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Abstract

Round-robin sports timetables are commonly generated in two phases: determining when teams play home and away, and when each
team meets every other team. Depending on the phase solved first, the decomposition is known as first-break-then-schedule or first-
schedule-then-break. This articles shows how Benders’ decomposition regulating the home-away status of games in combination
with variable neighbourhood search regulating the order of opponents explores the world between first-break-then-schedule and
first-schedule-then-break. We use this framework to generate several new best solutions for ITC2021.
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1. Introduction

Sports timetables define who plays whom, when, and where.
A special type of sports timetables are so-called k round-robin
(kRR) timetables in which every team meets every other team
exactly k times. In this paper, we focus on the popular double
round-robin (2RR) format, where each team faces every other
team twice: once as the home team, and once as the away team.
More specifically, we are given a set of n teams T and set of
time slots S . The 2RR timetable to be generated must be com-
pact and the number of teams is assumed to be even, which
implies that each team plays precisely one game per time slot
(i.e. |S | = 2(n− 1)). Apart from the basic requirement that each
team plays at most one game at a time and that all games are
scheduled, we are given a constraint set C, which is partitioned
into hard (Chard) and soft (Csoft) constraints. Hard constraints
represent fundamental properties of the timetable that can never
be violated, whereas soft constraints represent preferences that
should be satisfied whenever possible. Real-life competitions
usually feature hundreds of such constraints. The objective is
to minimize the overall (weighted) sum of deviations from vio-
lated soft constraints while respecting all hard constraints.

Most contributions in the literature cope with these con-
straints by decomposing the timetabling problem into the fol-
lowing two subproblems, solved in either order, where the so-
lution to one subproblem is used to constrain the other such that
both solutions are compatible with each other and that they can
merge into a timetable.

• Determine the opponent of each team in every time slot.
• Determine for each team in every time slot whether it plays

home or away.
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The solution to the former subproblem is referred to as the op-
ponent schedule, whereas the solution to the latter subproblem
is referred to as the home-away pattern (HAP) set.

When starting with the opponent schedule, the decomposi-
tion is known as ‘first-schedule-then-break’ (FSTB, see [1]).
FSTB has been successfully used to schedule competitions
where the objectives and constraints are mainly determined by
the order of opponents (see e.g., [2, 3, 4]). On the other hand,
FSTB does not seem very suitable when the objective or the
constraints are mainly determined by the home-away status of
games. Consider for instance the example of breaks; a team has
a break whenever it plays consecutively at home or consecu-
tively away. For the case of a 1RR with n teams, n even, Woeg-
inger and co-authors [5, 6] show that, although a compatible
HAP set always exists, fixing the opponent schedule may re-
sult in O(n) times more breaks than strictly needed. Moreover,
also from an algorithmic perspective there is little to gain as
minimizing breaks for a given opponent schedule is NP-hard.
This is in sharp contrast to the celebrated result by de Werra [7],
who shows how to solve the problem without fixed opponents
in polynomial time.

When starting with the home-away patterns, the decompo-
sition is known as ‘first-break-then-schedule’ (FBTS, see [8]).
Although FBTS deals much better with breaks, the quality of
the opponent schedule could be poor and it may even happen
that no compatible assignment of opponents exists (see e.g.,
[9, 10]). Whenever a HAP set is infeasible, we thus need to
backtrack. A first contribution in this regard is by Rasmussen
and Trick [11], who propose to use logic-based Benders’ cuts
for backtracking. Although their approach offers a clear advan-
tage over complete enumeration (which is surprisingly popular
in practice), it assumes that the objective and almost all con-
straints are fully determined by the HAP set. A more versa-
tile backtracking scheme based on traditional Benders’ decom-
position, was recently proposed by Van Bulck and Goossens

This paper has been accepted for publication in OR Letters and is currently in press.



This paper has been accepted for publication in OR Letters and is currently in press.

[12]. Nevertheless, their approach also has difficulty coping
with large numbers of constraints and/or a complicated objec-
tive related to the order of opponents as it relies on integer pro-
gramming (IP) to construct the opponent schedule.

This paper shows that a two-phase decomposition strategy is
still appropriate when the timetable requirements can be more
or less evenly attributed to both phases, a situation where nei-
ther FSTB nor FBTS would particularly perform well. For
this, we first include a parameter in the Benders’ decomposi-
tion algorithm by Van Bulck and Goossens [12] such that it
allows to generate HAP sets that trade-off between satisfying
wishes on the level of the home-away status of games versus
satisfying wishes on the order of opponents. Subsequently,
we show how to use the generated HAP sets as the input for
a variable neighbourhood search algorithm that generates a
compatible opponent schedule. We coin the resulting frame-
work first-break-heuristically-schedule (FBHS), and show the
effectiveness of FBHS by using it to generate several new
best solutions for the benchmark instances used by the Inter-
national Timetabling Competition 2021 on sports timetabling
(ITC2021). This benchmark set is diverse, challenging, and
realistic (see [13]), and at the same time well studied by the sci-
entific community, and therefore highly suited to evaluate the
performance of our proposed method.

The remainder of this paper is as follows. Section 2 outlines
the proposed FBHS algorithm. Section 3 provides a description
of problem instances used for the ITC2021 competition, and
Section 4 provides computational results.

2. First-break-heuristically-schedule

The traditional first-break-then-schedule approach generates
a sports timetable in two steps: first use IP to generate a HAP
set (see Section 2.1), then use IP to generate a compatible op-
ponent schedule or to prove that none exists (see Section 2.2).
There are two issues with this approach, especially when there
are several constraints on the level of the opponent schedule.
First of all, it is very likely that the generated HAP set is in-
feasible or that the compatible opponent schedules are of poor
quality. Section 2.3 explains how to solve this issue by separat-
ing traditional Benders’ cuts. A second issue is related to the
fact that finding a compatible opponent schedule could be too
challenging for state-of-the-art IP solvers. Section 2.4 therefore
introduces an IP-based variable neighbourhood search heuristic
that is able to generate high-quality compatible opponent sched-
ules within a reasonable amount of time.

2.1. Generate a HAP set
To generate a HAP set, we use the following IP formulation,

where variables hi,s are 1 if team i ∈ T plays home in time
slot s ∈ S , and 0 if i plays away on s. The auxiliary variable
bH

i,s (bA
i,s) is 1 if team i ∈ T has a home break (away break)

in time slot s ∈ S , and 0 otherwise. Furthermore, denote with
variable dc the deviation of constraint c ∈ C, and with parameter
pc the weight of constraint c ∈ Csoft. Finally, we denote with
C haphard ⊆ Chard and C hapsoft ⊆ Csoft the hard and soft constraints that
are fully determined by the HAP set, respectively.

Hap set generation model

min z1 =
∑

c∈C hapsoft

pcdc (1)

∑
s∈S

hi,s = (n − 1) ∀i ∈ T (2)∑
i∈T

hi,s = n/2 ∀s ∈ S (3)

hi,s−1 + hi,s − bH
i,s + bA

i,s = 1 ∀i ∈ T, s ∈ S \ {1} (4)

bH
i,s ⩽ hi,s, bH

i,s ⩽ hi,s−1 ∀i ∈ T,∀s ∈ S \ {1} (5)

bA
i,s + hi,s ⩽ 1, bA

i,s + hi,s−1 ⩽ 1 ∀i ∈ T,∀s ∈ S \ {1} (6)

fc(h, b) − dc ⩽ uc ∀c ∈ C (7)

dc = 0 ∀c ∈ C haphard (8)

dc ≥ 0 ∀c ∈ C hapsoft (9)

hi,s, bH
i,s, b

A
i,s ∈ {0, 1} ∀i ∈ T,∀s ∈ S (10)

The objective function minimizes the weighted deviation
from constraints in C hapsoft . Constraints (2) state that each team
plays half of its games at home, and Constraints (3) that ex-
actly half of the teams in each time slot play home. Next, Con-
straints (4) to (6) regulate the value of the break variables. Con-
straints (7) model a set of application-specific constraints that
involve the hi,s and auxiliary break variables (see Section 3).
Constraints (8) and (9) state that hard constraints are strictly sat-
isfied and that deviation from soft constraints are non-negative.
Finally, Constraints (10) are the binary constraints.

2.2. Generate a compatible opponent schedule

Given a HAP set denoted by parameters h′i,s, we now give
another IP formulation which generates a compatible opponent
schedule or proves that none exists. In this formulation, vari-
ables xi, j,s are 1 if team i ∈ T plays at home against team j ∈ T
in time slot s ∈ S , and 0 otherwise.

Compatible opponent model

min
∑

c∈Csoft\C hapsoft

pcdc (11)

∑
j∈T\{i}

xi, j,s = h′i,s ∀ i ∈ T,∀ s ∈ S (12)

∑
j∈T\{i}

x j,i,s = 1 − h′i,s ∀ i ∈ T,∀ s ∈ S (13)

∑
s∈S

xi, j,s = 1 ∀i, j ∈ T : i , j (14)

n−1∑
s=1

(xi, j,s + x j,i,s) = 1 ∀i, j ∈ T : i < j (15)

fc(x) − dc ⩽ uc ∀c ∈ C (16)

dc = 0 ∀c ∈ Chard \C haphard (17)

dc ≥ 0 ∀c ∈ Csoft \C hapsoft (18)

xi, j,s ∈ {0, 1} ∀i, j ∈ T : i , j,∀ s ∈ S (19)

The objective function minimizes the weighted deviation
from all soft constraints not yet considered in the HAP set gen-
eration model. Constraints (12) and (13) are the linking con-
straints, and require that all teams play according to their HAP.
Constraints (14) ensure that all games are scheduled. If the
timetable needs to be phased, we add Constraints (15). Con-
straints (16) represent a set of application-specific constraints
that involve the xi, j,s variables (see Section 3). Constraints (17)
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Figure 1: General structure of the proposed FBHS algoritm.

and (18) are similar to (8) and (9). Finally, Constraints (19) are
the binary constraints on the xi, j,s variables.

2.3. Benders’ decomposition

The traditional FBTS approach first solves the HAP set gen-
eration model and then the compatible opponent model, blindly
repeating this sequence for the next best HAP set until a cer-
tain time or iteration limit is reached. As this method generates
HAP sets without or with very little knowledge about the oppo-
nent schedule, the generated timetables – if any – are expected
to be of poor quality.

Instead, this paper overcomes the aforementioned issue by
strengthening the HAP set generation model with traditional
Benders’ cuts based on the linear programming (LP) relaxation
of the compatible opponent model. The main idea of Benders’
decomposition is that an IP model may become considerably
easier once some complicating variables are fixed. Hence, Ben-
ders’ decomposition first attempts to solve a so-called master
problem that only considers the complicating variables after
which it solves a subproblem that optimizes over all remain-
ing variables. Provided that the subproblem is a linear program
with fractional variables only, the contribution of Benders [14]
is to show how linear duality theory can be used to iteratively
add cuts to the master problem so as to ensure global feasibility
and optimality.

In our approach, in line with Van Bulck and Goossens [12],
we treat the variables in the HAP set generation model as the
complicating variables and the variables in the LP-relaxation
of the compatible opponent schedule as the continuous vari-
ables that we project out (see Figure 1). In other words, we
first construct a HAP set by solving the HAP set generation
model with traditional branch-and-bound techniques. For each
integral HAP set encountered in the branch-and-bound tree, we
then solve the LP relaxation of the subproblem. If the LP-
relaxation turns out to be infeasible, we forbid the current and
hopefully many other infeasible HAP sets by adding a Benders’
infeasibility cut. On the other hand, if the LP-relaxation turns
out to be feasible, we provide feedback about the lower bound
on the quality of the opponent schedule by strengthening the
HAP set generation model with a Benders’ optimality cut.

As the Benders’ decomposition model to generate HAP sets
only considers the LP-relaxation of the opponent schedule, one
may wonder how promising the generated HAP sets really are.
For the case of a 1RR without any additional constraints on the
order of opponents, Briskorn conjectures that feasibility of the
LP-relaxation is in fact sufficient for the existence of a com-
patible opponent schedule. With regard to the quality of the
opponent schedule, Van Bulck and Goossens [12] show that
the generated lower bounds are as good as the Lagrangian re-
laxation relative to (12)-(13) or relative to (14). Interestingly,
once the HAP set is fixed, the LP-relaxation based on the xi, j,s

variables is also relaxation-equivalent to an exponentially-sized
model where there is one variable for every possible perfect
matching in the complete graph Kn (see van Doornmalen et al.
[15]). The proof for this result is trivial, and follows from the
fact that the well-known odd-set inequalities are redundant in a
complete bipartite graph.

Nevertheless, even though the quality of the LP-relaxation
looks promising, it remains a lower bound and hence the HAP
set generation model is likely to be too optimistic about the
quality of the opponent schedules that its resulting HAP set can
yield. In order to provide a better trade-off between violated
soft constraints in either of the two phases, we propose to mul-
tiply the objective function of the opponent model with param-
eter α. When α = 0, the quality of the compatible opponent
schedule is completely ignored, and hence the generated HAP
sets will be similar to those generated with traditional FBTS.
On the other hand, when α is very large, the generated HAP
sets rather resemble those that would be found in the second
phase of the FSTB approach. The desired value is somewhere
in between, where the estimate corresponds to the quality of the
best possible opponent schedule.

2.4. Variable neighbourhood search
Given the generated HAP sets, we now explain how to find

compatible opponent schedules. Observing that half of the
xi, j,s variables can be eliminated once the HAP set is fixed,
Van Bulck and Goossens [12] propose the use of IP. Nev-
ertheless, realistic problem instances typically feature a large
number of hard and soft constraints on the order of oppo-
nents, making it intractable for an IP model to find (good) so-
lutions in a reasonable time. Inspired by the winners of the
ITC2021 competition (see [16]), we instead propose to cre-
ate opponent schedules via a Variable Neighbourhood Search
(VNS) matheuristic. One of the main advantages of matheuris-
tics is that they directly operate on IP models, making it rather
straightforward to include a wide variety of constraints.

Algorithm 1 outlines our proposed heuristic. In order to gen-
erate an initial feasible solution, we first ignore all hard and soft
constraints and construct a compatible opponent schedule using
the IP model from Section 2.2. Note that such opponent sched-
ule always exists, unless Briskorn’s conjecture is not valid for
2RR tournaments. Subsequently, we transform the hard con-
straints into soft constraints and we solve the resulting instance
with the VNS approach. Once we obtain a zero-cost solution
to the modified problem instance, we return to the original in-
stance with all hard and soft constraints, and run the VNS again.
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Algorithm 1 VNS – Compatible opponent schedule
s0 ← Solve model (12)-(15), (19) ▷ Ignore all hard and soft constraints
s1 ← VNS(s0, ∅,Chard) ▷ Add hard constraints as soft constraints
if GetObjective(s1) == 0 then

s2 ← VNS(s1,Chard,Csoft) ▷ Consider all hard and soft constraints
end if

function VNS(startSol, hardCons, softCons)
for o in {Column, Row, Block} do

d = 4
do

if (o == Column) Select d slots S ′ and solve Column(S ′)
if (o == Row) Select d teams T ′ and solve Row(T ′)
if (o == Block) Select d teams T ′ and d slots S ′ and solve Block(T ′, S ′)
if (500 iterations of while loop without improvement) d = d + 1

while all subproblems solved to optimality
end for

d = 4
do

e = 1
do

Select d teams T ′ and e slots S ′ and solve RowsColumns(T ′, S ′)
if (500 iterations of while loop without improvement) e = e + 1

while all subproblems solved to optimality
d = d + 1

while e > 1 ▷ RowsColumns with d − 1 teams and 1 slot solved to optimality
end function

The VNS heuristic repeatedly improves upon an incumbent
solution by solving a series of smaller IP formulations that re-
sult from fixing some of the variables in the compatible oppo-
nent model. Let us denote with parameters x′i, j,s the incumbent
solution from the previous iteration or the initial solution in case
of the first iteration. We consider the following neighbourhoods
(see also Table 1).

Column(S ′) The opponents related to time slots in S ′ ⊆ S are
free, all others are fixed. In other words, we set xi, j,s = x′j,i,s
for all i, j ∈ T, i , j, and s ∈ S \ S ′.

Row(T ′) The opponents related to teams in T ′ ⊆ T are free, all
others are fixed. In other words, we set xi, j,s = x′i, j,s for all
i, j ∈ T, i , j and i < T ′ or j < T ′, and s ∈ S .

Block(T ′, S ′) The opponents related to teams in T ′ ⊆ T and
time slots in S ′ ⊆ S are free, all others are fixed. In other
words, we set xi, j,s = x′i, j,s for all i, j ∈ T, i , j, s ∈ S \ S ′

and for all i, j ∈ T \ T ′, s ∈ S ′.

RowColumn(T ′, S ′) The opponents either related to teams in
T ′ ⊆ T or time slots in S ′ ⊆ S are free, all others are fixed.
In other words, we set xi, j,s = x′i, j,s for all i, j ∈ T \T ′, i , j,
s ∈ S \ S ′.

While the first two operators are common, the third operator
seems to be a natural extension. The fourth operator was in-
troduced by Lamas-Fernandez et al. [16]. The neighbourhoods
are sequentially searched in the above order, where we move
on to the next neighbourhood as soon as one of the resulting
subproblems could not be solved to optimality within a time
limit of 120 seconds. Initially, the size of each neighbourhood
is set to 4 teams and/or 4 time slot; the size of the neighbour-
hood is increased with 1 whenever no improvement was found
in 500 iterations. Note that at each iteration, the VNS heuris-
tic is warm-started with solution x′i, j,s. The outcome of each
iteration is thus never worse than the best solution found so far.

Team s1 s2 s3 s4 s5 s6

1 2 4 3 4 2 3

2 1 3 4 3 1 4

3 4 2 1 2 4 1

4 3 1 2 1 3 2

Table 1: Overview of the different neighbourhoods in the VNS heuris-
tic. The box in solid purple, dotted red, and dashed green represent
Row({1, 2}), Column({2, 3}), and Block({3, 4}, {4, 5}), respectively. Neighbour-
hood RowColumn({1, 2}, {2, 3},) corresponds to the union of the solid purple
and dotted red boxes.

In order to select the specific teams and time slots used in
each neighbourhood, we use duality theory. More in particular,
whenever a new best solution x′i, j,s is found, we (temporally)
add constraints xi, j,s ≥ x′i, j,s and compute the related dual prices
δi, j,s. If δi, j,s is negative, a solution without variable xi, j,s, ceteris
paribus, will result in an improvement of the objective function.
Hence, to increase the likelihood that that costly xi, j,s variables
are free to be optimized, the selection probability for team i ∈ T
(resp. slot s ∈ S ) is set equal to

∑
j∈T\{i}

∑
s∈S (δi, j,s + δ j,i,s) (resp.∑

i, j∈T :i, j δi, j,s) divided by
∑

i, j∈T :i, j
∑

s∈S δi, j,s.

3. The ITC2021 sports timetabling format

The ITC2021 competition, which ran from October 2020 to
April 2021, offers a benchmark of 45 highly-constrained sports
timetabling problem instances, which are divided into three
classes depending on when the instances were released (‘Early’,
‘Middle’, and ‘Late’)1. The ITC2021 problem format includes
the following constraints c ∈ C, which are grouped into four
classes.

Capacity constraints The first set of constraints force a team
to play home or away and regulate the total number of
games played by a group of teams against a set of other
teams during a period in time.

CA1 = CA1H ∪ CA1A limit the total number of home
games (CA1H) or away games (CA1A) played by team ic
during time slots S c ⊆ S to at most uc.

CA2 = CA2H ∪ CA2A limit the total number of home
games (CA2H) or away games (CA2A) played by team ic
against teams in Tc ⊆ T during time slots S c ⊆ S to at
most uc.

CA3 = CA3H ∪ CA3A limit the total number of home
games (CA3H) or away games (CA3A) played by team ic
against teams in Tc ⊆ T in each sequence of kc time slots
to at most uc.

CA4 = CA4H ∪ CA4A ∪ CA4HA limit the overall number
of home games (CA4H) or away games (CA4A) or home
and away games (CA4HA) played by a set of teams T 1

c ⊆ T
against a set of teams T 2

c ⊆ T during time slots in S c ⊆ S
to at most uc.

1Problem instances can be downloaded at www.itc2021.ugent.be.
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Break constraints Break constraints impose an upper limit on
the total number of breaks for a team over a set of time
slots, or impose a limit on the total number of breaks in the
timetable. BR1 limit the total number of breaks of team ic
during time slots S c ⊆ S to at most uc.

BR2 limit the total number of breaks over all teams and all
time slots to at most uc.

Game constraints The third class of constraints enforce or
forbid specific assignments of games to time slots.

GA1 require that at least lc and at most uc games from
Gc ⊆ T × T are scheduled in S c ⊆ S .

Fairness and separation constraints The last set of con-
straints aims to increase the fairness and attractiveness of
the tournament.

FA2 requires that the timetable is 2-ranking-balanced,
meaning that the difference in played home games be-
tween any two teams at any point in time is at most 2.

SE1 requires that there are at least 10 time slots between
any two games involving the same opponents.

Apart from these constraints, some problem instances also
require that the timetable is ‘phased’, meaning that the matches
in the first n− 1 and the last n− 1 time slots each define a 1RR.

Clearly, both phases in the decomposition relate to several
constraints in the ITC2021 format. With respect to generating
a HAP set, this means that Constraints (7) are specified as fol-
lows.

Hap set – ITC2021 constraints∑
s∈S c

hic ,s − dc ≤ uc ∀c ∈ CA1H (20)

s+kc−1∑
p=s

hic ,p − dc,s ≤ uc ∀c ∈ CA3H : Tc = T,∀s ∈ S : s < |S | − kc + 1 (21)

∑
i∈T 1

c

∑
s∈S c

hi,s − dc ≤ uc ∀c ∈ CA4H : T 2
c = T (22)

∑
s∈S c

bH
ic ,s + bA

ic ,s − dc ≤ uc ∀c ∈ BR1 (23)

∑
i∈T

∑
s∈S

bH
i,s + bA

i,s − dc ⩽ uc ∀c ∈ BR2 (24)

s∑
p=1

(hi,p − h j,p) − dc,{i, j} ⩽ 2 ∀i, j ∈ T : i , j,∀s ∈ S ,∀c ∈ FA2 (25)

Constraints (20) to (22) respectively model the CA1H con-
straints, and the CA3H and CA4H constraints for which Tc =

T 2
c = T . The constraints to model the corresponding variants

of the CA1A, CA3A and CA4A constraints are identical except
that hic,s is replaced by 1 − hic,s. Constraints (23) and (24) reg-
ulate the BR1 and BR2 break constraints. Finally, Constraints
(25) state that the timetable is two-ranking-balanced.

In order to model the constraints related to the order of op-
ponents, Constraints (16) take the following form.

Opponent schedule – ITC2021 constraints∑
j∈Tc

∑
s∈S c

xic , j,s − dc ≤ uc ∀c ∈ CA2H (26)

∑
j∈Tc

s+kc−1∑
p=s

xi, j,p − dc,s ≤ uc ∀c ∈ CA3H : T ′ ⊂ T,∀s ∈ S :
s < |S | − kc + 1 (27)∑

i∈T 1
c

∑
j∈T 2

c

∑
s∈S c

xi, j,s − dc ≤ uc ∀c ∈ CA4H : T 2
c ⊂ T (28)

lc − dc ≤
∑

(i, j)∈Gc

∑
s∈S c

xi, j,s ≤ uc + dc ∀c ∈ GA1 (29)

2(n−1)∑
s=n

s (xi, j,s + x j,i,s)

−

n−1∑
s=1

s (xi, j,s + x j,i,s) + dc >= 11 ∀c ∈ SE1,∀i, j ∈ T : i < j (30)

Constraints (26) model the CA2H constraints, while Con-
straints (27) and (28) model CA3H and CA4H for Tc,T 2

c ⊂ T .
The constraints for CA2A, CA3A, and CA4A constraints are
identical, except that xi, j,s is replaced by x j,i,s. For the CA4HA

constraints, replace xi, j,s by xi, j,s + x j,i,s. Constraints (29) model
the GA1 constraints. In case the timetable is phased, we use
Constraints (30) to model SE1. In order to model the more gen-
eral case, we make use of auxiliary variables yi, j,s,t that are one
if and only if team i ∈ T and team j ∈ T play against each other
in time slot s ∈ S and t ∈ S (see Van Bulck and Goossens [12]
for a similar idea and more details).

4. Computational results

All formulations were solved by ilog cplex 12.10, enabled
with 10 cores for the HAP set generation and 1 core for the
VNS heuristic. The HAP set generation model was solved a
first time with α = 1 and a time limit of 24 hours, and once
more for α = 5 and for α = 10 with a time limit of 12 hours
(using the solution of α = 1 as warm start). For the best HAP
set found with each of the three α levels, we subsequently ran
the VNS heuristic with 50 different random seeds. A single run
of the VNS heuristic required on average 1 hour and 45 min-
utes; as the VNS heuristic only requires one thread, runs were
executed in parallel. Note that the ITC2021 competition did
not impose any time limit, and consequently many participants
granted their algorithms significant running times.

Table 2 summarizes our computational results. The first three
columns provide the name of the problem instance, and the
best known lower bound and solution value as retrieved from
the competition website. Next, for the best solution found with
each α, the table provides the quality related to the HAP set, the
LP-relaxation of the compatible opponent model, and the over-
all quality. Note that this LP-relaxation multiplied with α corre-
sponds to the quality of the opponent schedule as estimated by
the Benders’ optimality cuts in the HAP set generation model.
The table shows that we can indeed trade off between the qual-
ity of the HAP set and the quality of the opponent schedule by
changing α. For 34 out of 45 of the problem instances (about
80%), we found a feasible solution. Given the fact that finding
finding feasible solutions is far from trivial (see Van Bulck and
Goossens [13]) and that we only considered few HAP sets for
which we solved the second phase, this is a remarkable result.
We also find 10 new best solutions, even though over 15 inter-
nationally renowned research teams have already tackled these
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Best known α = 1 α = 5 α = 10

Inst. LB Sol. HAP LP Sol. HAP LP Sol. HAP LP Sol.

E1 1 362 0 120 701 0 120 701 0 105 716
E2 0 145 0 0 330 0 0 330 0 0 330
E3 49 992 340 113 1122 460 65 1212 620 66 1428
E4 0 507 0 130 0 129 0 127
E5 270 3127 5 1224 1 1165 0 1224
E6 607 3325 501 1524 767 1349 777 1285
E7 1296 4763 0 2584 6070 0 2584 6144 0 2584 5801
E8 213 1051 20 730 1570 0 731 1595 55 722 1620
E9 0 108 40 0 56 40 0 56 40 0 56
E10 331 3400 0 1359 0 1342 49 1328
E11 348 4426 1 1409 4577 1 1409 4577 1 1409 4577
E12 0 380 320 0 300 0 280 0 315
E13 2 121 0 2 227 1 1 213 1 1 212
E14 1 4 42 0 42 33 0 33 42 0 42
E15 485 3362 225 1528 2955 775 1322 3477 1115 1211 3807

M1 2955 5177 x
M2 2984 7381 10 4933 9 4916 9 4916
M3 3378 9542 730 5168 690 5064 765 4964
M4 7 7 0 7 64 0 7 42 5 6 58
M5 47 413 252 37 296 233 38 279 298 30 338
M6 24 1120 365 21 1825 405 0 1845 320 2
M7 27 1783 437 830 3561 491 682 3208 437 830 3561
M8 2 129 0 2 258 0 2 279 0 2 289
M9 0 450 60 2 445 60 0 415 60 0 450
M10 4 1250 10 459 1777 1 437 1745 1 446 1842
M11 345 2446 0 1207 0 1207 0 1207
M12 1 911 324 0 674 324 0 674 304 0 829
M13 0 252 0 0 1930 0 0 2020 0 0 1940
M14 0 1172 0 360 1150 0 360 1154 0 360 1150
M15 1 485 340 116 1224 340 116 1224 1105 12 1705

L1 1103 1922 58 1734 2206 58 1723 2265 58 1729 2265
L2 2818 5400 0 4098 5545 0 4066 5520 0 4041 5551
L3 416 2369 370 1044 2808 895 828 3129 995 830 3278
L4 0 0 0 0 350 0 0 321 0 0 321
L5 398 1923 0 1466 9 1382 0 1385
L6 6 923 351 83 409 52 577 0
L7 5 1558 4 454 1863 4 454 4 454 1933
L8 78 934 326 24 1237 306 21 1202 382 13 1024
L9 3 563 80 45 513 100 11 498 140 12 589
L10 1 1945 0 525 0 525 0 525
L11 0 202 0 0 446 0 0 446 0 0 446
L12 203 3428 9 1217 4059 9 1217 4059 9 1217 4059
L13 7 1820 334 246 2878 592 2 2816 544 4 2729
L14 7 1202 0 354 1242 0 315 1174 0 344 1243
L15 0 20 0 0 0 0 0 0 0 0 0

Table 2: Computational results for the ITC2021 problem instances. An x-mark
means that no solution was found; new best found solutions are indicated in
bold. During experimental testing, an even better solution with value of 599
was found for instance M12, and a solution of 1140 for M14.

benchmark instances. These results let us believe that decom-
position schemes are still appropriate when the requirements of
neither of the two phases dominate.

In memoriam: Prof. dr. Gerhard Woeginger

This article is dedicated to Prof. dr. Gerhard Woeginger, who
passed away April 1, 2022. One of Gerhard’s many research in-
terests was sports: inspired by the composition of darts boards
[17], the mathematics of playing golf [18], or the ranking of
moody chess players [19], Gerhard always found a way to
solve fundamental problems. In honour of Gerhard, the cor-
responding instance for 16 teams, showing how poorly FSTB
can perform in terms of breaks, has been added to the RobinX
repository (see www.sportscheduling.ugent.be/RobinX/

breakRepo.php).
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