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ABSTRACT
The interactions between humans and music are often studied through an impulse-response paradigm where the
human response is considered purely a reaction to the present signal, hence neglecting more subtle relations and
underlying patterns. In this paper a portable biomonitoring and music playback system will be presented, study-
ing the correlation between humans and music, with a more in-depth focus on analysing and characterising this
interaction based on embodiment and bio-feedback. A Raspberry Pi environment is extended with an 8 channel
16kHz ADS-chip, capable of mobile high sample rate capture of EEG data from cEEGrid-electrodes, which
holds future extension possibilities to heart rate, saturation and movement. Furthermore, a high amplification
is present to allow subcortical signal capture along with adaptive music playback to alter and monitor playback
synchronised with data capture. This permits on-board analysis of the music interaction and response-based
playback adaptation. The system provides EEG data capture with a 3400Hz 3dB-bandwidth and RMS input-
referred noise of 0.503µV. A comparison was made with state-of-the-art cortical capturing devices through an
ABR measurement with stationary Biosemi EEG equipment. Additionally, an overview will be presented of the
aimed interaction and performance with regard to synchronisation of audio and EEG measurements and their
analysis.
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1 INTRODUCTION
Stemming from the shown positive sociological, medical and health oriented influence of sound and music on a
human being (1, 2, 3, 4), there currently is an omnipresent interest in the characterisation of these interactions
(5, 6, 7, 8). For example, their influence has been found to be beneficial for both rehabilitation in general (26)
as specifically in treatment of the Parkinson’s disease (27, 28), mental diseases (autism spectrum disorder) (29,
30) as well as general well-being (31). Said interactions are evaluated during presentation through bio-markers
(EEG, heart rate, saturation, movement and etc.) which then provide a more in-depth view of how the sound is
perceived and is responded to (9, 10, 11). However, the response is often considered a pure stimulus response,
i.e. a pure one way result of the input. Neglecting then any interaction or more intricate relations which may
be present in human-machine or human-human music interactions, as have been reported by mathematician,
philosophers, musicologist and other scientists (12, 13, 14). Additionally, motivation in test subjects may be
limited due to the lack of interaction potential.

In line with the above reasoning a more human-like adaptive music playback system, based on bio-markers,
is hence preferred. Although the idea of altering playback based on human response in general is not innovat-
ing, as multiple implementations have been made based on brain potentials, heart rate and others (32, 33, 34,
35), their implementations do often not consider the resulting interaction which is realised between both listener
and sound or do this to a limited extend. It should however be stated that work by Dasenbrock et al. (38)
provides a similar feedback aimed implementation as the presented work. However, here a more standalone
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system is aimed for playback and capture, suited as well for sub-cortical EEG capture, for example the Audi-
tory Brainstem Response (ABR). The latter presenting higher demands on playback together with a more clear
emphasis on interaction.

In this paper a proof of concept system (POC) is presented, which is aimed at overcoming these limitations
by offering a portable and light-weight system for in-depth real-time analysis of the interaction as it manifests
itself between bio-markers (internally recorded EEG or acquired through I2C or SPI communication) and sound.
The analysis here will be based on spectral and temporal properties of both. The system is furthermore
capable of adapting the music playback based on mentioned analysis, thus creating an adaptive loop. In turn,
a more human-like interaction between man and machine will be aimed for, better suited for human-like music
responses and realising an adaptive engaging environment which can be evaluated in real time.

2 SYSTEM DESIGN
2.1 Hardware layout
The system layout is presented below in Figure 1 and consists of two main components 1) An EEG capture
module containing a preamplifier, low pass filters, an ADC and optional capabilities of microphone integration
and 2) A central computing Raspberry Pi 3b+ module, for processing, external device communication over I2C
and SPI, storage and an audio playback module.

Figure 1. Overview of hardware layout (upper) and data flows (lower) inside the proof of concept system,
based on illustrations provided by and used with permission of Van Den Broucke (15). Process 1a) capture of
biomarkers, Process 1b) storage of biomarkers, Process 2) interaction analysis, Process 3) adaptive playback.

2.1.1 EEG capture
The EEG capture and its subcomponents (Process 1a, Process 1b), providing signal processing and storage, are
shortly discussed below. Additional documentation and evaluation of the EEG capture can be found in (15).

The auditory evoked potentials (EEG) are recorded by cEEGrid electrodes consisting of 8 electrodes placed
around the ear, developed by the group of Bleichner and Debener (17, 18). Which, due to their shape and
placement, are dedicated to hearing diagnostics and in particular the evaluation of them through the capturing of
Envelope Following Response (EFR) and ABR signals. Second, the captured activity is amplified through low-
noise (7nV/Hz, 3400Hz 3dB bandwidth) preamlifiers with a gain factor of 100, which ensures being capable of
capturing subcortical EEG data. The preamplifiers furthermore possess a common mode rejection ratio (CMRR)
of -110dB and an offset voltage of 0.5µV and were equipped with a driven-right leg feedback loop to ensure a



proper range for the preamplifiers. Third, the amplified signals are passed onto the motherboard through a low-
pass anti-aliasing filter before being processed by a 16kHz analog-to-digital 24bit ADS1299 chip designed for
medical instrumentation studies. This also includes portable EEG measurements due to its low cost and power
usage (15). An external trigger input can also be provided to the ADS-chip to allow full ABR measurements
on the system. A 7.4V, 6000mAh lithium battery was furthermore connected to the motherboard serving as the
main power supply during operation for both the motherboard and processing unit.

An overview of the specification of the EEG-system may be found below in Table 1 taken from the in-
depth performance analysis and discussion in Van Den Broucke (15). It should however be stated that the main
processing in the latter paper for EEG-measurement is evaluated and controlled through an ESP32-WROOM-32
(19) chip from the Espressif Company. Alternatively, communication and storage will here be handled through
a Raspberry Pi. Nevertheless, this should not influence the actual functioning of the EEG capture.

Table 1. Specification of EEG-system as taken from Van Den Broucke (15)

Specification System performance

Maximum sample rate 16000Hz

Sample rate accuracy < 200ps

Sampling skew 25ps

Bandwidth (-3dB) 3400Hz

Total input ref. noise 0.5µVrms

Harmonic distortion < 0.001%

Resolution 24bit

CMRR(at 50Hz) > 110dB

2.2 General interaction system and human
The main processing unit consists of a Raspberry Pi 3B+ from Raspberry Pi (21) running Debian 10. The
system contains a 64-bit quad-core processor running at 1.4GHz, with 1GB of ram and a 128GB micro-SD
card. Furthermore, besides the included 2.4GHz and 5GHz Wi-Fi 802.11n and Bluetooth 4.1 Low Energy
(BLE) (20), a multitude of 40 GPIO pins is present for external communication, providing future extension to
other hardware for bio-marker input. Likewise, the Serial Peripheral Interface (SPI) communication to the ADC-
chip is handled over said GPIO pins. Additionally a 3.5 mm stereo jack is available with PWM-regulated audio
playback which currently serves as the main playback module (21). The Raspberry Pi, the main processing hub,
controls the different processes of the system. These being then Process 1a) capture and Process 1b) storage of
both internal (EEG) and external bio-markers, Process 2) providing analysis of the recorded responses in relation
to presented sound and lastly Process 3) playback and altering presented sound in a real-time manner to create
an engaging and adaptive environment as illustrated in figure 1. Care was expressed in the implementation of
said processes here towards ensuring real-time synced accessibility of data and responsiveness of the system
in its audio playback. All processes are written and implemented in C, C++ or Python. Furthermore, the
measurement data recorded in Process 1a is shared between processes and sub-processes through a circular
buffer. Here read and write communication is managed by semaphore and read/write indexes onto the circular
buffer with implemented overflow and underflow signaling should a process or sub-process lag.

3 Evaluation of the current system
To evaluate performance of the system as a whole, the processes are individually assessed. This being, for
Process 1, an EEG measurement with comparison to state-of-the-art. Process 2 and Process 3 will be evaluated
through data-flow observations and overflows in the circular buffer during processing and synchronised playback.



3.1 Process 1 evaluation
The comparison for a proper EEG measurement is made to an ActiveTwo Mk2 BioSemi system (37) in a
laboratory setup through an ABR measurement. The reference system captured evoked potentials around the
head through active electrodes (sintered Ag-AgCl) operating at 24bit resolution with a sampling rate of 16384Hz
and was secured onto the head via a 64 channel Biosemi headcap.

The experiment followed the measurement procedure as outlined in Bleichner et al. (18). Test subjects (5
participants) were positioned inside of a double-walled and electrically shielded listening booth. Each participant
took place in a reclining share after which electrodes were attached to the participant’s head. For the Biosemi
measurement the central-midline electrode Cz (10-20 system) and two earlobe electrodes (EXT1 and EXT2), one
placed on each earlobe, are recorded. The common CMS and driven-right-leg (DRL) electrodes were connected
to forehead and nose respectively. The Cz measurements were afterwards referenced to the average of EXT1
and EXT2. Alternatively the cEEGrid electrodes were placed around the right ear with a double-sided sticker
using the same DRL and CMS positioning serving as main reference. The cEEGrid channels were referenced
as well, but to other cEEGrid channels in line with (16). For both electrode setups conductive gel was applied.

The stimuli consisted of 4000 clicks of alternating polarity and presented to the right ear via an in-ear
speaker. These clicks occurred at an average rate of 10Hz with a uniformly distributed jitter up to 10% in pe-
riod. The click itself consisted of an 80µs pulse followed by silence and calibrated to a 100dB peak-equivalent
sound pressure level presented inside the outer ear. The clicks and triggers were generated in MATLAB at a
sampling rate of 48kHz and stored together with the EEG data for evaluation.

The processing of the ABR results was done offline in Python for both Cz Biosemi measurements and the
POC. A low-pass and high-pass 4th order Butterworth filter were applied to the signals with respective cutoff
frequencies of 2000Hz and 100Hz. Afterwards 20ms epochs were taken, with the onset corresponding to the
trigger signal and epoch removal of the 15% with the highest amplitudes. The latter then being attributed to
artifacts of head movement and others. The mean of the remaining epochs along with bootstrapped statistical
noise floor and confidence interval of the mean (16), were calculated and are depicted in Figure 2.

Figure 2. Recorded and processed mean ABR response of 4000 clicks together with its calculated statistical
noise floor and standard error of 1 standard deviation for a single subject recorded via the POC and reference
Biosemi system.

3.2 Process 2/3 evaluation
To ensure a proper time synced system, both processing and audio playback will be run, managed and main-
tained in Python to control both time-accurate data processing and audio playback. Here, playback is realised
using the Psychtoolbox-3 library inside PsychoPy (36) for Python.

Data processing was evaluated under combined load of both Process 1a and Process 1b to serve as an initial
verification of correct real-time communication under limited load. A time-stamped 0.5s circular buffer was
implemented for data-communication and was allocated in the shared memory directory (dev/shm). Furthermore,
access to the buffer was restricted through semaphores and checked for discrepancies in data between both



capture and processing. However, an initial verification of data integrity was first performed through comparison
of measurement data as stored directly via Process 1a as well as though the circular buffer Process 1b. This
double storage only served as an initial verification of data and the added storage in Process 1a was deactivated
for all other measurements. A timestamp was furthermore provided every 0.5s for syncing inside the shared
memory structure of Process 1. The measurement window contained a 400s interval to ensure a full ABR
measurement could be performed with a 10Hz stimulation frequency and a maximum of 4000 repetitions, which
should moreover be sufficient to capture a full musical interaction with songs of lengths less than 6.5 minutes.

Once content was verified as correctly transferred, overflow in Python is examined under load. Here the
readout of the shared circular buffer in Process 2 into an array was executed by Python while a simple peak
detection algorithm ran on the last 1024 recorded values per channel (8 electrode channels from the cEEGrid),
serving as initial load. Maximal offset between total written samples to the buffer by Process 1a and evaluated
samples by Process 2 was measured over a 400s interval as well.

Figure 3. Audio offset and response time illustration, left and right respectively, of the POC. With the original
planned audio "Scheduled" and the measured potentials by the ADS-chip "Recorded" and "Alteration".

Evaluation of audio playback is performed to assess both audio consistency of playback as well as respon-
siveness, i.e. the observed delay to signalled audio changes. As for audio consistency to the internal clock,
offset in time between expected presentation time (output through audio jack), based on sample rate and buffer
length as predicted by Psychtoolbox, is compared to the arrival time as recorded by the ADS chip. Audio
output is directly looped back and connected to the preamplifier input of the system to evaluate the latter offset.
Sound production itself was setup with a 4096 sample buffer together with a sample rate of 48kHz. An excerpt
was taken from Johnny Nash’s "I Can See Clearly Now" as presented audio. The resulting delay for acoustic
playback between command execution and sound presentation, based on buffer length and sample rate, should
hence not exceed 85.3ms.

Additionally, response time is evaluated between recorded potentials and an associated introduced level
change of the presented audio (setting a non-zero amplitude). For the latter a threshold detection was imple-
mented on the recorded potential in Python, which upon activation altered the presented playback level. Figure
3 illustrates both the later recorded audio offset (left) as well as the response time (right). Both figures present
scaled versions of presented and recorded signals to increase visibility of the main delays.

4 DISCUSSION AND FUTURE CONSIDERATIONS
4.1 Process 1 EEG acquisition
Comparing the measured EEG responses in Figure 2 to a reference ABR measurement performed as well with
cEEGrid (16) similar trends can be observed. Overlaying with the Cz measurement, performed after the cEEGrid
measurement to avoid interference, Wave-I, Wave-III and Wave-V can be identified. The latter being character-
istic deflections within the first 10ms after stimulus presentation stemming from ascending relay stations of the
auditory pathway (22). A clear identifiable Wave-I, Wave-III and Wave-V is present at 2.5ms, 5ms and 7ms



respectively in both measurements. However for the Wave-I, this peak is less visible and seems to be shifted
compared to the expected Cz timing, potentially being a consequence of the measurements not being performed
simultaneously but in concession. Furthermore, delays as observed are in line with expectations for a 100dB
SPL knowing a 1 millisecond audio presentation delay is present in the system (23, 24). Additionally, ampli-
tudes, as observed here for the cEEGrid recording, also agree in magnitude ( 0.1µV) to the findings in Garrett
et al. (16). This also applies to the noise floor measurements (+/-0.05µV), which agree with both recorded
measurements via the Biosemi system as well as with findings by Garrett, hence our proof of concept performs
equally well to the latter setup and the Biosemi system. This proof is furthermore backed up by similar results
presented in (15).

4.2 Process 2 data processing and storage
Observing then data-flow as a whole within the system, an overall loss-free communication is established be-
tween processes. An initial assessment confirmed that a 400s measurement can be recorded between ADS chip
and the main computer without a single lost sample for all 8 channels. Real-time data transfer of this collected
data was successfully accomplished during a 100s measurement (16kHz, 8 channels) over the cyclic buffer be-
tween processes Process 1a and Process 1b, with a character match for each individual line written to both .txt
files before and after the cyclic buffer. The latter confirms a perfect data transmission over the circular buffer.

Extension however to larger measurement intervals caused cyclic buffer overflows and associated loss of data
between processes. This is likely a consequence of the limited memory availability under load as the current
implementation buffered the full measurement in Process 1a for verification here. Alternatively, the continuous
write function in Process 1b may require too much processing time during recording, resulting in a data overflow
in the data collection. Further optimisation to this process as well as a planned hardware upgrade to a Raspberry
Pi 4 will likely solve this limitation. Alternatively a binary format storage of the data is considered to avoid
redundant bit writing and reduce writing load.

Evaluation under a limited load (only Process 1a and no storage Process 1b) of Python Process 2 furthermore
illustrated that the system was capable of keeping up with the real-time provided data, acquire and process it
from the circular buffer with no loss of data (400s, 8 channels at 16kHz). The amount of read-in unprocessed
samples (for each of the 8 read in channels) never exceeded 450 which, translated to time, results in a time-
delay of 28.1ms when sampled at 16kHz. As the delay is considerable and comparable in magnitude to the
unavoidable delay introduced by the audio-buffer (∼80ms) the prior value was found lacking and currently
unacceptable. The combined delay (∼108ms) of both exceeds tolerable values audio music interactions (25) of
a maximal 50ms delay and is thus insufficient. A smaller audio-buffer will also be essential here to allow to
achieve this 50ms goal which is currently impossible without introducing audible playback glitches.

It should additionally be noted that under the presented limited load, with no storage yet introduced, the
communication with the ADS chip suffered from loss of a samples 32 in 6.400.000. The EEG capture can suffer
undesired frequency shifts and hence corrupt the measured brain activity data. A 0-loss ADS communication
will be aimed for. Further optimisation of resource management along with improved hardware is expected to
solve the above mentioned issues and allow perfect communication with the ADS under load.

4.3 Process 3 audio playback
Lastly, regarding audio playback, the offset between planned playback time and actual playtime is illustrated
in Figure 3. The offset between both seems to be more or less consistent over time and marginal (5ms) in
comparison to the delays introduced by both processing and audio buffering. Nevertheless a compensation of
the average offset for said delay will be included in the final audio playback.

In addition the response time, as illustrated in Figure 3, seems to be consistent with the observations made in
section 4.2. A clear time-delay is present between the detection of a high signal by the Python script (Alteration
= 0.3), which is situated at 3.54s, and the following change of playback amplitude at 3.71s. Resulting in a
total response time of 170ms. Additionally the audio offset seems to have been altered and thus also requires
further investigation. Made observations confirm the present delay inside the system between measured response
(recorded by the ADS chip) and audio adaptation is currently to high to allow the system to be operated in real
time in an adaptive manner compared to the desired 50ms delay (25).



The main limitations of the current proof of concept, being response times above 50ms, sample loss and data
buffer overflow, seem to be mainly a consequence of sub-optimal resource management, too large audio buffer
and code optimisation. A more efficient file storage (binaries) is aimed to be implemented along with reduced
audio-buffer sizes to create more headroom for actual processing. Furthermore, a dedicated core assignment,
optimised processing and a hardware improvement into a Raspberry Pi 4 will be implemented. Optionally a
dedicated sound card is considered.

5 CONCLUSIONS
In this paper a proof of concept system is presented and evaluated aimed at realising adaptive and interactive
music interaction based on recorded EEG data or other biomarkers. The system is currently capable of real-time
capture and storage of filtered and digitised EEG data at 16kHz with 8 channels via cEEGrid electrodes up to
400 seconds. A real-time analysis and capture of the EEG data time-synced to presented audio is implemented
allowing peak detection and further processing. Moreover, a reliable audio stream at 48kHz is produced by
the system capable of adapting playback to real-time captured brain activity. Hardware improvements and code
optimisation will be implemented to ensure loss free data capture and lower response time to real time (50ms).
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