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ABSTRACT 

Auditory models have been used for decades to develop audio signal processing algorithms in hearing aids. 

Here, we used a biophysically-inspired auditory model, in a differentiable convolutional neural-network 

(CNN) description (CoNNear), to train different end-to-end machine-learning- (ML) based audio signal 

processing algorithms that maximally restore cochlear synaptopathy (CS) affected auditory-nerve (AN) 

responses. Based on the reference normal-hearing (NH) model and a hearing-impaired (HI) model, we used 

backpropagation to design several ML-based algorithms, using the same CNN encoder-decoder architecture 

but different loss functions focusing on different aspects of the AN responses. Processing of pure tones and 

words by the ML-algorithms showed enhanced AN responses to both low- and high-frequency pure tones, 

and to vowels and consonants in quiet, but responses were usually not restored to the NH-level. The 

algorithms generally sharpened the onset response to speech and improved the stimulus dynamic range. In 

an unconstrained operation, the ML-algorithms added more energy to the higher frequencies, degrading 

speech quality and intelligibility. We will objectively assess the effect of these compensation algorithms on 

sound quality and speech intelligibility in future clinical experiments.  
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1. INTRODUCTION 

Exposure to noise or ototoxic drugs and ageing are common causes of sensorineural hearing loss 

(SNHL) in humans, and often result in irreversible damage of the outer hair cells (OHCs) or synapses 

to the auditory nerve (AN), i.e. cochlear synaptopathy (CS) (1, 2, 3). Several studies have suggested 

that CS results in a loss of the low- (LSR), medium- (MSR) and high-spontaneous rate (HSR) AN 

fibers (ANFs), in which the LSR and MSR are the first to be lost (2). CS degrades encoding of the 

temporal envelope in sound, which may contribute to a variety of perceptual abnormalities such as 

speech-in-noise difficulties and decreased speech intelligibility (2, 4, 5).  

However, pure tone audiometric thresholds, related to OHC loss, are not affected in CS, therefore 

CS is referred to as “hidden hearing loss” (6). Studies on animal models have shown that the loss of 

ANFs and synapses to the AN, related to cochlear neuropathy and synaptopathy, are the first signs of 

permanent hearing damage and occur earlier in time than OHC loss (1, 7). Since the audiogram is an 

insensitive marker for damage to the AN and loss of synapses, patients suffering from CS will 

experience difficulties understanding speech in challenging situations while their hearing thresholds 

remain normal. Thus, it is expected that a large group of the noise-exposed or ageing population 

suffers from CS, which still remains undiagnosed based on their audiogram and will therefore not be 

treated properly. Non-invasive diagnostic techniques of CS have been recently proposed based on 

auditory-evoked potentials (AEPs) (8). 

The current hearing-aid (HA) algorithms focus on compensating for the elevated audiometric 

thresholds, but do not specifically compensate for the hearing difficulties related to CS, and therefore 

offer no treatment to patients who suffer from CS. The non-linear dynamic-range compression strategy 

of current hearing aids even reduces the amplitude fluctuations of the temporal envelope, what might 

even worsen the hearing ability in case of CS (9, 10, 11). HA algorithms aiming to compensate for 
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OHC loss and CS-related hearing impairment hence need to be computationally more complex than 

standard HA algorithms, in order to be able to grasp the complex non-linear working mechanism of 

the auditory system.  

Auditory models have been used for decades to develop audio signal processing algorithms in HAs. 

Typically, the difference signal between a normal-hearing (NH) and hearing-impaired (HI) model is 

used to design such algorithms, but only recently machine-learning (ML) methods have made their 

entry in this field. Specifically, when adopting differentiable descriptions of biophysical models of 

hearing-impairment, it is possible to fully backpropagate through the models and design a new type 

of ML-based audio signal processing that compensates for different aspects of SNHL (12, 13). The 

objective of this work is to investigate several ML-based HA algorithms able to restore CS, based on 

a convolutional neural network (CNN) description of a NH and HI auditory model.  We will also 

investigate which sound and speech features are modified when letting several ML algorithms decide 

the most-optimal solution to compensate for CS. 

2. METHODS 

2.1 CoNNear Auditory Model  

 We used a convolutional neural network model of the auditory periphery, CoNNear (14, 15, 16), 

that was developed starting from a biophysically inspired computational model of the human auditory 

periphery (17). The CoNNear model provides a fast and differentiable description of the auditory 

stages (basilar membrane (BM) vibrations, auditory nerve firing, inner-hair-cell (IHC) potential) of 

the computational model across 201 simulated tonotopic cochlear locations , with center frequencies 

(CFs) spaced according to the Greenwood place-frequency map of the cochlea (18).  

The NH CoNNear model is shown in Figure 1, and simulates the AN response 𝑟F to an auditory 

input 𝑥, sampled at a rate of 20kHz since the CoNNear model operates at a sampling frequency of 

20kHz. The CoNNear model consists of three distinct modules: the cochlear stage (CoNNearcochlea), 

IHC stage (CoNNearIHC), and ANF stage. The ANF stage is subdivided in the three different types of 

ANFs: CoNNearANfH, CoNNearANfM and CoNNearANfL for the HSR, MSR and LSR ANFs, respectively. 

The responses of the three ANF types are combined together to yield the final summed AN response 

𝑟F, by using weights HNH, MNH and LNH that correspond to the number of HSR, MSR and LSR fibers 

in a NH periphery (HNH = 13, MNH = 3 and LNH = 3 as reported in Verhulst et al. (17)). The 

CoNNearcochlea, CoNNearIHC and CoNNearANf modules comprise encoder-decoder CNN architectures 

that have the advantage to backpropagate across them, facilitating the development of individualized 

audio-enhancement methods. 

Figure 1 – CoNNear model of the NH auditory periphery (12) 

2.2 DNN-Based CS-Compensating HA Algorithms 

From the NH CoNNear model, we can obtain a HI CoNNear model by retraining the CoNNearcochlea 

stage via transfer learning to simulate OHC loss (19), and by changing the weights of the different 

types of ANFs in the CoNNearANf stage to model AN fiber loss, related to CS. The CoNNear HI 

periphery model can be individualized based on frequency-dependent degrees of OHC loss and CS. 

The individualized degree of CS and OHC loss of a listener can be obtained from diagnostic 

measurements using the rectangular amplitude-modulated envelope-following responses (RAM-

EFRs) and distortion-product oto-acoustic emissions (DPOAEs), respectively (20, 21).   

Consequently, based on the reference NH model and a HI CoNNear model, we can use 

backpropagation to design ML-based audio signal processing algorithms that optimally compensate 

for CS (12, 13). The training procedure for a deep-neural-network- (DNN) based HA algorithm has 



 

 

been explained by Drakopoulos et al. (12, 13) and goes as follows: the DNN-HA model processes the 

input speech 𝑥 into �̂� such that the difference between the NH CoNNear model response 𝑟𝐹 and the 

HI CoNNear model response 𝑟�̂�  is minimized. Different CS-compensating HA algorithms can be 

designed in this way by defining a different loss function (12, 13). These functions can focus on 

minimizing different aspects of the AN responses (e.g. free training, using more or less cochlea r 

channels, limiting the frequency range, time-domain and frequency representations, also summed 

across CFs). Thanks to the modular nature of CoNNear, the loss functions can be fine-tuned for each 

of its distinct modules to optimally compensate for hearing-impairment in each of the modules. 

In this work, we trained three DNN-HA models (CS_vow, CS_vow_cons and CS_freq) that to 

compensate for a hearing-impairment with a CS profile of HHI = 7, MHI = 0 and LHI = 0 ANFs, and no 

OHC loss. A CNN encoder-decoder architecture was used that comprised 16 layers (8 in the encoder 

and 8 in the decoder) as described in (12). The three HA models were trained using different loss 

functions, which are listed in Table 1. A more detailed explanation of the different components of the 

loss functions that can be used during training is given by Drakopoulos et al. (13). In the CS_vow 

model, the time-domain AN responses were squared (loss function 𝑙𝑟
2 in (13)) and only AN responses 

above a certain threshold were minimized (threshold 𝑇𝑟 in (13)). The squaring of the time-domain 

responses was done to emphasize the temporal contrast of the speech envelope modulation to focus 

the optimization on the enhancement of the most excited regions, since temporal envelope coding is 

essential for robust speech intelligibility (22, 23). The loss function that focused on only minimizing 

the AN responses above a specific threshold was applied to further focus on the temporal peaks of the 

responses. In the CS_vow_cons model, the AN response threshold 𝑇𝑟 was applied as well, and an 

additional loss function was included between the root-mean-square (RMS) difference of the 

unprocessed and processed signals to ensure that restoration can be achieved without amplification of 

the stimulus. In the CS_freq model, the loss function 𝑙𝑟
2 was used and a frequency-weighting was 

applied to emphasize the processing of the low-frequency CFs (𝑓𝑟𝑒𝑞. 𝑒𝑚𝑝ℎ𝑎𝑠𝑖𝑠 in (13)), so that the 

high frequencies were processed less than the low. Emphasizing the low CFs in the optimization might 

achieve better benefits in speech intelligibility since the speech corpus mostly contains energy at low 

frequencies.  

Table 1 – Loss functions used per DNN-HA model 

Loss function CS_vow CS_vow_cons CS_freq 

Low-frequency CFs emphasized   x 

Squared time-domain AN responses x  x 

AN response threshold x x  

RMS difference - processed and unprocessed signals  x  

2.3 HA Model Evaluation 

The three trained HA models were evaluated on their ability to compensate for the considered CS 

profile of HHI = 7, MHI = 0 and LHI = 0 ANFs. Post-mortem data from recent temporal-bone studies 

have shown that NH people have lost more than half of their AN innervations after the age of 50, 

therefore we chose this CS profile of severe AN fiber loss (24, 25). 

Pure tone stimuli and a battery of words in quiet were processed with the three trained DNN -HA 

models, to evaluate the auditory feature restoration capabilities of the ML algorithms using transfer 

functions and auditory model simulations. The DNN-HA processed stimuli were given to the HI 

CoNNear model with the considered CS profile, in order to compare the simulated AN responses of 

the NH CoNNear model to the responses of the HI CoNNear model, with and without applying the 

HA processing. This way, we could investigate the difference in responses between the NH and HI 

models, and see how the HA processing affects the output for the HI case, aiming to restore the AN 

responses to the NH level. In this work, we present the processing outcomes for several pure tones 

and the word ‘David’, extracted from the Flemish Matrix corpus (26). The three pure tones used as 

input to the DNN-HA models respectively had a frequency of 500Hz, 2kHz and 8kHz with a duration 

of 404.6ms and an initial silence of 5ms, and were presented at a level of 70 dB SPL relative to the 

reference pressure p0 = 2 ∙ 10−5Pa, with a sampling frequency of 20kHz. The word ‘David’ was also 

presented at 70 dB SPL, with a sampling frequency of 20kHz, and had a duration of 516ms. The DNN-

HA models require an input that is a multiple of 256 samples, hence zero-padding was applied at the 



 

 

end of the ‘David’ stimulus. 

In order to investigate the transfer-function characteristics of the three HA models, the magnitude 

spectra of the unprocessed and processed pure tones were visualized. For the word ‘David’ as input 

stimulus, we analyzed several outputs obtained from the simulated CoNNear AN responses . The first 

of the three presented outputs is the excitation pattern at the level of the basilar membrane, reflecting 

the root-mean-square (RMS) over time of the vibration of the BM per CF. The BM excitation patterns 

shows the vibration amplitude of the BM in function of the CFs along its length, in response to the 

full input stimulus ‘David’. The second presented output is the excitation pattern at the level of the 

AN, reflecting the RMS over time of the summed AN response, which is the sum of the simulated 

firing rates of the HSR, MSR and LSR ANFs, each weighted by their respective number of fibers 

present (for the HI CoNNear model: HHI = 7, MHI = 0 and LHI = 0; for the NH CoNNear model: HNH = 

13, MNH = 3 and LNH = 3), per CF. The third presented output is the wave-1 (W-1) response, which is 

the sum of the summed AN response across the different frequency channels (CFs), in time, calibrated 

by a factor in order to match experimentally recorded wave-1 amplitudes. 

3. RESULTS 

3.1 HA Processing Analysis 

We evaluated the auditory feature restoration capabilities of the three trained ML-based HA 

algorithms, using transfer functions and auditory model simulations as described in the Methods. We 

present the processing outcomes for several pure tones and a speech stimulus and investigate which 

auditory features the different HA processing algorithms focused on to compensate for CS.  

3.2 Processing of Pure Tones 

The magnitude spectra in Figure 2 show the difference in processing between the three HA models 

CS_vow, CS_vow_cons and CS_freq for pure tones of 500Hz, 2kHz and 8kHz, compared to the 

unprocessed pure tones that were given as input to the HA models . It can be seen from the plot of the 

500Hz pure tone that the processing by the CS_vow model largely enhances the low frequencies and 

adds energy to the high frequencies in response to a low-frequency stimulus. In the plots of the 2kHz 

and 8kHz pure tones, the blue curve corresponding to the processing by the CS_vow model is almost 

zero dB SPL or lower for all frequencies, this HA model hence suppresses high frequencies above the 

phase locking limit. In the plots of all three pure tones, it can be seen that the CS_vow_cons model 

adds energy to the high frequencies in the processing to minimize the AN response difference. For the 

pure tone inputs of both low and high frequencies, this HA model tries to restore the AN response by 

exciting the CF regions that were not excited by the stimulus before processing. Hence, in this 

unconstrained operation, the CS_vow_cons model adds more energy to the higher frequencies, which 

created audible high-frequency tonal components. This effect could be reduced by applying a 

frequency weighting to the loss functions, which was done in the model CS_freq. It can be seen from 

the plots that the CS_freq model enhances the low-frequency pure tone of 500Hz, compared to the 

unprocessed case, and also still enhances the high-frequency input tones of 2kHz but not of 8kHz (due 

to the frequency weighting). The CS_freq model does this without the addition of high-frequency 

components. This CS_freq model clearly excites the CF regions closer to the input stimulus 

frequencies, compared to the CS_vow and CS_vow_cons models.  

From these magnitude spectra, we can learn that the combination of loss functions used in the 

CS_vow model only enhanced the low-frequency pure tones, and failed to enhance the high-frequency 

tones. The CS_vow_cons and CS_freq models enhanced both low- and high-frequency content, but 

the lower frequencies in a lesser extent than in the CS_vow model. An additional frequency weighting 

applied to the loss functions in the CS_freq model avoided the HA model to add too much energy to 

the high frequencies in the aim to compensate for CS, by focusing the optimization more on the low-

frequency CFs. The CS_freq model shows a better energy distribution after processing, this HA model 

focuses on enhancing the frequencies more close to the input frequency in comparison with CS_vow 

and CS_vow_cons. 

3.3 Processing of a Speech Stimulus 

Figure 3 shows the excitation patterns to the input stimulus ‘David’ for the basilar membrane 

vibration, and Figure 4 shows the excitation pattern of the summed AN response. The different curves 

on the plots respectively show the simulated response of the NH CoNNear model, the impaired 



 

 

response of the HI model without processing the input stimulus, and the response of the HI model 

after processing the input stimulus by the three HA models, i.e. the HA-processed responses.  

 

Figure 2 – Magnitude spectra of unprocessed pure tones of 500Hz, 2kHz and 8kHz and their processed 

versions for the CS_vow, CS_vow_cons and CS_freq HA models 

 

As can be seen from the excitation patterns of the BM vibration in Figure 3, the curves of the NH 

and unprocessed HI excitation patterns overlap, since the used HI CoNNear model only included CS 

and no OHC loss. The BM vibration excitation patterns show that the CS_vow model processing 

amplified all frequencies compared to the unprocessed condition, while this amplification is less 

pronounced in the CS_vow_cons and CS_freq models. Similar to what we observed in the pure tone 

magnitude spectra, the CS_vow_cons model added more energy to the high frequencies (above 2kHz), 

while this effect was reduced in the CS_freq model.  

Figure 3 – Excitation patterns showing basilar membrane vibration to the input stimulus ‘David’ for the 

CS_vow, CS_vow_cons and CS_freq HA models 



 

 

The excitation patterns of the summed AN responses in Figure 4 already show a clear difference 

between the NH and HI responses to the unprocessed stimulus. The severe loss of ANFs in our chosen 

HI CoNNear model significantly decreased the AN responses compared to NH. The summed AN 

response shows that the CS_vow_cons and CS_freq models slightly increased the firing rate of the 

ANFs across all frequencies, compared to the unprocessed HI case. We observe again the addition of 

high-frequency firing in the CS_vow_cons model, creating audible high-frequency tonal components 

that degraded speech quality and intelligibility. In the CS_vow model, the firing rate is in general 

attenuated for frequencies below around 2kHz, but the higher frequencies are enhanced, compared to 

the unprocessed case. 

 

 

Figure 4 – Excitation patterns showing summed AN response to the input stimulus ‘David’ for the CS_vow, 

CS_vow_cons and CS_freq HA models 

 

From the plots in Figure 3, it can be observed that all HA models increased the BM vibration over 

all frequencies, compared to the NH case, but the excitation patterns at the level of the AN in Figure 

4 show that the enhancement obtained by the HA processing does not restore the summed AN response 

to the level of the NH condition at all. We can learn from these Figures that the combination of the 

loss functions used in the CS_vow model was not able to enhance the firing rate at the level of the 

AN for low frequencies (below around 2kHz). The CS_vow_cons and CS_freq models better enhanced 

the excitation at the level of the AN across all CFs, probably due to the restriction of the RMS of the 

processed output (CS_vow_cons) and the emphasis on the low-frequency content (CS_freq). The 

frequency weighting in the CS_freq model emphasizing the low frequencies had not much impact on 

the suppression of the enhancement of the AN firing at high frequencies, compared to CS_vow_cons.  

Figure 5 shows the time-domain waveform of the input stimulus ‘David’ and the wave-1 responses 

to this input stimulus for the three different HA models, compared to the NH and HI unprocessed 

responses. The occurrence of vowels and consonants is indicated in the plots.  From the plots in Figure 

5, it can be observed that CS_vow, CS_vow_cons and CS_freq all enhance the wave-1 response to the 

vowels ‘a’ and ‘i’, compared to the unprocessed HI response. The CS_vow model shows the largest 

enhancement of vowels, for the vowel ‘i' even to the level of NH, but this HA model shows no response 

to the consonants ‘d’ and ‘v’, the consonant response is even reduced compared to the HI unprocessed 

response. The CS_vow_cons model and CS_freq model both show vowel and consonant enhancement, 

but the wave-1 responses were not restored to the level of NH.  

From the plots in Figure 5, we can learn that simultaneous vowel and consonant enhancement could 

only be obtained when using the combinations of loss functions of the CS_vow_cons and CS_freq 

models. The algorithms generally sharpened the onset response to speech and improved the stimulus 

dynamic range. The onset response to both vowels and consonants was especially enhanced in the 

CS_freq model, by using a loss function of the squared time-domain response that emphasized the 

temporal contrast of the speech envelope modulation. 



 

 

4. CONCLUSION 

In line with findings of two other studies (12, 13) on ML-based end-to-end CS-compensating 

algorithms, of which this work is a further application, we showed that such HA algorithms can be 

designed through backpropagation in a fully automized way, without the need for prior assumptions 

on the signal processing. The constraints in the loss functions of the trained algorithms cause 

differences in restored auditory features to compensate for CS. Specifically, the used loss functions 

influence whether the HA algorithms focus on enhancing low and/or high frequencies, and vowels 

and/or consonants. Different combinations of loss functions were used to investigate which spe ech 

features were enhanced after processing. The CS_vow HA model, trained with a loss function of the 

squared time-domain responses and that minimized the AN response only above a specific threshold, 

was only able to enhance the low-frequency pure tones, and the AN response to vowels, not to 

consonants. The CS_vow_cons model, trained with a loss function on the RMS difference between 

the processed and unprocessed signal, and that minimized the AN response only above a specific 

threshold, was able to enhance both low- and high-frequency pure tones and AN responses to both 

vowels and consonants, but with addition of unwanted high-frequency tones that degraded sound 

quality. Enhancement of both low- and high-frequency pure tones as well as vowels and consonants 

was also obtained for the CS_freq model, trained with a loss function that emphasized the low-

frequency CFs and that had a loss function of the squared time-domain responses. The latter CS_freq 

model was the best performing HA model, its loss functions focused most on the low-frequency 

content, which is most present in the speech corpus, sharpened the onset of the AN response, and 

emphasized the temporal contrast of the speech envelope modulation, which is beneficial for speech 

intelligibility. Moreover, the emphasis of the lower frequencies in the CS_freq model reduced the 

addition of unwanted high frequency components, such that the sound quality was less degraded than 

in the CS_vow_cons model. However, none of the designed HA models was able to restore the AN 

response to speech close to the level of NH for the used HI CoNNear model with a severe loss of 

ANFs. The outcomes of this work suggest that an optimal compensation of such a severe loss of ANFs 

might not be possible using HA strategies, so the restoration of perceptual-relevant aspects can be a 

better solution. 

In future work, we will objectively assess the effect of these compensation algorithms on sound 

quality and speech intelligibility in clinical experiments (e.g. Flemish Matrix SRT task). From 

DPOAEs and RAM-EFRs measurements, we will first assess the patient’s CS profile and degree of 

OHC loss in order to create their individualized HI CoNNear model to use in the backpropagation 

loop for the design of their individualized DNN-based HA model. Before we can start creating these 

individualized HA models, we should first optimize the design of the loss functions of the DNN -HA 

models such that they can optimally compensate for different types of hearing loss. A complete 

restoration of the severe loss of ANFs that was presented in this work might not be possible, instead 

we can focus on restoring relevant auditory aspects as much as possible.  The CoNNear model can also 

be expanded with a brainstem processing module in order to more precisely individual ize the HI model 

and restore hearing loss.  
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Figure 5 – Time-domain waveform of input stimulus ‘David’ and the wave-1 responses before and after 

processing with the CS_vow, CS_vow_cons and CS_freq HA models  

REFERENCES 

1.  Kujawa SG, Liberman MC. Adding insult to injury: Cochlear nerve degeneration after “temporary” noise-

induced hearing loss. J Neurosci. 2009;29(45):14077–85.   

2.  Furman AC, Kujawa SG, Liberman MC. Noise-induced cochlear neuropathy is selective for fibers with 

D

 

V

 

A

 D 

D 

 

I 

D 

 

D

 

D

 

D

 

D

 

D

 

D

 

A

 

A

 

A

 

V

 

V

 

V

 

I 

D 

 

I 

D 

 

I 

D 

 



 

 

low spontaneous rates. J Neurophysiol. 2013;110(3):577–86. 

3.  Lobarinas E, Spankovich C, Le Prell CG. Evidence of “hidden hearing loss” following noise exposures 

that produce robust TTS and ABR wave-I amplitude reductions. Hear Res. 2017;349:155–63.  

4.  Bharadwaj HM, Verhulst S, Shaheen L, Liberman MC, Shinn-Cunningham BG. Cochlear neuropathy and 

the coding of supra-threshold sound. Front Syst Neurosci. 2014;8(26). 

5.  Mepani AM, Verhulst S, Hancock KE, Garrett M, Vasilkov V, Bennett K, et al. Envelope following 

responses predict speech-in-noise performance in normal-hearing listeners. J Neurophysiol. 

2021;125(4):1213–22. 

6. Plack CJ, Barker D, Prendergast G. Perceptual consequences of “hidden” hearing loss. Trends Hear. 

2014;18:1–11. 

7.  Sergeyenko Y, Lall K, Liberman MC, Kujawa SG. Age-related cochlear synaptopathy: An early-onset 

contributor to auditory functional decline. J Neurosci. 2013;33(34):13686–94. 

8. Keshishzadeh S, Garrett M, Vasilkov V, Verhulst S. The derived-band envelope following response and its 

sensitivity to sensorineural hearing deficits. Hear Res. 2020;392:107979. 

9.  Drullman R, Festen J, Plomp R. Effect of reducing slow temporal modulations on speech reception. J 

Acoust Soc Am. 1994;95:2670–80. 

10. Rance G, McKay C, Grayden D. Perceptual Characterization of Children with Auditory Neuropathy. Ear 

Hear. 2004;25(1):34–46. 

11. Drakopoulos F, Vasilkov V, Osses Vecchi A, Wartenberg T, Verhulst S. Model-based hearing-restoration 

strategies for cochlear synaptopathy pathologies. bioRxiv. 2022. 

12. Drakopoulos F, Verhulst S. A differentiable optimisation framework for the design of individualized 

DNN-based hearing-aid strategies. In: ICASSP 2022 IEEE International Conference on Acoustics, Speech 

and Signal Processing (ICASSP). 2022. p. 351–5. 

13. Drakopoulos F, Verhulst S. A Neural-Network Framework for the Design of Individualised Hearing-Loss 

Compensation. Preprint arXiv:2207.07091. 2022. 

14. Baby D, Van Den Broucke A, Verhulst S. A convolutional neural-network model of human cochlear 

mechanics and filter tuning for real-time applications. Nat Mach Intell. 2021;3(2):134–43. 

15. Drakopoulos F, Baby D, Verhulst S. A convolutional neural-network framework for modelling auditory 

sensory cells and synapses. Commun Biol. 2021;4(1).  

16. Verhulst S, Baby D, Drakopoulos F, Van Den Broucke A. A neural network model for cochlear mechanics 

and processing. WO2020249532, 2020. 

17. Verhulst S, Altoè A, Vasilkov V. Computational modeling of the human auditory periphery: Auditory-

nerve responses, evoked potentials and hearing loss. Hear Res. 2018;360:55–75. 

18. Greenwood DD. A cochlear frequency‐position function for several species—29 years later. J Acoust 

Soc Am. 1990;87:2592-2605. 

19. Van Den Broucke A, Baby D, Verhulst S. Hearing-impaired bio-inspired cochlear models for real-time 

auditory applications. In: Proceedings of the Annual Conference of the International Speech 

Communication Association, INTERSPEECH. 2020. p. 2842–6. 

20. Keshishzadeh S, Verhulst S. Individualized Cochlear Models Based on Distortion Product Otoacoustic 

Emissions. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine 

and Biology Society, EMBS. 2021. p. 403–7. 

21. Keshishzadeh S, Garrett M, Verhulst S. Towards Personalized Auditory Models: Predicting Individual 

Sensorineural Hearing-Loss Profiles From Recorded Human Auditory Physiology. Trends Hear. 

2021;25:1–22. 

22. Parthasarathy A, Bartlett EL, Kujawa SG. Age-related Changes in Neural Coding of Envelope Cues: 

Peripheral Declines and Central Compensation. Neuroscience. 2019;407:21–31.  

23. Vasilkov V, Garrett M, Mauermann M, Verhulst S. Enhancing the sensitivity of the envelope-following 

response for cochlear synaptopathy screening in humans: The role of stimulus envelope. Hear Res. 

2021;400:108132.  

24. Viana L, O’Malley J, Burgess B, Jones D, Oliveira C, Santos F, et al. Cochlear neuropathy in human 

presbycusis: confocal analysis of hidden hearing loss in post-mortem tissue. Hear Res. 2015;327:78–88. 

25. Wu PZ, Liberman LD, Bennett K, de Gruttola V, O’Malley JT, Liberman MC. Primary Neural 

Degeneration in the Human Cochlea: Evidence for Hidden Hearing Loss in the Aging Ear. Neuroscience. 

2019;407:8–20. 

26. Houben R, Koopman J, Luts H, Wagener, KC, van Wieringen A, Verschuure H, Dreschler WA. 

Development of a Dutch matrix sentence test to assess speech intelligibility in noise. Int J Audiol. 

2014;53(10):760–3. 




