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Stratification of TAD boundaries reveals
preferential insulation of super-enhancers by
strong boundaries
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The metazoan genome is compartmentalized in areas of highly interacting chromatin known
as topologically associating domains (TADs). TADs are demarcated by boundaries mostly
conserved across cell types and even across species. However, a genome-wide character-
ization of TAD boundary strength in mammals is still lacking. In this study, we first use fused
two-dimensional lasso as a machine learning method to improve Hi-C contact matrix
reproducibility, and, subsequently, we categorize TAD boundaries based on their insulation
score. We demonstrate that higher TAD boundary insulation scores are associated with
elevated CTCF levels and that they may differ across cell types. Intriguingly, we observe that
super-enhancers are preferentially insulated by strong boundaries. Furthermore, we
demonstrate that strong TAD boundaries and super-enhancer elements are frequently co-
duplicated in cancer patients. Taken together, our findings suggest that super-enhancers
insulated by strong TAD boundaries may be exploited, as a functional unit, by cancer cells to
promote oncogenesis.
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scientists to probe the three-dimensional chromatin

organization at an unprecedented resolution’?. Hi-C, a
high-throughput chromosome conformation variant, has enabled
genome-wide identification of chromatin—chromatin interac-
tions. Hi-C has revealed that the metazoan genome is organized
in areas of active and inactive chromatin known as A and B
compartments, respectively’. These are further compartmenta-
lized into super-TADs?, topologically associating domains
(TADs)>” and sub-TADs®, as well as gene neighborhoods’.
Several algorithms have been developed to reveal this hierarchical
chromatin organization, including Directionality Index (DI)’,
Armatus!®, TADtree!!, insulation index (Crane)'?, IC-finder!3,
and others. However, none of these studies has systematically
explored the properties of TAD boundaries. Although TADs are
seemingly invariant across cell types, mounting evidence suggests
that TAD boundaries can vary in strength, ranging from per-
missive (“weak”) TAD boundaries that allow more inter-TAD
interactions to more rigid (“strong”) boundaries that clearly
demarcate adjacent TADs!*. Recent studies have shown that in
Drosophila, exposure to heat-shock caused local changes in cer-
tain TAD boundaries resulting in TAD merging!®>. Another
recent study showed that during motor neuron (MN) differ-
entiation in mammals, TAD, and sub-TAD boundaries in the
Hox cluster are not rigid and their plasticity is linked to changes
in gene expression during differentiation'®. It has also been
demonstrated that boundary strength is positively associated with
the occupancy of structural proteins, including CCCTC-binding
factor (CTCF)>. Despite these advances, no study has yet
addressed the issue of boundary strength in mammals and how it
may be related to potential boundary disruptions and aberrant
gene activation in cancer. Here we first introduce a new method
based on fused two-dimensional (2D) lasso!” in order to improve
Hi-C matrix reproducibility. Then, we use the improved Hi-C
matrices to: (a) categorize TAD boundaries based on their insu-
lating strength, (b) characterize TAD boundaries in terms of
CTCEF binding and other functional elements, and (c) investigate
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potential genetic alterations of TAD boundaries in cancer. We
anticipate that our study will help generate new insights into the
significance of TAD boundaries.

Results

Analysis workflow. The overall workflow, including our bench-
mark strategy and downstream analysis, is summarized in Fig. 1.
Initial alignment and filtering of the collected Hi-C sequencing
data sets was performed with Hi-C-bench!® (see Methods section
for details). Quality assessment analysis revealed that the samples
varied considerably in terms of total numbers of reads, ranging
from ~150 million reads to >1.3 billion (Supplementary
Figure 1a). Mappable reads were over 96% in all samples. The
percentages of total accepted reads corresponding to cis
(ds-accepted-intra, dark green) and trans (ds-accepted-inter, light
green) (Supplementary Figure 1b) also varied widely, ranging
from ~17 to ~56%. The characteristic drop of average Hi-C signal
as a function of distance between interacting loci was observed
(Supplementary Figure 1c). The main part of analysis starts with
unprocessed Hi-C contact matrices (“filtered” matrices). We then
generate processed Hi-C matrices using ICE “correction”'’, our
“scaling” approach (Methods section) and calCB?’. Finally, fused
two-dimensional lasso is applied on the processed Hi-C matrices.
Matrix reproducibility between biological replicates is assessed
across samples for a variety of parameters, for example, resolu-
tion, distance between interacting loci, sequencing degth, and so
on, using stratum-adjusted correlation coefficients?!. Finally,
downstream analysis, involves the characterization of TAD
boundaries based on their insulating strength, the enrichment in
CTCEF binding, proximity to repeat elements and super-enhan-
cers, and, finally, their genetic alterations in cancer.

Reproducibility assessment of Hi-C contact matrices. Hi-C is
prone to biases and multiple algorithms have been developed for
Hi-C bias correction, including probabilistic modelling meth-
ods?2, Poisson or negative binomial normalization??, calCB which
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Fig. 1 Overall workflow and benchmarking strategy. Our analysis starts with unprocessed Hi-C contact matrices. We then generate processed Hi-C
matrices using ICE “correction”, our “scaling” approach and calCB. Fused two-dimensional lasso is applied on the processed Hi-C matrices. Matrix

reproducibility between biological replicates is assessed across samples for a variety of parameters using stratum-adjusted correlation coefficients<'.

21

Finally, downstream analysis, involves the characterization of TAD boundaries based on their insulating strength, the enrichment in CTCF binding,
proximity to repeat elements and super-enhancers, and, their genetic alterations in cancer
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corrects for copy number variation (CNV) 2 and the widely used
Iterative Correction and Eigenvalue decomposition method (ICE)
19 which assumes “equal visibility” of genomic loci. A similar
iterative method named Sequential Component Normalization
was introduced by Cournac et al?*. Additional efficient
correction methods have been developed to handle high-
resolution Hi-C data sets®>. However, estimating highlgf
reproducible Hi-C contact maps remains a challenging task=®,
especially at high resolutions, as we also demonstrate below.
Specifically, we focused on multiple factors that may play an
important role on reproducibility: first, we separately considered
biological replicates of Hi-C libraries generated with the same or
different restriction enzymes; second, we studied the impact of
Hi-C matrix resolution (i.e., bin size); third, we assessed repro-
ducibility as a function of the distance of interacting loci pairs;
fourth, we studied the impact of sequencing depth. Stratum-
adjusted correlation coefficients (SCC) were calculated for each
pair of replicates (same- or cross-enzyme) on Hi-C contact
matrices estimated by four methods: (i) naive filtering (i.e., matrix
generation by simply using double-sided accepted intra-
chromosomal read pairs from Supplementary Figure la), (ii)
iterative correction (ICE) which has been demonstrated to
improve cross-enzyme correlation, (iii) calCB which corrects for
known Hi-C biases, as well as for CNV, and (iv) our own scaling
method which also corrects for effective length, GC content and
mappability (see Supplementary Figure 2a, b and Methods section
for details). The results of our benchmark analysis are summar-
ized in Supplementary Figure 3: the left panel summarizes the
correlations between replicates generated by the same restriction
enzyme, whereas the right panel the correlations between
replicates generated by a different restriction enzyme. In both
scenarios, as expected, reproducibility drops quickly as finer
resolutions (from 100 to 20kb) are considered. The same
conclusion applies for increasing distance (from 2.5 to 10 Mb)
between interacting loci, demonstrating that long-range interac-
tions require ultra-deep sequencing (beyond what is currently
available in most of the data sets in this study) in order to be
detected reliably. To elaborate on this point, we repeated the
analysis after resampling at higher sequencing depth (Supple-
mentary Figure 4). Both conclusions hold true with the new
sequencing depth and are independent of the Hi-C contact matrix
estimation method. From this benchmarking study, we conclude
that reproducibility of Hi-C contact matrices across biological
replicates is not ideal and that there is a need for computational
methods to improve it. In the next sections, we focus on
improving the reproducibility of the Hi-C contact matrices within
the context of TADs, as most of the DNA-DNA interactions
occur within these domains. Since TAD sizes typically range from
200 to 2.5Mb (>92% of all TADs identified in our Hi-C data
sets), and, as demonstrated in Supplementary Figure 3 and
Supplementary Figure 4, stratum-adjusted correlation coefficients
between biological replicates of Hi-C contact matrices drop
dramatically beyond 2.5 Mb, we restrict our subsequent analyses
to distances up to 2.5 Mb.

Fused lasso improves reproducibility of Hi-C matrices. Moti-
vated by the poor performance of all methods at fine resolutions
and by the observation of a trade-off between cross-enzyme and
same-enzyme reproducibility when correcting for enzyme-related
biases, we decided to utilize a machine learning denoising
method, fused 2D lasso?’, to improve the reproducibility of Hi-C
contact matrices. Briefly, 2D fused lasso introduces a parameter A
which penalizes differences between neighboring values in the Hi-
C contact matrix (Methods section for details). The effect of
parameter A is demonstrated in Fig. 2a where we show an
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example of the application of fused 2D lasso on a Hi-C contact
matrix focused on an 8Mb locus on chromosome 8
(chr8:124700000-132700000) for different values of parameter A.
To evaluate the performance of fused lasso, we calculated
same-enzyme and cross-enzyme stratum-adjusted correlation
coefficient (SCC) values between Hi-C contact matrices generated
from different replicates. SCC values were calculated either for
iteratively corrected (ICE), calCB-corrected or scaled Hi-C
contact matrices (at different 1 values) and compared to the
naive filtering approach. The results for same enzyme, are sum-
marized in Fig. 2b. Increasing A improves reproducibility inde-
pendent of resolution, restriction enzyme, and bias-correction
method, demonstrating the robustness of our approach. Similarly,
fused 2D lasso improves the reproducibility of contact matrices in
the cross-enzyme case, as demonstrated in Fig. 2c. The same
analysis was performed at lower sequencing depth with similar
results (Supplementary Figure 5). Next, we explored the effect of
fused 2D lasso on Hi-C matrices of fine resolutions. For this
analysis, we used 5 kb bins to compute the interaction matrix. To
compensate for distance-related biases in Hi-C matrices
(Supplementary Figure 1c), we normalized the interaction
strength for every distance/diagonal using a robust version of z-
score (see Methods section for details). Then, we apylied the
Graph-Fused Lasso implementation of fused 2D lasso*®, which
scales better than the Fused Lasso Signal Approximator (flsa)?’
used for coarse resolutions. Since available Hi-C data sets lack
biological replicates of ultra-deep sequenced samples, we
evaluated our method by testin§ whether it could recover the 5 kb
loops identified in Rao et al.’’ in a single-biological sample of
GM12878, the most deeply sequenced sample in this study
(~3 billion read pairs of which ~900 million intra-chromosomal
read pairs passed our filtering criteria). As a recovery metric, we
used the fraction of the reported loops within the top interactions
as ranked by our fused lasso approach. We observed that by
tuning the 1 parameter we improved this metric by an 8% relative
improvement (Supplementary Figure 6a). For the optimal 4, our
method ranked most of the known loops (~90%) in the top 10%
of measured interactions (~79% in the top 5% of all measured
interactions). We also evaluated the sensitivity of our approach to
subsampling. In particular, we re-computed the interaction
matrices using 200, 400, 600, 800 million intra-chromosomal read
pairs, re-run the analysis and obtained relative improvements of
9%, 14%, 22%, and 32%, respectively (Supplementary Figure 6a).
Performance of the graph-fused lasso algorithm as a function
of chromosome size is presented in Supplementary Figure 6b
(peak memory consumption) and Supplementary Figure 6c
(execution time).

Fused lasso preserves cell-type specificity of Hi-C matrices.
Although fused 2D lasso improves reproducibility of Hi-C
matrices between biological replicates, there is a possibility that
this is achieved at the expense of losing cell-type specificity. To
test this, we compared the effect of A on the reproducibility
between biological replicates (intra-cell-type) to its effect on the
stratum-adjusted correlation coefficients between unrelated
samples in our Hi-C data set collection (inter-cell-type). For this
test, we chose to focus on the collection of H1 stem cell Hi-C
replicates and their derivatives generated by the Ren lab®!, so that
we could assess the effect of smoothing on subtle cell-type specific
differences in experiments performed in a single lab. Hi-C
matrices were distance-normalized (similar to Yan et al.?2, see
Methods section for details) to account for the dependence of the
Hi-C signal on the distance between interacting loci. The results
of this analysis are presented in Fig. 3: although both intra-cell-
type and inter-cell-type stratum-adjusted correlation coefficients
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Fig. 2 Fused two-dimensional lasso improves reproducibility of Hi-C contact matrices (high sequencing depth = 80 million intrachromosomal read pairs). a
Example of application of fused two-dimensional lasso on a Hi-C contact matrix focused on a 8 Mb locus on chromosome 8 for different values of
parameter A. b Stratum-adjusted correlation coefficient values are improved by increasing the value of fused lasso parameter A for matrices estimated with
ICE, calCB and our simple scaling method (same enzyme). ¢ Stratum-adjusted correlation coefficient values are improved by increasing the value of fused
lasso parameter A for matrices estimated with ICE, calCB, and our simple scaling method (cross enzyme). As a baseline control, stratum-adjusted
correlation coefficients of Hi-C contact matrices generated by the naive filtering method are marked by the gray line in each panel
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Fig. 3 Fused lasso preserves cell-type specificity of Hi-C contact matrices (high sequencing depth =80 million intrachromosomal read pairs). a Effect of
fused lasso on stratum-adjusted correlation coefficient for the case of intra-cell-type (cyan) and inter-cell-type (orange) comparisons. Matrices of 40 kb
resolution were used for the analysis. The Hi-C matrices were processed with ICE, calCB, or scaling matrix correction methods. b Difference in mean
stratum-adjusted correlation coefficient between intra-cell-type and inter-cell-type sample comparisons. € Comparison of Hi-C matrix “correction” and
smoothing methods in terms of preservation of cell-type specificity (x-axis) and intra-cell-type reproducibility (y-axis). d Comparison of Hi-C matrix
“correction” and smoothing methods in terms of (1—inter-cell-type) (x-axis) and intra-cell-type (y-axis) stratum-adjusted correlation coefficients

increase by A (Fig. 3a), the difference between intra-cell-type and
inter-cell-type correlation coefficients also increases (Fig. 3b),
suggesting that fused 2D lasso actually preserves cell-type speci-
ficity of Hi-C contact matrices, a behavior that is consistent
independent of the matrix “correction” method. Nevertheless,
some “correction” methods appear to work better than others in
combination with lasso. In addition, we also evaluated an alter-
native “smoothing” method, 2D mean filter smoothing, recently
made available as part of the HiCRep package?!. In Fig. 3c, we
show the results of the comparison of the three correction
methods in combination with the smoothing techniques using
two metrics: preservation of cell-type specificity (x-axis) and
intra-cell-type reproducibility (y-axis). The main conclusions
from this comparison are: (a) smoothing (lasso or mean filter)
improves both metrics independent of the correction method,
and (b) fused lasso performs slightly better than mean filter

| (2018)9:542

| DOI: 10.1038/541467-018-03017-1] www.nature.com/naturecommunications

smoothing in preserving cell-type specificity, while it behaves
slightly worse in improving intra-cell-type specificity. In Fig. 3d,
we further demonstrate the trade-off between intra-cell-type and
inter-cell-type metrics when using 2D lasso or 2D mean filtering.

Fused lasso reveals a nested TAD hierarchy. After demon-
strating that parameter A4 improves reproducibility of Hi-C con-
tact matrices independent of the bias-correction method, we
hypothesized that increased values of A may also define distinct
classes of TADs with different properties. For this reason, we now
allowed 1 to range from 0 to 5. We then identified TADs at
multiple A values using Hi-C-bench on Hi-C matrices binned at
40 kb (all downstream analyses rely on TAD calling performed on
Hi-C matrices at 40 kb), and we observed that the number of
TADs is monotonically decreasing with the value of A
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(Supplementary Figure 7a), suggesting that by increasing 4, we are
effectively identifying larger TADs encompassing smaller TADs
detected at lower A-values. Indeed, when comparing TAD
boundaries detected at successive 1 values, we found that higher
A-values produced TAD boundaries that are almost a strict subset
of TAD boundaries produced at lower A values (~94% overlap
when considering only the exact bin as a true common TAD
boundary, and ~98% when TAD boundaries are allowed to differ
by at most one bin between TADs generated for successive A-
values). Equivalently, certain TAD boundaries “disappear” as 1 is
increased. Therefore, we hypothesized that TAD boundaries that
disappear at lower values of 1 are weaker (i.e., lower insulation
score), whereas boundaries that disappear at higher values of 1 are
stronger (i.e., higher insulation score). To test this hypothesis, we
identified the TAD boundaries that are “lost” at each value of 4,
and generated the distributions of the insulation scores for each 1
across samples. As insulation score, we used the Hi-C “ratio”
score (Methods section), which was shown to outperform other
TAD calling methods'®. Indeed, as hypothesized, TAD bound-
aries lost at higher values of parameter 4 are associated with
higher TAD insulation scores (Supplementary Figure 7b).

Stratification of TAD boundaries by insulating score. Moti-
vated by the observation that with increasing A, weaker TAD
boundaries are not detected, we decided to explore in depth the
properties of TAD boundaries with respect to their insulation
score. To this end, we stratified TAD boundaries into five cate-
gories (I through V) of equal size according to their insulation
score, independently in each Hi-C data set used in this study. As
shown in Fig. 4a, we first processed the Hi-C matrices using ICE,
calCB and scaling and applied fused 2D lasso with “optimal” 4,
defined as the 4 value beyond which no statistically significant
improvement on the reproducibility is observed. The statistical
significance was assessed using a Wilcoxon test between the
distributions of stratum-adjusted correlation coefficients across
chromosomes in given sample for successive 1 values. The pro-
cedure is demonstrated using an IMR90 replicate as an example
(Supplementary Figure 7c). Then, TAD «calling and TAD
boundary insulation score calculations were performed using our
“ratio” method (see Methods section for details) and the bound-
aries were classified into five equal-size categories, as mentioned
above. A heatmap representation, including all TAD boundaries
and their associated boundary strength category across all sam-
ples is depicted in Fig. 4b (“NA” corresponds to lack of boundary,
as it is possible that boundaries called in certain samples are not
present in others). Unbiased hierarchical clustering correctly
grouped replicates and related cell types independent of enzyme
biases or batch effects related to the lab that generated the Hi-C
libraries, suggesting that TAD boundary strength can be used to
distinguish cell types. Equivalently, this finding suggests that,
although TAD boundaries have been shown to be largely
invariant across cell types, a certain subset of TAD boundaries
may exhibit varying degrees of strength in different cell types.
Also, as expected, TAD boundary strength was found to be
positively associated with CTCF levels, suggesting that stronger
CTCF binding confers stronger insulation. Since we noticed that
several TAD boundaries contain transcriptional start sites (TSSs),
this analysis was done separately for TSS-only CTCF peaks
(Fig. 4c) and for all CTCF peaks (see below). Both approaches
revealed the same trend, with the exception of the class of
strongest boundaries (category V), where CTCF levels in TSS
regions were significantly higher compared to non-TSS regions,
suggesting that the strongest boundaries are formed by CTCEF-
mediated loops at gene promoters. Alternatively to our “ratio”
insulation score, we repeated our analysis using the insulation
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score generated by the “crane” TAD calling algorithm!'2. A
comparative analysis with between “ratio” and “crane” is shown in
Fig. 4d, where it appears that ratio-generated insulation scores
better associate with CTCEF levels. In the interest of robustness, we
performed the same analyses for all preprocessing methods, at
both low and high sequencing depth, for both “ratio” and “crane”
insulation scores (Supplementary Figure 8 and Supplementary
Figure 9, respectively), for TSS-only CTCF peaks (Supplementary
Figure 8a and Supplementary Figure 9a), as well as for all
CTCF peaks (Supplementary Figure 8b and Supplementary
Figure 9b). Finally, SINE elements have also been shown to be
enriched at TAD boundaries’, and besides confirming this
finding, we now demonstrate that Alu elements (the most
abundant type of SINE elements) are enriched at stronger TAD
boundaries (Supplementary Figure 10, top-left panel). A
comprehensive analysis of all major repetitive element subtypes
(downloaded from the UCSC Genome Browser>?) can be found
in Supplementary Figure 10.

Super-enhancers are insulated by strong TAD boundaries. We
then explored what type of functional elements are localized
within TADs demarcated by strong TAD boundaries. Specifically,
we tested super-enhancers identified in matched samples (see
Methods section for details). Super-enhancers are key regulatory
elements thought to be defining cell identity®>%, and are usually
found near the center of TADs*. Our analysis determined that
they are significantly more frequently localized within TADs
insulated by at least one strong TAD boundary (Fig. 4e). Further
analysis revealed that, super-enhancers are 2.94 times more likely
to be insulated by strong boundaries (categories IV or V) in both
the upstream and downstream directions, compared to being
insulated by weak boundaries (categories I or II) in both
directions. A comparison with TAD boundary classification using
“crane” insulation scores demonstrated that “ratio” insulation
scores are more significantly associated with proximity to
super-enhancers (Fig. 4f). A similar robustness analysis as
the one presented above for CTCF was also performed for super-
enhancers (Supplementary Figure 8c and Supplementary Figure
9c for “ratio” and “crane” insulation scores, respectively). Taken
together, our findings suggest that, because of their significance in
gene regulation, super-enhancers should only target genes
confined in the “correct” TAD or neighborhood, while remaining
strongly insulated from genes in adjacent TADs. This is
conceivably achieved by the strong TAD boundaries we have
identified in this study.

Strong TAD boundaries are co-duplicated with super-
enhancers. To further investigate the importance of variable
boundary strength, we asked whether TAD boundaries are prone
to genetic alterations in cancer. To this end, we mined structural
variants released by the International Cancer Genome
Consortium (ICGC)°. A summary of the reported variant
types across all cancer types available on ICGC, is presented in
Supplementary Figure 11. First, for each focal (up to 1Mb)
deletion event, we identified the TAD boundaries closest to the
breakpoints, and calculated the frequency of deletions by
boundary strength. We observed that the frequency of deletions
monotonically decreased with increasing boundary strength
(Fig. 5a). This suggests that strong TAD boundaries are less
frequently lost in cancer, as they may “safeguard” functional
elements that are necessary for proliferation. By contrast, the
frequency of tandem duplications (up to 1Mb) increased with
increasing boundary strength (Fig. 5b). Both results were robust
to various cutoffs on the sizes of the structural variants, within the
usual range of TAD sizes (from 250 kb to 2.5Mb). Then, to
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further clarify the connection between super-enhancers, strong
TAD boundaries and cancer, we studied tandem duplication
events where super-enhancers (obtained from a publicly available
collection of super-enhancers’) are co-duplicated with adjacent
strong boundaries. As demonstrated in Fig. 5c, super-enhancers

Co-duplication of strong boundaries and super-enhancers was
statistically significantly more frequent than that of strong
boundaries and regular enhancers. This suggests that, in cancer,
not only are strong boundaries protected from deletions, but they
are also co-duplicated with super-enhancer elements. A robust-

are indeed co-duplicated with strong TAD boundaries. ness analysis similar to the one performed for CTCF and super-
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enhancers is presented in Supplementary Figure 12 demonstrat-
ing that our findings are consistent for low and high sequencing
depth. Finally, we present an example of a co-duplication of a
super-enhancer with a strong boundary in Fig. 5d: MYC, a well-
known oncogene that is typically overexpressed in cancer, is
localized next to a strong TAD boundary and is co-duplicated
with the boundary, as well as with several proximal super-
enhancers.

Discussion

Multiple recent studies have revealed that the metazoan genome
is compartmentalized in boundary-demarcated functional units
known as topologically associating domains (TADs). TADs are
highly conserved across species and cell types. A few studies,
however, provide compelling evidence that specific TADs, despite
the fact that they are largely invariant, exhibit some plasticity.
Given that TAD boundary disruption has been recently linked to
aberrant gene activation and multiple disorders including
developmental defects and cancer, categorization of boundaries
based on their strength and identification of their unique features
becomes of particular importance. In this study, we first devel-
oped a method based on fused 2D lasso in order to improve Hi-C
contact matrix reproducibility between biological replicates.
Then, we categorized TAD boundaries based on their insulating
score. Our analysis demonstrated that: (a) using fused 2D lasso,
we can improve the reproducibility of Hi-C contact matrices
irrespective of the Hi-C bias correction method used, and (b)
using our “ratio” insulation score, we can successfully identify
boundaries of variable strength and that strong boundaries
exhibit certain expected features, such as elevated CTCF levels. By
performing an integrative analysis of boundary strength with
super-enhancers in matched samples, we observed that super-
enhancers are preferentially insulated by strong boundaries,
suggesting that super-enhancers and strong boundaries may
represent a biologically relevant entity. Motivated by this
observation, we examined the frequency of structural alterations
involving strong boundaries and super-enhancers. We found that
not only strong boundaries are “protected” from deletions,
but, more importantly, they are co-duplicated together with
super-enhancers. Recently, it has been shown that genetic or
epigenetic alterations near enhancers may lead to aberrant
activation of oncogenes®®*1. Our results, expand on these studies
by highlighting a previously unknown connection between strong
TAD boundaries, super-enhancers and tandem duplication events
in cancer.

Materials

Processing of published high-resolution Hi-C data sets. In
order to develop and benchmark a method that improves
reproducibility of Hi-C contact matrices, we carefully selected our
Hi-C data sets to represent technical variation due to the
execution of the experiments by different laboratories and/or the
usage of different restriction enzymes. We identified publicly
available human Hi-C data sets that fulfilled the following criteria:
(i) availability of two biological replicates and (ii) sufficient

sequencing depth to robustly identify topologically associating
domains (TADs) as described in our TAD calling benchmark
study'®. Specifically, we ensured that our data sets included
samples with at least ~40 million intra-chromosomal read pairs
and that the Hi-C experiment was performed in biological
replicates, either by using one restriction enzyme (HindIII or
Mbol) (H1 cells and their derivatives®!, K562, KBM7, and NHEK
cells*® and in-house generated CUTLL1), or two enzymes (Hin-
dIII or Mbol) (GM12878%0, IMR90>42), in order to examine the
consistency of predicted Hi-C interactions across different
enzymes. Detailed information about the Hi-C data sets,
including cell type and GEO accession number, is listed in
Supplementary Data 1. All data sets were then comprehensively
re-analysed using our Hi-C-bench platform'®. Briefly, paired-end
reads were mapped to the reference genome (hgl9) using
Bowtie2?®. Reads with low mapping quality (MAPQ <30) were
discarded. Local alignment of input read pairs was performed, as
they often consist of chimeric reads between two (non-con-
secutive) interacting fragments. Mapped read pairs were subse-
quently filtered for known artifacts of the Hi-C protocol, such as
self-ligation, mapping too far from the enzyme’s known cutting
sites, etc, using GenomicTools** gtools-hic filter command. More
specifically, reads mapping in multiple locations on the reference
genome (multihit), double-sided reads that mapped to the same
enzyme fragment (ds-same-fragment), reads whose 5'-end map-
ped too far (ds-too-far) from the enzyme cutting site, reads with
only one mappable end (single sided) and unmapped reads
(unmapped), were discarded. Read pairs that corresponded to
regions that were very close (<25 kilobases, ds-too-close) in linear
distance on the genome as well as duplicate read pairs
(ds-duplicate-intra and ds-duplicate-inter) were also discarded.
Quality assessment analysis revealed that the samples varied
considerably in terms of total numbers of reads, ranging from
~150 million reads to >1.3 billion. Mappable reads were over 96%
in all samples. The percentages of total accepted reads
corresponding to cis (ds-accepted-intra) and trans (ds-accepted-
inter) also varied widely, ranging from ~17 to ~56%. Despite the
differences in sequencing depth and in the percentages of
useful reads across samples, all samples had enough useful reads
for TAD detection. Due to the wide differences in sequencing
depth, and to ensure fair comparisons of Hi-C matrices in
this study, all data sets were down-sampled such that the
number of usable intra-chromosomal reads pairs was ~40 million
for each replicate. To study the effect of sequencing depth,
we also resampled at ~80 million usable intra-chromosomal
read pairs. Finally, Hi-C contact matrices were generated
using fixed bin sizes at multiple resolutions (5, 20, 40, 60, 80, and
100 kb).

Scaled Hi-C contact matrices. Hi-C contact matrices were scaled
by: (a) the total number of (usable) intra-chromosomal read
pairs, and (b) the “effective length” of the corresponding pair of
interacting bins. The effective length of a genomic bin was
previously defined as the total length of genomic regions that fall
within a specified distance (typically 500 nt) from a restriction

Fig. 4 Classification and characterization of TAD boundaries according to insulation score (high sequencing depth =80 million intrachromosomal read
pairs). a Workflow of stratification of TAD boundaries by insulating score. b Heatmap representation of TAD boundary insulation strength across samples;
hierarchical clustering correctly groups replicates and related cell types independent of enzyme biases or batch effects related to the lab that generated the
Hi-C libraries (detailed information about all Hi-C data sets and their cell types is included in Supplementary Data 1). ¢ TAD boundary strength is
associated with CTCF levels. d Comparison of the association of “ratio” vs. “crane” insulation scores with CTCF levels. e Fraction of super-enhancer
elements in the vicinity of boundaries of variable strength. f Comparison of the association of “ratio” vs. “crane” insulation scores with respect to proximity
to super-enhancers. All statistical tests are paired two-sided Wilcoxon rank-sum tests between distributions defined across samples (each sample is a dot
in the boxplots). The box in each boxplot represents the first (Q1) and third (Q3) quartiles and the ends of the whiskers are positioned 1.5*(Q3-Q1) away

from the ends of the box.
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enzyme cutting site?2. In this study, we defined the scaled Hi-C
count corresponding to interactions between the Hi-C matrix
bins i, (y;) as follows:

I
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where x; is the original number of interactions between the bins i
and j, eff; the effective length for the bin i, eff; the effective length
for the bin j, and N is the total number of read pairs. For each bin,
at each resolution, effective length, GC content and mappability
were calculated as described in Hu et al.?3. In this study, it was
demonstrated that the main source of enzyme-specific biases is
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the effective length. Consequently, we expected that correcting for
effective length alone would simultaneously correct for GC con-
tent and mappability biases. To verify this, we generated heat-
maps showing the association of Hi-C interactions with effective
length, GC content and mappability®’.

Distance-normalized Hi-C contact matrices. Genomic loci that
are further apart in terms of linear distance on DNA tend to give
fewer interactions in Hi-C maps than loci that are closer. For
intra-chromosomal interactions, this effect of genomic distance
should be taken into account. Consequently, the interactions were
distance-normalized using an adjusted z-score that was calculated
taking into account the mean Hi-C counts for all interactions at a
given distance d and the corresponding standard deviation. Thus,
the z-score for the interaction between the Hi-C contact matrix
bins i and j (z;) is given the following equation:

5. = Yi = m(d)
77 mad(d)

where y;; corresponds to the number of interactions between the
bins i and j, m(d) to the median number of interactions for
distance d=lj-il and mad(d) is the robust estimator of the standard
deviation of the mean.

Fused 2D lasso. We utilized 2D fused lasso?’, an optimization
machine learning technique widely used to analyse noisy data
sets, especially images!”. 2D lasso achieves denoising by pena-
lizing differences between neighboring elements in the contact
matrix via a penalty parameter A (lambda), as described in the
equation:

B = argminﬂeRn%ZO’i — B;)’+4 Z ‘ﬁi — b
=1 (

ij)EE

I

where y is the original (i.e., observed) contact matrix, and /} is
the optimized contact matrix such that the objective function
described above in minimized. E describes the neighboring
elements of the matrix, i.e., E={ (i, j), where i and j are adjacent
elements in matrix f}.

Fused 2D lasso packages. We used two R packages that imple-
ment fused 2D lasso:

+ the flsa R package (https://cran.r-project.org/web/packages/
flsa/index.html), for coarse resolutions (up to 20 kb)%°

* for fine resolutions, the more recent and more efficient graph-
fuseicsl lasso python/C++ package (https://github.com/tansey/
gfl)=°.

Calculation of Hi-C matrix reproducibility. We calculated two
types of correlation for Hi-C matrices, to evaluate the perfor-
mance of our method: (a) same-enzyme reproducibility between
Hi-C replicates prepared with the same restriction enzyme, (b)

cross-enzyme reproducibility between Hi-C replicates prepared
with two different enzymes (e.g., HindIII/Mbol). Hi-C matrix
reproducibility was assessed using stratum-adjusted correlation
coefficient?! values, calculated on the filtered, ICE-corrected!?,
calCB-corrected?’, and scaled Hi-C contact matrices. The ICE
and calCB tools have been incorporated into Hi-C-bench (see
“Code availability” section), and in this study, they were used with
default parameters.

TAD boundary “ratio” insulation score. Given a potential TAD
boundary, we denote the “upstream” region to the left of the
boundary as L, and the “downstream” region to the right as R. The
between regions L and R are denoted as X. The “ratio” insulation
score is defined as follows:

ratio = intray,y/inter,

where:

intram,x = max(mean(L), mean(R)) and inter = mean(X).

For more details, see Lazaris et al.!8.

TAD calling using the “ratio” insulation score. For TAD call-
ing, we first calculated the “ratio” insulation score for each bin at
40 kb resolution. Then, TAD boundaries (of size equal to the bin
size, i.e. 40 kb) were identified as local maxima of the insulation
scores across each chromosome. Only insulation scores above a
certain cutoff were considered as potential TAD boundaries. The
cutoff was determined such that the false discovery rate (FDR) of
the identified local maxima was not >10%. The FDR was
estimated by applying the same procedure (calculate “ratio”
insulation scores and seeking local maxima) on randomized Hi-C
matrices. The randomized Hi-C matrices were generated by
permuting the original matrix values separately for each
“diagonal” of the matrix (i.e., Hi-C interaction values at a given
distance between interacting loci), so that the distribution of
Hi-C signal as a function of distance between interacting loci
was preserved in the randomized matrix. The code is publicly
available as part of the Hi-C-bench distribution.

TAD boundary categorization via fused 2D lasso. We applied
2D fused lasso to categorize TAD boundaries based on their
strength. The rationale behind this categorization is that topolo-
gical domains separated by more “permissive” (i.e., weaker)
boundaries*> will tend to fuse into larger domains when lasso is
applied, compared to TADs separated by well-defined, stronger
boundaries. We indeed applied this strategy and categorized
boundaries into multiple groups ranging from the most permis-
sive to the strongest boundaries. The boundaries that were lost
when A-value was increased from 0 to 0.25, fall in the first cate-
gory (A=0), the ones lost when A was increased to 0.5, in the
second (1=0.25), and so on.

Fig. 5 Pan-cancer analysis of strong vs. weak TAD boundaries (high sequencing depth =80 million intrachromosomal read pairs). a Schematic of pan-
cancer analysis (left panel) and classification of focally deleted boundaries in cancer according to their strength (right panel). b Schematic of pan-cancer
analysis (left panel) and classification of focally duplicated boundaries in cancer according to their strength (right panel). ¢ Schematic of pan-cancer
analysis (left panel) and co-duplications of TAD boundaries with regular enhancers and super-enhancers in cancer (right panel). d Snapshot of the MYC
locus: a strong boundary (black bar) is frequently co-duplicated with MYC and potential super-enhancers in cancer patients (highlighted area). IGV tracks
from top to bottom: average insulation score across cell types (gray), strong boundaries (black bars), super-enhancer track from SEA (blue bars), RefSeq
genes, duplication frequency (red graph) and ICGC patient tandem duplications (red bars). All statistical tests are paired two-sided Wilcoxon rank-sum
tests between distributions defined across samples (each sample is a dot in the boxplots). The box in each boxplot represents the first (Q1) and third (Q3)
quartiles and the ends of the whiskers are positioned 1.5*(Q3-Q1) away from the ends of the box.
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TAD boundary categorization by insulation score. We stratified
TAD boundaries into five categories (I through V) of equal size
according to their insulation score, independently in each Hi-C
data set used in this study. Category I contained TAD boundaries
with the lowest insulation scores and category V contained those
with the highest. Before calculating insulation scores, we first
processed the Hi-C matrices using ICE, calCB and scaling and
then applied fused 2D lasso (with optimal 1). Then, TAD calling
and TAD boundary insulation score calculations were performed
using our “ratio” or the “crane” method and the boundaries were
classified into five equal-size categories, as described above.

Selection of optimal A. For any given Hi-C sample, we defined
the “optimal” 4, as the A-value beyond which no statistically sig-
nificant improvement on the reproducibility is observed. The
statistical significance was assessed using a Wilcoxon test between
the distributions of stratum-adjusted correlation coefficients
(SCC) across chromosomes in given sample for successive 1
values. Alternatively, the test of statistically significant improve-
ment can be applied on the difference between the intra- and
inter-cell-type SCC values in order to take into account similarity
to unrelated samples. At least two biological replicates are
required for the selection of optimal A.

Analysis of CTCF and H3K27ac ChIP-seq data. All ChIP-seq
data were uniformly processed using the HiC-bench platform!®,
Raw sequencing files were aligned using Bowtie2 version 2.3.1
with standard parameters. Only uniquely mapped reads were
selected for downstream analysis. PCR duplicates were removed
using Picard-tools version 1.88. MACS version 2.0.10.20131216
were used to call narrow peaks for CTCF and broad peaks for
H3K27ac with default parameters.

Association of CTCF levels with boundary strength categories.
We obtained CTCF ChIP-sequencing data for the cell lines uti-
lized in this study (with the exception of KBM7 for which no
publicly available data set was available, see Supplementary
Data 1 for details). Total CTCF levels (i.e., aggregated peak
intensities from potentially multiple CTCF peaks) at each TAD
boundary were calculated and their normalized distributions for
each boundary category (weak to strong) were plotted in boxplots
in order to demonstrate the association of increased boundary
strength with increased levels of CTCF binding. We performed
this analysis separately for TSS-only and non-TSS CTCF binding
sites. The rationale behind these separate analyses was based on
the observation that several TAD boundaries, especially strong
boundaries, contain TSSs. Statistical significance was assessed
using paired two-sided Wilcoxon rank-sum test. The boxplots
represent the distribution of values (normalized CTCEF levels)
across the Hi-C samples used in this study to define the five
categories of TAD boundaries. Detailed information about the
CTCF ChIP-seq data sets, including cell type and GEO accession
number, is made available in Supplementary Data 1.

Boundary strength and proximity to super-enhancers. Super-
enhancers were called using H3K27ac ChIP-seq data from GEO,
ENCODE and in-house generated data. Detailed information
about the H3K27ac ChIP-seq data sets, including cell type and
GEO accession number, is made available in Supglementary
Data 1. Reads were first aligned with Bowtie2 v2.3.1*° and then
HOMER v4.6% was used to call super-enhancers, all with stan-
dard parameters. For each super-enhancer in each sample, we
identified the corresponding TAD and its TAD boundaries. We
then calculated (per sample) the percentage of super-enhancers
that are surrounded by boundaries belonging in each boundary

| (2018)9:542

category. Statistical significance was assessed using paired
two-sided Wilcoxon rank-sum test. The boxplots represent the
distribution of values (fraction of super-enhancers in proximity to
TAD boundary categories I through V) across the Hi-C samples
used in this study.

Pan-cancer analysis of TAD boundaries and (super-) enhan-
cers. Deletion and co-duplication data were downloaded from
ICGCY. Then, deletions and co-duplications were categorized
based on their size ranging from 250 kb to 10 Mb. This data were
combined with boundary strength data (from the cell lines
included in this study) and the closest boundaries to each
structural variant were identified using BEDTools*®, Data for
super-enhancers were downloaded from the super-enhancer
archive (SEA)%’, whereas enhancer data were downloaded from
FANTOM®. Then, the fraction of boundaries or enhancer/super-
enhancer elements was normalized with the total size of the
corresponding structural variation data (deletions or tandem
duplications) and plotted against boundary strength. Statistical
significance was assessed using paired two-sided Wilcoxon rank-
sum test. The boxplots represent the distribution of values
(fraction of boundaries or enhancer/super-enhancers in proxi-
mity to TAD boundary categories I through V) across the Hi-C
samples used in this study.

Code availability. To ensure reproducibility of our analyses and
make the code easily available, we incorporated all the code used
to perform the work described in this study into the current
version of Hi-C-bench (https://github.com/NYU-BFX/hic-
bench). Updates include all the additional steps, we developed
for this study: fused 2D lasso, 2D mean filter smoothing, HiCRep,
calCB, optimal lambda, TAD boundary strength, and integration
with ICGC copy number variation data.

Data availability. Detailed information about all Hi-C and
ChIP-seq data sets used in this study are made available in
Supplementary Data 1.
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