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A B S T R A C T

Advances in terrestrial laser scanning (TLS) enable the extraction of ecologically meaningful data from detailed
3D representations of individual trees. Computer models deliver a comprehensive suite of tree structural metrics
that are difficult, if not impossible, to obtain using traditional field methods. However, best practice high-
end TLS equipment and computer modelling are expensive and complex, and ground-based data acquisition
is spatially limited, thus presenting significant hurdles for the implementation of this technology in land
management. We investigated the utility of lower-cost TLS data acquisition and processing for efficient, large-
scale assessment of tree volume as an ecologically meaningful parameter. A 1 ha plot in a tropical savanna
woodland was scanned twice over consecutive years using an entry-level TLS scanner (Leica BLK360), with
the second survey conducted immediately after a high-intensity fire event. The performance of low-complexity
voxel models for calculating individual tree volume was tested and calibrated against more established and
more complex Quantitative Structure Models (QSM) estimates of a 100-tree subset. Of the models tested, a
filled voxel model with a voxel size of 0.04 m achieved 96% accuracy when compared to QSM estimates.
Processing time for individual trees was over 100 times faster. To further explore the utility of lower-cost,
lower-complexity data in large-scale monitoring, the best-performing optimised volume model was then applied
to the hectare-scale data set and used to establish an allometric model based on metrics that can be obtained
from aerial surveys. The best-performing allometric model used tree height and crown area as a compound
variable in a logarithmic linear regression and was able to explain 99% of variance in the total tree volume.
Furthermore, as the training data contained trees from recently burnt vegetation, the model was able to account
for fire damage, important for carbon accounting in fire prone ecosystems such as savannas. With the utility
of LiDAR scanning for vegetation mapping and monitoring firmly established in the literature, development
of methods for non-specialist practitioners is now essential for greater utilisation of this technology by
land managers. We provide a case study highlighting the utility of lower-cost data acquisition and efficient
processing for locally adapted vegetation mapping and monitoring.
1. Introduction

Savannas are a mixture of trees and grasses, spatially and tempo-
rally heterogeneous ecosystems shaped by highly seasonal rainfall and
local disturbance processes. In the Eucalypt-dominated north Australian
tropical savannas, the main disturbance processes include frequent fire,
convective storms, and cyclones, which in combination with termite
impacts (Hill and Hanan, 2010; Williams and Douglas, 1995) drive
rapid turnover of vegetation (Chen et al., 2003). Exacerbated by climate
and land use change, these interactions result in high spatial and
temporal heterogeneity in stand structure and above-ground biomass
(AGB). Mapping, monitoring and modelling of this heterogeneity is
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challenging with traditional field inventory methods, which are time-
consuming and expensive to deploy at scale. As such, the use of remote
sensing solutions to provide cost-effective mapping is an active field of
research. LiDAR (Light Detecting and Ranging) remote sensing meth-
ods, in particular, show promise in quantifying the spatio-temporal
heterogeneity of vegetation structure more effectively and accurately
in tropical savannas (Levick et al., 2021).

Initially recognised in the early 2000s as having potential to repli-
cate traditional forest inventory metrics (Hopkinson et al., 2004; Lefsky
et al., 2002; Lovell et al., 2003), terrestrial LiDAR has seen a steady
rise in the number and diversity of applications. For quantifying tree
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and stand structural change and diversity (Calders et al., 2020; Disney,
2019; Maeda et al., 2022), the versatility of high-resolution point cloud
data derived from terrestrial laser scanning (TLS) enables the extraction
of metrics that had previously been challenging, if not impossible, to
obtain using traditional field methods. In open forests, the scanning
viewpoint from beneath the canopy provides little occlusion of tree
crowns by woody components and generally allows for near-complete
reconstruction of entire trees across all size classes (Calders et al.,
2020; Maeda et al., 2022). However, due to its ground-based collection
platform, the spatial resolution of TLS data is limited by low mobility
and horizontal occlusion by tree trunks (Disney, 2019). In contrast,
airborne data collection such as airborne LiDAR, UAV LiDAR or pho-
togrammetry (here summarised as airborne platforms) allows for faster
data acquisition over far larger areas but is subject to reduced point
density, occlusion beneath the canopy, and increased noise. Despite
these restrictions, data captured from above the canopy allows users
to calculate a limited number of individual tree metrics including tree
height and crown projected area (Terryn et al., 2022). Due to its larger
spatial footprint compared to TLS, airborne data collection is a widely
used tool for vegetation mapping and monitoring, and although limited,
the data available may be used to estimate metrics otherwise only
obtainable from TLS by using allometric models.

Allometric models allow us to estimate target metrics such as AGB
from more readily obtainable metrics, but are susceptible to uncertainty
arising from heterogeneity not captured in the training data. Tradi-
tional allometric models commonly estimate AGB from field-derived
stem diameter at 1.3 m (DBH) often in combination with tree height,
and are typically based on destructive sampling. Destructive sampling,
by necessity, focuses on a limited number of ideal or representative
trees while aiming to capture a range of ecological communities within
a landscape (for the north Australian tropical savanna, see Williams
et al., 2005). Models constructed from such data can therefore be
subject to bias unless calibrated across the full range of tree sizes and
species (Roxburgh et al., 2015). Furthermore, the stability of allometric
models decreases with sample size (Duncanson et al., 2015), especially
where a high degree of variability is present (Roxburgh et al., 2015).
In savannas, this potential for error is particularly prevalent in large
trees, given the increased structural heterogeneity due to damage and
the effort required to statistically sample large individuals (Luck et al.,
2020). Remote sensing such as airborne platforms is increasingly used
to construct allometric models using larger sample sizes that include
trees of all sizes and species (Graves et al., 2018; Jucker et al., 2017).
Thus, constructing robust allometric models calibrated for local to
regional vegetation communities from TLS would allow the mapping
and monitoring of ecologically meaningful metrics at the spatial scale
accessible to a variety of airborne data collection platforms.

Current best practice for obtaining non-destructive detailed tree
measurements from individual TLS point clouds is the use of Quanti-
tative Structure Modelling (QSM). Quantitative Structure Models are
sophisticated geometrical models used to produce a suite of detailed
tree metrics, including the volume, area, length, diameter, angle, or
order of individual tree components (stem/branches), which had pre-
viously been challenging to obtain (Lecigne, 2020; Raumonen et al.,
2013). Tree volume as calculated by QSM has been shown to be a
highly accurate predictor for AGB in a range of biomes, including
Australian Eucalypt forests (Burt et al., 2013; Calders et al., 2015).
However, QSMs are computationally expensive and the level of detail
they provide is often not required for individual inventory projects or
ecological studies. Thus, the required computational power for data
analysis is needlessly inflated, presenting a barrier to some users.
Alternatively, a range of less complex but potentially less precise mod-
els are available (Atkins et al., 2022) that can calculate individual
metrics, such as tree height, volume and crown area (Newnham et al.,
2015). Such models often rely on simplified mathematical approaches
2

to calculate selected metrics, thereby removing the need for complex i
calculations. The alternative models tested in this study included ap-
proaches based on voxels, alpha shapes or convex hulls. Of interest is
the ability of these simple models to reliably replicate these metrics
from TLS data. Our study was conducted in multi-storey tropical sa-
vanna woodlands and captured the spatial and temporal variability of
this vegetation type, which dominates northern Australia (Hutley and
Setterfield, 2019); such detailed assessment of structural change has
not previously been examined. In this context, QSMs applied to a data
subset may be a valuable tool for calibrating simpler models, in turn
allowing for efficient processing of large data sets and the construction
of robust allometric models.

In this study, we define total tree volume as a measure of the 3D
space occupied by a tree. This further reduces computational costs
by removing the need for leaf-stem separation algorithms generally
used for evergreen vegetation (Krishna Moorthy et al., 2020; Vicari
et al., 2019; Yun et al., 2016) but also allows the inclusion of non-
woody components in the mapping and monitoring of habitat structure
and structural changes. Monitoring of total tree volume can provide
insight into the severity of disturbances such as fire across all height
strata. In contrast to fire intensity (Keeley, 2009), fire severity measures
the impact of fire on the ecosystem, an essential aspect of ecosystem
response to disturbance that remains challenging to map and monitor
at scale (Edwards et al., 2018). If recorded along with traditional fire
mapping, monitoring changes in total tree volume as indicator for fire
severity would find applications in areas such as the assessment of
fire impacts on habitat structure and biodiversity, or estimation of
greenhouse gas emissions and carbon management (Edwards et al.,
2013).

This study aimed to utilise highly detailed TLS data to improve
the utility of airborne platforms for collecting ecologically meaningful
information without the need for access to high-performing computing
infrastructure. The key objectives were to: (a) identify a suitable volu-
metric model to obtain training data from TLS, and (b) use this training
data to establish an allometric model that predicts total tree volume
from crown area and tree height. We thus hope to provide a workflow
that can be applied locally to map and monitor savanna vegetation at
ecologically meaningful spatial scales.

2. Methods

2.1. Field site

The study was carried out on a 1 ha plot at the Litchfield Sa-
vanna Supersite (LSS) approximately 80 km southwest of Darwin in the
Northern Territory, Australia. The LSS is a component of a national veg-
etation monitoring network (Terrestrial Ecosystem Research Network,
TERN) (Karan et al., 2016). Vegetation is mesic tropical savanna wood-
land with mean annual precipitation of ∼1890 mm y−1 (Australian

ureau of Meteorology, 2021), where 90% of rainfall occurs between
ctober to April during the wet season (Fig. 1). Fire frequency is high
nd, over the last 20 years, the site has received 13 fire events, with
of these considered of high severity — fires that occur after August,

urning fuel loads that have accumulated and experienced a degree of
uring throughout the dry season (May–September). Fire frequency was
erived from the North Australian Fire Information (North Australia &
angelands Fire Information (NAFI), 2022) system observations.

Overstorey tree species are dominated by Eucalyptus miniata, E.
etrodonta and E. latifolia, with a mean canopy height of 18 m. A
id-layer (2–7 m height) exists and consists of Eucalyptus juveniles

nd other deciduous non-Eucalypts trees and shrub species, plus an
nderstory dominated by C4 grasses and Eucalyptus spp. resprouts.
tand density is ∼700 stems per ha−1 with a basal area of 8.2 m2

a−1 (Karan et al., 2016).
The plot was scanned twice using TLS during August 2018, follow-
ng a wet season of 1172 mm, which was ∼730 mm below average, and
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Fig. 1. Location map of field site (left), showing Litchfield Supersite (LSS), with temperature and rainfall range 2010–2020 (right) at Batchelor AP (Australian Bureau of Meteorology,
2021).
Fig. 2. Scans were undertaken using a Leica BLK360 at the field site pre-fire in August 2018 (left) and post-fire in September 2019 (right). The vegetation was visibly affected
by a severe fire event two weeks prior to the 2019 scan.
again in September 2019, following a second low-rainfall wet season
of 1342 mm. Back-to-back below-average wet seasons resulted in an
extended dry season, and the site was subjected to a high-severity
fire event that burned 90% of Litchfield National Park between 2–7
September 2019, including the LSS plot, with most trees experiencing
near-100% leaf scorch. Scanning in 2019 was undertaken two weeks
following this event (Fig. 2).
3

2.2. Data acquisition and processing

The 1 ha plot was scanned using a Leica BLK360 TLS (wavelength
830 nm, maximum range 60 m at 78% albedo, beam divergence 0.4
mrad, range accuracy of 4 mm at 10 m and 7 mm at 20 m, Geosystems
(2017)) in high point density collection mode (resolution 5 mm at 10 m,
scan size approx. 65 M points). The plot was scanned using a grid with
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Fig. 3. Tree height classes used for the 100-tree subset using variables obtained from
LiDAR360. The upper panel shows the tree height-class distributions for the four
groupings. The lower panel shows the distribution of tree crown area (m2) and height
(m). The majority of trees detected on site were in the smaller height classes.

evenly spaced scan points, where the August 2018 survey used a 25 m
spacing between points (totalling 25 scan points), and the September
2019 survey used a 20 m spacing (totalling 36 scan points). Scanning
took place in the morning and afternoon to avoid branch movement
during windier periods of the day. Point clouds were processed using
the workflow as documented in Luck et al. (2020). The individual point
clouds were visually aligned in CloudCompare v 2.11.3 (Anoia) and co-
registered using RIEGL RiSCAN PRO v 2.9 software. The co-registered
1 ha point cloud was then processed in LiDAR360 v 5.2 software,
where a Digital Elevation Model (DEM) generated from the ground
points was used to normalise the point cloud, before segmentation of
individual trees. For the instance segmentation, the LiDAR360 Point
Cloud Segmentation tool was used, and any segmentation errors manu-
ally edited using the Individual Tree Editor. This process was repeated
for the 2018 and 2019 field campaigns, and we extracted 1018 trees
from the pre-fire scan in 2018 and 920 trees from the post-fire scan
in 2019. The LiDAR360 software calculates tree height and crown area
after the segmentation process, which were used to group trees into
four inclusive tree height classes (2–7 m, 7–11.5 m, 11.5–19 m and
>19 m), based on the grouping apparent in the observed tree heights
(Fig. 3). From each height class, 25 trees were randomly chosen and
spatially matched between years. This subset of 100 trees was analysed
using QSM, and specific outputs were used to evaluate and tune the
performance of less complex tree structure models (Section 2.3). The
tuned models were then applied to the entire data set, and the outputs
used to construct a highly localised allometric model.

2.3. TLS tree structure modelling

Current best practice for quantifying individual tree structure from
point clouds is the use of geometrical QSM (e.g. Raumonen et al.,
2013). These QSMs are based on a cylinder model and describe a wide
range of tree characteristics, including metrics such as tree volume,
tree height and crown area. While sophisticated and versatile, timely
processing of large numbers of trees at hectare or coarser scales using
this approach is unrealistic using standard desktop devices. In this
study, we used a set of key QSM outputs to test and calibrate the
less complex alternative models. Of the available QSM metrics, we
selected crown area and tree height to predict total tree volume in an
empirical allometric model. Tree height and crown area can be derived
from airborne LiDAR data with high precision and collected at scale,
making them ideal predictor variables. We tested three alternative
4

packages that run in the R statistical environment (R Core Team,
2021), rTLS (Guzman et al., 2021), alphashape3d (Lafarge and Pateiro-
Lopez, 2020) and VoxR (Lecigne, 2020). Each package uses a different
approach, including a convex hull, a 3D alpha shape and a voxel model
respectively (Fig. 4; Section 2.3.2). To compare the model sensitivity
to change over time between approaches, the average total change and
percent total change for each height class were plotted for individual
models with standard deviation.

2.3.1. Structural estimates using QSM
Quantitative Structure Models are generally constructed from trees

without leaves; however, in this study, we opted to retain existing
foliage on the trees. The QSM analysis was undertaken on a 100-tree
subsample for each year using a modified version of TreeQSM (as
described by Calders et al., 2015; Lecigne, 2020; Markku et al., 2015;
Raumonen et al., 2013) version 2.4.0 (Åkerblom, 2020), running on
MATLAB software (MATLAB, 2021) version r2021b. We used the work-
flow described in the QSM manual (IPRG, 2020), applying the parallel
computing option. Adjusted input variables included patch and cover
set size and ball radius. Input ranges for the initial QSM model iter-
ations were adopted from the manual guidelines for the 2–7 m and
>19 m height classes and extrapolated for the 7–11.5 m and 11.5–
19 m height classes (see Supplementary material for input parameters).
For each input parameter combination, five model iterations were run
and the (default) average cylinder point-model distance used to select
optimal inputs. A further ten model iterations were run using the
optimised inputs for each tree. From the QSM outputs, the mean and
standard deviation of total tree volume, tree height and crown area
(convex hull of the crown planar projection) were extracted.

To investigate the impact of foliage on calculated total tree volume,
a subsample of 35 trees was analysed before and after applying a leaf-
stem separation algorithm based on Krishna Moorthy et al. (2020).
The leaf-wood separation model was initially trained on ten trees from
within the plot, representing seven common species (Eucalyptus miniata,
E. tetrodonta, Corymbia latifolia, Buchanania obovata, Grevillea decurrens,
G. pteridifolia and Persoonia falcata).

2.3.2. Structural estimates using alternative models
Tree height and crown area were extracted using the R packages

VoxR and rTLS. Both models use a 2D convex hull to estimate the
projected crown area, and the elevation difference between the lowest
and highest points for tree height.

Total tree volume was extracted using the alphashape3d and VoxR R
packages. The alphashape3d package builds a 3D alpha shape defining
the surface that ‘wraps around’ the point cloud (Edelsbrunner and
Mücke, 1994). The VoxR package offers three different approaches
to estimating tree volume, where two are voxel-based models with
clusters of points within the point cloud wrapped in voxels (3D pixels)
of a given size. Volume is then calculated based on a filled voxel
approach (Lecigne et al., 2018) and a second approach, where voxels
containing only a small number of points are removed prior to volume
calculation (after Vonderach et al., 2012). For both approaches, the
total tree volume is then calculated as the sum of the volume of all
voxels fitted to the point cloud. The VoxR package uses an efficient
voxelization method, and once voxel size is optimised (Pimont et al.,
2018), results in fast and accurate volume calculation. The third ap-
proach offered by the VoxR package uses a convex hull to define the
wrapped surface of the point cloud. This approach does not offer an
option for calibration, but was included in the testing process.

To calibrate the models, the respective tuning parameters were
tested with different resolutions, and performance statistics calculated
for the optimised models. For the alpha-shape model, the tuning param-
eter 𝛼 defines the spherical cap radius used to establish the boundary
of the convex hull within the point cloud. For the voxel models (Von-
derach and filled voxel), the tuning parameter cluster distance defines
the size of individual voxels (3D pixels). Multiple resolutions were
tested; to highlight the impact of change in resolution, we plotted three
resolutions for each model (alpha-shape model: 0.015 m, 0.025 m and
0.035 m; voxel models: 0.04 m, 0.05 m and 0.06 m).
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Fig. 4. A Eucalyptus miniata tree from the plot area, showing (a) a photograph taken
on-site, (b) a co-registered point cloud (raw data for subsequent analyses), (c) a final
corrected QSM segmentation, (d) a voxel model and (e) an alpha shape model.

2.4. Allometric model for variables that can be derived from airborne
platforms (tree height and crown area)

We constructed a new allometric model, predicting tree volume
from crown area and tree height — two metrics commonly extracted
from airborne observations. To do so, we first examined the relation-
ship between the two predictor variables and tree volume from the
QSM output of the 100-tree subset. We then calibrated and tested the
alternative models estimating both predictor and outcome variables
and compared them with the reference QSM estimates. Once optimised,
the alternative models were used to calculate the training data for the
allometric model, where the filled voxel model from the VoxR package
was used to estimate the outcome variable total volume, and the rTLS
package was used to estimate the predictor variables tree height and
crown area.

2.5. Statistical analysis

Statistical analyses were carried out in the R statistical environ-
ment (R Core Team, 2021). The correlation between leaf-on and leaf-off
QSM outputs for a subset of trees was calculated using a linear regres-
sion. Correlations between QSM, alpha shape, voxel and convex hull
model outputs were calculated using a linear regression with year as
the covariate and the significance of year as a factor tested using an
Analysis of Covariance (ANCOVA). If the relationship between QSM
volume and voxel volume significantly depended on year (i.e. fire
damage), the data was split, and two models were reported for in-
dividual years (i.e. with and without fire damage). The quality of
predictions was assessed using the Coefficient of Determination (R2),
Root Mean Square Error (RMSE) and Mean Average Error (MAE). For
the correlation between volume models, Lin’s Concordance Correlation
Coefficient (CCC) (Lin, 1989, 2000) was added to compare QSM outputs
to the respective alternative model (alpha shape or voxel model).

To investigate model sensitivity to change, we first tested the dif-
ference in tree volume between years (before and after fire) using
a Welch’s t-test. The difference in volume between years was then
calculated for each tree as measured by each volume model. The means
of the difference measured by each model were then used in a paired
t-test, comparing them to the QSM as baseline data.
5

The allometric relationship between QSM volume and the potential
predictors crown area and tree height was generalised using a multi-
ple linear regression. Applying a log transformation to predictor and
outcome variables produced the best linear relationship with total tree
volume. To account for strong collinearity between the predictors, the
two predictor variables were combined to create a compound variable
(CV).

𝐶𝑉 = 𝑐𝑟𝑜𝑤𝑛 𝑎𝑟𝑒𝑎 × 𝑡𝑟𝑒𝑒 ℎ𝑒𝑖𝑔ℎ𝑡

We compared five covariate structures; three allometric models
were built using the compound variable by itself, in combination with
and as interaction with year as fire impact factor (the compound
variable was centred at its mean when year was used as interaction). A
further two allometric models were built with tree height and crown
area as predictors and the multiplicative interaction between them
(with both centred at their mean). Model validation and selection of
covariate structure were based on cross-validation, RMSE, relative error
and Studentized Breusch–Pagan heteroscedasticity test. Predictor selec-
tion within model category was based on model residual diagnostics
and Second-order Akaike Information Criterion (AICc) (Burnham and
Anderson, 2002), a default option adapted for smaller sample size
which converges towards AIC with a large sample size.

We compared the allometric models based on the entire data set
to the same model structures based on a binned and a thinned data
set (Jucker et al., 2017). Data binning was undertaken to account
for residual heteroscedasticity and errors in predictors leading to re-
gression dilution bias. Total tree volume as the outcome variable was
assigned to eight log scale bins, and the mean of all variables cal-
culated for each bin. To allow inclusion of fire as a factor, the data
was split into years before binning. Data thinning was undertaken by
taking equal random sub-samples from data bins. Model validation
and selection of training data structure were based on cross-validated
test data, which was not binned or thinned. All allometric models
were validated by checking for homoscedasticity of residuals, lack of
pattern in residuals across fitted values and predictors, an approxi-
mately normal distribution of residuals, no overly influential outliers
and no collinearity issues. For more information, please refer to the
Supplementary Material.

3. Results

3.1. Alternative tree volume modelling

Before starting our analysis, we investigated the effect of leaf re-
moval on volume estimates. We compared QSM volume estimates with
and without leaves for a subset of 35 trees with samples from all four
height classes (Fig. 5). A linear regression indicated an overestima-
tion of tree volume in the leaf-on stage by approximately a factor of
two. However, this overestimation is likely to be exaggerated due to
excessive point removal by the leaf-stem separation algorithm used to
prepare the trees for comparison. Nevertheless, the high coefficient of
determination (R2 = 0.96) of the explorative linear regression indi-
cates that calibration is possible should wood volume be the desired
outcome, and the use of a leaf-stem separation algorithm is not feasible.

While current best practice, building QSM models can be time-
consuming, as they calculate an extensive range of outputs. We test the
accuracy of targeted outputs from less complex models once calibrated.
Calibration of the alternative models resulted in correlations between
QSM volume estimates and all three models that explained over 90%
of variance (Fig. 6). No influential outliers were detected in any of the
models. The filled voxel model was the most robust, with no significant
difference in slope or intercept between years (burnt and unburnt
vegetation).

The filled voxel model reached 95% accuracy, and performance was
not affected by fire damage. Filled voxel volume increased significantly
with QSM volume (linear regression, F = 1415, df = 3, 196, p < 0.001,
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Fig. 5. Leaf-on and leaf-off state of the Quantitative Structure Model (QSM)-derived
total tree volume (2018 scan) (n = 35) with a zoom into small trees in the bottom
panel.

R2 = 0.95). The relationship between QSM volume and voxel volume
did not significantly depend on year (F = 2.57, df, 1, 196, p > 0.05,
Fig. 6d).

The Vonderach model reached 94% accuracy, and performance
was also not affected by fire damage. Vonderach volume increased
significantly with QSM volume (linear regression, F = 1235, df = 3, 98,
p < 0.001, R2 = 0.94). As with the filled voxel model, the relationship
between QSM and Vonderach volumes did not significantly depended
on year as a factor (F = 2.3, df = 1, 196, p > 0.5, Fig. 6e).

The alpha shape model reached similar accuracy to the voxel mod-
els, but performance was affected by fire damage, and statistics were
therefore split into individual years. Alpha shape volume increased
significantly with QSM volume for both years (linear regression, F
= 1183 for 2018 and 1200 for 2019, df = 1, 96, p < 0.001, R2 =
0.93). However, the relationship between QSM volume and alpha shape
volume significantly depended on year as a factor (F = 15.97, df = 3,
192, p < 0.5, Fig. 6f). The intercept of the relationship was greater
in 2018 (0.052 versus 0.023), indicating an overall higher estimate of
volume in the alpha shape model compared to the QSM. However, the
slope was greater in 2019 (1.018 versus 0.861), indicating a slower in-
crease in alpha shape volume with increasing QSM volume for unburnt
vegetation.

The convex hull model could not be calibrated and was not included
in Fig. 6. This model consistently overestimated the QSM volume by a
factor of 3 (R2 = 0.91, RMSE = 0.849 m3, MAE = 0.5068 m3, ab =
−0.01269 + 3.107x).

Model performance was further tested to assess sensitivity to change
over time. Overall, all models predict similar rates of mean total change
and mean percent change in occupied space (calculated by subtracting
2019 values from 2018 values for individual trees) for each tree height
class (Fig. 7). The average volume change detected by the alternative
models was not significantly different from the QSM model, according
to the t-test at the two-tailed probability (alpha) level a = 0.05. For the
6

filled voxel model t(3) = 1.56, for the Vonderach model t(3) = 1.40 and
for the alpha shape model t(3) = −1.38, where p > 0.05 for all models.

For most height classes, the voxel models (filled voxel and Vonder-
ach) tend to overestimate volume change, while the alpha shape model
tends to underestimate. The evidence of fire impact visible in the field
was reflected in a strong, if not quite significant difference in mean
volume between years (t(184) = 1.72, p = 0.09). The majority of total
volume was lost in the mid to upper canopy (11.5–19 m and >19 m
height classes, Fig. 7a). While total loss in the understory was minimal
in comparison, it showed the highest relative volume loss (Fig. 7b).

Failure to build tree models was an issue for the QSM, as well as
some of the alternative models. Of the models run in R to obtain metrics
from all trees (n = 1938), only VoxR (the voxel model) successfully
processed every tree, while errors were returned for 185 trees using
alphashape3d and 32 trees using rTLS. Only one tree returned an error
by both the alphashape3d and rTLS model, suggesting that data quality
was not the issue.

3.2. Allometric model for variables that can be derived from airborne
platforms (tree height and crown area)

Results show that crown area and tree height are good predictors
for total volume, as there is a strong linear relationship between crown
area and tree volume (R2 = 0.93 in unburnt and 0.88 in burnt vegeta-
tion, Fig. 8a) and a strong log-linear relationship between tree height
and crown area (R2 = 0.89 in unburnt and 0.91 in burnt vegetation,
Fig. 8b).

Results also show that both predictors (crown area and tree height)
can be reliably replicated by the computationally simpler alternative
models. For crown area, there is a strong linear relationship between
the QSM and the rTLS package (R2 = 1) (Fig. 8c) and a strong log-
linear relationship between the QSM and the VoxR package (R2 =
0.99) (Fig. 8c). For tree height, the rTLS and VoxR package predicted
identical values with a strong linear relationship to QSM estimates (R2

= 0.99 for both) (Fig. 8d).
Initial investigation of tree height and crown area in relation to

tree volume shows strong relationships between individual metrics.
The linear relationship between crown area and total volume shows
evidence of heteroskedasticity. Conversely, the relationship between
tree height and total volume plateaus for small trees but has a very
strong gradient for larger trees. In combination, these parameters may
be very well suited as parameters for a new allometric model predicting
total volume.

Using the best-performing filled voxel model (voxel size = 0.04 m),
we processed all trees in the 1 ha plot from 2018 (unburnt) and 2019
(burnt). To access the three variables, we used the calibrated filled
voxel volume from the VoxR package and crown area and tree height
from the rTLS package. The severe fire allowed us to include trees
with and without recent fire damage with minimal risk of collinearity
between years. With the exception of one extremely large tree, outliers
with large residuals stemming from large damaged trees (such as
stumps or boles without crowns) were not removed from the model,
as they form part of the natural variability in tree structure observed
in a natural stand as is used here.

For the final model, a multiple linear regression was calculated to
predict total tree volume based on the compound variable and recent
fire effect (F(2, 13) = 907.9, p < 0.000) with an R2 of 0.993 and trained
on binned data (Fig. 9). The equation of the model was:

𝑇 𝑜𝑡𝑎𝑙 𝑡𝑟𝑒𝑒 𝑣𝑜𝑙𝑢𝑚𝑒

= 𝑒𝑥𝑝(−5.447 + 0.805 × 𝑙𝑜𝑔𝑒(𝐻 × 𝐶𝐴) − 0.332 × 𝑓𝑖𝑟𝑒 𝑑𝑎𝑚𝑎𝑔𝑒)

where the total tree volume is measured in m3, H is tree height in m,
CA is crown area in m2 and fire damage is coded as present (1) or
absent (0). For every 10% increase in the compound variable, there
was an estimated average increase of 7.97% in total tree volume (95%
CI 7.6% to 8.4%). If the vegetation was affected by recent severe fire,
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Fig. 6. Model calibration for voxel models (filled voxel and Vonderach) and alpha shape model using 100 randomly chosen trees evenly distributed across the four height classes.
Panels a–c show the range of model resolutions tested with a 1:1 line indicating best fit for predicting Quantitative Structure Model (QSM) volume. Panels d–f show the optimised
resolution for each model with model statistics and regression lines for individual years (unburnt in 2018 and burnt in 2019). Example resolutions shown for Vonderach and
filled voxel volume: 0.04 m, 0.05 m, 0.06 m (Res 1–3 respectively). Example resolutions shown for alpha shape volume: 0.015 m, 0.025 m, 0.035 m (Res 1–3 respectively). Best
resolutions for predicting QSM volume were 0.04 m for the filled voxel model, 0.053 m for the Vonderach model and 0.025 m for the alpha shape model. There was no significant
difference between years for the voxel-based models (d, e).
there was mean 28% loss in total volume (95% CI 7.5% to 44.4%). Both
the compound variable and fire damage were significant predictors of
total tree volume. The binned final model outperformed other models
tested on the entire data and thinned data based on model residual
diagnostics and AICc (Supplementary Material).

4. Discussion

Our results show that once calibrated, simpler models can closely
match the ability of highly detailed but computationally expensive
QSMs in estimating and tracking changes in total tree volume. The
filled voxel model (VoxR package) performed best and equally well in
7

disturbed and undisturbed vegetation, replicating QSM estimates with
95% accuracy (Fig. 6d). For the less complex metrics of crown area
and tree height, the alternative models reproduced QSM estimates with
99% and 100% accuracy, respectively (Fig. 8c,d). This near-perfect
alignment is not surprising, given that crown area in both the QSM
and the rTLS model uses a convex hull of the crown planar projection,
while tree height is simply the difference between the lowest and
highest point. Sporadic deviations may be due to differences in the
noise filtering between models. Of the alternative models trialled, the
voxel-based models appeared to be the most robust, being the only
models to process every tree in the data set, while all the other models
returned seemingly random errors.
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Fig. 7. Model sensitivity to change due to the fire event, showing median, upper and lower quartiles and range. Panel (a) total change in occupied space with SD and (b) relative
change in occupied space with standard deviation (SD). Showing alternative models as compared to Quantitative Structure Model (QSM) estimated change (first bar) between 2018
and 2019. The voxel model estimates are generally closer to the QSM but mostly slightly overestimate median change, while the alpha shape model mostly underestimates change.
Fig. 8. Correlation between volume from Quantitative Structure Model (QSM) and two potential predictors for burnt (2019) and unburnt (2018) vegetation for (a) crown area (2D
convex hull) and (b) tree height (distance between lowest and lightest point), with a log transformation applied to the explanatory variable. Correlation between QSM estimates
and alternative model estimates for (c) crown area and (d) tree height. A log transformation was applied to both the predictor and the explanatory variable for the VoxR model
predicting crown area (c).
While there is good agreement in volume estimates between the
QSM, voxel and alpha-shape models, computing time differed dramat-
ically. For instance, to process the tree pictured in Fig. 4 on a standard
laptop (2.8 GHz CPU, 16 GB RAM) took three minutes using the
8

basic QSM function and 80 min using the more detailed QSM process
described in Section 2.3.1. In contrast, calculating the target variables
of total volume, crown area, and tree height using the alternative
models took 36 s combined. We argue that in a resource-restricted
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Fig. 9. Performance of the allometric model predicting total tree volume from tree height and canopy area with observed and predicted volume log-transformed. The model was
trained on binned data (a), and model performance measures are based on cross-validated test data (not binned) (b).
Fig. 10. Visualisation of sample trees representing all four height classes: (a) 11.5–19 m, (b) 2–7 m, (c) 7–11.5 m, (d) >19 m in 2018 (left panel) and 2019 post-fire (right panel).
Fire damage is evident in all four height strata with some damage evident to branches in tree (d).
environment, QSMs can serve as a valuable tool for providing the
reference data required to calibrate more efficient models ideal for fast
extraction of target metrics. By reducing model complexity, we enhance
the usability of TLS data for mapping and monitoring changes in tree
volume across research and land management sectors.

Mature canopy trees represent the majority of total tree volume
within a plot, and airborne platforms allow for these trees to be
monitored at an increased spatial scale compared to TLS. However,
due to occlusion from the canopy and reduced point density, data
from airborne platforms is limited regarding the metrics that can be
reliably extracted (Terryn et al., 2022) and does not allow us to directly
measure changes in total tree volume. Using TLS data, we constructed
a localised allometric model to predict total tree volume from crown
area and tree height, both metrics that can be observed from airborne
platforms. By using voxel models in extracting tree metrics from our
training data and adopting a data binning approach for training the
model (Duncanson et al., 2015; Jucker et al., 2017), we reduced the
computational resources required for the construction of such a model.

The ability to accurately map and monitor habitat structure and
severity of disturbance impact on mature versus regenerating individ-
uals is crucial, as changes can affect habitat use across taxa and height
strata (Andersen et al., 2006; González et al., 2021; Tassicker et al.,
2006). In this study, a 2019 fire occurred late in the dry season, a period
of high fire risk and generally increased fire intensity. It is evident that
there was a direct impact on all four strata investigated, including large
trees (Figs. 2 and 10; 2018 versus 2019), and all volume models re-
flected this change (Fig. 7). When testing sensitivity to change between
9

the different models, a variance exceeding the mean is unsurprising, as
the height class groups investigated are coarse and contain multiple tree
species. Spatial variation in fire intensity may have further contributed
to the wide range of tree volume changes within each height class.
The use of efficient tree structure characterisation enables mapping and
quantification of this spatial variability in change both horizontally and
vertically.

By reducing computational complexity in the establishment of allo-
metric models, we improved accessibility of mapping and monitoring of
total tree volume at an increased spatial scale. Incorporating burnt and
unburnt vegetation in the allometric model allowed us to account for
fire as a local disturbance factor, an aspect particularly relevant in fire-
prone savannas. Calibration to local tree composition and incorporation
of relevant disturbance factors such as fire make localised allometric
models a valuable tool for assessing change as a result of disturbance
events or changed growing conditions (e.g. from drought through to
high wet season growth). In future research the utility of airborne data
collection may be greatly enhanced by applying the allometric model
over an extended area in Litchfield National Park. Further research
may also investigate allometry between total tree volume and AGB.
Applications of this approach may also include habitat structure mon-
itoring, vegetation change following mine site rehabilitation, carbon
accounting or agroforestry.

Reliably quantifying changes in the juvenile tree re-sprouts and
shrubs is particularly important in savanna, as this cohort is the main
driver of regeneration (Higgins et al., 2000; Bond and Keeley, 2005).
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However, the often-high stem densities in this stratum present a chal-
lenge to capturing change using traditional field inventories, whereas
vegetation volume modelling from TLS shows great promise for mon-
itoring of this fire-sensitive layer and warrants further investigation.
Further research is also needed to investigate the link between struc-
tural change and net environmental fluxes such as carbon, water and
energy, linking changes in phenology, disturbance and climate ex-
tremes to flux dynamics (Moore et al., 2016; Portillo-Quintero et al.,
2014).

The wider spacing between scan points used in 2018 (25 m versus
20 m in 2019) may have reduced the completeness of individual tree
point clouds due to increased occlusion, particularly in the denser shrub
layer. Although we were still able to show a volumetric reduction in the
understory, we consider this a limitation of this study and recommend
a consistent sampling method suitable to the local vegetation density.

5. Conclusion

Characterisation of vegetation structure is particularly challenging
in tropical savannas; they are extensive, and in Australia, remote with
a high degree of spatial and temporal heterogeneity. We demonstrate
the utility of entry-level hardware and reduced model complexity to
facilitate fast and accurate processing of terrestrial laser scanning data.
The associated cost reduction facilitates application of this technology
to access ecologically meaningful tree metrics such as total tree volume,
tree height and crown area from plot to potentially catchment scales for
a wide range of stakeholders. The approaches investigated in the study
will facilitate rapid quantification of spatial and temporal changes in
stand structure, wood volume, and ultimately above ground biomass.
Future work is required to translate volume to biomass in this ecosys-
tem, and to integrate the efficient evaluation of changes in vegetation
structure with environmental metrics such as greenhouse gas fluxes to
characterise ecosystem processes as determined by structural change.
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