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Abstract 14 

Motivation: With a regulatory impact on numerous biological processes, protein 15 

phosphorylation is one of the most studied post-translational modifications. Effective 16 

computational methods that provide a sequence-based prediction of phosphorylation sites 17 

are desirable to guide functional experiments. Currently, the most successful methods train 18 

neural networks on amino acid composition representations. However, recently proposed 19 

protein language models provide enriched sequence representations that contain higher-20 

level pattern information on which more performant phosphorylation site predictions may be 21 

based. 22 

Results: We explored the applicability of protein language models to general phosphorylation 23 

site prediction. We found that training prediction models on top of protein language models 24 

yield a relative improvement of up to 68.4% in terms of area under the precision-recall curve 25 

over the state-of-the-art predictors. Model interpretation and model transferability 26 

experiments reveal that protease-specific cleavage patterns give rise to a protease-specific 27 

training bias. This can result in an overly optimistic estimation of phosphorylation site 28 

prediction performance, an important caveat in the application of advanced machine learning 29 

approaches to protein modification prediction based on proteomics data. We show that 30 

improving data quality by negative sample filtering using experimental metadata can mitigate 31 

this problem. 32 

Availability and implementation: The PhosphoLingo tool, with trained models, code, models, 33 

datasets, and predictions are available at https://github.com/jasperzuallaert/PhosphoLingo. 34 

Contact: sven.degroeve@vib-ugent.be 35 

Supplementary information: Supplementary materials are available at bioRxiv.   36 
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1. Introduction 37 

A post-translational modification (PTM) is a covalent and generally enzymatic modification of 38 

a protein following protein biosynthesis. The most frequently studied PTM is 39 

phosphorylation1. During phosphorylation, phosphate groups are transferred by enzymes 40 

from adenosine triphosphate to specific residues in a protein sequence, with serine, 41 

threonine or tyrosine residues being the most common targets. Kinases and phosphatases 42 

are involved in virtually all biological processes by targeting specific sites for modification.  43 

The substrate preferences of kinases depend on the structural and physicochemical 44 

properties of the target substrate. Phosphorylation sites (from here onward referred to as P-45 

sites) are most often found at accessible and disordered regions of a protein2. In addition, the 46 

amino acid sequence and structure at the P-site are important, with for example proline-47 

directed kinases predominantly targeting ST residues with a neighbouring proline 48 

downstream3. 49 

Proteome-wide analysis of protein phosphorylation is currently accomplished through liquid 50 

chromatography-mass spectrometry (LC-MS) experiments4–6. Herein, proteins are digested 51 

into peptides with a protease that cleaves the sequence at specific sites. Typically, trypsin is 52 

used, which cleaves proteins after arginine and lysine residues. This results in a positive 53 

charge at the peptide C-terminal side-chain, which is advantageous for MS and MS/MS 54 

analysis. Alternative proteases that cleave at other residues4 are applied to increase the 55 

proportion of a proteome that can be analysed using LC-MS, which has limitations with regard 56 

to peptide length, charge states, and other proteotypic characteristics. 57 

High-throughput LC-MS comes with limitations, as it requires expensive and laborious analysis 58 

processes using expensive specialized equipment, and it does not at all guarantee the 59 

detection of all P-sites in a proteome. In fact, sample preparation and LC-MS workflows 60 

introduce biases in terms of which P-sites are detected, which are poorly characterized. 61 

Sensitive and accurate in-silico P-site predictions complement LC-MS analysis, helping in 62 

down-stream MS data interpretation and further guide in-vitro and in-vivo experiments7. 63 

Most P-site prediction approaches use neighbouring sequence data to train machine learning 64 

models to predict which serine (S), threonine (T) or tyrosine (Y) residues are likely to be 65 

phosphorylated7–26. In addition to general P-site prediction, some approaches also include 66 

kinase family-specific or kinase-specific predictions8,11,12,14,16,17,20–22,24. Over the last two 67 

decades, different machine learning algorithms have been applied, such as random 68 

forests9,13,23, support vector machines8,15,23, and gradient boosting trees8. These classical 69 

approaches require numerical feature vector representations engineered from the amino 70 

acids surrounding a candidate P-site, which we will refer to as the receptive field. Manually 71 

crafted input features for phosphorylation prediction models include physicochemical 72 

properties13,15,20,25, information theory features15,17,28, as well as additional information such 73 

as structural features (e.g., secondary structure)9,15,23, functional features9,23, and protein-74 

protein interactions16,24.  75 

Recently, deep learning based model architectures such as convolutional neural networks 76 

(CNNs)12,16–19,21,25 and long short-term memory networks (LSTMs)19,25 have been shown to 77 
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advance P-site prediction. These models learn low-level feature representations from the 78 

sequence input data during training, alleviating the need for preliminary manual feature 79 

engineering. 80 

In recent years, the success of language models in the natural language processing domain27 81 

have inspired the advent of protein language models (PLMs). PLMs are pre-trained models 82 

that yield enriched, structure-aware sequence representations, instead of merely encoding 83 

the amino acid composition of a receptive field in a protein28–34. They have demonstrated 84 

value in various tasks, such as few-shot contact map prediction35, protein structure 85 

prediction33, zero-shot mutation impact prediction36, or phylogenetic relationship 86 

modelling37.  87 

In this paper, we investigate whether the enhanced information content of different PLM 88 

representations contributes to the prediction of P-sites and extensively compare the resulting 89 

prediction models to the standard one-hot encoding-based representations, as well as to 90 

publicly available state-of-the-art tools. Our results show that PLM representations contain 91 

information that is highly relevant for P-site prediction, thereby substantially increasing 92 

prediction performance. Furthermore, we applied model interpretation methods to visualize 93 

what information was considered relevant for the prediction of P-sites. Model interpretation 94 

reveals that these, in addition to local and global sequence patterns, also exploit specific LC-95 

MS protease patterns that can result in overly optimistic prediction performance estimations 96 

for de novo phosphorylation site prediction. To restrain this prediction bias, we suggest a 97 

negative sample filtering method, which we validate on phosphorylation data from individual 98 

experiments with different proteases.   99 

2. Methods 100 

All proposed predictors consist of two main components: a representation of the receptive 101 

field in the protein and a neural network that takes this representation as input. This section 102 

introduces the considered representations, the neural network models, the benchmark 103 

methods, and the methods to interpret the predictions computed by these models. 104 

2.1 Protein representations 105 

As a baseline, the receptive field was represented as a one-hot encoding of the amino acids, 106 

i.e., no PLM was used. Then, multiple PLMs were considered in this study: ESM-1small and ESM-107 

1b30, ESM-233, ProtT5-XL-U5031, CARP-640M38, Ankh-base34, and Ankh-large34 (see Suppl. 108 

Table 1 for more details).  109 

2.2 Neural network architecture 110 

To evaluate the different protein representations for phosphorylation prediction, we 111 

contructed a CNN architecture on top of the PLMs, which we then trained without fine-tuning 112 

the PLM further. Different approaches where the representations were further fine-tuned 113 

were considered, but ultimately discarded due to risks of overfitting on the huge models, as 114 

also suggested in literature37. An extensive hyperparameter search was done for each of the 115 

initial language models (ESM-1small, ESM-1b, ProtT5-XL-U50), from which we then constructed 116 

a final hyperparameter setup that is used throughout all experiments. We chose to use  a 117 
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single setup that works well for all datasets and representations to increase the robustness 118 

and  reproducibility of our approach. Details are listed in Suppl. Table 2. 119 

As schematically depicted in Figure 1, the CNN contains a series of convolutional blocks, 120 

with each convolutional block consisting of a convolutional layer followed by a 121 

regularization layer (either dropout or batch normalization), and finally a max pooling layer. 122 

The resulting activations are flattened, after which a fully-connected, a regularization layer, 123 

and an output layer are added. Furthermore, all convolutional and fully-connected layers 124 

are followed by a rectified linear unit (ReLU), and a sigmoid is added at the end to provide 125 

probabilities in output. The default one-hot encoded and PLM-based setups are 126 

schematically depicted in Suppl. Figs. 1-2.  127 

 128 

Figure 1. The CNN blueprint, highlighting the different components that are used throughout this study. 129 

2.3 Benchmark methods 130 

To evaluate the performance of the PLM-based predictors, we compare them to a one-hot 131 

encoded baseline, and to three state-of-the-art predictors: MusiteDeep17, DeepPhos18, and 132 

DeepPSP12. Code from their respective GitHub repositories was used to train their predictors 133 

from scratch on different data sources. 134 

MusiteDeep implements two prediction modules: a CNN module enhanced with attention 135 

layers, and a capsule network module with dynamic routing, both built on a one-hot 136 

encoding with a receptive field of size 33 centered around the candidate P-site. Predicted 137 

probabilities for both modules are averaged to obtain the final P-site predictions.  138 

In DeepPhos, three different densely connected CNN blocks are used with one-hot encoded 139 

inputs with receptive fields of size 15, 31 and 51, where each block consists of convolutional 140 

and intra-block concatenation layers. Blocks are combined using an inter-block 141 

concatenation layer, followed by a final fully connected layer. 142 

Finally, DeepPSP uses two modules, each consisting of a convolutional block, a squeeze-and-143 

excitation network, a bidirectional LSTM layer, and fully connected layers. The local module 144 

takes a one-hot encoding with a receptive field of length 51 in input, centered around the 145 

candidate P-site, while the global module uses a receptive field of length 2000 in input. 146 

Outputs of both modules are combined using a final fully connected layer. 147 

2.4 Feature importance visualization 148 

The fitted models are interpreted by applying SHapley Additive exPlanations39 (SHAP) to 149 

compute importance scores for individual residues in the receptive field that estimate their 150 
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contribution to the predicted probability of a candidate P-site. For the visualization of all 151 

trained models we calculated the importance scores on the test set of the same dataset. 152 

Importance scores are calculated using the DeepLiftSHAP implementation in the Captum40 153 

software package. SHAP values are computed relative to a reference baseline. For one-hot 154 

encoded models, an all-zero reference is used. For the PLM based representations, an average 155 

embedding baseline is constructed for each protein fragment. SHAP values are normalized on 156 

a dataset level, such that the absolute values of all importance scores in one sequence add 157 

up to 100 on average.  158 

The importance scores, also referred to as saliency maps, are computed on an individual base 159 

per candidate P-site. These maps are then aggregated into an average saliency map that we 160 

visualize as a sequence logo centered around the candidate P-site, cropped to contain ten 161 

positions both up- and downstream. 162 

3. Experimental Setup 163 

3.1 Data 164 

3.1.1 Data acquisition 165 

Prediction models were trained and evaluated on datasets that were compiled via three 166 

different setups. Firstly, we used the multi-source data that was employed in previous P-site 167 

prediction research, which we downloaded from the DeepPSP12 GitHub repository. This data 168 

was compiled from UniProtKB/SwissProt, dbPTM41, Phospho.ELM42, and PhosphoSitePlus43, 169 

with negative annotations defined as all remaining STY residues in the proteins with positive 170 

annotations. The multi-source data is also split up in separate ST and Y datasets. An important 171 

caveat with this standardized way of assembling phosphorylation datasets is that the negative 172 

set also contains STY residues for which phosphorylation can never be observed due to 173 

limitations in the data acquisition setups of MS/MS analysis. 174 

Secondly, Scop3P P-site datasets were obtained from our in-house and publicly accessible 175 

Scop3P2,44 database, in which P-sites were annotated from large-scale reprocessing of 176 

proteomics experiments45. All annotations were matched with protein sequences from 177 

UniProtKB/SwissProt (version 2021-11), discarding proteins when one of its annotations did 178 

not match with the sequence data. Non-P-site annotations were defined as all remaining STY 179 

residues in the proteins in the reprocessed experiments for which no evidence was found in 180 

PhosphoSitePlus or dbPTM. 181 

Thirdly, single-protease datasets were obtained from individual experiments that involved 182 

different proteases4. In addition to individual datasets for each protease, we also compiled a 183 

combined dataset with annotations from the individual sets, which we labelled as multi-184 

protease. Only ST annotations were considered, as Y annotations were too few. As before, 185 

negative labels were first defined as all ST residues in the annotated proteins that were not 186 

positively labelled in any of the single-protease experiments, Scop3P, or multi-source 187 

datasets. 188 

A comprehensive overview of the datasets is given in Table 1Error! Reference source not 189 

found.. 190 
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 191 

name source residues # of proteins # of pos # of neg pos:neg ratio 
multi-source-ST-NPF Guo2112 ST 13,599 184,375 981,620 1:5.3 
multi-source-Y-NPF  Y 9,710 32,213 149,501  1:4.6 
name source residues # of proteins # of pos # of neg pos:neg ratio 
Scop3P-ST-NPF Ramasamy222 ST 8,754 54,395 681,975 1:12.5 
Scop3P-Y-NPF  Y 8,754 4,884 125,306 1:25.7 
name source protease # of proteins # of pos # of neg pos:neg ratio 
AspN-NPF Giansanti154 AspN 1,816 3,987 171,003 1:42.9 
Chymotrypsin-NPF (ST only) Chymotrypsin 1,739 3,476 167,754 1:48.3 
GluC-NPF  GluC 1,899 4,280 184,426 1:43.1 
LysC-NPF  LysC 1,718 4,133 166,669 1:40.3 
Trypsin-NPF  Trypsin 3,255 9,096 298,628 1:32.8 
multi-protease-NPF  multi-protease 4,728 18,028 424,527 1:23.5 

 192 

Table 1. An overview of datasets used in this study. Following the default negative selection criterions, no peptide 193 
filtering is applied yet, hence datasets are labelled with NPF here. 194 

3.1.2 Peptide-filtering 195 

As mentioned in Section 3.1.1, negative annotations can then contain sites for which 196 

phosphorylation can never be observed with MS/MS experiments (e.g., sites in long stretches 197 

without peptide cleavage sites). To provide a higher quality dataset for both model training 198 

and evaluation, we propose an extra negative sample filtering step for datasets where 199 

experimental metadata is available. The filtering step rules out non-detectable sites from 200 

both training and evaluation by only including residues that occurred in matched peptide 201 

spectra (PSMs) in Scop3P. We will refer to this method as peptide filtering (PF) from here on, 202 

whereas we will label to the non-filtered datasets as non-peptide filtered (NPF). An overview 203 

of peptide-filtered datasets is given in Table 2. Note that contrary to the non-peptide-filtered 204 

single- and multi-protease datasets, proteins without positive annotations can be present in 205 

this data, as they might have been matched with in the PSMs, hence increasing the number 206 

of proteins. 207 

name source residues # of proteins # of pos # of neg pos:neg ratio 
Scop3P -ST-PF Ramasamy222 ST 8,754 54,395 326,584 1:6.0 
Scop3P -ST-PF  Y 8,754 4,884 60,468 1:12.4 
name source protease # of proteins # of pos # of neg pos:neg ratio 
AspN-PF Giansanti154 AspN 2,182 3,987 5,475 1:1.4 
Chymotrypsin-PF (ST only) Chymotrypsin 2,097 3,476 5,199 1:1.5 
GluC-PF  GluC 2,374 4,280 6,280 1:1.5 
LysC-PF  LysC 2,389 4,133 5,106 1:1.2 
Trypsin-PF  Trypsin 3,923 9,096 9,479 1:1.0 
multi-protease-PF  multi-protease 5,867 18,028 25,341 1:1.4 

 208 

Table 2. An overview of peptide-filtered datasets used in this study. Note that the filtering step was not done for 209 
the multi-source data due to the lack of metadata. 210 

3.1.3 Dataset selection 211 

Datasets were selected and split for three main purposes in this manuscript: (a) model 212 

performance evaluation and comparison, (b) feature importance visualization, and (c) model 213 

transfer evaluation. 214 

(a) The comparison between one-hot encoded models, PLM-based models and existing 215 

predictors is done on the multi-source datasets, the Scop3P datasets (both NPF and PF), and 216 

the non-filtered multi-protease dataset. As PSMs in the single-protease datasets are obtained 217 
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from individual experiments, their coverage is lower than in the multi-experiment Scop3P 218 

dataset, and thus, the number of non-P-site annotations is reduced drastically when applying 219 

peptide-filtering. This results in a smaller and much more balanced dataset (Table 2), which 220 

impacts model training. Therefore, we did not consider these NPF datasets for comparison. 221 

(b) The visualization of important features is done by first training predictors on the datasets 222 

used for evaluation, and then calculating SHAP values on a fixed evaluation set. For models 223 

trained on ST data, we picked the test split of the multi-protease-PF (1,775 P-sites, 2,331 non-224 

P-sites) for this purpose, given improved data quality via peptide filtering, while keeping 225 

computational costs low at the same time. For models trained on Y data, we calculated SHAP 226 

values using the Scop3P-Y-PF test set. Note that differences with experiments using different 227 

test sets for generating SHAP values were negligible. 228 

(c) The evaluation of model transferability was done on ST data only, to compare the Scop3P-229 

ST-PF to the Scop3P-ST-NPF dataset, the multi-protease-NPF/PF dataset, and the single-230 

protease-NPF/PF datasets. Evaluation was done on the NPF versions of the single- and multi-231 

protease datasets. 232 

3.1.4 Dataset splits 233 

For the multi-source data, the original data split between training and test was kept12, and 234 

training data was divided into an actual training part and a validation part. This is done for ST 235 

(Y) by randomly selecting 11,150 (7,999) proteins in the training set for training, and 738 (743) 236 

of all proteins for validation, while keeping the remaining 1,361 (968) proteins for testing. The 237 

Scop3P, single- and multi-protease datasets were randomly split by dividing proteins over 238 

training, validation and test sets via a 85/5/10 distribution. Finally, for the model transfer 239 

analysis, a cross-validation scheme was used, where each dataset set was split up into ten 240 

folds. Then, for each fold, the proteins included in the validation set were removed from the 241 

training set, of which 1/10th was used for early stopping. These schemes are illustrated in 242 

Suppl. Fig. 3a and 3c. All datasets are made available via GitHub, along with their 243 

training/validation/test splits. 244 

3.2 Proteins are split into fragments 245 

Due to computational complexity of transformer-based PLMs, all proteins were split into 246 

fragments of at most 512 amino acids before generating the representations. Fragments of 247 

one protein can be divided over multiple batches, but will always belong to the same training, 248 

validation, or test set to avoid data leakage.  249 

Furthermore, as we wanted to avoid that a candidate P-site lies at the border between two 250 

fragments, thus implying that it can only use information from upstream or downstream 251 

residues, we allowed for overlapping fragments. Every 256 residues, a new fragment starts, 252 

and P-sites are coupled to the fragment with the closest centre. The full batch split setup is 253 

illustrated in Suppl. Fig. 4. 254 

For increased efficiency, we reduced the number of times the PLMs were used to generate 255 

representations. Per epoch, one protein fragment was forwarded through the PLM only once, 256 

even if it holds multiple P-site candidates. As a result, optimization was performed for a 257 

varying number of positive and negative P-sites per batch.  258 
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3.3 Hardware and software used 259 

Programmatical frameworks used include PyTorch and PyTorch Lightning for model 260 

development and training and evaluation logic, WandB46 for experiment logging, and 261 

Captum40 for calculating the SHAP values. Sequence logos were created using LogoMaker47. 262 

4. Results 263 

4.1 PLMs substantially improves P-site prediction performance 264 

Figure 2 shows the prediction performance for the CNNs that were trained on top of different 265 

amino acid representations, as well as for the state-of-the-art predictors. To compare 266 

between predictors, we mainly looked at the area under the precision-recall curve (AUPRC) 267 

as a performance measure in order to produce meaningful results on the imbalanced 268 

datasets. More detailed results including other metrics are shown in Suppl. Table 3. 269 

Remarkably, in the evaluation on six out of the seven datasets that were considered, the 270 

ProtT5-XL-U50 language model performed best, with improvements of 12.4% to 50.1% over 271 

the one-hot encoded CNN in terms of AUPRC, and improvements of 2.0% to 4.6% over the 272 

next best PLM-based model. Only on multi-source-Y-NPF ESM-1b performed roughly as good 273 

(+0.2%). Furthermore, the ProtT5-XL-U50 outperformed the state-of-the-art by 6.5% to 68.4% 274 

on all datasets considered. 275 

To put the prediction performance gains into perspective, we looked at the precision of the 276 

predictor that correctly classifies four out of five true P-sites (i.e., when recall equals 0.8). 277 

Compared to the best existing model (DeepPSP)  the precision for the ProtT5-XL-U50 models 278 

increases by up to 9.6%, from 0.727 to 0.797 on the Scop3P-ST-NPF dataset, or by up to 6.8%, 279 

from 0.792 to 0.846 when only considering observable P-site candidates in the Scop3P-ST-PF 280 

dataset. On both Scop3P-Y datasets, increase of up to 94.4% is observed, from 0.304 to 0.523 281 

(NPF) and 0.305 to 0.593 (PF) respectively. 282 

Furthermore, when comparing the performance on the Scop3P-ST-NPF and -PF datasets, the 283 

AUROC, which is more robust to dataset imbalance than the AUPRC, drops consistently for all 284 

representations by 1.6% to 3.1% when applying peptide filtering. For Scop3P-Y-NPF and -PF 285 

datasets, a drop in AUROC of 2.4% to 8.3% occurs. This suggests an increased level of 286 

complexity for the prediction task, as a subset of easily predictable targets is no longer 287 

considered in the evaluation. Further rationale for utilizing peptide filtering is discussed in 288 

Section 4.2.    289 

     290 
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  291 

Figure 2. Precision-recall curves for the ProtT5-XL-U50, ESM-2650M and Ankh_large PLMs, a one-hot encoding, 292 
and existing predictors. Average curves over 10 runs (per dataset) are depicted. In the legend, the mean AUPRC 293 
is reported.  294 

4.2 Feature importance analysis 295 

Visualizations of P-site predictors show discriminative features from different kinases 296 

We computed SHAP values to estimate the average importance of individual residues in the 297 

proximity of candidate P-sites. Results for models trained on the Scop3P datasets using the 298 

ProtT5-XL-U50 PLM are visualized in Figure 3, and models using a one-hot encoding are 299 

visualized in Suppl. Fig. 6. 300 

For the ST models, the most notable residue is proline (P) at position P+1, which is known to 301 

be a strong signal towards a P-site prediction, as several kinases in the CMGC group are known 302 

to be proline-directed kinases3, such as those belonging to the MAPK and CDK kinase families 303 

(Suppl. Fig. 5a-b). Other favourable residues in the ST visualization are especially highlighted 304 

in the one-hot encoded visualizations in Suppl. Fig. 6), with arginine (R) at positions P-3 and 305 

P-2, as often seen for kinases in the PKa family (Suppl. Fig. 5c), and aspartic (D) and glutamic 306 

acid (E) on the first positions downstream of the candidate site, as often seen for kinases in 307 

the CK2 family (Suppl. Fig. 5d).  308 

ProtT5-XL-U50, trained on Scop3P-ST-NPF data ProtT5-XL-U50, trained on Scop3P-Y-NPF data 

 
 

ProtT5-XL-U50, trained on Scop3P-ST-PF data ProtT5-XL-U50, trained on Scop3P-Y-PF data 
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Figure 3. Average importance scores per position calculated using DeepLiftSHAP, for the ProtT5-XL-U50 309 
prediction model setup, on the Scop3P datasets. Visualizations are cropped to show the twenty positions 310 
surrounding the candidate P-site. 311 

CNNs trained for P-site prediction disfavour inaccessible P-sites 312 

The average importance scores in Figure 3 and Suppl. Fig. 6 indicate that the models disfavour 313 

hydrophobic amino acids in the proximity of the candidate P-site. On average, for the one-314 

hot encoded model trained on Scop3P-ST-PF data, W/C/Y/F/M are considered least 315 

favourable when in the proximity of a P-site, while for the PLM, this is the case for Y/C/F/W/M. 316 

As P-sites need to be reached by kinases for phosphorylation to take place, the majority of P-317 

sites are found at the solvent exposed area of the protein (more than 80%, while less than 2% 318 

are located in buried regions)2. Hydrophobic (A/F/I/L/M/V/Y/W) and C residues48 are more 319 

abundant in buried regions48, suggesting that the models implicitly learn that P-sites occur 320 

less frequently in buried regions.  321 

This is confirmed by considering prediction distributions for candidate P-sites in buried, 322 

interface and accessible regions. Alphafold49,50 was used to obtain protein structures for all 323 

proteins in the dataset that were shorter than 2700 amino acids. Next, DSSP51 was used to 324 

calculate the solvent accessibility and secondary structure for all candidate P-sites. Figure 4 325 

shows the distribution of predicted probabilities for positively labelled P-sites in the 326 

evaluation set. Predicted scores of P-sites located in buried regions tend to be lower than 327 

those in interface regions, and much lower than those in accessible regions. Similar 328 

conclusions can be drawn from secondary structure analysis, where P-sites in random coil 329 

regions generally score higher than those in helices and sheets, which is in line with statistical 330 

analysis of phosphorylation data2.  331 

      332 

Figure 4. Distribution of predicted probabilities for positively labelled P-sites in the Scop3P-ST-PF test set, per 333 
model, divided by surface accessibility and secondary structure. 334 
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Datasets from experiments with individual proteases indicate biased learning 335 

Most notably, Figure 3 shows a high sensitivity to R and K residues in the proximity of the 336 

candidate P-sites. These residues correspond to tryptic cleavage sites. With trypsin being the 337 

most prevalent protease in bottom-up proteomics, this observation strongly points to a 338 

protease-related bias in phosphorylation datasets. We hypothesized that the models indeed 339 

learn an enriched presence of tryptic cleavage sites near P-sites. 340 

To test this hypothesis, we performed experiments on the single-protease datasets, where 341 

we trained predictors on data compiled from experiments that applied different proteases. 342 

Figure 5 shows that models trained on the single-protease datasets demonstrate consistent 343 

enrichment of their corresponding cleavage sites. The amino acids with highest average 344 

importance within the twenty positions surrounding the P-sites are D for AspN, F for 345 

chymotrypsin, E for GluC, K for LysC, and R for trypsin, consistent with the most frequent 346 

cleavage sites of the respective proteases. Similar results for one-hot encoded models are 347 

shown in Suppl. Fig. 7. 348 

Additionally, the visualizations in Figure 3 suggest a decrease of the bias levels when applying 349 

peptide filtering. We compare the average importance score of R and K residues in the 350 

proximity of the P-site (disregarding the 7 central amino acids containing other strong signals) 351 

to the average importance of the most important residue, P at P+1. For the Scop3P-ST dataset, 352 

we observe that the average scores for R and K are 79.9% and 100.3% of the average score 353 

for P at P+1, and that this drops to 40.6% and 49.4% respectively when applying peptide 354 

filtering. This indicates that the models are less inclined to learn the protease-induced bias, 355 

which we highlight further in Section 4.3.  356 
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ProtT5-XL-U50, trained on single-protease AspN-
NPF data 

ProtT5-XL-U50, trained on single-protease 
chymotrypsin-NPF data 

  
ProtT5-XL-U50, trained on single-protease GluC-NPF 

data 
ProtT5-XL-U50, trained on single-protease LysC-NPF 

data 

  
ProtT5-XL-U50, trained on single-protease trypsin-

NPF data 
ProtT5-XL-U50, trained on multi-protease-NPF data 

  
Figure 5. Average importance scores per position, calculated using DeepLiftSHAP, for the ProtT5-XL-U50 357 
prediction model setup, on the single- and multi-protease datasets. Visualizations are cropped to show the 358 
twenty positions surrounding the candidate P-site. 359 

4.3 Model transferability analysis 360 

To further investigate the observed protease-specific bias, we evaluated predictors that were 361 

trained on different data sources, across different test sets. Concise results for the PLM-based 362 

models are shown in Figure 6, with additional results in Suppl. Fig. 8. 363 

ProtT5-XL-U50 models trained on the Scop3P-ST-NPF dataset are consistently outperformed 364 

by the respective single-protease trained models with a relative AUPRC increase of 15.9% to 365 

21.0%, for the AspN, chymotrypsin, and GluC data. For LysC data, where cleavage occurred 366 

on lysine residues (partly sharing the bias with the trypsin-based Scop3P data), the 367 

performance difference was smaller (7.3%). For trypsin data, the models trained on Scop3P 368 

data almost reached the same level (0.5%), as the former is exclusively constructed from 369 

experiments using trypsin digestion. 370 

Additionally, we compared the models trained on the Scop3P-ST-NPF to models trained on 371 

Scop3P-ST-PF data, to investigate the effect of the endeavoured quality improvement in the 372 

filtered data. We observe that the trypsin bias learned by the models is reduced, as 373 
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performance improves on AspN, chymotrypsin, and GluC data by 2.1% to 7.9%. 374 

Simultaneously, the performance drops for the LysC and trypsin datasets by 6.1% and 4.8% 375 

respectively, as part of the - in this case - beneficial bias is reduced. 376 

Models trained on multi-protease-NPF data further improve on the Scop3P-ST-PF-based 377 

models by 3.2% to 15.3%. Compared to the models trained on single-protease data, the 378 

difference in performance is more limited, between -4.4% and +3.9%. Overall, this suggests 379 

that models trained on data obtained from multiple proteases generalize better. Extra model 380 

transfer results can be found in Suppl. Fig. 8, where we can also see that models trained on 381 

the multi-source data generalize worse than the Scop3P models.  382 

 383 

Figure 6. Evaluation on non-peptide-filtered single-protease and multi-protease datasets (x-axis), when training 384 
on a different data source (legend). Predictions are computed from ten folds of the evaluation set, where training 385 
is performed on either Scop3P-ST data, multi-protease data, or on the dataset matching the data source on the 386 
x-axis. Note that proteins present in the test fold are always omitted from training. The average AUPRC over 387 
these ten test folds is shown, for ProtT5-XL-U50 conv models.  388 

5. Discussion 389 

In this study, we examined the potential of fine-tuning PLMs to predict phosphorylation 390 

events from protein sequence. We propose a novel approach that utilizes CNNs on top of 391 

protein representations generated by the language models. Our results show a significant 392 

improvement in prediction performance compared to current state-of-the-art neural network 393 

architectures that rely on one-hot encoded representations. This improvement was observed 394 

across various datasets obtained from diverse sources, indicating that PLMs offer informative 395 

protein sequence representations that enhance phosphorylation prediction accuracy.   396 

Upon inspection of feature importance, we found evidence supporting known kinase family-397 

specific residue patterns, such as proline at P+1, arginine at P-3 and P-2, and aspartic and 398 

glutamic acid at the first positions downstream of the candidate P-site. These findings suggest 399 

that the proposed models recognize the characteristic features of an ‘average’ P-site across 400 

all kinases. However, it also indicates that rare kinases with unique motifs might not be 401 

effectively captured during training, thereby limiting the efficacy of a general phosphorylation 402 

prediction model. 403 

Further analysis incorporating protein 3-D structure revealed that predicted probabilities for 404 

P-sites were generally higher within accessible regions than within buried regions, and higher 405 
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within random coil regions compared to those within alpha helices or beta sheets. Our 406 

analysis also reveals a strong preference of the prediction models towards amino acids that 407 

are targeted by proteases for cleavage, particularly in the vicinity of candidate P-sites. We 408 

attribute this pattern to the inherent biases present in bottom-up LC-MS/MS proteomics 409 

experiments, rather than being a phosphorylation-specific pattern. The bias arises from at 410 

least two sources.  411 

Firstly, in the case of trypsin-based digestion, candidate P-sites in long stretches of protein 412 

sequence lacking lysine or arginine residues cannot be detected in LC-MS/MS experiments. 413 

For datasets compiled without applying our proposed peptide filtering, all candidates in these 414 

stretches will be labelled as non-P-sites. Secondly, a higher frequency of missed cleavages 415 

near P-sites4,6 results in more arginine- and lysine-enriched peptides that would typically be 416 

cleaved into fragments that are too short for MS/MS analysis were they not phosphorylated. 417 

A prediction model can exploit these technical biases by utilizing the lack of arginine and lysine 418 

around non-P-sites to steer its prediction to a lower probability, and by increasing the P-site 419 

probability for occurrences within arginine- and lysine-rich regions. Thus, general 420 

phosphorylation prediction models do not just learn P-site fingerprints to predict the 421 

likeliness of phosphorylation, but also the likeliness of detection with current experimental 422 

setups. 423 

The technical bias is further evidenced by the poor generalization performance of prediction 424 

models when transferred between datasets compiled from experiments using different 425 

proteases for digestion. Models trained on datasets obtained using one protease show 426 

reduced accuracy when evaluated on datasets obtained using a different protease.  427 

To partially address this bias, we investigated a peptide filtering method to improve data 428 

quality by removing negatively labelled data points that were not present in the observed 429 

peptides during MS/MS analysis. In addition to model evaluation on data with fewer false 430 

negative data points, models trained on filtered data generalized better when transferring to 431 

phosphorylation datasets derived using different proteases for digestion. However, the 432 

proposed filtering method does not resolve all potential sources of dataset bias, such as the 433 

increased frequency of missed cleavages near P-sites, which require further investigation in 434 

future research. 435 

As a final remark, the application for which P-site predictions are done steers the choice of 436 

training data. When doing de novo predictions, protease bias is detrimental, and the training 437 

data should be as heterogeneous as possible. However, when predicting detectable 438 

phosphorylation for LC-MS/MS data interpretation purposes, a model trained on data 439 

acquired using the same protease should be used. 440 

We have released the PhosphoLingo tool, which contains the most precise PLM-based P-site 441 

predictors in this study on our GitHub repository 442 

(https://github.com/jasperzuallaert/PhosphoLingo), trained on the Scop3P-ST-PF and 443 

Scop3P-Y-PF datasets. We also provide a user-friendly framework to replicate the results 444 

reported in this manuscript, and to train and evaluate models on additional phosphorylation 445 
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datasets or other post-translational modifications. Additionally, we furnish predictions for all 446 

S, T and Y residues in the human proteome.  447 
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