a company that develops
software for proteomics. M.W. is founder and shareholder of
MSAID GmbH and OmicScouts GmbH, with no operational
role in both companies.

■ ACKNOWLEDGMENTS
The Lorentz Center workshop was funded by the Dutch
Research Council (NWO) with generous support from the
Leiden University Medical Center, Thermo Fisher Scientific,
and the Journal of Proteome Research that made this workshop
possible. The authors thank Dr. Mike Preuss and Dr. Elisabeth
Bik for their inspiring lectures and active participation in
discussions on machine learning and research integrity during
the workshop. Special thanks go to all the Lorentz Center staff
who went above and beyond their duties to make this hybrid
workshop a success in COVID times. Identification of certain
commercial equipment, instruments, software, or materials
does not imply recommendation or endorsement by the
National Institute of Standards and Technology, nor does it

imply that the products identified are necessarily the best
available for the purpose.

■ ABBREVIATIONS
ARCHS4, all RNA-seq and ChIP-seq sample and signature
search; BERT, Bidirectional Encoder Representations from
Transformers; CCS, collisional cross sections; CID, collision-
induced dissociation; CLIP, Contrastive Language−Image
Pretraining; DALL-E-2, Machine learned model for generating
images from text descriptions (portmanteau of WALL-E and
Dali); DENDRAL, Dendritic Algorithm; DIA, data independ-
ent acquisition; ELUDE, unknown; wordplay on elution seems
likely; Ensembl, just a name; ETD, electron-transfer dissoci-
ation; FAIMS, high field asymmetric waveform ion mobility
spectrometry; FASTA, derived from the FASTP (P for
protein) similarity search, FASTA is short for Fast All, and
the file format used became known as fasta.; GANs, generative
adversarial networks; GLEAMS, a learned embedding for
annotating mass spectra; GPT-3, Generative Pretrained
Transformer 3; GPTime, Gaussian processes time; HPA,
Human Protein Atlas; HUPO PSI, Human Proteome
Organization Proteomics Standards Initiative; iBAQ, inten-
sity-based absolute quantification; IEF, isoelectric focusing;
iRT, indexed retention time; LC, liquid chromatography;
MALDI, matrix-assisted laser desorption/ionization; MassIVE,
mass spectrometry interactive virtual environment; MaSS-
Simulator, made to differentiate from similar tools: MSSimu-
lator and MS-Simulator; MRM, multiple reaction monitoring;
mRNA, messenger ribonucleic acid; MS/MS, tandem mass
spectrometry; MS2A, mass spec to artificial intelligence;
MS2PIP, MS2 peak intensity prediction; MSeQUiP, method
for quantifying uncertainty in peptide-spectrum matches;
MuSIC, multiscale integrated cell; mzML, official HUPO-PSI
standard format for mass spectrometry data, derivative of
previous mzXML format, mz (mass-to-charge ratio) and XML
(eXtensible Markup Language); NCBI RefSeq, National
Center for Biotechnology Information Reference Sequence
Database; NCI, National Cancer Institute; OSF, Open Science
Framework; pI, negative log (base 10) of isoelectric point; pKa,
negative log (base 10) of acid dissociation constant; PRIDE,
Proteomics Identification Database; PRM, parallel reaction
monitoring; ProteomicsDB, DB is short for database; PTMs,
post-translational modifications; RNA-Seq, ribonucleic acid
sequencing; SDS-PAGE, sodium dodecyl sulfate-polyacryla-
mide gel electrophoresis; SILAC, stable isotope labeling by/
with amino acids in cell culture; SLIM, structures for lossless
ion manipulation; SMITER, Synthetic mzML writer; SPACE-
Pro, Shotgun Proteomic Analysis of Cleavage Efficiency of
Proteins; SRM, selected-reaction monitoring; SSRCalc,
sequence-specific retention calculator; SUMOylation, small
ubiquitin-like modifier modification; SVM, support vector
machine; TIMS, trapped ion mobility spectrometry; t-SNE, t-
distributed stochastic neighbor embedding; TWIMS, traveling
wave ion mobility spectrometry; UCI, University of California,
Irvine; UMAP, Uniform Manifold Approximation and
Projection; UniProtKB, Universal Protein Resource Knowl-
edgebase
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Grüning, B.; Föll, M. C.; Griss, J.; Vaudel, M.; Audain, E.; Locard-
Paulet, M.; Turewicz, M.; Eisenacher, M.; Uszkoreit, J.; Van Den
Bossche, T.; Schwämmle, V.; Webel, H.; Schulze, S.; Bouyssié, D.;
Jayaram, S.; Duggineni, V. K.; Samaras, P.; Wilhelm, M.; Choi, M.;
Wang, M.; Kohlbacher, O.; Brazma, A.; Papatheodorou, I.; Bandeira,
N.; Deutsch, E. W.; Vizcaíno, J. A.; Bai, M.; Sachsenberg, T.; Levitsky,
L. I.; Perez-Riverol, Y. A proteomics sample metadata representation
for multiomics integration and big data analysis. Nat. Commun. 2021,
12 (1), 5854.
(111) Shrestha, D. L.; Solomatine, D. P. Machine learning
approaches for estimation of prediction interval for the model output.
Neural Netw 2006, 19 (2), 225−235.
(112) Musil, F.; Willatt, M. J.; Langovoy, M. A.; Ceriotti, M. Fast
and Accurate Uncertainty Estimation in Chemical Machine Learning.
J. Chem. Theory Comput 2019, 15 (2), 906−915.
(113) Moon, J.; Kim, J.; Shin, Y.; Hwang, S. Confidence-aware
learning for deep neural networks. In International conference on
machine learning; PMLR: 2020; pp 7034−7044.
(114) Abdar, M.; Pourpanah, F.; Hussain, S.; Rezazadegan, D.; Liu,
L.; Ghavamzadeh, M.; Fieguth, P.; Cao, X.; Khosravi, A.; Acharya, U.
R.; Makarenkov, V.; Nahavandi, S. A review of uncertainty
quantification in deep learning: Techniques, applications and
challenges. Information Fusion 2021, 76, 243−297.
(115) The, M.; Käll, L. Integrated Identification and Quantification
Error Probabilities for Shotgun Proteomics.Mol. Cell Proteomics 2019,
18 (3), 561−570.
(116) McKennan, C.; Sang, Z.; Shi, Y. A novel framework to
quantify uncertainty in peptide-tandem mass spectrum matches with
application to nanobody peptide identification. arXiv 2021,
DOI: 10.48550/arXiv.2110.07818.
(117) Listgarten, J.; Emili, A. Statistical and computational methods
for comparative proteomic profiling using liquid chromatography-
tandem mass spectrometry. Mol. Cell Proteomics 2005, 4 (4), 419−
434.
(118) Jaitly, N.; Monroe, M. E.; Petyuk, V. A.; Clauss, T. R. W.;
Adkins, J. N.; Smith, R. D. Robust algorithm for alignment of liquid
chromatography-mass spectrometry analyses in an accurate mass and
time tag data analysis pipeline. Anal. Chem. 2006, 78 (21), 7397−
7409.

Journal of Proteome Research pubs.acs.org/jpr Perspective

https://doi.org/10.1021/acs.jproteome.2c00711
J. Proteome Res. 2023, 22, 681−696

695

https://doi.org/10.1016/j.jasms.2007.07.018
https://doi.org/10.1016/j.jasms.2007.07.018
https://doi.org/10.1038/nmeth.4075
https://doi.org/10.1038/nmeth.4075
https://doi.org/10.1002/pmic.201100463
https://doi.org/10.1002/pmic.201100463
https://doi.org/10.1002/jssc.201800488
https://doi.org/10.1002/jssc.201800488
https://doi.org/10.1002/jssc.201800488
https://doi.org/10.1007/s13361-019-02288-2
https://doi.org/10.1007/s13361-019-02288-2
https://doi.org/10.1007/s13361-019-02288-2
https://doi.org/10.1021/acs.analchem.7b02827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b02827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b02827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b02827?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jasms.0c00375?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jasms.0c00375?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jasms.0c00375?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioinformatics/btx140
https://doi.org/10.1093/bioinformatics/btx140
https://doi.org/10.1093/bioinformatics/btx140
https://doi.org/10.1021/acs.jproteome.1c00185?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.1c00185?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.1c00185?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1074/mcp.RA120.002094
https://doi.org/10.1074/mcp.RA120.002094
https://doi.org/10.1016/j.str.2015.02.010
https://doi.org/10.1016/j.str.2015.02.010
https://doi.org/10.1038/s41467-022-32075-9
https://doi.org/10.1038/s41467-022-32075-9
https://doi.org/10.1038/s41467-022-32075-9
https://doi.org/10.1016/0031-9422(81)85134-5
https://doi.org/10.1016/1044-0305(94)80016-2
https://doi.org/10.1016/1044-0305(94)80016-2
https://doi.org/10.1016/1044-0305(94)80016-2
https://doi.org/10.1038/s41592-019-0427-6
https://doi.org/10.1038/s41592-019-0427-6
https://doi.org/10.1021/acs.analchem.7b02566?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.analchem.7b02566?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3389/fpls.2018.01559
https://doi.org/10.3389/fpls.2018.01559
https://doi.org/10.1021/acs.jproteome.9b00666?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.9b00666?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac049571q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac049571q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac049571q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1186/1471-2105-8-S7-S23
https://doi.org/10.1186/1471-2105-8-S7-S23
https://doi.org/10.1093/bioinformatics/btl237
https://doi.org/10.1093/bioinformatics/btl237
https://doi.org/10.1093/bioinformatics/btl237
https://doi.org/10.1021/acs.jproteome.2c00211?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.2c00211?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1038/nature10098
https://doi.org/10.1038/nature10098
https://doi.org/10.1038/s41467-021-26111-3
https://doi.org/10.1038/s41467-021-26111-3
https://doi.org/10.1016/j.neunet.2006.01.012
https://doi.org/10.1016/j.neunet.2006.01.012
https://doi.org/10.1021/acs.jctc.8b00959?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.8b00959?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1016/j.inffus.2021.05.008
https://doi.org/10.1074/mcp.RA118.001018
https://doi.org/10.1074/mcp.RA118.001018
https://doi.org/10.48550/arXiv.2110.07818
https://doi.org/10.48550/arXiv.2110.07818
https://doi.org/10.48550/arXiv.2110.07818
https://doi.org/10.48550/arXiv.2110.07818?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1074/mcp.R500005-MCP200
https://doi.org/10.1074/mcp.R500005-MCP200
https://doi.org/10.1074/mcp.R500005-MCP200
https://doi.org/10.1021/ac052197p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac052197p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ac052197p?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00711?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(119) The, M.; Käll, L. Focus on the spectra that matter by
clustering of quantification data in shotgun proteomics. Nat. Commun.
2020, 11 (1), 3234.
(120) Gal, Y.; Ghahramani, Z. Dropout as a bayesian approximation:
Representing model uncertainty in deep learning. Proceedings of
Machine Learning Research 2016, 48, 1050−1059.
(121) Bielow, C.; Aiche, S.; Andreotti, S.; Reinert, K. MSSimulator:
Simulation of mass spectrometry data. J. Proteome Res. 2011, 10 (7),
2922−2929.
(122) Kösters, M.; Leufken, J.; Leidel, S. A. SMITER-A Python
Library for the Simulation of LC-MS/MS Experiments. Genes (Basel)
2021, 12 (3), 396.
(123) Leeming, M. G.; Ang, C.-S.; Nie, S.; Varshney, S.; Williamson,
N. A. Simulation of mass spectrometry-based proteomics data with
Synthedia. Bioinformatics Advances 2023, 3 (1). DOI: 10.1093/
bioadv/vbac096.
(124) Awan, M. G.; Saeed, F. MaSS-Simulator: A Highly
Configurable Simulator for Generating MS/MS Datasets for
Benchmarking of Proteomics Algorithms. Proteomics 2018, 18 (20),
e1800206.
(125) Bik, E. M.; Casadevall, A.; Fang, F. C. The Prevalence of
Inappropriate Image Duplication in Biomedical Research Publica-
tions. mBio 2016, 7 (3), e00809−16.
(126) Bradshaw, M. S.; Payne, S. H. Detecting fabrication in large-
scale molecular omics data. PLoS One 2021, 16 (11), e0260395.
(127) Erratum: Liesz.; et al. DAMP Signaling Is a Key Pathway
Inducing Immune Modulation after Brain Injury. J. Neurosci. 2019, 39
(27), 5419.
(128) Further update on research misconduct investigation, University
of Liverpool News, 17 August, 2020.
(129) Liesz, A.; Dalpke, A.; Mracsko, E.; Roth, S.; Zhou, W.; Yang,
H.; Na, S.-Y.; Akhisaroglu, M.; Fleming, T.; Eigenbrod, T.; Nawroth,
P. P.; Tracey, K. J.; Veltkamp, R. DAMP signaling is a key pathway
inducing immune modulation after brain injury. J. Neurosci. 2015, 35
(2), 583−598.
(130) Diekmann, A. Not the First Digit! Using Benford’s Law to
Detect Fraudulent Scientif ic Data. Journal of Applied Statistics 2007,
34 (3), 321−329.
(131) Zipf, G. K. The psycho-biology of language: An introduction to
dynamic philology; Routledge: 2013.
(132) Deutsch, E. W.; Bandeira, N.; Sharma, V.; Perez-Riverol, Y.;
Carver, J. J.; Kundu, D. J.; García-Seisdedos, D.; Jarnuczak, A. F.;
Hewapathirana, S.; Pullman, B. S.; Wertz, J.; Sun, Z.; Kawano, S.;
Okuda, S.; Watanabe, Y.; Hermjakob, H.; MacLean, B.; MacCoss, M.
J.; Zhu, Y.; Ishihama, Y.; Vizcaíno, J. A. The ProteomeXchange
consortium in 2020: enabling ’big data’ approaches in proteomics.
Nucleic Acids Res. 2019, 48 (D1), D1145−D1152.
(133) Fisher, R. The use of multiple measurements in taxonomic
problems, Annual Eugenics, 7, Part II, 179−188 (1936); also in
Contributions to Mathematical Statistics; John Wiley: NY; 1950.
(134) Dawson, R. J. M., The “unusual episode” data revisited.
Journal of Statistics Education 1995, 3 (3).
(135) Zolg, D. P.; Wilhelm, M.; Schnatbaum, K.; Zerweck, J.;
Knaute, T.; Delanghe, B.; Bailey, D. J.; Gessulat, S.; Ehrlich, H.-C.;
Weininger, M.; Yu, P.; Schlegl, J.; Kramer, K.; Schmidt, T.;
Kusebauch, U.; Deutsch, E. W.; Aebersold, R.; Moritz, R. L.;
Wenschuh, H.; Moehring, T.; Aiche, S.; Huhmer, A.; Reimer, U.;
Kuster, B. Building ProteomeTools based on a complete synthetic
human proteome. Nat. Methods 2017, 14 (3), 259−262.
(136) Rehfeldt, T. G.; Krawczyk, K.; Bøgebjerg, M.; Schwämmle, V.;
Röttger, R. MS2AI: Automated repurposing of public peptide LC-MS
data for machine learning applications. Bioinformatics 2022,
38875.877
(137) Rehfeldt, T. G.; Gabriels, R.; Bouwmeester, R.; Gessulat, S.;
Neely, B. A.; Palmblad, M.; Perez-Riverol, Y.; Schmidt, T.; Vizcaino, J.
A.; Deutsch, E. W. ProteomicsML: An Online Platform for
Community-Curated Datasets and Tutorials for Machine Learning
in Proteomics. J. Proteome Res. 2023, 22, 632−636.

(138) Dua, D.; Graff, C. UCI Machine Learning Repository;
University of California, School of Information and Computer
Science: Irvine, CA, 2017.
(139) Wu, Z.; Ramsundar, B.; Feinberg, E. N.; Gomes, J.; Geniesse,
C.; Pappu, A. S.; Leswing, K.; Pande, V. MoleculeNet: a benchmark
for molecular machine learning. Chem. Sci. 2018, 9 (2), 513−530.
(140) Perez-Riverol, Y.; Bai, J.; Bandla, C.; García-Seisdedos, D.;
Hewapathirana, S.; Kamatchinathan, S.; Kundu, D. J.; Prakash, A.;
Frericks-Zipper, A.; Eisenacher, M.; Walzer, M.; Wang, S.; Brazma, A.;
Vizcaíno, J. A. The PRIDE database resources in 2022: a hub for mass
spectrometry-based proteomics evidences. Nucleic acids research 2022,
50 (D1), D543−D552.
(141) Wang, M.; Wang, J.; Carver, J.; Pullman, B. S.; Cha, S. W.;
Bandeira, N. Assembling the Community-Scale Discoverable Human
Proteome. Cell Syst 2018, 7 (4), 412−421.e5.
(142) Foster, J. M.; Degroeve, S.; Gatto, L.; Visser, M.; Wang, R.;
Griss, J.; Apweiler, R.; Martens, L. A posteriori quality control for the
curation and reuse of public proteomics data. Proteomics 2011, 11
(11), 2182−2194.
(143) Maslow, A. H. The Psychology of Science: A Reconnaissance;
Harper & Row: 1966.

Journal of Proteome Research pubs.acs.org/jpr Perspective

https://doi.org/10.1021/acs.jproteome.2c00711
J. Proteome Res. 2023, 22, 681−696

696

 Recommended by ACS

Executable Network Models of Integrated Multiomics Data
Mukta G. Palshikar, Juilee Thakar, et al.
MARCH 31, 2023
JOURNAL OF PROTEOME RESEARCH READ 

MSstats Version 4.0: Statistical Analyses of Quantitative
Mass Spectrometry-Based Proteomic Experiments with
Chromatography-Based Quantification at Scale
Devon Kohler, Olga Vitek, et al.
APRIL 05, 2023
JOURNAL OF PROTEOME RESEARCH READ 

Interactomes of Glycogen Synthase Kinase-3 Isoforms
Kevin W. Cormier, James R. Woodgett, et al.
FEBRUARY 13, 2023
JOURNAL OF PROTEOME RESEARCH READ 

Quality Control for the Target Decoy Approach for Peptide
Identification
Elke Debrie, Lieven Clement, et al.
JANUARY 17, 2023
JOURNAL OF PROTEOME RESEARCH READ 

Get More Suggestions >

https://doi.org/10.1038/s41467-020-17037-3
https://doi.org/10.1038/s41467-020-17037-3
https://doi.org/10.1021/pr200155f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/pr200155f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.3390/genes12030396
https://doi.org/10.3390/genes12030396
https://doi.org/10.1093/bioadv/vbac096
https://doi.org/10.1093/bioadv/vbac096
https://doi.org/10.1093/bioadv/vbac096?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1093/bioadv/vbac096?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1002/pmic.201800206
https://doi.org/10.1002/pmic.201800206
https://doi.org/10.1002/pmic.201800206
https://doi.org/10.1128/mBio.00809-16
https://doi.org/10.1128/mBio.00809-16
https://doi.org/10.1128/mBio.00809-16
https://doi.org/10.1371/journal.pone.0260395
https://doi.org/10.1371/journal.pone.0260395
https://doi.org/10.1523/jneurosci.0878-19.2019
https://doi.org/10.1523/jneurosci.0878-19.2019
https://doi.org/10.1523/JNEUROSCI.2439-14.2015
https://doi.org/10.1523/JNEUROSCI.2439-14.2015
https://doi.org/10.1080/02664760601004940
https://doi.org/10.1080/02664760601004940
https://doi.org/10.1093/nar/gkz984
https://doi.org/10.1093/nar/gkz984
https://doi.org/10.1038/nmeth.4153
https://doi.org/10.1038/nmeth.4153
https://doi.org/10.1093/bioinformatics/btab701
https://doi.org/10.1093/bioinformatics/btab701
https://doi.org/10.1021/acs.jproteome.2c00629?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.2c00629?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jproteome.2c00629?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1039/C7SC02664A
https://doi.org/10.1093/nar/gkab1038
https://doi.org/10.1093/nar/gkab1038
https://doi.org/10.1016/j.cels.2018.08.004
https://doi.org/10.1016/j.cels.2018.08.004
https://doi.org/10.1002/pmic.201000602
https://doi.org/10.1002/pmic.201000602
pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.2c00711?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00730?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00834?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00825?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
http://pubs.acs.org/doi/10.1021/acs.jproteome.2c00423?utm_campaign=RRCC_jprobs&utm_source=RRCC&utm_medium=pdf_stamp&originated=1682983508&referrer_DOI=10.1021%2Facs.jproteome.2c00711
https://preferences.acs.org/ai_alert?follow=1

